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ABSTRACT

A large class of problems in machine learning involve data sets in which each
data point is a point cloud in RD. Many applications involving point cloud data
sets require a means of measuring not only distances, but also angles, volumes,
derivatives, and other more advanced geometric notions. Existing approaches for
the most part tend to be ad hoc, and lack coordinate-invariance. In this paper we
develop a Riemannian geometric structure for point cloud data. By interpreting a
point cloud as samples from some underlying probability distribution, the space of
point cloud data can be given the structure of a statistical manifold, with the Fisher
information metric acting as a natural Riemannian metric. The only requirement
on the part of the user is the choice of a meaningful underlying probability dis-
tribution, which is more intuitive and natural to make than what is required in
existing ad hoc formulations. Two autoencoder case studies involving point cloud
data are presented to demonstrate the advantages of our statistical manifold frame-
work: (i) interpolating between two 3D point cloud data sets to smoothly deform
one object into another; (ii) finding an optimal set of latent space coordinates that
minimizes distortion.

1 INTRODUCTION

A growing number of machine learning problems involve data sets in which each data point is a
point cloud in RD, e.g., 3D point cloud obtained by depth cameras. Typical applications include
measuring the degree of similarity betweeen two point clouds – the point clouds may be measure-
ments obtained from a depth camera, for example – for which a distance metric on the space of point
clouds is needed. Some widely used distance metrics used in this context include the Hausdorff dis-
tance (both the original and averaged versions), the chamfer distance (Hausdorff, 1914), and the
earth mover distance (Rubner et al., 2000).

However, the distance metric measures just one aspect of point cloud data; other applications may
require more advanced concepts and tools. For example, in the case of a moving point cloud, one
may wish to measure some of its more dynamic aspects like its velocity or other quantities that
require a notion of higher-order derivatives. Applications such as Monte Carlo sampling may require
the construction of an isotropic Gaussian distribution on the underlying space, in which case the
notion of “angle” is needed in addition to distance (more technically, an inner product on the tangent
space is required (Girolami & Calderhead, 2011; Gemici et al., 2016; Mallasto & Feragen, 2018).

Figure 1: Illustration of statistical manifold obtained
from the 1-1 mapping between the set of point cloud
data and the space of probability density functions.

Related to the above, the idea of inter-
preting a point cloud as samples from
some underlying probability distribution
is well-known, and has been applied to
problems ranging from point set registra-
tion (Jian & Vemuri, 2005; Wang et al.,
2006; Myronenko & Song, 2010; Hasan-
belliu et al., 2014; Zhou et al., 2014; Min
et al., 2018; Li et al., 2021) to point cloud
de-noising (Zaman et al., 2017; Luo & Hu,
2021). In these approaches, divergence
measures from probability and informa-
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tion theory have been utilized to compute the similarity between point clouds. While effective
for certain applications, these divergence measures still only capture just one aspect of point cloud
data, and cannot be used to measure other quantities of a more geometric nature.

For more advanced applications, a rigorous mathematical characterization of the space of point
cloud data is an essential ingredient to a more comprehensive, robust, and correct (in the sense of
being coordinate-invariant and geometrically well-defined) analysis of the types described above,
particularly one based on Riemannian geometry. As such, the first contribution of this paper is a
Riemannian geometric structure for the space of point cloud data.

The key idea behind our approach draws upon the information geometry framework of (Amari & Na-
gaoka, 2000; Amari, 2016), in which the space of probability density functions is given the structure
of a Riemannian manifold (the statistical manifold), with the Fisher information acting as a natural
Riemannian metric (the Information Riemannian metric, or info-Riemannian metric for short).
The connection between point cloud data and information geometry is established by constructing
a 1-1 mapping from the space of point cloud data to the space of probability density functions, i.e.,
a point cloud X = {x1, ..., xn | xi ∈ RD} is mapped to a density function p(x;X) on RD in a 1-1
fashion as illustrated in Figure 1.

Two case studies involving autoencoders are presented to demonstrate the benefits of our approach.
In the first case study, a pre-trained autoencoder is used to encode two 3D point clouds – one repre-
senting a cylinder, one a cone – and the minimal geodesic (or path of shortest length) with respect to
the info-Riemannian metric is then constructed between these two objects. The shape evolution ob-
tained for the info-Riemannian metric is seen to be far more natural and intuitive than that obtained
for the straight line interpolant in latent space.

In the second case study, we use the info-Riemannian statistical manifold framework to find a set
of distortion minimizing latent space coordinates, in the sense that (Euclidean) straight lines in
the latent space closely approximate minimal geodesics on the statistical manifold. Such a set of
coordinates offers a more discriminative representation for the data manifold (Chen et al., 2020) that
results in, e.g., higher linear SVM classification accuracy vis-á-vis existing state-of-the art methods.
Experiments are carried out with both synthetic and standard benchmark datasets (ShapeNet (Chang
et al., 2015), ModelNet (Wu et al., 2015)).

2 STATISTICAL MANIFOLDS AND THE FISHER INFORMATION METRIC

We begin by extending the original definition of a statistical manifold as follows:

Definition 1. Given an m-dimensional topological manifold1 Θ and a 1-1 map from Θ to the space
of probability density functions θ 7→ p(x; θ), the image of this mapping, denoted S := {p(x; θ)|θ ∈
Θ}, is an m-dimensional statistical manifold.

In the original definition Θ is taken to be an open subset of Rm (Amari & Nagaoka, 2000; Amari,
2016)).

By endowing S with a Riemannian metric, S can be given the structure of a Riemannian manifold,
allowing for lengths, angles, and volumes to be defined on S in a coordinate-invariant manner. The
Fisher information metric serves as a natural Riemannian metric on S: the elements (gij) of the
Fisher information metric G(θ) ∈ Rm×m can be expressed as

gij(θ) :=

∫
p(x; θ)

∂ log p(x; θ)

∂θi

∂ log p(x; θ)

∂θj
dx, i, j = 1, . . . ,m, (1)

where θ = (θ1, ..., θm) are local coordinates on S. Defining infinitesimal length on S by ds2 =

dθTG(θ)dθ, the length of a curve θ(t) on S can then be computed as the integral
∫ T

0
ds. Further

details on statistical manifolds and the Fisher information metric can be found in, e.g., (Amari &
Nagaoka, 2000; Efron & Hinkley, 1978; Rissanen, 1996; Han & Park, 2014).

1A topological manifold is a locally Euclidean Hausdorff topological space.

2



Under review as a conference paper at ICLR 2022

3 STATISTICAL MANIFOLD FRAMEWORK FOR POINT CLOUD DATA

With the above statistical manifold preliminaries, we now construct a Riemannian geometric struc-
ture for the space of point cloud data. Section 3.1 defines a statistical manifold from the point
cloud data, while Section 3.2 uses the Fisher information metric to construct a Riemannian met-
ric for point cloud data. To keep the definitions and results simple, we shall assume throughout
all point cloud data consists of exactly n distinct points in RD, i.e., each point cloud is of the form
X = {x1, ..., xn |xi ∈ RD, xi ̸= xj if i ̸= j}. The set of all point clouds is denoted X . Later we dis-
cuss methods for dealing with point clouds that violate our assumptions. The proofs of propositions
in this section are in Appendix B.

3.1 STATISTICAL MANIFOLD OF POINT CLOUD DATA

The core idea for constructing the statistical manifold is to interpret a point cloud X as a set of
n samples drawn from some underlying probability density function. Using a kernel density esti-
mator (Parzen, 1962; Davis et al., 2011), a parametric probability density function p(x;X) can be
defined in which X itself is the parameter:

Definition 2. Given a positive kernel function K : RD → R such that
∫
RD K(u) du = 1 and a

D ×D symmetric positive-definite matrix Σ (the bandwidth matrix), the kernel density estimate

p(x;X) :=
1

n
√
|Σ|

n∑
i=1

K(Σ− 1
2 (x− xi)) (2)

is said to be a statistical representation of the point cloud X ∈ X . The set of statistical representa-
tions is denoted S := {p(x;X) |X ∈ X}.

To ensure that S is a statistical manifold, recall from Definition 1 that the following two conditions
need to be satisfied: (i) X is a topological manifold; (ii) A 1-1 mapping h : X → S, X 7→ p(x;X)
must be defined. The first condition can be satisfied with the “distinct points” assumption:

Proposition 1 (Corollary 2.2.11. in (Knudsen, 2018)). The set of point clouds in which each point
cloud is a set of n distinct points of dimension D, is an nD-dimensional topological manifold.

To satisfy the second condition, additional assumptions are needed. The following proposition pro-
vides a sufficient condition for h to be 1-1:

Proposition 2. If the set of functions {K(Σ− 1
2 (x− xi))|xi ∈ F} are linearly independent2 for any

arbitrary finite subset F ⊂ RD with |F| ≤ 2n, the mapping h : X → S is 1-1.

With the above proposition, any kernel function that satisfies the linear independence condition is
sufficient to ensure the existence of a 1-1 mapping h. For our purposes the standard and widely used
normal kernel function satisfies the linear independence condition.

Proposition 3. Under the distinct points assumption, the standard (multivariate) normal kernel
function

K(u) =
1√

(2π)D
exp(−uTu

2
) (3)

with the scaled identity bandwidth matrix, i.e., Σ = σ2I , satisfies the linear independence condition
in Proposition 2.

From Propositions 2 and 3 we have established that, under the distinct points assumption and using
the standard normal kernel function, the mapping h : X → S is 1-1; S can therefore be given the
structure of statistical manifold. While other choices of kernel function are possible, throughout the
remainder of the paper we use the standard normal kernel function. Figure 2 illustrates statistical
manifold representations of some example point clouds.

2The linear independence of a set of functions implies that only a trivial linear combination of the functions
equals the zero function.
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Figure 2: Probability heat maps for various k (the greener, the higher) for some examples from the
ShapeNet dataset (Chang et al., 2015), where we set σ = k × MED for k ∈ (0,∞). MED denotes
the median of the distances between the points in the point cloud and their nearest points.

3.2 INFORMATION RIEMANNIAN METRIC FOR POINT CLOUD DATA SPACE

We now equip the point cloud statistical manifold S with the Fisher information metric, which
we refer to as the info-Riemannian metric and denote by H. The first task is to define a local
coordinate system on the space of point clouds X . Toward this end, we use the matrix representation
X ∈ Rn×D of a point cloud X. Observe that the matrix representation is not unique; given an n×n
permutation matrix P ∈ Rn×n, then X and PX represent the same point cloud X. Fortunately, this
does not cause problems since p(x;X) is defined in a permutation-invariant way, i.e., p(x;X) =
p(x;PX) for any n×n permutation matrix P . Throughout we use italics to denote local coordinate
representations, e.g., X has local coordinates X ∈ Rn×D, the tangent vector V ∈ TXX has local
coordinates V ∈ Rn×D.

The info-Riemannian metric H can be expressed in local coordinates coordinates X as follows:

Hijkl(X) :=

∫
p(x;X)

∂ log p(x;X)

∂Xij

∂ log p(x;X)

∂Xkl
dx, (4)

for i, k = 1, ..., n and j, l = 1, ..., D. Given two tangent vectors V,W ∈ TXX with respective
matrix representations V,W ∈ Rn×D, their inner product is then computed as follows:

⟨V,W⟩X :=

n∑
i,k=1

D∑
j,l=1

Hijkl(X)V ijW kl. (5)

We note that the coordinate expression of the info-Riemannian metric Hijkl(X) results in a
permutation-invariant inner product, i.e.,

∑
Hijkl(X)V ijW kl =

∑
Hijkl(PX)(PV )ij(PW )kl

for any n× n permutation matrix P , showing that the metric is geometrically well-defined.

Using the standard normal kernel function, the coordinate expression of the info-Riemannian metric
Hijkl has a simple analytic expression as follows:

Proposition 4. With the standard (multivariate) normal kernel function and the bandwidth param-
eter σ, the information Riemannian metric is given by

Hijkl(X) =

∫
p(x;X)

K(x−xi

σ )K(x−xk

σ )

(
∑n

m=1 K(x−xm

σ ))2

[ (x− xi)(x− xk)
T

σ4

]
jl
dx, (6)

Figure 3: Two moving point clouds
with different velocity matrices.

Figure 3 shows that, given two moving point cloud data
whose velocity matrices have equal Euclidean norm (i.e.,
||V||2 =

∑n
i=1

∑D
j=1 V

ijV ij), the velocity norms under the
info-Riemannian metric are significantly different: the veloc-
ity A has a value of 0.2626, while the velocity B has a value of
2.2 × 10−8. In particular, observe that the tangential velocity
in the case B, which does not change the overall distribution
of the point cloud, has a very small velocity norm under the
info-Riemannian metric as it should.
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Figure 4: Random walks for point cloud data on the statistical manifold equipped with Euclidean
metric (upper) and info-Riemannian metric (lower). An initial shape is defined by slightly deform-
ing the reference sphere with the addition of a small velocity matrix V . Then, sequences of point
clouds are generated by recursively adding randomly sampled velocity matrices normalized to have
the same norm with V under each metric. Details of implementations are in Appendix C.

As another illustrative example that highlights the difference between the info-Riemannian metric
and Euclidean metric (i.e., ⟨V,W⟩ :=

∑n
i=1

∑D
j=1 V

ijW ij), Figure 4 shows random walks for
point cloud data under these metrics. Consider a randomly sampled and normalized velocity matrix
under Euclidean metric. 3D velocity vectors in the sampled velocity matrix are equally likely to
point any direction. On the other hand, 3D velocity vectors in the sampled velocity matrix under
info-Riemannian metric are more likely to point tangential directions (e.g., more likely the case
B than the case A in Figure 3). As a result, unlike the standard Euclidean metric (top), the info-
Riemannian metric (bottom) produces random walks that stay close to the initial sphere without
significant changes in its overall distribution pattern.

4 APPLICATIONS TO POINT CLOUD AUTOENCODERS

Riemannian geometric formulations of autoencoders for representation learning have recently been
introduced and extensively studied in (Shao et al., 2018; Arvanitidis et al., 2018; Yang et al., 2018a;
Chen et al., 2018; Kalatzis et al., 2020; Arvanitidis et al., 2020; Chen et al., 2020). In these works,
the image of the decoder function is viewed as a low-dimensional manifold embedded in the high-
dimensional data space – we refer to this manifold as the decoded manifold – and a Riemannian
metric for the decoded manifold is obtained by projecting the data space Riemannian metric to this
manifold. In contrast, this perspective cannot be reasonably extended to existing point cloud au-
toencoders (e.g., FoldingNet (Yang et al., 2018b), AtlasNet (Groueix et al., 2018), AtlasNetV2 (De-
prelle et al., 2019), and TearingNet (Pang et al., 2021)), due to the absence of a geometrically
well-formulated Riemannian manifold structure.

In this section, using the info-Riemannian metric, we extend this perspective by defining a Rieman-
nian metric for the decoded manifold of the point cloud autoencoder. With this info-Riemannian
metric, we examine two case studies: (i) interpolation between two points of latent space via the
minimal geodesic; (ii) learning an optimal set of latent space coordinates that best preserves dis-
tances and angles (or intuitively, minimizes distortion).

Consider a point cloud decoder function with the m-dimensional latent space f : Rm → Rn×D,
where the output is expressed in terms of the matrix representation. The projection of the info-
Riemannian metric on the point cloud statistical manifold to the decoded manifold is then expressed
in latent space coordinates z ∈ Rm as follows:

Gab(z) :=

n∑
i,k=1

D∑
j,l=1

Hijkl(f(z))(Jf )
ij
a (z)(Jf )

kl
b (z), (7)

where Jf denotes the Jacobian of f , and the indices a, b both range from 1 to m. The latent space is
then assigned a Riemannian metric Gab(z); the following two applications rely on G(z) ∈ Rm×m.

Geodesic interpolation: The latent space metric G(z) can be used to find the minimal geodesic
curve connecting two point clouds (i.e., the shortest length curve in the decoded manifold). Let z1, z2
be the encoded values of the two point clouds in the latent space Rm. In terms of the metric G(z),
the geodesic curve connecting these two points can be determined as a solution to the following
optimization problem (Do Carmo, 2016):

min
z(t)

∫ 1

0

ż(t)TG(z(t))ż(t) dt, (8)
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subject to z(0) = z1 and z(1) = z2. Parametrizing z(t) by a cubic spline with fixed boundary
points z1, z2 then leads to an unconstrained optimization problem. To avoid excessive memory
consumption when computing the objective function and its gradient, instead of the usual Riemann
sum approximation of the integral, we interpret the integral as an expectation over the uniform
distribution t ∼ U(0, 1) and accordingly use the mini-batch sampling technique.

Learning optimal latent space coordinates: The latent space metric G(z) can be used to formulate
a regularization term when training an autoencoder to learn an optimal set of latent space coordi-
nates; by “optimal” we mean G(z) = cI for some positive scalar c, so that the decoder preserves
distances and angles as much as possible. Recently, a regularization technique for this purpose has
been introduced in (Chen et al., 2020). Specifically, the following regularization term is added to
the reconstruction loss function:

Ez∼P [∥G(z)− cI∥2F ], (9)
where ∥ · ∥F is the Frobenius norm, c = Ez∼P [

1
mTr(G(z))], and P is defined via the modified

mix-up augmentation, i.e., z ∼ P ⇐⇒ z = αz1 + (1 − α)z2 where z1, z2 are sampled from the
set of encoded training data and α ∼ U(−η, 1 + η) for η > 0. For latent spaces whose dimension
m is large, in order to avoid the expensive and memory-consuming computation of G(z) ∈ Rm×m,
we use the following regularization term in the subsequent experiments:

Ez∼P [Ev∼N (0,I)[∥vTG(z)v − cvT v∥2]], (10)
where we use mini-batch sampling to estimate the expectations. This can be done much more
efficiently since we need only compute the Jacobian-vector product, i.e.,

∑
a(Jf )

ij
a v

a.

5 EXPERIMENTAL RESULTS

We now verify the effectiveness of the info-Riemannian metric for the two point cloud autoencoder
applications described above using both a synthetic 3D basic shape dataset and standard benchmark
point cloud datasets.

The synthetic 3D basic shape dataset consists of cylinders, cubes, cones, and ellipsoids with various
aspect ratios of the shape parameters (e.g., radius versus height for the cylinder). We sample 512
points from the surface mesh of the shapes using a greedy sample elimination algorithm, so that
each sampled point is approximately the same distance from its neighborhood points (Yuksel, 2015).
Each point cloud is then normalized so that distance between the two farthest points is one. Further
details about the synthetic 3D basic shape dataset generation are provided in Appendix D.

The standard benchmark point cloud dataset consists of ModelNet (Wu et al., 2015) and
ShapeNet (Chang et al., 2015), where ModelNet consists of ModelNet10 and ModelNet40, each
of which consist of 10 and 40 shape classes, respectively. Each point cloud data has 2048 points; we
normalize these into a unit sphere as done in (Yang et al., 2018b).

5.1 SYNTHETIC 3D BASIC SHAPE DATASET

In Section 5.1.1, we use a dataset consisting of cones, cylinders, and ellipsoids, which are split
into training/validation/test sets of size 3196/800/804. We then confirm the validity of the proposed
metric by comparing the results of several shape interpolation methods in the latent space.

In Section 5.1.2, to study the effects of the regularization term when learning the optimal latent
coordinates (with respect to the info-Riemannian metric), we use a dataset consisting of boxes,
cones, and ellipsoids divided into training/validation/test sets of size 720/240/240.

We use DGCNN as the encoder (Wang et al., 2019) and a fully-connected neural network as the
decoder. The latent space is assumed to be two-dimensional. For the reconstruction loss term, we
use the Chamfer distance. The regularization term in Equation (9) is multiplied by a coefficient
λ > 0 and added to the reconstruction loss term. Further details about the network architectures and
training are provided in Appendix D.

5.1.1 EXAMPLE 1: CONE, CYLINDER, AND ELLIPSOID

Figure 5 shows the test data encoded in the latent space together with the interpolation trajectories
and generated point clouds from those interpolants. In the case of intra-class interpolations (i.e.,
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Figure 5: Left: Latent space with linear and geodesic interpolants. The orange interpolants connect
a wide cylinder to a tall cylinder, while the magenta interpolants connect a cylinder to a cone. Linear
interpolants and geodesic interpolants under the Euclidean and info-Riemannian metrics are drawn
as dotted, dashed, and solid lines, respectively. Right: Generated point clouds from those inter-
polants. To visually indicate which class generated point cloud belong to, we color these according
to the ratio of the Chamfer distances to the nearest point cloud for each class (see Appendix D). For
example, when it is uncertain which class a generated data belongs to (i.e., the nearest distances to
each class are similar), it is assigned some color other than blue, red, or green.

interpolants between cylinders), the linear interpolant clearly passes through the red ellipsoid region
in the latent space, with some of the generated point clouds clearly ellipsoids. The geodesic interpo-
lations under the Euclidean and info-Riemannian metrics both avoid ellipsoid regions in the latent
space. In particular, the geodesic interpolants between two cylinders are also cylinders; this is well-
aligned with human intuition. However, if we look at the generated point clouds in detail, while the
info-Riemannian metric produces clearly blue cylinders, some of the generated point clouds with
the Euclidean metric are non-blue cylinders (i.e., relatively closer to the ellipsoid region) with noisy
side surfaces. For the inter-class interpolations (i.e., interpolants between a cylinder and a cone),
the linear interpolant also clearly passes through the red ellipsoid region. The geodesic interpo-
lation under the Euclidean metric produces many non-blue and non-green color shapes during the
transition from cylinders to cones, while geodesic interpolation under the info-Riemannian metric
produces such cases far less. Overall, it can be observed that the geodesic interpolants under the
info-Riemannian metric have minimal shape class changes.

Figure 6: Latent spaces produced by regularized au-
toencoders, each of which is trained with the Euclidean
(Left) and info-Riemannian metric (Right). Represen-
tative intra-class linear interpolants between two cylin-
ders and two cones are drawn as black solid lines.

Figure 6 shows the latent spaces produced
by the regularized autoencoders using the
Euclidean and Info-Riemannian metrics.
Compared to the latent space in Figure 5
(trained without regularization), the fol-
lowing observations can be made: (i) the
encoded latent spaces of cones and cylin-
ders are flattened, and (ii) the ellipsoids
and cones become more discriminative.
Furthermore, we note that the encoded
latent space curves of cones and cylin-
ders in the right figure (where the info-
Riemannian metric is used) are clearly
flatter than those in the left figure (where
the Euclidean metric is used). In other
words, if we linearly interpolate between
two cylinders or two cones, the interpolants in the right case will most likely remain in the same
class, unlike the left case (the generated point clouds from the linear interpolants are provided in
Appendix E).

5.1.2 EXAMPLE 2: BOX, CONE, AND ELLIPSOID

Figure 7 shows the test data encoded in the latent space together with the visualization of the Rie-
mannian metric, the fitted Gaussian Mixture Model and its samples, and pairwise Euclidean dis-
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Figure 7: From left to right: latent spaces with equidistant ellipse ({z|(z−z∗)TG(z∗)(z−z∗) = 1}
for center z∗) centered on some selected points and sampled points from interspaces, Gaussian
Mixture Model (GMM) fitting results, generated samples from the GMM, and the heat map of
the pairwise Euclidean distances in the latent space of all test data. The upper figure is a vanilla
autoencoder trained without regularization, while the lower figure is trained with regularization
(using the info-Riemannian metric). For the samples in the third column, we assign colors using the
same method of Section 5.1.1 to visually express which classes the samples are likely to belong to.

tances. From the first column of Figure 7, by comparing the results with and without regularization,
the following two key observations can be made: (i) in the vanilla autoencoder case (upper case), the
major axes of the gray ellipses are aligned with the decision boundary (i.e., a hypersurface that par-
titions the different class regions), which implies that shapes of different classes are actually more
distant in the learned manifold (under the info-Riemmanian metric) than shown in the latent space,
and (ii) in the regularized autoencoder case (lower case), by encouraging the metric to be isotropic
(i.e., turning ellipses into circles), the gaps between different class regions are widened. The second
column confirms that the components of the GMM are better separated after regularization; each
component of the GMM on the regularized autoencoder generates high-quality, even samples from
the same class shape as shown in the third column. The heat maps of the pairwise distances in the
last column also indicate that shapes in different classes are more distant, and therefore more easily
separable in the latent space of the regularized autoencoder.

5.2 STANDARD BENCHMARK DATA

To show that the regularization technique with the info-Riemannian metric can benefit unsupervised
representation learning from the perspective of discriminative representation learning, we compare
the transfer classification accuracy of ShapeNetCore.v2 to ModelNet following the same experimen-
tal procedure outlined in (Yang et al., 2018b). When training autoencoders with ShapeNet, random
rotations about an axis parallel to the direction of gravity are applied to each point cloud. We use four
different point cloud autoencoders: FcNet and FoldingNet adopted from (Yang et al., 2018b), Point-
CapsNet adopted from (Zhao et al., 2019), and DGCNN-FcNet using DGCNN (Wang et al., 2019);
the latent space is 512-dimensional for all. The four autoencoders are trained with and without reg-
ularization. In the former case, the regularization terms of Equation (10) under both the Euclidean
and info-Riemannian metrics are used while varying the regularization coefficient λ. We distinguish
between regularized autoencoders using the Euclidean and info-Riemannian metrics by an “+E” or
“+I” after the network name. After network training is finished, we train linear SVM classifiers with
the encoded data for ModelNet10 and ModelNet40. These are split into training/test sets of sizes
3991/909 and 9843/2468, respectively. Further experimental detail are provided in Appendix D.

Table 1 shows a comparison of transfer classification accuracy from ShapeNet to ModelNet10
(MN10) and ModelNet40 (MN40) for various recent state-of-the-art methods. In the left column
(Adopted from References), the numbers are adopted from previous papers (the experimental proce-
dures may differ slightly from ours). In the right column (Implemented by Authors), we report the
best numbers obtained (adopted from Appendix E). As shown in the right column, regularization
using the info-Riemannian metric improves classification accuracy over vanilla autoencoders, with
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Table 1: Classification accuracy by transfer learning for ModelNet10 (MN10) and ModelNet40
(MN40) from ShapeNet.

METHOD MN40 MN10 METHOD MN40 MN10
Adopted from References Implemented by Authors

SPH (Kazhdan et al., 2003) 68.2% 79.8% FcNet 88.3% 93.5%
LFD (Chen et al., 2003) 75.5% 79.9% FcNet + E (ours) 89.3% 93.7%
VConv-DAE (Sharma et al., 2016) 75.5% 80.5% FcNet + I (ours) 90.4% 94.3%
3D-GAN (Wu et al., 2016) 83.3% 91.0% FoldingNet 89.3% 93.7%
Latent-GAN (Achlioptas et al., 2018) 84.5% 95.4% FoldingNet + E (ours) 88.9% 94.4%
FoldingNet (Yang et al., 2018b) 88.4% 94.4% FoldingNet + I (ours) 90.1% 94.5%
PointFlow (Yang et al., 2019) 86.8% 93.7% PointCapsNet 87.2% 93.6%
Multi-Task (Hassani & Haley, 2019) 89.1% - PointCapsNet + E (ours) 88.1% 93.7%
PointCapsNet (Zhao et al., 2019) 89.3% - PointCapsNet + I (ours) 88.5% 93.9%

DGCNN-FcNet 90.3% 94.5%
DGCNN-FcNet + E (ours) 89.9% 94.4%
DGCNN-FcNet + I (ours) 91.0% 95.2%

higher accuracy compared to the Euclidean metric case. Although their performance is not directly
comparable due to differences in the experimental procedures, it can be seen that our regularized
autoencoders are comparable to the state-of-the-art methods and, at least for our implementation,
shows higher classification accuracy than vanilla autoencoders.

We also conduct additional experiments to determine how much more robust the representation
obtained with our regularization approach is for noisy point cloud data. We add noise with different
levels of standard deviation (1%, 5%, 10%, and 20% of the diagonal length of the point cloud
bounding box) to point cloud data (see Appendix D for details). Then FcNet is trained with and
without regularization in the same way as above.

Table 2: Classification accuracy by transfer learning for ModelNet10 (MN10) and ModelNet40
(MN40) from ShapeNet under the noise levels of 1%, 5%, 10%, and 20%.

MN40 MN10
METHOD 1% 5% 10% 20% 1% 5% 10% 20%

FcNet 87.8% 83.2% 75.6% 64.5% 92.4% 91.9% 88.4% 79.8%
FcNet + E (ours) 86.6% 85.1% 79.1% 70.4% 92.2% 91.1% 88.2% 82.6%
FcNet + I (ours) 89.0% 86.6% 81.4% 72.4% 93.3% 92.6% 91.6% 84.8%

Table 2 shows a comparison of transfer classification accuracy in the presence of noise. As the noise
level increases, the classification accuracy obviously decreases in both cases, but the reduction is
more dramatic for the vanilla autoencoder case. Additional experimental results including semi-
supervised classification task are included in Appendix E. Overall, it is indeed somewhat surprising
that unsupervised classification accuracy can be improved with a simple regularization technique in
lieu of a complex neural network architecture or loss function.

6 DISCUSSION AND CONCLUSION

This paper has proposed a new Riemannian geometric structure for the space of point cloud data. We
have defined a statistical representation of point cloud data and constructed a statistical manifold in
a mathematically rigorous way. Then a natural Riemannian metric – Fisher information metric – is
assigned to the point cloud statistical manifold, which provides geometrically well-defined measures
needed for applications. We demonstrate its advantages through two applications involving point
cloud autoencoders: (i) minimal geodesic interpolants under info-Riemannian metric have minimal
shape changes compared to the standard linear interpolants, and (ii) the optimal latent coordinates
learned using our method produce more discriminative representation spaces than existing methods.

As a potential issue, the “fixed number of points” assumption used in our construction of the sta-
tistical manifold may be violated in real world problems. In such cases, we can easily mitigate this
issue by matching the number of points in each point cloud through a simple upsampling/down-
sampling algorithm. Further, the kernel function used in our current implementations, the standard
normal kernel function, may not be an optimal choice. Other choices can be explored to enhance
our algorithms as long as the conditions of Proposition 2 are satisfied.

9
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REPRODUCIBILITY STATEMENT

We have provided clear explanations of the assumptions and statements for the theoretical results,
and included complete proofs of the propositions in Appendix B. Also, we have included experiment
settings in detail as much as possible in Appendix C and D such as the number of training/valida-
tion/test splits of datasets, data pre-processing methods, neural network architectures, and hyper-
parameters used in training (e.g., batch size, number of epochs, learning rate, etc). In particular, we
have included the details of the synthetic dataset generation in Appendix D.
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APPENDIX

A EXISTING GEOMETRIC/STATISTICAL METHODS FOR POINT CLOUD DATA

A.1 GEOMETRIC METHODS

The Hausdorff distance measures the distance between two non-empty subsets of a metric
space (Hausdorff, 1914; 2008). Given two point clouds X = {x1, ..., xn | xi ∈ RD} and
Y = {y1, ..., yn | yi ∈ RD} and metric ∥x− y∥2 in RD, the Hausdorff distance can be computed as
follows:

max(max
x∈X

(min
y∈Y

∥x− y∥2),max
y∈Y

(min
x∈X

∥x− y∥2)).

The Hausdorff distance is susceptible to outliers; hence, in practice, the average Hausdorff distance
is used more often:

1

|X|
∑
x∈X

min
y∈Y

∥x− y∥2 + 1

|Y|
∑
y∈Y

min
x∈X

∥x− y∥2,

where |X| denotes the number of elements in the set X. A slightly modified version of this is
often referred to as the Chamfer distance (Yang et al., 2018b). The popular point cloud registration
algorithm ICP relies on these classes of metrics (Besl & McKay, 1992).

Another popular similarity measure between two point cloud data is the Earth Mover’s Distance
(EMD) (Rubner et al., 2000): ∑

x∈X

min
ϕ:X→Y

∥x− ϕ(x)∥2,

where ϕ is a bijective mapping. Although the EMD is computationally more expensive than the
above Hausdorff distances, comparing point clouds with optimal matching in EMD provides a more
robust and well-behaved similarity measure.

The Chamfer distance and EMD are often used to measure the distances between two point clouds,
but they are typically computationally expensive. Recently, the sliced Wasserstein distance and its
variants have been proposed to more efficiently measure distances (Nguyen et al., 2021). In another
study, each point cloud data is represented as a matrix of pairwise Euclidean distances between all
points, and the Frobenius norm of the difference between the two matrices is used as the distance
between two point clouds Cosmo et al. (2020).

However, all these distance metrics measure just one aspect of point cloud data; other applications
may require more advanced concepts and tools. For example, in the case of a moving point cloud,
one may wish to measure some of its more dynamic aspects like its velocity or other quantities
that require a notion of higher-order derivatives. Applications such as Monte Carlo sampling may
require the construction of an isotropic Gaussian distribution on the underlying space, in which case
the notion of “angle” is needed in addition to distance (more technically, an inner product on the
tangent space is required (Girolami & Calderhead, 2011; Gemici et al., 2016; Mallasto & Feragen,
2018).

We believe a rigorous mathematical characterization of the space of point cloud data is an essen-
tial ingredient to a more comprehensive, correct, and robust analysis of the types described above,
particularly one based on Riemannian geometry. In this paper, we rigorously define a Riemannian
geometric structure for the space of point cloud data.

A.2 STATISTICAL METHODS

Interpreting the point cloud data as a set of samples from some underlying probability distribution
is very intuitive and natural, and has been adopted in many previous works (Jian & Vemuri, 2005;
Wang et al., 2006; Myronenko & Song, 2010; Hasanbelliu et al., 2014; Zhou et al., 2014; Min et al.,
2018; Li et al., 2021). Commonly, a mixture model is used to describe the point cloud, written as
follows:

p(x;w, θ) :=

k∑
i=1

wiϕ(x|θi),
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where the wi are weights and ϕ(x|θi) are primitive density functions with parameter θi (e.g., ϕ(x|θi)
can be a standard Gaussian with mean θi). Given a point cloud X := {x1, . . . , xn|xi ∈ RD}, the
parameters w, θ are either fit with data or specified by the user, then the mixture model is used
as a statistical representation of the point cloud data. Besides the most popular choice for ϕ, the
Gaussian (Jian & Vemuri, 2005), other choices such as the t-distribution (Zhou et al., 2014) or
hybrid model (Min et al., 2018) have been explored.

The main purpose behind using statistical representations in existing works are to use the well-
known information-theoretic divergence measures such as the KL-divergence to compute the simi-
larity between point clouds. However, these divergence measures (which are approximate distance
metrics) only measure just one aspect of point cloud just like the distance measures discussed in
A.1. Effective mathematical concepts and tools for defining and measuring other important geomet-
ric aspects of point cloud are still lacking.

B PROOF OF THE PROPOSITIONS

B.1 PROOF OF PROPOSITION 2

Proof. Let’s consider two point clouds {yi}ni=1 and {zi}ni=1. To show that the mapping h : X → S
is 1-1 (especially injective), we have to prove the following statement:

p(x; {yi}ni=1) = p(x; {zi}ni=1) =⇒ {yi}ni=1 = {zi}ni=1. (11)

The conditional statement can be rewritten as follows:
n∑

i=1

K(Σ− 1
2 (x− yi)) =

n∑
i=1

K(Σ− 1
2 (x− zi)). (12)

Let denote B = {yi}ni=1 ∩ {zi}ni=1 and |B| = m, and assume that m < n. Then the above equation
is reduced to ∑

y∈{yi}n
i=1−B

K(Σ− 1
2 (x− y))−

∑
z∈{zi}n

i=1−B

K(Σ− 1
2 (x− z)) = 0. (13)

Since the sets {yi}ni=1 −B and {zi}ni=1 −B are disjoint and each set has n−m elements, the LHS
has 2(n − m) ≤ 2n terms and the terms are different to each other. Then, by the assumption, the
above 2(n−m) terms are linearly independent, so the above equation cannot hold by the definition
of the linear independence. In the other words, there is a contradiction and we can find that the
assumption m < n is wrong. Therefore, m = n, so {yi}ni=1 = {zi}ni=1.

B.2 PROOF OF PROPOSITION 3

Proof. First, let’s think about the 1-dimensional case, i.e., x ∈ R. Consider an arbitrary point set
{xi}Ni=1 and the corresponding set of functions {K(σ− 1

2 (x−xi))|i = 1, 2, ..., N}, where the kernel
function K is

K(u) =
1√
2π

exp(−u2

2
). (14)

Suppose there exist non-zero constants a1, a2, ..., aN such that
N∑
i=1

aiK(σ− 1
2 (x− xi)) =

N∑
i=1

1√
2πσ

ai exp(−
(x− xi)

2

2
) = 0 ∀x ∈ R. (15)

The above expression can be reduced as follows:

exp(−x2

2
)

N∑
i=1

ai exp(xix) exp(−
x2
i

2
) = 0 ∀x ∈ R. (16)

Let λi = ai exp(−x2
i

2 ) for i = 1, 2, ..., N , then the above equation is simplified as:

N∑
i=1

λi exp(xix) = 0 ∀x ∈ R. (17)
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In the other words, it is enough to show that the functions in the set {exp(xix)|i = 1, 2, ..., N} are
linearly independent.

There is a useful tool for proving the linear independence of the functions:

Theorem 1 (Wronskian’s Theorem). Let f1, f2, ..., fn : I → R be n − 1 times differentiable
functions on an interval I and the Wronskian W (f1, f2, ..., fn) be a function on I defined by:

W (f1, f2, ..., fn)(x) =

∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) . . . fn(x)
f ′
1(x) f ′

2(x) . . . f ′
n(x)

f ′′
1 (x) f ′′

2 (x) . . . f ′′
n (x)

...
...

. . .
...

f
(n−1)
1 (x) . . . . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣
∀x ∈ R, (18)

where this is the determinant of the square matrix constructed by placing the functions and their
derivatives in an appropriate way. Then, if the Wronskian of this set of functions is not identically
zero, then the set of functions is linearly independent.

Using the above theorem, we can construct the Wronskian W (x) with the set of functions
{exp(xix)|i = 1, 2, ..., N}. Substituting zero for x, then we can obtain:

W (0) =

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xN

x2
1 x2

2 . . . x2
N

...
...

. . .
...

xN−1
1 . . . . . . xN−1

N

∣∣∣∣∣∣∣∣∣∣
(19)

The above can be simplified by the mathematical induction:∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xN

x2
1 x2

2 . . . x2
N

...
...

. . .
...

xN−1
1 . . . . . . xN−1

N

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
x1 x2 − x1 . . . xN − x1

x2
1 x2

2 − x2
1 . . . x2

N − x2
1

...
...

. . .
...

xN−1
1 . . . . . . xN−1

N − xN−1
1

∣∣∣∣∣∣∣∣∣∣
(20)

=

∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
x1 x2 − x1 . . . xN − x1

x2
1 x2

2 − x2
1 . . . x2

N − x2
1

...
...

. . .
...

xN−1
1 . . . . . . xN−1

N − xN−1
1

∣∣∣∣∣∣∣∣∣∣
(21)

= (x2 − x1) · · · (xn − x1)

∣∣∣∣∣∣∣∣∣∣

1 . . . 1
x2 . . . xN

x2
2 . . . x2

N
...

. . .
...

xN−2
2 . . . xN−2

N

∣∣∣∣∣∣∣∣∣∣
(22)

= · · · (23)

=

n∏
i,j=1
i>j

(xi − xj) (24)

Since all the points {xi}Ni=1 are distinct to each other, the above determinant value must be non-zero.
Then by Wronskian’s Theorem, the functions {exp(xix)|i = 1, 2, ..., N} are linearly independent,
so are the functions {K(σ− 1

2 (x− xi))|i = 1, 2, ..., N}.

Next, let’s think about the general D-dimensional case with D ≥ 2; x ∈ RD. The Wronskian’s
Theorem introduced above cannot be used, instead, we adopt a generalized Wronskian’s Theorem
applicable to multivariable functions.

15



Under review as a conference paper at ICLR 2022

Theorem 2 (Generalized Wronskian’s Theorem). Let f1, f2, ..., fn : RD → R be multivariable
functions and the generalized Wronskian gW (f1, f2, ..., fn) as a function defined by:

gW (f1, f2, ..., fn)(x) =

∣∣∣∣∣∣∣∣∣∣

f(x)
D1f(x)
D2f(x)

...
Dn−1f(x)

∣∣∣∣∣∣∣∣∣∣
∀x ∈ RD, (25)

where f(x) = (f1(x), ..., fn(x)), Djf(x) are row vectors, Dj is any partial derivative of order not
greater than j, and all Dj are distinct for j = 1, 2, ..., n − 1. We note that if at least one of the
generalized Wronskians of this set of functions is not identically zero, then the set of functions is
linearly independent.

Similar to the 1-dimensional case xi ∈ R, consider an arbitrary point set {xi}Ni=1 and the corre-
sponding set of functions {K(σ− 1

2 (x− xi))|i = 1, 2, ..., N}, where the kernel function K is now:

K(u) =
1√

(2π)D
exp(−uTu

2
). (26)

Suppose that there exist non-zero constants b1, b2, ..., bN such that

N∑
i=1

biK(σ−D
2 (x− xi)) =

N∑
i=1

1√
(2πσ)D

bi exp(−
(x− xi)

T (x− xi)

2
) = 0 ∀x ∈ RD. (27)

The above expression can be reduced as follows:

exp(−xTx

2
)

N∑
i=1

bi exp(x
T
i x) exp(−

xT
i xi

2
) = 0 ∀x ∈ RD (28)

Let ωi = bi exp(−xT
i xi

2 ) for i = 1, 2, ..., N . Then the final expression of the equation is as follows:

N∑
i=1

ωi exp(x
T
i x) = 0 ∀x ∈ RD. (29)

In other words, it is enough to show that the functions {exp(xT
i x)|i = 1, 2, ..., N} are linearly

independent.

To apply the generalized Wronskian theorem, we need to find a proper set of partial derivatives. To
find such set, our strategy is to use a coordinate transformation with a rotation matrix R ∈ SO(D),
i.e., rotating vectors. To be more specific, we will find R that makes the first components of yi =
Rxi for i = 1, 2, ..., N all different and use the transformed coordinates in the following proof. For
this purpose, we first show that such rotation matrix R exists.

Intuitively, we can find a vector r1 so that x1, ..., xn are projected to r1 as all distinct points. If R
has this r1 vector as the first column vector, then R can make the first components of yi = Rxi for
i = 1, 2, ..., N all different. More precisely, the first components of the two points xi, xj are same
if r1 is in the (D − 1)-dimensional hyperplane {r1 ∈ RD|rT1 (xi − xj) = 0}. Since there are only
N(N − 1)/2 combinations of the pairs of (xi, xj) for i, j = 1, 2, ..., n, we can find a vector r1 such
that

rT1 (xi − xj) ̸= 0 ∀i ̸= j and i, j = 1, 2, ..., n. (30)

We pick a coordinate transform matrix R ∈ SO(D) with this r1 as the first column vector. Then this
R can make the first components of yi = Rxi for i = 1, 2, ..., N all different.

Using the R, rewrite the set of functions {exp(xT
i x)|i = 1, 2, ..., N} as follows:

{exp(xT
i x)|i = 1, 2, ..., N} = {exp(xT

i R
TRx)|i = 1, 2, ..., N} (31)

= {exp(yTi z)|i = 1, 2, ..., N}, (32)
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where z = Rx and yi = Rxi for i = 1, 2, ..., N . We again note that the first elements of yi for
i = 1, ..., N are all distinct to each other.

To use the Theorem 2 in the transformed coordinates z, we can pick a generalized Wronskian gW (z)
with the corresponding partial derivatives:

D1 =
∂

∂z1
, D2 =

∂2

∂z21
, ..., Dn−1 =

∂n−1

∂zn−1
1

, (33)

where z = (z1, ..., zD). With this generalized Wronskian and the set of functions {exp(yTi z)|i =
1, 2, ..., N}, substituting zero vector for z ∈ RD, we can obtain:

gW (0) =

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
y11 y12 . . . y1N
y211 y212 . . . y21N

...
...

. . .
...

yN−1
11 . . . . . . yN−1

1N

∣∣∣∣∣∣∣∣∣∣
, (34)

where y1i is the first element of yi for i = 1, 2, ..., N . Since y1i’s are all distinct to each other, we
can obtain, just like the 1-dimensional case:

gW (0) =

n∏
i,j=1
i>j

(y1i − y1j) ̸= 0. (35)

By generalized Wronskian’s Theorem, the functions {exp(xT
i x)|i = 1, 2, ..., N} are linearly in-

dependent, so are the functions {K(σ− 1
2 (x − xi))|i = 1, 2, ..., N}, also in the D-dimensional

case.

B.3 PROOF OF PROPOSITION 4

Proof. Since ∂log p(x;X)
∂Xij = 1

p(x;X)
∂p(x;X)
∂Xij , the Riemannian metric Hijkl in equation (4) is∫

p(x;X)
1

p2(x;X)

∂p(x;X)

∂Xij

∂p(x;X)

∂Xkl
dx.

By plugging p(x;X) in equation (3) in ∂p(x;X))
∂Xij , we get the following expression:

n
√
|Σ| ∂p(x;X)

∂Xij
=

∂

∂Xij

n∑
a=1

K(Σ−1/2(x− xa))

=
∂

∂Xij
K(Σ−1/2(x− xi))

= JK(Σ−1/2(x− xi))Σ
−1/2 ∂

∂Xij
(x− xi)

= JK(Σ−1/2(x− xi))Σ
−1/2 ∂

∂Xij
(x− xi)

= −[JK(Σ−1/2(x− xi))Σ
−1/2]j ,

JK : RD → RD is the Jacobian of the kernel function K. This consequently leads to

Hijkl(X) :=

∫
p(x;X)

(JK
∣∣
h(x,xi)

Σ− 1
2 )j(JK

∣∣
h(x,xk)

Σ− 1
2 )l

(
∑n

m=1 K(h(x, xm)))2
dx,

where h(x, xi) = Σ− 1
2 (x− xi).
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If K is the standard normal kernel function, then we get JK(x) = −K(x)xT . By plugging this in
the above equation with Σ = σ2I , we get the following:

Hijkl(X) =

∫
p(x;X)

(JK
∣∣
h(x,xi)

Σ− 1
2 )j(JK

∣∣
h(x,xk)

Σ− 1
2 )l

(
∑n

m=1 K(h(x, xm)))2
dx

=

∫
p(x;X)

K(h(x, xi))K(h(x, xk))

(
∑n

m=1 K(h(x, xm)))2

[ (x− xi)(x− xk)
T

σ4

]
jl
dx.

C RANDOM WALKS OVER THE POINT CLOUD RIEMANNIAN MANIFOLD

This section describes details of the random walk experiments over the point cloud statistical man-
ifold equipped with a Riemannian metric Hijkl, i, k = 1, ..., n, j, l = 1, 2, 3. First, an initial shape
is defined by slightly deforming the reference sphere with the addition of a small velocity matrix V .
Then, sequences of point clouds are generated by repeating the following process: i) given a point
cloud matrix X , reorder it as a 3n-dimensional vector and the Riemannian metric at X as 3n × 3n
matrix, ii) sample a velocity vector from the Gaussian distribution whose covariance is the inverse
of the Riemannian metric, iii) reorder the sampled velocity vector to n×3 matrix representation and
divide it by its norm induced by the metric, and iv) add it to X .

D IMPLEMENTATION DETAILS FOR THE EXPERIMENTS

D.1 SYNTHETIC 3D BASIC SHAPE DATASET GENERATION

For the synthetic 3D basic shape dataset, we define 5 shape classes consist of cylinder, cone, elliptic
cone, ellipsoid, and box. Figure 8 shows the representative shape of the shape corresponding to each
class and the shape parameters required to define the shape class. We again note that we sample
512 points from the surface mesh of the shapes using a greedy sample elimination algorithm, and
each point cloud is then normalized so that distance between the two farthest points is one. In the
process of normalizing the point cloud, the dimension of the shape parameter is reduced by one
dimension. As an example, in the case of cylinder, the cylinders are contained in a two-dimensional
space defined by a radius dimension r and a height dimension h, but it is reduced to one dimension
through normalization. In summary, cylinders and cones with two shape parameters are placed in
one-dimensional space, and elliptic cones, ellipsoids, and boxes with three parameters are placed in
two-dimensional space.

Figure 8: Representative shape to each class and the shape parameters required to define it. There
are 5 shape classes including cylinder, cone, elliptic cone, ellipsoid, and box.

In Section 5.1.1, we use a dataset consisting of cones, cylinders, and ellipsoids, which are split into
training/validation/test sets of size 3196/800/804. The detail ranges of the exact value of the shape
parameters are shown in Table 3.
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Table 3: The ranges of the shape parameters of the dataset used in Section 5.1.1

SHAPE param min max param min max param min max
Cylinder r 0.01 0.12 h 0.05 0.45

Cone r 0.02 0.15 h 0.02 0.45
Ellipsoid w 0.03 0.12 d 0.03 0.12 h 0.03 0.12

In Section 5.1.2, we use a dataset consisting of boxes, cones, and ellipsoids divided into training/val-
idation/test sets of size 720/240/240. The detail ranges of the aspect ratios of the shape parameters
are shown in Table 4.

Table 4: The ranges of the shape parameters of the dataset used in Section 5.1.2

SHAPE param min max param min max
Elliptic cone d/w 0.33 3 h/w 0.33 3

Ellipsoid d/w 0.33 3 h/w 0.125 0.33
Box d/w 0.33 3 h/w 0.33 3

D.2 DETAILS FOR EXPERIMENTS ON SYNTHETIC 3D BASIC SHAPE DATASET

We used an encoder with a structure similar to the classification network used in DGCNN (Wang
et al., 2019). The input point cloud with dimension 3×512 passes through five EdgeConv layers
with point-wise latent space dimensions (64, 64, 128, 256) and a max pooling layer (we do not use
a batch normalization layer unlike the original DGCNN classification network), then we can obtain
a 1024-dimensional feature vector. Other settings are the same (e.g., k = 20, leaky relu activation)
Then this feature vector again passes through three fully-connected neural networks with dimension
(512, 256, 2) with leaky relu activation function and linear output activation function; the latent
space is two-dimensional. For the decoder model, we simply use a fully-connected neural network
as the decoder. The two-dimensional vector on the latent space passes through three fully-connected
neural networks with dimension (256, 512, 3×512) with relu activation function and linear output
activation function; the output is a 3D point cloud with the number of points 512.

Section 5.1.1: To train the networks, we use ADAM with a learning rate of 0.001 and batch size
of 16; the total number of the epochs is 500. The mean value of MEDs of the dataset is 0.0339,
and we use the bandwidth value k to 0.5. We use Chamfer distance as the reconstruction loss; for
regularization figures, the regularization term with the version of Equation (9) is multiplied by a
coefficient λ = 107 with the info-Riemannian metric and by a coefficient λ = 1 with the Euclidean
metric and added to the reconstruction loss term for each metric case. The value of η is set to be
0.0. For geodesic computation, we parametrize the curve z(t) by a cubic spline with fixed boundary
points z1, z2 and 10 control points. The control points are first initialized with equally spaced linear
interpolants between z1 and z2. Then, for each iteration of optimization, we randomly sample 40
points on ti ∼ U(0, 1), i = 1, ..., 40 and calculate an expectation 1

40

∑40
i=1 ż(ti)

TG(z(ti))ż(ti) over
the sampled points as the approximation of the objective function. We use ADAM with a learning
rate of 0.001 and the total number of the iterations is 5000.

Section 5.1.2: To train the networks, we use ADAM with a learning rate of 0.001 and batch size
of 16; the total number of the epochs is 3000. The mean value of MEDs of the dataset is 0.0341,
and we use the bandwidth value k to 0.5. We use Chamfer distance as the reconstruction loss, and
the regularization term with the version of Equation (9) is multiplied by a coefficient λ = 107 and
added to the reconstruction loss term. The value of η is set to be 0.0.

Color assigning method: To visually indicate which class generated point cloud belong to, we
color these according to the ratio of the Chamfer distances to the nearest point cloud for each class.
In detail, the smallest value (distance to nearest point cloud) is found by comparing the distance
between the given point cloud and all point clouds of each class in the dataset. Since we are using
3 shape classes in both examples, we call the nearest distance to each class d1, d2, and d3. After
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that, the vector d = (d1, d2, d3) is normalized with 2-norm so that the 2-norm of the vector to be 1.
Finally, the value 0.2 × Softmax(1/d1, 1/d2, 1/d3) is regarded as the ratio of the distances and a
color is assigned to a given point cloud according to this ratio (i.e., linear weighted sum in the RGB
coordinate).

D.3 DETAILS FOR EXPERIMENTS ON STANDARD BENCHMARK DATASET

We use four different point cloud autoencoders: FcNet, FoldingNet, PointCapsNet, and DGCNN-
FcNet; the latent space is 512-dimensional. For FcNet and FoldingNet, we use the exactly same
point cloud autoencoder structures both adopted from (Yang et al., 2018b). For PointCapsNet, we
also use the exactly same point cloud autoencoder structure adopted from (Zhao et al., 2019); we use
16× 32 capsules to restrict the latent space to a reasonable size of 512. For DGCNN-FcNet, we use
DGCNN classification network as encoder (i.e., the same encoder architecture used in experiments
on synthetic 3D basic shape dataset, see Appendix C.2), and the same decoder structure from FcNet
as decoder (i.e., three fully-connected neural networks with dimension (1024, 2048, 3×2048) with
relu activation function and linear output activation function). To train the networks, we use ADAM
with a learning rate of 0.0001, betas of [0.9, 0.999], and weight decay of 0.000001 and batch size
of 16; the total number of the epochs is 500. The mean value of MEDs of the dataset is 0.0356,
and we use the bandwidth value k to 0.8. We use Chamfer distance as the reconstruction loss and
regularization term with the version of Equation (10) with the value of η to be 0.2. The regularization
term is multiplied by various coefficients, where the values of the regularization coefficients are
summarized in Appendix D.

D.4 DETAILS FOR EXPERIMENTS ON STANDARD BENCHMARK DATASET WITH NOISE

We use the exactly same point cloud autoencoder structures adopted from (Yang et al., 2018b),
FcNet, where the latent space is 512-dimensional. We add noise to each point x in point cloud of the
dataset (ShapeNet, ModelNet10, and ModelNet40) according to x 7→ x +mv, where v is uniformly
sampled on the unit sphere and m is sampled from the Gaussian distribution with zero mean and
different levels of standard deviation (1%, 5%, 10%, and 20% of the diagonal length of the point
cloud bounding box). The training configuration is the same with the case of Appendix D.3 except
the followings. The regularization term is multiplied by λ = 8000. The mean values of MEDs of
the dataset are 0.0320, 0.0364, 0.0442, and 0.579 for the cases of the noise levels 1%, 5%, 10%, and
20%, respectively, and we use the bandwidth value k to 0.8.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 SYNTHETIC DATASET

E.1.1 QUANTITATIVE RESULTS

In this section, we quantitatively evaluate how much the regularization term improves class sepa-
rability. In addition to the example shown in Figure 7, more diverse synthetic datasets are made
and experiments are conducted. We use datasets consisting of boxes, elliptic cones, and ellipsoids
as the case in Figure 7. But in these additional experiments, for each shape class, we use more di-
verse parameter configurations. In details, we generate short, normal, and tall shapes for each shape
class, and the aspect ratios of the shape parameters are shown in Table 5. We conduct a total of 27
experiments with 33 combinations.

Similar to the experiment of Section 5.1.2, each dataset is divided into training/validation/test sets of
size 720/240/240. Training configurations are the same with the experiment of Section 5.1.2, except
that the mean values of MEDs are different to each other (but we consistently use the bandwidth
value k to 0.5) and the total number of epochs is 500.

In the obtained representation spaces, after fitting the Gaussian mixture model by using the training
and validation data, the clustering scores are measured with the test data. The Normalized Mutual
Information (NMI), Adjusted Rand Index (ADI), and Silhouette Coefficient (SC) are used as metrics.
The results are shown in Table 6. For all three clustering measures, regularized autoencoder shows
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Table 5: The ranges of the shape parameters of the dataset used in quantitative analysis on synthetic
dataset

SHAPE param min max param min max
Elliptic cone short d/w 0.33 3 h/w 0.125 0.33
Elliptic cone normal d/w 0.33 3 h/w 0.33 3
Elliptic cone tall d/w 0.33 3 h/w 3 8
Ellipsoid short d/w 0.33 3 h/w 0.125 0.33
Ellipsoid normal d/w 0.33 3 h/w 0.33 3
Ellipsoid tall d/w 0.33 3 h/w 3 8
Box short d/w 0.33 3 h/w 0.125 0.33
Box normal d/w 0.33 3 h/w 0.33 3
Box tall d/w 0.33 3 h/w 3 8

Table 6: Normalized Mutual Information (NMI), Adjusted Rand Index (ADI), and Silhouette Coef-
ficient (SC) of the vanilla autoencoder and regularized autoencoder

MODEL NMI ADI SC
Vanilla AE 0.7624 ± 0.2132 0.7209 ± 0.2598 0.4207 ± 0.0453

Regularized AE 0.9484 ± 0.1391 0.9368 ± 0.1737 0.5279 ± 0.0817

higher values, indicating that our regularization technique makes the autoencoder learn more optimal
latent spaces.

Some representative examples are shown in Figure 9. The trend of the experimental results is similar
to the experimental results in Section 5.1.2. For all five results, the gray ellipses are aligned well
with the decision boundary in the vanilla autoencoder (we show the decision boundary in Figure 9
while it is not included in the main manuscript due to lack of space). In the regularized autoencoder,
these gray ellipses (or Riemannian metrics) try to become isotropic, so the gaps on the decision
boundaries get widened. As a result, different class clusters become farther away from each other.
The interpretations about results on GMM and pairwise distances are same as the ones in Section
5.1.2.

E.1.2 LINEAR INTERPOLATIONS USING REGULARIZED AUTOENCODERS

The generated point clouds from the representative intra-class linear interpolants between two
cylinders and two cones with the regularized autoencoders with the Euclidean metric and info-
Riemannian metric are drawn in Figure 10.

E.2 STANDARD BENCHMARK DATASET

E.2.1 PERFORMANCE ANALYSIS WITH VARYING REGULARIZATION COEFFICIENTS

Figure 11 shows graphs of the classification accuracy versus reconstruction error for the trained AEs
measured on ModelNet datasets, for a range of regularization coefficients. The reconstruction er-
ror is measured by the modified Chamfer distance as in (Yang et al., 2018b). Compared to vanilla
autoencoders (red), regularized autoencoders under the info-Riemannian metric (blue) show overall
higher classification accuracy regardless of the regularization coefficients. At the same time, they
do not significantly increase the reconstruction error. On the other hand, when comparing the per-
formance of regularized autoencoders under the Euclidean metric (green), most of these are clearly
inferior to the vanilla autoencoder; the others perform even worse. Overall, regularization under the
info-Riemannian metric is much more robust to the choice of regularization coefficients compared
to using the Euclidean metric.

The linear SVM classification accuracy and reconstruction error (modified Chamfer distance) ac-
cording to regularization coefficient are shown in Table 9 and Table 10. The tables are also arranged
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Figure 9: The representative five examples of the regularization experiments on the synthetic dataset.
From left to right: latent spaces, decision boundary according to the color assigning method intro-
duced in Appendix D.2, latent spaces with equidistant ellipse ({z|(z− z∗)TG(z∗)(z− z∗) = 1} for
center z∗) centered on some selected points and sampled points from interspaces, Gaussian Mixture
Model (GMM) fitting results, and the heat map of the pairwise Euclidean distances in the latent
space of all test data. For each experiment, the upper figure is a vanilla autoencoder trained without
regularization, while the lower figure is trained with regularization.

according to autoencoder models (FcNet vs. Foldingnet vs. PointCapsNet vs. DGCNN-FcNet) and
regularization types (Vanilla vs. Euclidean vs. info-Riemannian).
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Figure 11: Graphs of classification accuracy versus reconstruction error measured on ModelNet
datasets. More transparent markers have larger coefficients λ; detailed values are in Table 9 and
Table 10.

E.2.2 LEARNING CURVES FOR NOISY POINT CLOUD DATA

Figure 12 shows how the linear SVM classification accuracy and reconstruction error (modified
Chamfer distance) evolve as the training proceeds, where datasets are ModelNet10 and ModelNet40
and noise levels are 1%, 5%, 10%, and 20% (details about noise are in Appendix D.4). Compared
to vanilla autoencoders (light colored lines), regularized autoencoders under Info-Riemannian metrc
(dark colored lines) show overall higher classification accuracy, while they show similar levels of
reconstruction errors. The increase in classification accuracy becomes more pronounced as the noise
level increases. Especially, when the noise level is 10% and 20%, the classification accuracy of the
vanilla autoencoder and regularized autoencoder under Euclidean metric gradually decreases as the
learning progresses (as the epoch increases). However, such phenomenons do not appear in the

24



Under review as a conference paper at ICLR 2022

regularized autoencoders under the Info-Rimennian metric. This result implies that our method is
very advantageous in situations where there is noise in the data.

Figure 12: Learning curves of classification accuracy and reconstruction error measured on Model-
Net datasets (ModelNet40 and ModelNet10) according to the noise levels (1%, 5%, 10%, and 20%).
In each plot, the light colored lines are the result of the non-regularized autoencoders (i.e., FcNet),
and the dark colored lines are the result of the regularized autoencoders (i.e., FcNet + E and FcNet
+ I).

E.2.3 EXPERIMENTAL RESULTS ON SEMI-SUPERVISED CLASSIFICATION

We train FcNet whose the latent space is 512-dimensional with and without regularization. The
training configuration is the same with the case of Appendix D.3 except the following: the regular-
ization term of the regularized autoencoder (i.e., FcNet + I) is multiplied by λ = 8000. In this case,
when we training linear SVM classifier, we only use the different numbers of training data (1%, 5%,
10%, and 50% of the overall training data).
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Table 7 shows a comparison of transfer classification accuracy according to the percentage of train-
ing label used. The overall trend is similar to the results of the experiment with noise in Section 5.2
and Appendix E.2.2. Regularized autoencoders (i.e., FcNet + I) show overall higher classification
accuracy compared to vanilla autoencoders (i.e., FcNet), while their reconstruction errors are not
significantly different to vanilla autoencoders’. Moreover, the increase in classification accuracy
becomes more pronounced as the label rate decreases. In other words, our performance is more
effective as the number of labels decreases. Figure 13 shows how the linear SVM classification
accuracy and reconstruction error evolve as the training proceeds, where label rate levels are 1%,
5%, 10%, and 50%. Also, similarly, when the label rate is 1%, the classification accuracy of the
vanilla autoencoder gradually decreases as the learning progresses (as the epoch increases), but such
phenomenons do not appear in the regularized autoencoders. This result implies that our method is
also very advantageous in semi-supervised settings.

Table 7: Classification accuracy by transfer learning for ModelNet10 (MN10) and ModelNet40
(MN40) from ShapeNet under the the percentages of labeled training data of linear SVM classifier
(50%, 10%, 5%, and 1%).

MN40 MN10
50% 10% 5% 1% 50% 10% 5% 1%

FcNet 85.7% 78.0% 70.6% 50.3% 91.7% 90.1% 87.2% 74.1%
FcNet + I (ours) 87.9% 81.6% 76.8% 57.4% 93.2% 91.2% 88.3% 78.1%
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Figure 13: Learning curves of classification accuracy and reconstruction error measured on Model-
Net datasets (ModelNet40 and ModelNet10) according to the label rates (50%, 10%, 5%, and 1%).
In each plot, the light colored lines are the result of the non-regularized autoencoders (i.e., FcNet),
and the dark colored lines are the result of the regularized autoencoders (i.e., FcNet + I).

F COMPUTATIONAL ASPECT

First of all, the proposed info-Riemannian metric

Hijkl(X) =
∑
r

K(xr−xi

σ )K(xr−xk

σ )

(
∑n

m=1 K(xr−xm

σ ))2

[ (xr − xi)(xr − xk)
T

σ4

]
jl

requires to compute all pairwise distances between points in X . This can be computed in parallel
using GPU, and it requires a similar level of computation to that of calculating the widely-used
average Hausdorff distance metric between point cloud data.
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Table 8: Ellapsed time per one epoch when training FcNet, FcNet + E, and FcNet + I

MODEL FcNet FcNet + E FcNet + I
TIME (s) 90.97 146.27 287.51

On the other hand, since Hijkl is a huge 4D tensor, there may be a memory issue, but fortunately,
there is no need to store this tensor for both autoencoder application tasks studied in this paper: (i)
geodesic interpolation and (ii) learning optimal latent space coordinates. Because the calculations
commonly required to perform both tasks can be done without storing the tensor Hijkl entirely.
Specifically, the commonly-required calculations are as follows: given a neural network decoder
f : Rm → Rn×D and a latent value z ∈ Rm with tangent vector v = (v1, . . . , vm) ∈ Rm, we need
to compute ∑

i,j,k,l,a,b

Hijkl(f(z))(Jf )
ij
a (z)(Jf )

kl
b (z)vavb,

where Jf is the Jacobian of f . This can be memory-efficiently done as described in the pytorch-style
pseudocode:

1

2 def Info_Riemannian_velocity_norm(f, z, v, sigma):
3 """
4 input: decoder function ’f’ # torch.nn.Module, output size:
5 (batch_size, num_pnts, x_dim)
6 latent value ’z’ # (batch_size, latent_dim)
7 tangent vector ’v’ # (batch_size, latent_dim)
8 bandwith ’sigma’ # scalar
9 output: velocity square ’v_sq’ # (batch_size)

10 """
11 # Jacobian vector product
12 X, Jv = torch.autograd.functional.jvp(f, z, v)
13

14 # calculate Info-Riemannian metric
15 batch_size, num_pts, x_dim = X.size()
16 delta_X = (X.unsqueeze(2) - X.unsqueeze(1)) / sigma
17 K_delta_X = Kernel(delta_X.view(-1, x_dim))
18 K_delta_X = K_delta_X.view(batch_size, num_pts, num_pts)
19 K_delta_X = K_delta_X / K_delta_X.sum(dim=2).unsqueeze(2)
20

21 # summation
22 v_sq = torch.einsum(’nxi, nxij, nij -> nx’, K_delta_X, delta_X, Jv)
23 v_sq = torch.einsum(’nx, nx -> n’, v_sq, v_sq)
24 return v_sq / (sigma ** 2)
25

26 def Kernel(u):
27 """
28 input: vector ’u’ # (batch_size, vec_dim)
29 output: kernel values ’k_u’ # (batch_size)
30 """
31 vec_dim = u.size(1)
32 k_u = 1/(2*pi)**(vec_dim/2) * torch.exp(-torch.norm(u, dim=1)**2/2)
33 return k_u

Listing 1: Pytorch-style pseudocode for the calculation of velocity square under Info-Riemannian
metric

For training the regularized autoencoders, it is not only required to compute the above quantity but
also back-propagate through it. In the following, we report how costly adding the regularization
term is, compared to the vanilla autoencoder case. We measure the ellapsed time per one training
epoch under GeForce RTX 3090. For representative examples, we use FcNet, FcNet + E, and FcNet
+ I, and the ellapsed tims for each method is shown in Table 8.
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G DIFFERENT KERNEL CHOICES FOR DENSITY ESTIMATIONS

In this section, we qualitatively analyze how the statistical representation can change when a kernel
function other than the Gaussian kernel function is used. As representative ones, we compare the
Gaussian, Uniform, Triangular, Epanechnikov, and Sigmoid kernel functions. All but Gaussian and
Sigmoid kernel functions have the finite support. For visualization, comparison is made using 2d
point clouds, and data in the shape of circles, ellipses, squares, stars, and hearts are used.

Figure 14 visualizes the probability distributions. Basically, the estimated probability distributions
are not that different. However, when using kernel functions with finite support, estimated distribu-
tions are not very smooth compared to using a Gaussian or Sigmoid kernel function that have infinite
support. Overall, it is difficult to say definitively which choice is better, but we choose the one that
produces smooth estimations, the Gaussian kernel.

Figure 14: Kernel density functions of different point cloud data (circle, ellipse, square, heart, and
star) using different kernels (Gaussian, uniform, triangular, Epanechnikov, and sigmoid). We set the
common bandwidth of kernels σ = MED, where MED denotes the median of the distances between
the points in the point cloud and their nearest points.

29



Under review as a conference paper at ICLR 2022

Table 9: Classification accuracy and reconstruction error according to regularization coefficient. The
table is also arranged according to model (FcNet vs. FoldingNet) and regularization type (Vanilla
vs. Euclidean vs. info-Riemannian). For Riemannian metric cases, the regularization coefficients
used in the actual experiments are σ2 times λ shown in the table.

MODEL METRIC λ MD40 acc MD40 recon MD10 acc MD10 recon
FcNet Euclidean 0.0001 89.343598 0.029069 92.951542 0.029527
FcNet Euclidean 0.0010 88.330632 0.030464 93.612335 0.030684
FcNet Euclidean 0.0100 88.249595 0.029877 93.722467 0.030054
FcNet Euclidean 0.1000 86.993517 0.029878 92.841410 0.030900
FcNet Euclidean 1.0000 87.115073 0.031966 92.951542 0.034272
FcNet Euclidean 10.0000 86.709887 0.031523 92.400881 0.032318
FcNet Euclidean 100.0000 85.696921 0.031841 92.511013 0.035172
FcNet Euclidean 1000.0000 85.899514 0.035089 92.400881 0.036145
FcNet Euclidean 10000.0000 86.345219 0.034149 92.400881 0.034811
FcNet Riemannian 100.0000 89.586710 0.029032 94.052863 0.029435
FcNet Riemannian 500.0000 89.829822 0.028944 94.273128 0.029928
FcNet Riemannian 1000.0000 89.951378 0.028864 93.722467 0.029430
FcNet Riemannian 2000.0000 90.194489 0.029165 94.052863 0.029606
FcNet Riemannian 8000.0000 90.397083 0.028869 93.722467 0.028944
FcNet Riemannian 10000.0000 89.991896 0.029603 94.162996 0.030278
FcNet Riemannian 20000.0000 89.748784 0.028980 93.832599 0.029412
FcNet Riemannian 50000.0000 89.667747 0.029161 93.392070 0.028894
FcNet Riemannian 100000.0000 89.748784 0.028961 93.942731 0.030085
FcNet Vanilla 0.0000 88.330632 0.028938 93.502203 0.029895
FoldingNet Euclidean 0.0001 88.897893 0.030540 94.162996 0.029130
FoldingNet Euclidean 0.0010 87.844408 0.031623 94.273128 0.031726
FoldingNet Euclidean 0.0100 87.520259 0.029126 93.612335 0.032219
FoldingNet Euclidean 0.1000 87.641815 0.029391 93.722467 0.030318
FoldingNet Euclidean 1.0000 88.128039 0.030564 93.171806 0.031435
FoldingNet Euclidean 10.0000 88.290113 0.032129 93.171806 0.032975
FoldingNet Euclidean 100.0000 88.087520 0.032728 94.383260 0.032885
FoldingNet Euclidean 1000.0000 87.722853 0.033305 92.951542 0.036244
FoldingNet Euclidean 10000.0000 87.844408 0.033546 93.502203 0.036820
FoldingNet Riemannian 100.0000 89.667747 0.029467 94.052863 0.030789
FoldingNet Riemannian 500.0000 90.113452 0.029916 94.052863 0.029346
FoldingNet Riemannian 1000.0000 89.870340 0.030090 94.493392 0.029996
FoldingNet Riemannian 2000.0000 89.546191 0.030471 94.273128 0.031142
FoldingNet Riemannian 8000.0000 89.627229 0.028949 94.162996 0.029745
FoldingNet Riemannian 10000.0000 89.505673 0.029926 94.052863 0.033548
FoldingNet Riemannian 20000.0000 89.384117 0.032798 94.162996 0.029463
FoldingNet Riemannian 50000.0000 89.708266 0.029262 94.273128 0.030002
FoldingNet Riemannian 100000.0000 89.262561 0.029511 94.162996 0.030355
FoldingNet Vanilla 0.0000 89.343598 0.029599 93.722467 0.030528
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Table 10: Classification accuracy and reconstruction error according to regularization coefficient.
The table is also arranged according to model (PointCapsNet vs. DGCNN-FcNet) and regularization
type (Vanilla vs. Euclidean vs. info-Riemannian). For Riemannian metric cases, the regularization
coefficients used in the actual experiments are σ2 times λ shown in the table.

MODEL METRIC λ MD40 acc MD40 recon MD10 acc MD10 recon
PointCapsNet Euclidean 0.0001 88.087520 0.039522 93.722467 0.043112
PointCapsNet Euclidean 0.0010 87.601297 0.046227 93.171806 0.047749
PointCapsNet Euclidean 0.0100 87.155592 0.058326 92.621145 0.060827
PointCapsNet Euclidean 0.1000 86.628849 0.070735 91.519824 0.072615
PointCapsNet Euclidean 1.0000 85.858995 0.087722 91.299559 0.087930
PointCapsNet Euclidean 10.0000 83.954619 0.110708 90.638767 0.107402
PointCapsNet Euclidean 100.0000 79.659643 0.124266 88.215859 0.115549
PointCapsNet Euclidean 1000.0000 76.823339 0.128694 88.546256 0.121284
PointCapsNet Euclidean 10000.0000 75.567261 0.130566 88.325991 0.121398
PointCapsNet Riemannian 100.0000 88.492707 0.035034 93.942731 0.042224
PointCapsNet Riemannian 1000.0000 88.168558 0.035816 93.942731 0.039131
PointCapsNet Riemannian 2000.0000 87.884927 0.036824 93.392070 0.040169
PointCapsNet Riemannian 5000.0000 87.884927 0.035990 93.832599 0.039729
PointCapsNet Riemannian 8000.0000 87.641815 0.037986 93.392070 0.040947
PointCapsNet Riemannian 10000.0000 87.763371 0.037507 93.722467 0.040428
PointCapsNet Riemannian 20000.0000 87.763371 0.038454 93.281938 0.048909
PointCapsNet Riemannian 50000.0000 87.641815 0.042233 93.281938 0.044333
PointCapsNet Riemannian 100000.0000 87.317666 0.046607 93.171806 0.051187
PointCapsNet Vanilla 0.0000 87.155592 0.033936 93.612335 0.037172
DGCNN-FcNet Euclidean 0.0001 89.910859 0.028852 94.052863 0.029049
DGCNN-FcNet Euclidean 0.0010 89.546191 0.029489 94.383260 0.029480
DGCNN-FcNet Euclidean 0.0100 88.492707 0.030448 93.061674 0.030531
DGCNN-FcNet Euclidean 0.1000 87.884927 0.030046 93.392070 0.030966
DGCNN-FcNet Euclidean 1.0000 87.520259 0.030605 93.502203 0.034671
DGCNN-FcNet Euclidean 10.0000 87.196110 0.032174 92.841410 0.032151
DGCNN-FcNet Euclidean 100.0000 87.277147 0.032385 93.171806 0.033750
DGCNN-FcNet Euclidean 1000.0000 87.682334 0.033359 93.171806 0.033906
DGCNN-FcNet Euclidean 10000.0000 86.385737 0.034471 92.621145 0.036056
DGCNN-FcNet Riemannian 100.0000 90.397083 0.028761 94.493392 0.028591
DGCNN-FcNet Riemannian 1000.0000 90.964344 0.028278 94.493392 0.028806
DGCNN-FcNet Riemannian 2000.0000 90.680713 0.028299 94.493392 0.028832
DGCNN-FcNet Riemannian 5000.0000 90.883306 0.028520 94.493392 0.029128
DGCNN-FcNet Riemannian 8000.0000 90.802269 0.028727 95.154185 0.028971
DGCNN-FcNet Riemannian 10000.0000 90.680713 0.028583 94.383260 0.028820
DGCNN-FcNet Riemannian 20000.0000 90.559157 0.028677 94.713656 0.029067
DGCNN-FcNet Riemannian 50000.0000 90.761750 0.029794 94.713656 0.029695
DGCNN-FcNet Riemannian 100000.0000 90.235008 0.028934 94.052863 0.031275
DGCNN-FcNet Vanilla 0.0000 90.275527 0.028867 94.493392 0.029454
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