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ABSTRACT

This work summarizes two ways to accomplish Time-Series (TS) tasks in today’s
Large Language Model (LLM) context: LLM-for-TS (model-centric) designs and
trains a fundamental large model, or fine-tunes a pre-trained LLM for TS data;
TS-for-LLM (data-centric) converts TS into a model-friendly representation to
enable the pre-trained LLM to handle TS data. Given the lack of data, limited
resources, semantic context requirements, and so on, this work focuses on TS-
for-LLM, where we aim to activate LLM’s ability for TS data by designing a TS
embedding method suitable for LLM. The proposed method is named TEST. It
first tokenizes TS, builds an encoder to embed TS via instance-wise, feature-wise,
and text-prototype-aligned contrast, where the TS embedding space is aligned to
LLM’s embedding layer space, then creates soft prompts to make LLM more open
to that embeddings, and finally implements TS tasks using the frozen LLM. We
also demonstrate the feasibility of TS-for-LLM through theory and experiments.
Experiments are carried out on TS classification, forecasting, and representation
tasks using eight frozen LLMs with various structures and sizes. The results show
that the pre-trained LLM with TEST strategy can achieve better or comparable
performance than today’s SOTA TS models and offer benefits for few-shot and
generalization. By treating LLM as the pattern machine, TEST can endow LLM’s
ability to process TS data without compromising language ability. We hope that
this study will serve as a foundation for future work to support TS+LLM progress.

1 INTRODUCTION

Implementing Time-Series (TS) tasks, such as medical, industrial, and meteorological, is a research-
intensive field Sun et al. (2020). The relevant models evolved from statistical models to RNNs,
CNNs, and Transformers. Nowadays, we see a fast growth and remarkable performances of Large-
scale pre-trained Language Models (LLM) in NLP and CV fields Zhao et al. (2023). Consequently,
it seems natural to inquire whether LLMs can be used for TS tasks. However, according to experi-
ments, most pre-trained LLMs have not made significant progress in relation to abstract TS.

In answer to this requirement, we envision two ways to achieve the paradigm of TS+LLM 1:
• LLM-for-TS (model-centric, modify LLM). For TS data, design and train a fundamental Large

Model from scratch (LM-of-TS), then fine-tune the model accordingly for various downstream
tasks. Or, fine-tune the existing pre-trained LLM and convert it from text tasks to TS tasks;

∗Corresponding authors
1This categorization focuses on the requirement for changing the model. But from technology, LLM+TS

can be achieved by pre-training, fine-tuning, tool-augmented methods, external encoders, and their ensemble.
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• TS-for-LLM (data-centric, modify TS). Based on the existing LLMs, furthest freezing them,
design some mechanisms to customize TS for them by creating LLM-friendly TS representation.

We acknowledge that the first way, particularly developing and training a model from scratch, is the
most essential solution since pre-training is the crucial step of instilling knowledge to the model.
And the second way is actually challenging to break beyond the model’s original capabilities. How-
ever, in this work, we still focus on the second way due to the following three considerations:

Data perspective. LLM-for-TS methods, especially when building a foundation model, necessitate
large dataset, but TS is professional, the largest dataset is less than 10GB, which is much smaller
than that for NLP Zhou et al. (2023); TS-for-LLM methods can use a relatively small dataset as
its objective is solely to assist the existing LLM in inferring TS; Model perspective. LLM-for-TS
methods focus on vertical industries. Because of the major disparities in TS across domains, various
large models targeting medical TS, industrial TS, etc. must be built and trained from the start;
TS-for-LLM methods need little or even no training. By utilizing plug-in modules, it makes the
utilization more general and convenient; Usage perspective. LLM-for-TS methods are appropriate
for instances involving specialists; TS-for-LLM methods maintain LLM’s textual capabilities while
providing rich complementing semantics, being easily accessible and user-friendly.

Without changing the existing model, the most natural approach is treating TS as text data. For
example, a possible dialogue is: [Q] Diagnose if a patient has sepsis through the following mean
arterial pressure sequence in mm Hg: 88, 95, 78, 65, 52, 30. [A] Yes. However, TS is often
multivariate while text is univariate. For example, excepting mean arterial pressure, dozens of vital
signs, and laboratory values, such as heart rate, lactic acid, etc., need to be included when diagnosing
sepsis. One intuitive method is to divide a multivariate TS into multiple univariate sequences and
input them into LLM one by one. However, this will lead to three drawbacks. First, different prompt
sentences, data order, and connection statements will produce different results; Second, a long input
sequence likely to make LLM inefficient and hard to remember the previous univariate TS; Third,
the crucial aspects of multivariate dependency in TS will be ignored.

To address the above issues and achieve TS-for-LLM, we do not directly input TS into LLM, but
instead, we first tokenize TS, then design an encoder to embed them, finally skip the embedding layer
to input them into LLM. In this way, the core is to create embeddings that the LLM can understand.

High-quality TS embedding can be employed as the computational phenotype that the deep learning
model can understand Hong et al. (2023). To make the embedding understandable by language
models. Most multimodal approaches use alignment, for example, aligning text embedding and
image embedding through text descriptions of the image Wang et al. (2023). However, TS lacks
visual cues and has an annotation bottleneck caused by its complex characteristics. Only a few
specific TS, such as ECG, have text descriptions in each segment, where the image-text matching
route could be implemented. But in most cases, it’s not feasible.

Contrastive Learning (CL) can avoid the annotation bottleneck through designing pretext tasks by
utilizing intrinsic information instead of relying on pre-defined prior knowledge. Currently, CL
methods for TS data has also advanced Meng et al. (2023b). These methods evaluate the effective-
ness of TS embedding through follow-up classification, prediction, or clustering models, such as
SVM Franceschi et al. (2019). However, these simple and newly-trained models are considerably
different from the complex and pre-trained LLM. The representation vector generated by uncon-
strained CL is likely to deviate greatly from the LLM’s cognitive embedding space.

To address the above issues, we propose an embedding method for TimE Series tokens to align
the Text embedding space of LLM (TEST). Based on CL, TEST uses text embedding vectors as
prototypes to constrain TS’ embedding space and highlights feature-wise patterns. We show that
TEST can activate LLM’s ability as pattern machine. The contributions of this work are:

• Summarize two TS+LLM paradigms, LLM-for-TS, TS-for-LLM, with their potential methods;
• Propose TEST for TS-for-LLM. TEST can produce the similarity-based, instance-wise, feature-

wise, and text-prototype-aligned embedding for TS tokens. We prove that prompt tuning is al-
most equivalent to supervised fine-tuning when TS embedding and word embedding are aligned;

• Experiments on TS classification, forecasting, few-shot, and representation tasks demonstrate
that TEST can activate LLM’s capability to archive TS tasks, where the random and unsatisfac-
tory results produced by original LLMs can be elevated to the baseline.
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Category Means Pros Cons Work

LM-of-TS Training Specialized, Not universal, Pre-training Ma et al. (2023)
accurate large datasets Earth transformer Bi et al. (2023)

LLM-for-TS

Tuning End-to-end, More experiments, GPT4TSZhou et al. (2023)
accurate lose language ability LLM4TSChang et al. (2023)

Tool
augmented

Parameter-efficient,
less experiments

Need experts,
need annotation

PromptCast Xue & Salim (2023)
Health Learner Liu et al. (2023)
METS Li et al. (2024)
Text2ECGChung et al. (2023)

TS-for-LLM External
encoder

Parameter-efficient, Weak robust TESTmultiple abilities

Table 1: Existing Work about TS+LLM

As the name of TEST implies, it’s a forward-looking test that we hope to lay the groundwork for
future study. And it does give LLM new capabilities and highlight its qualities as a pattern machine.

2 RELATED WORK

2.1 TIME SERIES AND LARGE LANGUAGE MODEL

There hasn’t been much research done on TS+LLM because this field is still in its infancy. We
summarize the existing work in Table 1. LLM-for-TS with changing the model can be achieved
through tuning or tool augmented means; TS-for-LLM with changing the data can be achieved
through building the external encoder.

LM-of-TS Ma et al. (2023) trains a fundamental and accurate model based on accumulated domain
TS data, but it can be difficult to construct a large well-labeled dataset due to data acquisition and
annotation costs. By comparison, Supervised Fine-Tuning (SFT) in LLM-for-TS Chang et al. (2023)
has a relatively smaller workload than pre-training, but it can make the LLM lose its language
capabilities and its advantages over a sophisticated model designed specifically for TS tasks are
unclear. Regarding TS as the text sequence and using prompts as the augmented tool Liu et al.
(2023) could input numerical TS into LLM directly, but it is inaccurate, requires more experience,
and will fail for multivariate TS. The multimodal methods Li et al. (2024) could align the text and
TS, but apart from ECG, most TS datasets have no segment annotation.

2.2 TIME SEIRES EMBEDDING

TS embedding can provide identities by including typical, associated, and dependant attributes.
CL-based methods can get the data representation Chen et al. (2020), employing the instance dis-
crimination pretext task to bring similar pairs closer while pushing dissimilar pairs apart in the
embedding space. Some efforts have been made to implement instance-level contrast Woo et al.
(2022b); Zheng et al. (2023), temporal-level contrast Meng et al. (2023c); Franceschi et al. (2019),
and clustering-level contrast Meng et al. (2023a) on TS data, with promising results. However, the
direct contrast cannot bridge TS embedding and the LLM’s comprehensible space. In our setting,
we prefer to freeze the pre-trained LLM and let the embedding compromise. That is, we use the text
token embedding in LLM to limit and guide the TS token embedding.

Inspired by the prototype-level contrast Caron et al. (2020), which goes beyond the independence
assumption and exploits latent cluster information present within samples. We can select some text
embeddings as basic prototypes to lead the learning. However, in addition to the alignment, we still
need to consider issues of prototype selection, differentiation Meng et al. (2023c), uniformity Wang
& Isola (2020), stability Huang et al. (2023) and etc.

3 METHODS

TEST has two key steps: In Figure 1, build an encoder to embed TS; In Figure 2, create prompts to
make the LLM can accept TS embeddings as input.
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Figure 1: Text-prototype-aligned TS Embedding by Instance-wise and Feature-wise Contrast

3.1 TS TOKEN AUGMENTATION AND ENCODING

Definition 1 (Token Embedding of Time Series) A multivariate time series x = {xd
t }

T,D
t=1,d=1 has

D variables and T time points. It can be segmented to a list of K non-overlapping subsequences
s = {sk}Kk=1 by a segmentation function fs : x → s, where the length of sk = xti:tj is arbitrary,
1 ≤ ti < tj ≤ T . We call s as the token list of time series x. Further, each token can be embeded
to a M -dimensional representation space by an embedding function fe : sk ∈ RD×T → ek ∈ RM .
Finally, the token embedding list of x is e = {ek}Kk=1 = fe(s) = fe(fs(x)).

We first tokenize TS into some segmentation/subsequences/tokens/instances through the classical
sliding window method in representation learning Yue et al. (2022) s = fs(x). We define a TS token
s as the anchor instance. Its positives s+ are the augmented instances, sweak ∼ Tweak (jitter-and-
scale strategy, adding random variations to the signal and scale up its magnitude), sstrong ∼ Tstrong
(permutation-and-jitter strategy, splitting the sequence into a random number of segments and ran-
domly shuffling them) Eldele et al. (2021). Its negatives s− are from non-overlapping instances
which do not have the same subsequence as s.

After getting anchor-positive-negative, we built a neural network as the encoder to embed in-
stance into vector e = fe(s). We also trained a decoder fd by using the auto-encoding loss
Lae = 1

N

∑N
i=1 sim(s, fd(e)) to ensure the representativeness of the embedding and subsequent

verification. Because our primary goal is to retrieve the encoder, this decoder can likewise be un-
built without harming the future process.

3.2 INSTANCE-WISE AND FEATURE-WISE CONTRAST

The basic instance-wise CL treats each instance independently and design the instance discrimina-
tion pretext task to keep similar instances close and dissimilar instances far away. To prevent embed-
ding space collapse, we treat augmented views of the same instance as the unique positive pair, and
all remaining ones within the B size minibatch as negative pairs He et al. (2020). The instance-wise
contrastive loss is shown in Equation 1. Where given the instance embedding e, e+/−, we construct
a projection head fp, which is a one-layer MLP to obtain fp(e). σ(e, e+/−) is used to calculate
the similarity between two projected vectors through a similarity function sim like cosine similarity
with the instance-level temperature parameter τ .

Lins = − log
exp(σ(e, e+))

exp(σ(e, e+)) +
∑B

i=1 exp(σ(e, e
−
i ))

σ(e, e+/−) =
sim(fp(e), fp(e

+/−))

τ

(1)
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We also propose a feature-wise contrast method to break the independence between instances. As
shown in Figure 1, after embedding, a feature matrix RB×M is formed by the representation vectors
of instances in a minibatch. Where each row is an embedding of a instance, thus rows could be
regarded as soft labels of instances which are used in Equation 1. In addition to rows, columns of
feature matrix also have semantic information. Li et al. (2021) proposed that the columns could
be further regarded as cluster representations. However such cluster-wise methods require prior
knowledge to pre-specify the number of clusters, which is non-trivial for the unlabeled TS data
in this work. Thus, we propose to regard the columns as the soft labels of features and perform
discrimination between groups of similar features.

For an anchor feature matrix m, where m is the B-th row copy of the vector e, we obtain a positive
feature matrix m+ and a negative feature matrix m−, where m+/− = [ei]

B
i=1 ∈ RB×M . We mark

the columns in the matrix as m ∈ mT. As expressed by the item before the right arrow in the
Equation 2, the feature-wise contrast mainly align and differentiate the same feature column among
the positive and negative. However, this may cause the representation space to shrink within a small
area. We find that ensuring differences between features can better address this issue. That is, we
suggest the contrast between different feature columns as shown in the item after the right arrow.

Lfea = −
M∑
i=1

(σ(mi,m
+
i )︸ ︷︷ ︸

Alignment

−σ(mi,m
−
i )︸ ︷︷ ︸

Difference

) ⇒ −
M∑
i=1

log
exp(σ(mi,m

+
i ))∑M

j=1[exp(σ(mi,m
+
j )) + exp(σ(mi,m

−
j ))]︸ ︷︷ ︸

Feature category uniformity

(2)

More importantly, the injection of feature column differences can also greatly assist in the sub-
sequent implementation of text-prototype-aligned contrast. Because that contrast will apply the
selected text token embedding to the feature columns, like coordinate axes.

3.3 TEXT-PROTOTYPE-ALIGNED CONTRAST

The pre-trained LLM has its own token embedding, e.g., small, medium, and big GPT-2 embed
text tokens from word dictionaries into representation spaces with 768, 1024, and 1280 dimensions.
Naively, we can align the token embedding of TS and text using the similarity estimation. Although
TS tokens lack text annotation, we can place their embedding near typical text descriptions of TS,
such as value, shape, and frequency. In this fashion, it is intuitively expected that various TS tokens
can represent various descriptive terms such as small, big, up, down, stable, fluctuating, and so
on. Naturally, the example above is based on the closest neighbor principle because the embedding
space of a text token is discrete, akin to a vector table, but that of our TS token is continuous.

However, of course, the actual outcomes will not match what we expect because we are not providing
the supervised label or ground truth. For example, the embedding of a subsequence with an upward
trend may be very close to that of a decline word, or even that does not describe the trend. But it
is irrelevant whether semantics can be understood by us. As usual, the fact is that humans cannot
comprehend the model’s perceptual mode.

Recently, researchers proved that LLMs are pattern machines Mirchandani et al. (2023). Thus, in
this work, we achieve “TS → pattern → text” to activate LLM’s ability for TS tasks. The choice of
text prototype can be relaxed, not necessarily the description related to TS.

In this work, we choose P representative text embedding tp as pivots/prototypes, and map TS em-
bedding to them. In high dimensional space, almost all vectors are pairwise orthogonal Hopcroft &
Kannan (2013), thus the number of prototypes rather than the type does matter, and their differences
can be reflected in a single dimension/feature. Thus, the modeling function of the text prototype tp
is realized by feature-wise contrast. As expressed by Equation 3, the alignment term guarantees that
the two space ranges are roughly the same through the similarity constraint, the contrast term uses tp
as the coordinate axis to map the TS embedding, making the representation values in text coordinate
axes of similar instance similar. The feature matrix is no longer obtained through the projector but
through the prototype mapping e · tp → m.

Ltext = −
P∑
i=1

[sim(tpi, e)︸ ︷︷ ︸
Text alignment

−Lfea(e · tp, e+ · tp, e− · tp)]︸ ︷︷ ︸
Text contrast

(3)
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3.4 LEARNABLE PROMPT EMBEDDING

Even TS has been described using an embedded representation that the LLM can understand, LLM
still has to be instructed on how to do subsequent TS tasks.
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Figure 2: Framework of LLM for TS Tasks

Prompt engineering like template and
chain-of-thought is intuitive. Their con-
texts are coherent in human semantics, but
a TS embedding list has no human se-
mantics, it is more about a pattern se-
quence. Thus, to create a more consistent
prompt pattern, we train a soft prompt by
p-tuning Lester et al. (2021) make LLM
be easier to understand the input. These
soft prompts are task-specific embedding,
learning through the loss from LLM’s out-
put and task ground truth in Equation 4.

Lpromp = Lreg/cls(concat(pe, e)) (4)

GPT4TS Zhou et al. (2023)has proved the
feasibility that SFT can make LLM apply
to TS. Based on this, we demonstrate the
feasibility of TEST by proving the equiva-
lence between soft prompt and SFT.

Consider a conditional generation task
where the input x is a context and the output y is a sequence of tokens. Assume an autoregres-
sion LLM pϕ(y|x) with parameter ϕ, z = [x; y]. The inference of a pre-trained LLM is computing
hi as a function of zi and the past activations in its left context, Y = LMϕ(zi, hi). The past hi in

the soft prompt turning with prompt peθ is hi =

{
peθ[i, :], if i ∈ peidx

LMϕ(zi, hi), otherwise
. The SFT from LLM

to TS-LLM is Equation 5. Its transformation shows that the soft prompt tuning is approximately
equivalent to SFT.

max
ϕ

pϕ(y
′|x) = max

ϕ

∑
i∈Yidx

log pϕ(z
′
i|h<i) =

∑
i∈Yidx

log pϕ+∆(zi + δzi|h<i)

≈
∑

i∈Yidx

log pϕ(zi|h<i) ·
∑

i∈peidx

log p∆(δzi|h<i)

=
∑

i∈Yidx

log pϕ(zi| fe(s)︸ ︷︷ ︸
Text−TS alignment︸ ︷︷ ︸

Frozen LLM

) ·
∑

i∈peidx

log p∆(δzi|h<i)︸ ︷︷ ︸
Prompt peθ

(5)

Equation 5 also suggests that the projection space of TS tokens should preferably cover the complete
set of text embedding space. Thus, we utilize clustering to find P representative text prototypes. The
process of using LLM to infer TS is shown in Figure 2. In this framework, the text data is input into
the embedding layer of LLM, while the prompts and TS embeddings skip this layer.

4 EXPERIMENTS

The core of TEST is to train an encoder fe and a soft prompt pe as described in Algorithm 1. The
encoder must can extract relevant information from TS, needs to be time- and memory-efficient,
and has to allow variable-length inputs. Thus, we build a causal TCN with 10 layers of convolution
blocks. Each convolution block is a sequence of GELU, DilatedConv, BatchNorm, GELU, Dilated-
Conv, with skip connections across each block. The DilatedConvs have dilation of 2i in each layer
i of convolution block. A final convolution block is used to map the hidden channels to the output
channel whose size is the same as the LLM’s embedding size.
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Algorithm 1 Training TEST

1: for e in epochs do
2: // UPDATE ENCODER
3: θfe = θfe − η▽θfe

(Lins + Ltext)
4: // UPDATE DECODER (OPTIMAL)
5: θfd = θfd − η▽θfd

Lae

6: // UPDATE PROJECTOR
7: θfp = θfp − η▽θfp

Lins

8: end for

9: for e in epochs do
10: // UPDATE PROMPT
11: pe = pe− η▽θpeLpromp

12: // FINE TUNE DECODER (OPTIMAL)
13: θfd = θfd − η′▽θfd

Lreg

14: // UPDATE CLASSIFIER (OPTIMAL)
15: θfc = θfc − η▽θfc

Lcls

16: end for

Model Size Embed. dimension

Bert Devlin et al. (2018) 110M, 335M 748, 1024
GPT2 Radford et al. (2019) 117M, 345M, 774M 768, 1024, 1280
ChatGLM Du et al. (2022) 6B 4096
LLaMa2 Touvron et al. (2023) 7B, 13B 4096

Table 2: The Used Language Model

The used LLMs are as listed
in Table 2. Each encoder and
soft prompt of LLM are trained
using the Adam optimizer on
20 NVIDIA Tesla V100-SXM2
GPU with CUDA 11.3.

We compare our method to 5 kinds of methods including 12 baselines: 1) LLM-QA methods Xue &
Salim (2023); Liu et al. (2023) with the classification template Classify the given [domain] sequence
as either [class label] or [class label]: [numerical sequence]. [A] and the forecasting template [Q]
Forecast the next value of the given [domain] sequence: [numerical sequence]. [A]; 2) SFT LLM-
for-TS method GPT4TS Zhou et al. (2023); 3) classical TS models DWT, DWTD Bagnall et al.
(2018), 1NNED, and TCN Tan et al. (2021); 4) SOTA TS models Informer Zhou et al. (2021),
DLinear Zeng et al. (2023), and TimesNet Wu et al. (2023); 5) SOTA CL-based TS models Tloss
Franceschi et al. (2019), TS2Vec Yue et al. (2022), and CoST Woo et al. (2022a).

The overall results are shown in Figure 3 (The appendix has more compared classical SOTA models
and detailed results about long-term, short-term, few-shot, and zero-shot forecasting, multivariate
time series classification, and representation tasks.). Overall, after using TEST, when the size of
LLM reaches about 300M, their accuracy comparable to SOTA model.

4.1 CLASSIFICATION

We present accuracy scores for all 128 kinds of univariate TS datasets in UCR archive Dau et al.
(2019) and all 30 kinds of multivariate TS datasets in UEA archive Bagnall et al. (2018).

Accuracy. In Figure 3 (a-b), TEST makes the classification accuracy of LLM increase significantly.
LLM’s original classification performances are demonstrated through two QA results. It almost
guesses the classification labels at random, especially for multivariate TS. After using TEST, GPT2-
774M, which has the median accuracy among all models, can improve accuracy by at least 18% for
univariate TS and 25% for multivariate TS. TEST makes most LLMs comparable to, if not better
than, the existing models. When the size reaches about 300M, the accuracy can exceed TS baselines;
When the size reaches about 700M, the accuracy can exceed SOTA TS transformers.

Ablation. In Figure 3 (c-d), different text prototypes will lead to different results. We set 3 groups of
text prototypes: embeddings of value, shape, frequency, and embeddings of 3 or 10 cluster centers.
Choosing a prototype group that more accurately represents LLM’s entire text embedding space can
improve the performance. This is also suggested by Equation 5. Different prompt types, initializa-
tion, and length will lead to different results. We compare the soft prompt with the hard prompt of
Classify the given [domain] sequence as either [class label] or [class label]: [TS embedding]. The
accuracy differs by at least 10%. We set random initialization from uniform distribution and task
description initialization from Classify the given sequence. The latter makes the training converge
faster. When the model reaches 1B, a prompt length of 10 can achieve excellent results.

4.2 FORECASTING

We present short-forecasting MSE scores for all 19 kinds of varied time series datasets in TSER
archive Tan et al. (2021), and long-forecasting MSE scores for 8 popular real-world benchmark
datasets including weather, traffic, electricity, ILI, and ETT from Wu et al. (2023).
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Figure 3: Experiment Results. (a-d) shows the classification results; (e-h) shows the forecasting
results; (i) shows the representation results. The red dashed line represents the best result.

Accuracy. In Figure 3 (e-f), TEST makes the forecasting accuracy of LLM increase significantly
and comparable to SOTA models. When the size reaches about 300M, the accuracy can exceed
SOTA TS transformers.

Generalization. We fuse 19 datasets into 1 dataset and test the method on this fused dataset. As
shown in Figure 3 (g), compared with baselines, LLM-based models have better generality.

Few-shot. LLM has demonstrated remarkable performance in few-shot learning. Based on the
settings in Zhou et al. (2023), we present few-shot forecasting for 10% time steps in training datasets.
As shown in Figure 3 (h), TEST achieves the best performance and demonstrates a relative average
MSE reduction of 23.5%.

8



Published as a conference paper at ICLR 2024

4.3 REPRESENTATION

Active silence silent absent important final night voiced

White important change loop happy actively limit finally

Figure 4: Matching TS Embedding to Words

Representation learning. Learning universal rep-
resentations for TS is a fundamental but challeng-
ing problem. Both TEST’s first step (creating TS
embedding) and second step (LLM’s output) can
achieve this task. Based on the classical representa-
tion learning task, we evaluated the effectiveness of
TEST representation using SVM classifier on UCR
dataset. Note that using a simple classifier can bet-
ter reflect the presentation effect. In Figure 3 (i),
the embedding in TEST’s first step is comparable to
SOTA representation methods, and the embedding
in TEST’s second step can outperform them. This
indicates that after using LLM, the representation of
TS becomes more discriminative.

Case. We use nearest neighbor method to find the text that a TS token matches to in the word
embedding space of frozen LLM. In Figure 4, the majority of the identified words are sentiment-
related adjectives and nouns. We speculate that by prompting, the model will treat TS classification
task as an sentiment classification task. Thus, introducing prompt is like introducing a shortcut
for LLM. Besides, the matched words are like a kind of textual Shapelet for TS segmentation,
representing TS through a series of patterns. Instead of regarding TS as a sequence of numbers,
we suggest using words to identify patterns in TS as LLMs without SFT are not good for math
when performing digital tasks, but they are good at extracting knowledge as a pattern machine. The
semantics of the patterns be perplexing to us, but it makes sense to LLM.

5 DISCUSSION AND CONCLUSION

This paper proposes an instance-wise, feature-wise, and text-prototype-aligned TS embedding
method to achieve TS-for-LLM. It can activate LLM’s ability for TS tasks while maintaining its
original language ability. Experiments on classification, forecasting, and representation tasks show
that using TEST, LLM can archive comparable performance to SOTA methods.

TS-for-LLM can enrich LLM’s capabilities. SFT LLM may be more effective than TS-for-LLM,
yet its superiority over customized TS models remains unclear; Training customized models may be
more accurate in TS tasks, yet TS-for-LLM offers all notable benefits of LLM additionally.

TS-for-LLM can explore LLM’s mechanism as a pattern machine. The essence of TS-for-LLM
is: TS ↔ TS embeddings ↔ patterns ↔ text/word embedding ↔ text. Although TEST gives the
impression of a forcibly aligning operations between TS and text, it dose convert TS into an under-
standable pattern sequence for LLMs, that clearly demonstrates that the essence of LLM is pattern
recognition. In fact, TS is objective data, whereas images, text, and speech are subjective data that
can be perceived by human senses. TEST aligns objective TS data and subjective text data at the
machine level, but how to align them at the human perception level requires future research.

Meanwhile, in addition to text prototypes and prompts, LLM size and type also affect the results.
The impact of model type is intuitive, it is related to downstream tasks, where the bidirectional
structure is beneficial for classification, and the generated structure is beneficial for forecasting. The
impact of model size, where a larger model produces more accurate results, can be attributed to
various reasons. Aside from the impact of additional parameters, we believe that the datasets used
in the pre-training process are also important, with the size, diversity, and corpus type all having an
impact. We conjecture that more training data will provide the model with more opportunities to
learn temporal patterns. As a result, we intend to conduct more experiments to investigate deeper
correlations between corpora and TS data Chen et al. (2023).
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APPENDIX

1 RELATED WORK

Our work mainly involves two research fields: Universal Representation Learning (URL) for time
series based on Contrastive Learning (CL) and Large Language Model (LLM) + Time Series (TS).

1.1 CL-BASED URL FOR TS

Unsupervised URL approaches aim to learn discriminative feature representations from unlabeled
data, without the requirement of annotating every sample. Enabling URL is extremely crucial for
time series data, due to its unique annotation bottleneck caused by its complex characteristics and
lack of visual cues compared with other data modalities.

Contrastive methods learn meaningful representations from time series by optimizing self-
discrimination tasks. Instead of directly modeling the complex raw data, they employ pretext
tasks that leverage the underlying similarity between samples, which eliminates the need for re-
constructing the complete input and allows for the discovery of contextualized underlying factors of
variations. Contrastive methods typically generate augmented views of the raw data through vari-
ous transformations and then learn representations by contrasting positive samples against negative
samples.The existing CL-based URL for TS are listed in Table S2.

Instance-level contrastive models treat individual samples independently for the purpose of instance
discrimination. They utilize data augmentations to transform original inputs into a new embedding
space. Within this space, augmentations derived from the same sample are considered as positive
pairs, while those from different samples are treated as negative pairs. During training, these models
are optimized by maximizing the similarity between representations of positive pairs, while simul-
taneously minimizing the similarity between representations of negative pairs.

Prototype-level contrastive models break the independence between samples and explore to exploit
the implicit semantics shared by samples in the same cluster. They can address the limitation that
instance-level contrastive learning models tend to treat semantically similar samples as negatives.

Temporal-level contrastive models instead focus on capturing scale- invariant representations at each
individual timestamp. By cosidering both instance-level and temporal-level representation learning
strategies, researchers aim to enhance the capability of contrastive learning methods in capturing the
complexities inherent in time series data.

Category Pros Cons Methods

Reconstruction-based Disregard insignificant data Collapse of embedding space; TimeNetWu et al. (2023)
that may contain noise Unable to measure feature relations SimMTM Dong et al. (2023)

Adversarial Eliminate the need for expensive Difficulty in model convergence; TimeGAN Yoon et al. (2019)
manual labeling Unable to measure feature relations TS-GAN Brophy et al. (2023)

Predicative Self-supervised Affected by noise TST Zerveas et al. (2021)
TS-TCCEldele et al. (2021a)

Contrastive Self-supervised Different datasets require different Table S2
data augmentation methods and
similarity evaluations

Table S1: Representation Learning Methods of Time Series Methods
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Type Methods

Instance-level SimCLR Chen et al. (2020) TimeCLR Yang et al. (2022) MoCo He et al. (2020) BYOL Grill et al. (2020)
CPC van den Oord et al. (2018) SimSiam Zheng et al. (2023) MCL Wickstrøm et al. (2022)

Prototype-level SwAV Caron et al. (2020) PCL Li et al. (2021b) CCL Sharma et al. (2020) SCCL Zhang et al. (2021)
CC Li et al. (2021c) SLIC Khorasgani et al. (2022) MHCCL Meng et al. (2022)

Temporal-level TS2Vec Yue et al. (2022) TS-TCC Eldele et al. (2021b) TNC Tonekaboni et al. (2021) TCL
T-Loss Franceschi et al. (2019b) BTSF Yang & Hong (2022) CoST Woo et al. (2022a)

Table S2: Contrastive Learning based Universal Representation Methods for Time Series

Means Pros Cons Work

Training Specialized, Not universal, Pre-training Ma et al. (2023)
accurate large datasets Earth transformer Bi et al. (2023)

TS Transformers Wu et al. (2023)

Tuning End-to-end, More experiments, GPT4TSZhou et al. (2023)
accurate lose language ability LLM4TSChang et al. (2023)

LLMTime Gruver et al. (2023)
Time-LLM Jin et al. (2023)

Tool Augmented
Parameter-efficient,
less experiments

Need experts,
need annotation

PromptCast Xue & Salim (2023)
Health Learner Liu et al. (2023)
METS Li et al. (2024)
Text2ECGChung et al. (2023)

External Encoder Parameter-efficient, Weak robust TEST
multiple abilities

Table S3: Existing Work about TS+LLM

Figure S1: Technical Route of LLM+TS

1.2 LLM+TS

Large models, specifically referred to as large language models (LLMs) and pre-trained foundation
models (PFMs), have witnessed remarkable success across a multitude of tasks and domains, such
as natural language processing (NLP), computer vision (CV). Given the remarkable achievements of
large models in these diverse fields, an intriguing question emerges: can large models be effectively
employed to analyze TS data?

TS data has long been studied and proven to be indispensable in a myriad of real-world applica-
tions, encompassing fields such as geoscience, transportation, energy, healthcare, environment, and
finance. While large models have made significant progress in various fields, the arena of time se-
ries analysis has followed a more gradual path. Traditional analytical methods have predominantly
relied on statistical models. The advent of deep learning has galvanized the research community to
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explore more potent data-driven models, typically built on the basis of Recurrent Neural Networks
(RNNs), Convolutional Neural Networks (CNNs), and Transformers. Nonetheless, the majority of
these models remain relatively small in scale and are tailored for specific tasks, thereby lacking the
capacity to acquire comprehensive semantic and knowledge representations from large-scale data
for multi-task reasoning.

There hasn’t been much research done on TS+LLM because this field is still in its infancy. We
summarize the existing work in Table S3. Different from the main text, we category work here
through technical means.

2 EXPERIMENTS

https://github.com/SCXsunchenxi/TEST

2.1 MODEL

2.1.1 ENCODER

The core of TEST is to train an encoder and a soft prompt. The encoder must can extract relevant
information from TS, needs to be time- and memory-efficient, and has to allow variable-length
inputs. Thus, as shown in Figure S2, we build a causal TCN with 10 layers of convolution blocks.
Each convolution block is a sequence of GELU, DilatedConv, BatchNorm, GELU, DilatedConv,
with skip connections across each block. The DilatedConvs have dilation of 2i in each layer i of
convolution block. A final convolution block is used to map the hidden channels to the output
channel whose size is the same as the LLM’s embedding size.

The detailed architecture is: Number of channels in the intermediary layers of the causal network
is 40; Number of layers (depth of the causal network) is 10; Kernel size of all convolutions is
3; Negative slope of the leaky ReLU activation is 0.01; Number of output channels of the causal
network (before max pooling) is 640; Dimension of the representations is the same as the LLM’s
embedding size (e.g. 1024 for gpt2).

Figure S2: Illustration of Three Stacked Dilated Causal Convolutions and Composition of the i-th
Layer of The Chosen Architecture

We train our models with the following parameters for time series classification. Note that no hy-
perparameter optimization was performed on the encoder hyperparameters: Optimizer is Adam
with learning rate α = 0.001 and decay rates β = (0.9, 0.999); Number of negative samples is
K ∈ {1, 2, 5, 10} for for univariate time series, K ∈ {5, 10, 20} for multivariate ones; Batch size is
10; Number of optimizations steps is 2000for K ≤ 10 (i.e., 20 epochs for a dataset of size 1000),
1500 otherwise.
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2.1.2 LLM

The used LLMs are as listed in Table S4. Each encoder and soft prompt of LLM are trained using
the Adam optimizer on 20 NVIDIA Tesla V100-SXM2 GPU with CUDA 11.3.

Model Size Embed. dimension

Bert Devlin et al. (2018) 110M, 335M 748, 1024
GPT2 Radford et al. (2019) 117M, 345M, 774M 768, 1024, 1280
ChatGLM Du et al. (2022) 6B 4096
LLaMa2 Touvron et al. (2023) 7B, 13B 4096

Table S4: The Used Language Model

2.2 FORECASTING TASKS

All the deep learning networks are implemented in PyTorch and trained on NVIDIA V100 32GB
GPUs. We use mean square error (MSE) and mean absolute error (MAE) as metrics. For zero-
shot learning, mean absolute percentage error (MAPE) is used for TOURISM; symmetric MAPE
(sMAPE) is used for M3 and M4; normalized deviation (ND) is used for ELECTR. All experiments
are repeated 3 times and the mean of the metrics is used in the final results.

2.2.1 DATASET DETAILS

The details of long-term forecasting and few-shot forecasting datasets are: ETT datasets Zhou et al.
(2021) contain electricity load of various resolutions (ETTh & ETTm) from two electricity stations;
Weather datasetWetterstation (2017) contains 21 meteorological indicators of Germany within 1
year; Illness datasetCDC (2021) contains the influenza-like illness patients in the United States.
ILI is not used for few-shot learning for the limited quantity that is hard to follow the definition
of few-shot; Electricity dataset SJ & B (2017) contains the electricity consumption; Traffic dataset
PeMS (2021) contains the occupation rate of freeway system across the State of California. Table
S5 summarizes details of feature statistics.

Dataset Length Dimension Frequency

ETTh 17420 7 1 hour
ETTm 69680 7 15 min
Weather 52696 22 10 min
ILI 966 7 7 days
Electricity 26304 321 1 hour
Traffic 17544 862 1 hour

Table S5: Long-term Forecasting and Few-shot Forecasting Dataset Details

Dataset Mapping
Length Horizon M4 M3

M3 Yearly 645 6 Yearly -
M3 Quarterly 756 8 Quarterly -
M3 Monthly 1428 18 Monthly -
M3 Others 174 8 Monthly -

M4 Yearly 23000 18 - Yearly
M4 Quarterly 6 24000 - Quarterly
M4 Monthly 8 48000 - Monthly
M4 Weekly 359 13 - Monthly
M4 Daily 4227 14 - Monthly
M4 Hourly 414 48 - Monthly

TOURISM Yearly 518 4 Yearly Yearly
TOURISM Quarterly 427 8 Quarterly Quarterly
TOURISM Monthly 366 24 Monthly Monthly

ELECTR 1311 168 Hourly Monthly

Table S6: Zero-term Forecasting Datasets and Mapping Details of Zero-shot Learning
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The details of zero-shot forecasting datasets are: M4 is a large and diverse dataset that contains time
series of various frequencies and fields, including business, financial and economic forecasting; M3
is smaller than M4, but also contains time series from diverse domains and frequencies; TOURISM
is the dataset of tourism activities with different frequencies and contains a much higher fraction
of erratic series compared with M4; ELECTR represents the electricity usage monitoring of 370
customers over three years. Table S6 summarizes details of the datasets and zero-shot mapping
between source and target.

2.2.2 BASELINE DETAILS

For long-shot forecasting, we refer to the SOTA methods reported in Wu et al. (2023): TimesNet
Wu et al. (2023), ETSformer Woo et al. (2022b), DLinear Zeng et al. (2023), FEDformer Zhou et al.
(2022), Informer Zhou et al. (2021), and LLM for TS method GPT4TS Zhou et al. (2023).

For few-shot forecasting, we refor to the SOTA methods reported in Zhou et al. (2023): DLinear
Zeng et al. (2023), PatchTST Nie et al. (2023), TimesNet Wu et al. (2023), FEDformer Zhou et al.
(2022), Autoformer Wu et al. (2021), Stationary Liu et al. (2022), ETSformer Woo et al. (2022b),
Informer Zhou et al. (2021), Reformer Kitaev et al. (2020)

For zero-shot forecasting, we refor to the SOTA methods reported in Zhou et al. (2023): N-BEATS
Oreshkin et al. (2020), DLinear Zeng et al. (2023), PatchTST Nie et al. (2023), TimesNet Wu et al.
(2023), FEDformer Zhou et al. (2022), Autoformer Wu et al. (2021), Stationary Liu et al. (2022),
ETSformer Woo et al. (2022b), Informer Zhou et al. (2021), Reformer Kitaev et al. (2020)

Methods TEST GPT4TS TimesNet ETSformer DLinear FEDformer Informer TCN LSTM

ETTm1

96 0.293 0.346 0.292 0.346 0.325 0.398 0.338 0.375 0.345 0.372 0.375 0.398 0.672 0.571 0.863 0.664 0.863 0.664
192 0.332 0.369 0.332 0.372 0.324 0.387 0.408 0.410 0.380 0.389 0.426 0.441 0.795 0.669 0.837 0.700 1.113 0.776
336 0.368 0.392 0.366 0.394 0.360 0.411 0.435 0.428 0.413 0.413 0.445 0.459 1.212 0.871 1.124 0.832 1.267 0.832
720 0.418 0.420 0.417 0.421 0.428 0.450 0.499 0.462 0.474 0.453 0.543 0.490 1.166 0.823 1.153 0.820 1.324 0.858
Avg 0.353 0.382 0.352 0.383 0.350 0.406 0.429 0.425 0.403 0.407 0.448 0.452 0.961 0.734 0.929 0.725 1.142 0.782

ETTh1

96 0.372 0.400 0.376 0.397 0.384 0.402 0.494 0.479 0.386 0.400 0.376 0.419 0.865 0.713 0.878 0.740 1.044 0.773
192 0.414 0.422 0.416 0.418 0.436 0.429 0.538 0.504 0.437 0.432 0.420 0.448 1.008 0.792 1.037 0.824 1.217 0.832
336 0.422 0.437 0.442 0.433 0.491 0.469 0.574 0.521 0.481 0.459 0.459 0.465 1.107 0.809 1.238 0.932 1.259 0.841
720 0.447 0.467 0.477 0.456 0.521 0.500 0.562 0.535 0.519 0.516 0.506 0.507 1.181 0.865 1.135 0.852 1.271 0.838
Avg 0.414 0.431 0.427 0.426 0.458 0.450 0.542 0.510 0.456 0.452 0.440 0.460 1.040 0.795 1.072 0.837 1.198 0.821

ETTh2

96 0.275 0.338 0.285 0.342 0.340 0.374 0.340 0.391 0.333 0.387 0.358 0.397 3.755 1.525 2.116 1.197 2.522 1.278
192 0.340 0.379 0.354 0.389 0.402 0.414 0.430 0.439 0.477 0.476 0.429 0.439 5.602 1.931 4.315 1.635 3.312 1.384
336 0.329 0.381 0.373 0.407 0.452 0.452 0.485 0.559 0.594 0.541 0.496 0.487 4.721 1.835 1.124 1.604 3.291 1.388
720 0.381 0.423 0.406 0.441 0.462 0.468 0.500 0.497 0.831 0.657 0.463 0.474 3.647 1.625 3.188 1.540 3.257 1.357
Avg 0.331 0.380 0.354 0.394 0.414 0.427 0.439 0.452 0.559 0.515 0.4370.449 4.431 1.729 2.686 1.494 3.095 1.352

Electricity

96 0.132 0.223 0.139 0.238 0.168 0.222 0.187 0.304 0.197 0.282 0.193 0.308 0.274 0.368 0.258 0.357 0.375 0.437
192 0.158 0.241 0.153 0.251 0.184 0.239 0.199 0.196 0.285 0.201 0.315 0.296 0.386 0.266 0.368 0.348 0.442 0.473
336 0.163 0.260 0.169 0.266 0.198 0.260 0.212 0.329 0.209 0.301 0.214 0.329 0.300 0.394 0.280 0.380 0.439 0.473
720 0.199 0.291 0.206 0.297 0.220 0.300 0.233 0.345 0.245 0.333 0.246 0.355 0.373 0.439 0.283 0.376 0.980 0.814
Avg 0.162 0.253 0.167 0.263 0.192 0.245 0.208 0.323 0.212 0.300 0.214 0.327 0.311 0.397 0.313 0.401 0.559 0.549

Traffic

96 0.407 0.282 0 0.388 0.282 0.593 0.321 0.607 0.392 0.650 0.396 0.587 0.366 0.719 0.391 0.684 0.384 0.843 0.453
192 0.423 0.287 0.407 0.290 0.617 0.336 0.621 0.399 0.598 0.370 0.604 0.373 0.696 0.379 0.685 0.390 0.847 0.453
336 0.430 0.296 0.412 0.294 0.629 0.336 0.622 0.396 0.605 0.373 0.621 0.383 0.777 0.420 0.734 0.408 0.853 0.455
720 0.463 0.315 0.450 0.312 0.640 0.350 0.632 0.396 0.645 0.394 0.626 0.382 0.864 0.472 0.717 0.396 1.500 0.805
Avg 0.430 0.295 0.414 0.294 0.620 0.336 0.621 0.396 0.625 0.383 0.610 0.376 0.764 0.416 0.705 0.395 1.011 0.541

Weather

96 0.150 0.202 0.162 0.212 0.152 0.220 0.197 0.281 0.196 0.255 0.217 0.296 0.300 0.384 0.458 0.490 0.369 0.406
192 0.198 0.246 0.204 0.248 0.209 0.261 0.237 0.312 0.237 0.296 0.276 0.336 0.598 0.544 0.658 0.589 0.416 0.435
336 0.245 0.286 0.254 0.286 0.280 0.306 0.298 0.353 0.283 0.335 0.339 0.380 0.578 0.521 0.797 0.652 0.455 0.454
720 0.324 0.342 0.326 0.337 0.365 0.359 0.352 0.288 0.345 0.381 0.403 0.428 1.059 0.741 0.869 0.675 0.535 0.520
Avg 0.229 0.271 0.237 0.270 0.236 0.287 0.271 0.334 0.265 0.317 0.309 0.360 0.634 0.548 0.696 0.602 0.444 0.454

ILI

24 1.974 0.886 2.063 0.881 2.317 0.934 2.527 1.000 2.398 1.040 3.228 1.260 5.764 1.677 4.480 1.444 5.914 1.734
36 2.028 0.976 1.868 0.892 1.972 0.900 2.615 1.007 2.646 1.088 2.679 1.080 4.755 1.467 4.799 1.467 6.631 1.845
48 2.353 1.115 1.790 0.884 2.238 0.900 2.359 0.972 2.614 1.086 2.622 1.078 4.763 1.469 4.800 1.468 6.736 1.857
60 2.425 1.203 1.979 0.957 2.027 0.928 2.487 1.016 2.804 1.146 2.857 1.15 5.264 1.564 5.278 1.560 6.870 1.879
Avg 2.195 1.045 1.925 0.903 2.139 0.901 2.497 1.004 2.616 1.090 2.847 1.144 5.137 1.544 4.839 1.485 6.538 1.829

1st count 5 5 4 0 0 0 0 0 0

Table S7: Long-term Forecasting Results (MSE, MAE). TEST uses GPT2-Medium as the backbone.
The past sequence length is set as 36 for ILI and 96 for the others. All the results are averaged from
4 different prediction lengths, that is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others.
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2.2.3 LONG-TERM FORECASTING

We follow the classical experiment settings and the results of SOTA models in Wu et al. (2023)
(ICLR 2023). The results are shown in Table S7. Overall, TEST achieves comparable performance
to SOTA models TimesNet and Dlinear, and outperforms other baselines.

2.2.4 FEW-SHOT FORECASTING

For the few-shot forecasting task, only 10% percentage timesteps of training data are used, and the
other two parts remain unchanged. We follow the classical experiment settings and the results of
SOTA models in Zhou et al. (2023) (NeurIPS 2023). The results are shown in Table S8. Overall,
TEST has comparable performance with the SOTA baselines PatchTST and Dlinear, and SOTA
LLM for TS method GPT4TS.

Methods TEST GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Weather

96 0.163 0.213 0.163 0.215 0.171 0.224 0.165 0.215 0.184 0.230 0.188 0.253 0.221 0.297 0.192 0.234 0.199 0.272 0.217 0.269 0.374 0.401 0.335 0.380
192 0.230 0.263 0.210 0.254 0.215 0.263 0.210 0.257 0.245 0.283 0.250 0.304 0.270 0.322 0.269 0.295 0.279 0.332 0.259 0.304 0.552 0.478 0.522 0.462
336 0.278 0.282 0.256 0.292 0.258 0.299 0.259 0.297 0.305 0.321 0.312 0.346 0.320 0.351 0.370 0.357 0.356 0.386 0.303 0.334 0.724 0.541 0.715 0.535
720 0.301 0.328 0.321 0.339 0.320 0.346 0.332 0.346 0.381 0.371 0.387 0.393 0.390 0.396 0.441 0.405 0.437 0.448 0.377 0.382 0.739 0.558 0.611 0.500
Avg 0.243 0.272 0.238 0.275 0.241 0.283 0.242 0.279 0.279 0.301 0.284 0.324 0.300 0.342 0.318 0.323 0.318 0.360 0.289 0.322 0.597 0.495 0.546 0.469

ETTh1

96 0.455 0.457 0.458 0.456 0.492 0.495 0.516 0.485 0.861 0.628 0.512 0.499 0.613 0.552 0.918 0.639 1.112 0.806 1.298 0.838 1.179 0.792 1.184 0.790
192 0.572 0.519 0.570 0.516 0.565 0.538 0.598 0.524 0.797 0.593 0.624 0.555 0.722 0.598 0.915 0.629 1.155 0.823 1.322 0.854 1.199 0.806 1.295 0.850
336 0.611 0.531 0.608 0.535 0.721 0.622 0.657 0.550 0.941 0.648 0.691 0.574 0.750 0.619 0.939 0.644 1.179 0.832 1.347 0.870 1.202 0.811 1.294 0.854
720 0.723 0.594 0.725 0.591 0.986 0.743 0.762 0.610 0.877 0.641 0.728 0.614 0.721 0.616 0.887 0.645 1.273 0.874 1.534 0.947 1.217 0.825 1.223 0.838
Avg 0.479 0.525 0.590 0.525 0.691 0.600 0.633 0.542 0.869 0.628 0.639 0.561 0.702 0.596 0.915 0.639 1.180 0.834 1.375 0.877 1.199 0.809 1.249 0.833

ETTh2

96 0.332 0.374 0.331 0.374 0.357 0.411 0.353 0.389 0.378 0.409 0.382 0.416 0.413 0.451 0.389 0.411 0.678 0.619 2.022 1.006 3.837 1.508 3.788 1.533
192 0.401 0.433 0.402 0.411 0.569 0.519 0.403 0.414 0.490 0.467 0.478 0.474 0.474 0.477 0.473 0.455 0.785 0.666 2.329 1.104 3.856 1.513 3.552 1.483
336 0.408 0.440 0.406 0.433 0.671 0.572 0.426 0.441 0.537 0.494 0.504 0.501 0.547 0.543 0.507 0.480 0.839 0.694 2.453 1.122 3.952 1.526 3.395 1.526
720 0.459 0.480 0.449 0.464 0.824 0.648 0.477 0.480 0.510 0.491 0.499 0.509 0.516 0.523 0.477 0.472 1.273 0.874 3.816 1.407 3.842 1.503 3.205 1.401
Avg 0.401 0.432 0.397 0.421 0.605 0.538 0.415 0.431 0.479 0.465 0.466 0.475 0.488 0.499 0.462 0.455 0.894 0.713 2.655 1.160 3.872 1.513 3.485 1.486

ETTm1

96 0.392 0.401 0.390 0.404 0.352 0.392 0.410 0.419 0.583 0.501 0.578 0.518 0.774 0.614 0.761 0.568 0.911 0.688 0.921 0.682 1.162 0.785 1.442 0.847
192 0.423 0.426 0.429 0.423 0.382 0.412 0.437 0.434 0.630 0.528 0.617 0.546 0.754 0.592 0.781 0.574 0.955 0.703 0.957 0.701 1.172 0.793 1.444 0.862
336 0.471 0.444 0.469 0.439 0.419 0.434 0.476 0.454 0.725 0.568 0.998 0.775 0.869 0.677 0.803 0.587 0.991 0.719 0.998 0.716 1.227 0.908 1.450 0.866
720 0.552 0.501 0.569 0.498 0.490 0.477 0.681 0.556 0.769 0.549 0.693 0.579 0.810 0.630 0.844 0.581 1.062 0.747 1.007 0.719 1.207 0.797 1.366 0.850
Avg 0.574 0.443 0.464 0.441 0.411 0.429 0.501 0.466 0.677 0.537 0.722 0.605 0.802 0.628 0.797 0.578 0.980 0.714 0.971 0.705 1.192 0.821 1.426 0.856

ETTm2

96 0.233 0.262 0.188 0.269 0.213 0.303 0.191 0.274 0.212 0.285 0.291 0.399 0.352 0.454 0.229 0.308 0.331 0.430 0.813 0.688 3.203 1.407 4.195 1.628
192 0.303 0.302 0.251 0.309 0.278 0.345 0.252 0.317 0.270 0.323 0.307 0.379 0.694 0.691 0.291 0.343 0.400 0.464 1.008 0.768 3.112 1.387 4.042 1.601
336 0.359 0.341 0.307 0.346 0.338 0.385 0.306 0.353 0.323 0.353 0.543 0.559 2.408 1.407 0.348 0.376 0.469 0.498 1.031 0.775 3.255 1.421 3.963 1.585
720 0.452 0.419 0.426 0.417 0.436 0.440 0.433 0.427 0.474 0.449 0.712 0.614 1.913 1.166 0.461 0.438 0.589 0.557 1.096 0.791 3.909 1.543 3.711 1.532
Avg 0.317 0.309 0.293 0.335 0.316 0.368 0.296 0.343 0.320 0.353 0.463 0.488 1.342 0.930 0.332 0.366 0.447 0.487 0.987 0.756 3.370 1.440 3.978 1.587

Electricity

96 0.143 0.235 0.139 0.237 0.150 0.253 0.140 0.238 0.299 0.373 0.231 0.323 0.261 0.348 0.420 0.466 0.599 0.587 0.350 0.425 1.259 0.919 0.993 0.784
192 0.158 0.255 0.156 0.252 0.164 0.264 0.160 0.255 0.305 0.379 0.261 0.356 0.338 0.406 0.411 0.459 0.620 0.598 0.376 0.448 1.160 0.873 0.938 0.753
336 0.176 0.275 0.175 0.270 0.181 0.282 0.180 0.276 0.319 0.391 0.360 0.445 0.410 0.474 0.434 0.473 0.662 0.619 0.428 0.485 1.157 0.872 0.925 0.745
720 0.230 0.311 0.233 0.317 0.223 0.321 0.241 0.323 0.369 0.426 0.530 0.585 0.715 0.685 0.510 0.521 0.757 0.664 0.611 0.597 1.203 0.898 1.004 0.790
Avg 0.176 0.269 0.176 0.269 0.180 0.280 0.180 0.273 0.323 0.392 0.346 0.427 0.431 0.478 0.444 0.480 0.660 0.617 0.441 0.489 1.195 0.891 0.965 0.768

Traffic

96 0.415 0.317 0.414 0.297 0.419 0.298 0.403 0.289 0.719 0.416 0.639 0.400 0.672 0.405 1.412 0.802 1.643 0.855 1.157 0.636 1.557 0.821 1.527 0.815
192 0.425 0.300 0.426 0.301 0.434 0.305 0.415 0.296 0.748 0.428 0.637 0.416 0.727 0.424 1.419 0.806 1.641 0.854 1.207 0.661 1.454 0.765 1.538 0.817
336 0.436 0.310 0.434 0.303 0.449 0.313 0.426 0.304 0.853 0.471 0.655 0.427 0.749 0.454 1.443 0.815 1.711 0.878 1.334 0.713 1.521 0.812 1.550 0.819
720 0.489 0.338 0.487 0.337 0.484 0.336 0.474 0.331 1.485 0.825 0.722 0.456 0.847 0.499 1.539 0.837 2.660 1.157 1.292 0.726 1.605 0.846 1.588 0.833
Avg 0.441 0.316 0.440 0.310 0.447 0.313 0.430 0.305 0.951 0.535 0.663 0.425 0.749 0.446 1.453 0.815 1.914 0.936 1.248 0.684 1.534 0.811 1.551 0.821

1st count 5 5 4 0 0 0 0 0 0 0 0 0

Table S8: Few-shot Forecasting Results (MSE, MAE). TEST uses GPT2-Medium as the backbone.
All the results are averaged from 4 different prediction lengths, that is {96, 192, 336, 720}.

2.2.5 ZERO-SHOT FORECASTING

Zero-shot Forecasting task can evaluate the cross datasets adaption ability. Which means that the
method is evaluated to perform on a dataset (without any training data from this dataset) when it is
trained from another dataset. The results are summarized in Table S9. TEST outperforms all recent
SOTA methods. TEST is comparable to N-BEATS without any meta-learning design and GPT4TS.
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Methods M4 M3 TOURISM ELECTR
Metric sMAPE sMAPE MAPE ND×100 Average 1st count

N-BEATS 11.70 12.44 18.82 17.8 15.19 2
DLinear 15.33 14.03 28.51 17.6 18.86 0

TimesNet 13.55 14.17 28.84 19.3 18.96 0
PatchTST 13.22 13.06 27.10 17.3 17.67 0

ETSformer 27.74 16.03 180.40 44.2 67.09 0
LightTS 13.62 17.90 66.99 19.6 29.52 0

Stationary 13.32 15.29 43.75 22.0 23.59 0
FEDformer 15.04 13.53 31.55 18.4 19.63 0
Autoformer 20.02 15.87 40.39 33.9 27.54 0

Informer 19.04 15.82 35.82 21.2 22.97 0
Reformer 14.09 13.37 25.48 21.6 18.63 0
GPT2(6) 13.12 13.06 22.14 17.2 16.38 1
TEST 13.10 12.56 18.17 17.9 15.93 1

Table S9: Zero-shot learning results. Dataset-specific metrics aggregated over each dataset. A lower
value indicates better performance. The source dataset of M3, Tourism, Electricity are M4. For M4,
the source data for N-BEATS is FRED, and M3 for other models.

2.3 CLASSIFICATION TASKS

All the deep learning networks are implemented in PyTorch and trained on NVIDIA V100 32GB
GPUs. We use Area Under Curve of Receiver Operating Characteristic (AUC-ROC) as metrics.
Meanwhile, we compute the average rank, the number of Top-1, Top-3, and Top-5 accuracy to show
the robustness of different methods. All experiments are repeated 3 times and the mean of the
metrics is used in the final results.

2.3.1 DATASET DETAILS

We present accuracy scores for all 30 kinds of multivariate TS datasets in UEA archive Bagnall et al.
(2018). UEA consists of 30 different datasets. Details of these datasets are shown in Table S10

Dataset Train Cases Test Cases Dimensions Length Classes

ArticularyWordRecognition 275 30 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 4 100 4
CharacterTrajectories 1422 1436 3 182 20
Cricket 108 72 6 17984 5
DuckDuckGeese 60 40 1345 270 5
EigenWorms 128 131 6 17984 5
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
ERing 30 20 4 65 6
FaceDetection 5890 3524 144 62 2
FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 105 61 495 2
JapaneseVowels 270 370 12 29 9
Libras 180 280 2 45 15
LSST 2459 2466 6 36 14
InsectWingbeat 30000 20000 200 78 10
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PenDigits 7494 3498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8

Table S10: UEA Classification Dataset Details
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2.3.2 BASELINE DETAILS

For classification, we refer to the SOTA methods: Three benchmarks Bostrom et al. (2018) (EDI,
DTWI, and DTWD) are based on Euclidean Distance, dimension-independent dynamic time warp-
ing, and dimension-dependent dynamic time warping; MLSTM-FCNs Karim et al. (2019) applies an
LSTM layer and stacked CNN layers to generate features; WEASEL-MUSE Schäfer & Leser (2017)
is a bag-of-pattern based approach which extracts and represents features to words. Scalable Rep-
resentation Learning (SRL) Franceschi et al. (2019a) employs negative sampling techniques with
an encoder-based architecture to learn the representation; TapNet Zhang et al. (2020) is a recent
model with an attentional prototype learning in its deep learning-based network; ShapeNet Li et al.
(2021a) projects the subsequences into a unified space and applies clustering to find the shapelets;
Rocket and MiniRocket Dempster et al. (2021) use random convolutional kernels to extract features
from univariate time series; RL-PAM Gao et al. (2022) introduces reinforcement learning to the
pattern mining; TStamp Transformer Zerveas et al. (2021) takes the values at each timestamp as the
input for a transformer encoder; SVP-T Zuo et al. (2023) uses differnt variables and positions (time
interval) as the inputs (shape-level).

2.3.3 MULTIVARIATE TIME SERIES CLASSIFICATION

We follow the classical experiment settings in multivariate time series classification tasks Bostrom
et al. (2018). The results are shown in Table S11. Overall, TEST achieves comparable performance
to SOTA models and outperforms most baselines.

EDI DTWI DTWD MLSTM-FCNs WEASEL+MUSE SRL TapNet ShapeNet Rocket MiniRocket RLPAM TStamp SVP-T TEST

AWR 0.970 0.980 0.987 0.973 0.990 0.987 0.987 0.987 0.996 0.992 0.923 0.983 0.993 0.994
AF 0.267 0.267 0.220 0.267 0.333 0.133 0.333 0.400 0.249 0.133 0.733 0.200 0.400 0.420
BM 0.676 1.000 0.975 0.950 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.975 1.000 1.000
CT 0.964 0.969 0.989 0.985 0.990 0.994 0.997 0.980 N/A 0.993 0.978 N/A 0.990 0.989
CK 0.944 0.986 1.000 0.917 1.000 0.986 0.958 0.986 1.000 0.986 1.000 0.958 1.000 1.000
DDG 0.275 0.550 0.600 0.675 0.575 0.675 0.575 0.725 0.461 0.650 0.700 0.480 0.700 0.675
EW 0.549 N/A 0.618 0.504 0.890 0.878 0.489 0.878 0.863 0.962 0.908 N/A 0.923 0.878
EP 0.666 0.978 0.964 0.761 1.000 0.957 0.971 0.987 0.991 1.000 0.978 0.920 0.986 0.985
ER 0.133 0.914 0.929 0.133 0.133 0.133 0.133 0.133 0.981 0.981 0.819 0.933 0.937 0.937
EC 0.293 0.304 0.323 0.373 0.430 0.236 0.323 0.312 0.447 0.468 0.369 0.337 0.331 0.373
FD 0.519 0.000 0.529 0.545 0.545 0.528 0.556 0.602 0.694 0.620 0.621 0.681 0.512 0.512
FM 0.550 0.520 0.530 0.580 0.490 0.540 0.530 0.580 0.553 0.550 0.640 0.776 0.600 0.770
HMD 0.278 0.306 0.231 0.365 0.365 0.270 0.378 0.338 0.446 0.392 0.635 0.608 0.392 0.444
HW 0.200 0.316 0.286 0.286 0.605 0.533 0.357 0.452 0.567 0.507 0.522 0.305 0.433 0.431
HB 0.619 0.658 0.717 0.663 0.727 0.737 0.751 0.756 0.718 0.771 0.779 0.712 0.790 0.791
IW 0.128 N/A N/A 0.167 N/A 0.160 0.208 0.250 N/A 0.595 0.352 0.684 0.184 0.572
JV 0.924 0.959 0.949 0.976 0.973 0.989 0.965 0.984 0.965 0.989 0.935 0.994 0.978 0.991
LB 0.833 0.894 0.870 0.856 0.878 0.867 0.850 0.856 0.906 0.922 0.794 0.844 0.883 0.884
LSST 0.456 0.575 0.551 0.373 0.590 0.558 0.568 0.590 0.632 0.643 0.643 0.381 0.666 0.595
MI 0.510 N/A 0.500 0.510 0.500 0.540 0.590 0.610 0.531 0.550 0.610 N/A 0.650 0.650
NT 0.850 0.850 0.883 0.889 0.870 0.944 0.939 0.883 0.885 0.928 0.950 0.900 0.906 0.902
PD 0.705 0.939 0.977 0.978 0.948 0.983 0.980 0.977 0.996 N/A 0.982 0.974 0.983 0.979
PM 0.973 0.734 0.711 0.699 0.000 0.688 0.751 0.751 0.856 0.522 0.632 0.919 0.867 0.860
PH 0.104 0.151 0.151 0.110 0.190 0.246 0.175 0.298 0.284 0.292 0.175 0.088 0.176 0.196
RS 0.868 0.842 0.803 0.803 0.934 0.862 0.868 0.882 0.928 0.868 0.868 0.829 0.842 0.851
SCP1 0.771 0.765 0.775 0.874 0.710 0.846 0.652 0.782 0.866 0.925 0.802 0.925 0.884 0.870
SCP2 0.483 0.533 0.539 0.472 0.460 0.556 0.550 0.578 0.514 0.522 0.632 0.589 0.600 0.579
SAD 0.967 0.959 0.963 0.990 0.982 0.956 0.983 0.975 0.630 0.620 0.621 0.993 0.986 0.982
SWJ 0.200 0.333 0.200 0.067 0.333 0.400 0.400 0.533 0.456 0.333 0.667 0.267 0.467 0.468
UGL 0.881 0.868 0.903 0.891 0.916 0.884 0.894 0.906 0.944 0.938 0.944 0.903 0.941 0.933

Avg.Rank 10.933 9.480 8.821 8.756 6.890 7.120 6.956 5.523 5.423 5.013 5.059 7.484 4.032 4.012
Num.Top-1 1 1 1 0 5 1 2 3 5 5 6 4 4 6
Num.Top-3 1 2 1 1 6 6 3 7 12 14 16 9 17 18
Num.Top-5 2 2 3 5 15 12 13 17 16 20 19 10 23 24
P-value 0.000 0.000 0.000 0.000 0.006 0.003 0.000 0.118 0.217 0.765 0.967 0.047 0.044 0.040

Table S11: Accuracies on All Datasets of the UEA Archive

2.4 REPRESENTATION TASKS

We assess the quality of our learned representations on supervised tasks in a standard manner by
using them for time series classification Franceschi et al. (2019b). All the deep learning networks
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are implemented in PyTorch and trained on NVIDIA V100 32GB GPUs. We use Area Under Curve
of Receiver Operating Characteristic (AUC-ROC) as metrics.

2.4.1 DATASET DETAILS

We represent the results for all 128 kinds of univariate TS datasets in UCR archive Dau et al. (2019),
which is a standard set of varied univariate datasets.

2.4.2 BASELINE DETAILS

The compared method includes SOTAs of unsupervised time series representation: T-Loss
Franceschi et al. (2019b), TS-TCC Eldele et al. (2021b), TST Zerveas et al. (2021) and TNC Tonek-
aboni et al. (2021), TS2Vec Yue et al. (2022).

2.4.3 CLASSIFICATION BASED ON REPRESENTATION

We assess the quality of our learned representations on supervised tasks in a standard manner by
using them for time series classification Franceschi et al. (2019b). In this setting, we show that our
method outperforms SOTA unsupervised methods, and notably achieves performance close to the
supervised SOTA method as shown in Table S12.

For each considered dataset with a train / test split, we unsupervisedly train an encoder using its train
set. We then train an SVM with radial basis function kernel on top of the learned features using the
train labels of the dataset, and output the corresponding classification score on the test set.

TEST TCN TS2Vec T-Loss TNC

Adiac 0.776 0.768 0.765 0.675 0.726
ArrowHead 0.825 0.857 0.817 0.766 0.703
Beef 0.766 0.768 0.633 0.667 0.733
BeetleFly 0.853 0.900 0.900 0.800 0.850
BirdChicken 0.808 0.803 0.800 0.850 0.750
Car 0.883 0.834 0.700 0.833 0.683
CBF 1.000 1.000 1.000 0.983 0.983
ChlorineConcentration 0.810 0.832 0.812 0.749 0.760
CinCECGTorso 0.815 0.829 0.825 0.713 0.669
Coffee 1.000 1.000 1.000 1.000 1.000
Computers 0.632 0.660 0.660 0.664 0.684
CricketX 0.802 0.787 0.805 0.713 0.623
CricketY 0.754 0.749 0.769 0.728 0.597
CricketZ 0.787 0.794 0.790 0.708 0.682
DiatomSizeReduction 0.980 0.985 0.987 0.984 0.993
DistalPhalanxOutlineCorrect 0.776 0.761 0.757 0.775 0.754
DistalPhalanxOutlineAgeGroup 0.714 0.727 0.719 0.727 0.741
DistalPhalanxTW 0.662 0.698 0.683 0.676 0.669
Earthquakes 0.746 0.748 0.748 0.748 0.748
ECG200 0.893 0.920 0.880 0.940 0.830
ECG5000 0.935 0.935 0.934 0.933 0.937
ECGFiveDays 1.000 1.000 1.000 1.000 0.999
ElectricDevices 0.714 0.721 0.719 0.707 0.700
FaceAll 0.789 0.771 0.805 0.786 0.766
FaceFour 0.834 0.932 0.932 0.920 0.659
FacesUCR 0.939 0.924 0.926 0.884 0.789
FiftyWords 0.781 0.771 0.774 0.732 0.653
Fish 0.937 0.926 0.937 0.891 0.817
FordA 0.940 0.936 0.948 0.928 0.902
FordB 0.789 0.794 0.807 0.793 0.733
GunPoint 0.983 0.980 0.987 0.980 0.967
Ham 0.714 0.714 0.724 0.724 0.752
HandOutlines 0.918 0.925 0.930 0.922 0.930
Haptics 0.510 0.526 0.536 0.490 0.474
Herring 0.625 0.644 0.609 0.594 0.594
InlineSkate 0.389 0.418 0.407 0.371 0.378
InsectWingbeatSound 0.620 0.630 0.624 0.597 0.549
ItalyPowerDemand 0.969 0.925 0.960 0.954 0.928
LargeKitchenAppliances0 0.855 0.845 0.875 0.789 0.776
Lightning2 0.846 0.869 0.820 0.869 0.869
Lightning7 0.866 0.863 0.822 0.795 0.767
Mallat 0.915 0.944 0.873 0.951 0.871
Meat 0.950 0.952 0.967 0.950 0.917
MedicalImages 0.792 0.789 0.793 0.750 0.754
MiddlePhalanxOutlineCorrect 0.811 0.838 0.825 0.825 0.818
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MiddlePhalanxOutlineAgeGroup 0.636 0.636 0.630 0.656 0.643
MiddlePhalanxTW 0.591 0.584 0.578 0.591 0.571
MoteStrain 0.857 0.861 0.863 0.851 0.825
NonInvasiveFetalECGThorax1 0.923 0.930 0.919 0.878 0.898
NonInvasiveFetalECGThorax2 0.940 0.938 0.935 0.919 0.912
OliveOil 0.903 0.901 0.940 0.867 0.833
OSULeaf 0.872 0.851 0.843 0.760 0.723
PhalangesOutlinesCorrect 0.794 0.809 0.823 0.784 0.787
Phoneme 0.296 0.312 0.309 0.276 0.180
Plane 1.000 1.000 0.990 0.990 1.000
ProximalPhalanxOutlineCorrect 0.876 0.887 0.900 0.859 0.866
ProximalPhalanxOutlineAgeGroup 0.844 0.837 0.829 0.844 0.854
ProximalPhalanxTW 0.785 0.824 0.805 0.771 0.810
RefrigerationDevices 0.587 0.586 0.589 0.515 0.565
ScreenType 0.405 0.414 0.397 0.416 0.509
ShapeletSim 0.989 1.000 0.994 0.672 0.589
ShapesAll 0.897 0.902 0.905 0.848 0.788
SmallKitchenAppliances 0.723 0.731 0.733 0.677 0.725
SonyAIBORobotSurface1 0.874 0.903 0.900 0.902 0.804
SonyAIBORobotSurface2 0.893 0.871 0.889 0.889 0.834
StarLightCurves 0.970 0.968 0.971 0.964 0.968
Strawberry 0.962 0.966 0.965 0.954 0.951
SwedishLeaf 0.939 0.945 0.942 0.914 0.880
Symbols 0.973 0.977 0.972 0.963 0.885
SyntheticControl 0.997 0.997 0.993 0.987 1.000
ToeSegmentation1 0.933 0.917 0.947 0.939 0.864
ToeSegmentation2 0.915 0.899 0.900 0.900 0.831
Trace 1.000 1.000 1.000 0.990 1.000
TwoLeadECG 0.982 0.986 0.987 0.999 0.993
TwoPatterns 1.000 1.000 1.000 0.999 1.000
UWaveGestureLibraryX 0.810 0.795 0.801 0.785 0.781
UWaveGestureLibraryY 0.729 0.719 0.720 0.710 0.697
UWaveGestureLibraryZ 0.761 0.774 0.768 0.757 0.721
UWaveGestureLibraryAll 0.935 0.930 0.934 0.896 0.903
Wafer 0.995 0.998 0.998 0.992 0.994
Wine 0.788 0.880 0.889 0.815 0.759
WordSynonyms 0.699 0.679 0.704 0.691 0.630
Worms 0.704 0.701 0.701 0.727 0.623
WormsTwoClass 0.805 0.806 0.753 0.792 0.727
Yoga 0.883 0.883 0.877 0.837 0.812
ACSF1 0.849 0.910 0.910 0.900 0.730
AllGestureWiimoteX 0.744 0.777 0.751 0.763 0.703
AllGestureWiimoteY 0.754 0.796 0.774 0.726 0.699
AllGestureWiimoteZ 0.744 0.749 0.770 0.723 0.646
BME 0.979 0.992 0.980 0.993 0.973
Chinatown 0.969 0.964 0.959 0.951 0.977
Crop 0.753 0.754 0.758 0.722 0.738
EOGHorizontalSignal 0.544 0.569 0.522 0.605 0.442
EOGVerticalSignal 0.467 0.503 0.472 0.434 0.392
EthanolLevel 0.480 0.468 0.484 0.382 0.424
FreezerRegularTrain 0.983 0.996 0.983 0.956 0.991
FreezerSmallTrain 0.893 0.875 0.872 0.933 0.982
Fungi 0.967 0.958 0.946 1.000 0.527
GestureMidAirD1 0.637 0.608 0.615 0.608 0.431
GestureMidAirD2 0.508 0.479 0.515 0.546 0.362
GestureMidAirD3 0.346 0.492 0.300 0.285 0.292
GesturePebbleZ1 0.878 0.930 0.884 0.919 0.378
GesturePebbleZ2 0.842 0.873 0.848 0.899 0.316
GunPointAgeSpan 0.994 0.987 0.968 0.994 0.984
GunPointMaleVersusFemale 1.000 1.000 1.000 0.997 0.994
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000
HouseTwenty 0.944 0.917 0.941 0.933 0.782
InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000
MelbournePedestrian 0.954 0.959 0.956 0.944 0.942
MixedShapesRegularTrain 0.915 0.917 0.922 0.905 0.911
MixedShapesSmallTrain 0.884 0.861 0.856 0.860 0.813
PickupGestureWiimoteZ 0.800 0.823 0.760 0.740 0.620
PigAirwayPressure 0.524 0.630 0.683 0.510 0.413
PigArtPressure 0.962 0.966 0.966 0.928 0.808
PigCVP 0.803 0.815 0.870 0.788 0.649
PLAID 0.551 0.561 0.549 0.555 0.495
PowerCons 0.967 0.961 0.972 0.900 0.933
Rock 0.660 0.700 0.700 0.580 0.580
SemgHandGenderCh2 0.952 0.963 0.962 0.890 0.882
SemgHandSubjectCh2 0.897 0.860 0.891 0.789 0.593
SemgHandMovementCh2 0.944 0.952 0.942 0.920 0.820
SmoothSubspace 0.967 0.980 0.993 0.960 0.913
UMD 1.000 1.000 0.993 0.993 0.993
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Avg 0.826 0.832 0.827 0.806 0.761

Table S12: Accuracies on All Datasets of the UCR Archive

2.5 ABLATION

TEST contains two contrastive learning strategies: instance-wise contrast and feature-wise contrast,
and can use different text embedding vectors as prototypes, we show the impact of these strategies.

2.5.1 CONTRASTIVE LEARNING STRATEGIES

As shown in Table S13 and S14, both two contrastive learning strategies can increase the accuracy.

ETTm1 ETTm2 ETTh1 ETTh2 Electricity Traffic Weather ILI
Instance-wise 0.621 0.550 0.755 0.630 0.493 0.453 0.580 0.612 0.293 0.396 0.788 0.620 0.463 0.349 3.301 4.535
Feature-wise 0.741 0.559 0.793 0.634 0.699 0.493 0.585 0.628 0.286 0.390 0.821 0.629 0.453 0.388 3.139 5.931
TEST 0.353 0.382 0.293 0.334 0.414 0.431 0.331 0.380 0.162 0.253 0.430 0.295 0.229 0.271 2.195 1.045

Table S13: Long-term Forecasting Results (MSE, MAE). TEST uses different contrastive learning
stragegy. All the results are averaged from 4 different prediction lengths, that is {24, 36, 48, 60} for
ILI and {96, 192, 336, 720} for the others. The results are average.

TEST Instance-wise Feature-wise TimesNet N-BEATS ETSformer DLinear FEDformer Stationary Autoformer Informer Reformer
SMAPE 11.927 13.525 16.987 11.829 11.851 14.718 13.639 12.840 12.780 12.909 14.086 18.200
MASE 1.613 2.111 3.265 1.585 1.599 2.408 2.095 1.701 1.756 1.771 3.010 4.223
OWA 0.861 1.051 1.480 0.851 0.855 1.172 1.051 0.918 0.930 0.939 1.230 1.775

Table S14: Short-term Forecasting Task on M4. The prediction lengths are in [6, 48] and results are
averaged from several datasets.

2.5.2 TEXT PROTOTYPES

The number and the type of text prototypes will lead to different results.

As shown in Table S15. We randomly select 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 prototypes. The
accuracy and number are basically positively correlated. The results of 10 prototypes are almost
optimal.

As shown in Table S16. We randomly select 10 prototypes 10 times. The accuracy is basically
consistent. Therefore, the type of prototypes has almost no impact on the results.

1 2 4 6 8 10 12 14 16 18 20 22
SMAPE 30.901 20.201 17.415 16.997 13.820 11.927 11.710 11.638 11.094 11.098 10.953 10.885
MASE 6.590 4.515 3.910 3.595 2.580 1.613 1.408 1.195 1.301 1.306 1.471 1.310
OWA 3.779 2.050 1.451 1.484 0.990 0.861 0.872 0.801 0.910 0.902 0.838 0.830

Table S15: Short-term Forecasting Task on M4. The results are reported with different number of
text prototypes.

1 2 3 4 5 6 7 8 9 10 Avg. Std.
SMAPE 11.907 11.920 11.927 11.926 11.925 11.925 11.950 11.890 11.728 11.910 11.901 0.059
MASE 1.612 1.610 1.653 1.603 1.619 1.620 1.625 1.623 1.613 1.591 1.617 0.016
OWA 0.870 0.872 0.872 0.872 0.872 0.872 0.849 0.862 0.876 0.870 0.868, 0.009

Table S16: Short-term Forecasting Task on M4. The results are reported with different types of text
prototypes.

Considering why the type of text prototype does not significantly affect results, we figure that in high
dimensional space, almost all vectors are pairwise orthogonal Hopcroft & Kannan (2013). Which
means that, in high-dimensional space, it is easy to generate a large number of almost orthogonal
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vectors to represent different attributes. Thus, randomly selecting the same number of vectors, the
represented space size and expressed number of features are almost the same. Therefore, the key is
the number rather than the type.

In terms of probability, “two vectors orthogonal” is equivalent to “two vectors perpendicular” is
equivalent to “two vectors uncorrelated” is equivalent to “cos θ = 0”. For a n-dimensional space,
randomly two vectors have: ∀ϵ, limn→∞ P (| cos θ| > ϵ) = 0. As shown in Figure S3, as the
dimension increases, the probability of two random vectors being similar decreases. For LLM,
n > 1024, P (θ = 0) < 0.00001.

Figure S3: Probability Density of the Angle between Two Random Vectors in n-dimensional Space
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