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ABSTRACT

Word embeddings have prompted great excitement in the NLP community due to
their capacity for generalization to unforeseen tasks, including semantic analogy
completion. Features such as color and category relationships have been exam-
ined by previous work, but this is the first research considering the morphological
relationships encoded in word embeddings. We construct several natural experi-
ments examining analogy completion across word stems modified by affixes, and
find no evidence that Word2Vec, glove, and fasttext models encode these morpho-
logical relationships. We note that a special case of this problem is part-of-speech
transformation, and note that the lack of support for part-of-speech analogies is
surprising in the context of other successful cases of semantic inference using
word embeddings.

1 INTRODUCTION

Prior work (Fejzo et al., 2018) has shown that compounding morphological learning is key to lan-
guage acquisition and literacy development in children. When we learn a new language, we are able
to quickly memorize known words and derive unknown words through our knowledge of root words
and morphological features. This ability enables language learners to efficiently and accurately
comprehend the meanings of enormous words, but can computers do the same?

This introduction reviews prevailing approaches to modeling semantic relationships between words,
as well as some prior work on morphological and analogical analysis. Then, methods for quantifying
the ability for word embeddings to represent semantic morphological features are proposed in the
form of analogy-completion tasks. Experiments are run on three common word embeddings and
results are summarized.

1.1 PRIOR WORK

Early popular methods for Natural Language Processing (NLP) relied on simplistic models trained
over large datasets, such as the N-gram for statistical language modeling. However, although such
models outperform many more sophisticated counterparts, a limitation is the size of obtainable data
for training, which impedes accurate representations over a large corpus of words. As the corpus
size increases, the computational resources required to handle the learning with this simplistic ar-
chitecture also accumulate.

1.1.1 WORD EMBEDDING MODELS

In 2013, a group led by Google scientist Tomas Mikolov (Mikolov et al., 2013a) proposed a novel
continuous vector representation method along with two neural network models built for the task:
Continuous Bag-of-Words (CBOW) Model and Continuous Skip-gram Model. Mikolov’s model
considered not only the proximity but also the similarity between related words in the vector space,
and a multitude of degrees of linearity is encoded into the word embedding. With this property, using
simple algebraic operations of the vector can formulate computer generate analogies comparable to
those of humans. Pairwise semantic relationships within a subset of words can also be represented
using the linear properties of the embedding space.

1



In a subsequent publication, Mikolov (Mikolov et al., 2013b) proposed several optimization meth-
ods, such as subsampling the Skip-gram Model. To encode idiomatic information, simple phrases
composed of individual words were also trained as separate entries. The optimized model could
train on 100 billion words a day, with a total data size of billions compared to a few millions of
words in other models.

Word embedding has become a central topic in the field of Computational Linguistics and Natural
Language Processing. The Word2vec model (Mikolov et al., 2013a), utilizes Continuous Bag-of-
words (CBOW), which calculates nearby context words but disregards any additional syntactical
information. Due to its simplifying nature, CBOW tends to rely on multiplicity rather than syntax.
(Mikolov et al., 2013a)

GloVe (Pennington et al., 2014) is another word embedding model, first published by Jeffry Pen-
nington and his team from Stanford University in 2014. Like Word2Vec, GloVe utilizes a similar
unsupervised process, but the difference is that it combines local word context information and
global word co-occurrence statistics.

In contrast to Word2Vec and GloVe, FastText (Joulin et al., 2016) by Facebook AI Research (FAIR)
is based on a supervised sentence classification task. The task structure encourages word embed-
dings that can be added together to derive sentence-level representation. It can train on large datasets
relatively quickly and run with less computational consumption than prior models.

1.1.2 CONTEXT-SENSITIVE SEQUENTIAL MODELS

Some more recent approaches to general NLP tasks involve context-sensitive word-embeddings us-
ing the Transformer Model, first introduced in 2017 Vaswani et al. (2017). Similar to Recurrent
Neural Networks (RNN), Transformer Models are designed to process sequential input, but the key
difference is that it utilizes the “Attention Mechanism”, which weights the context vectors accord-
ing to their estimated importance and forms connections within a sentence. This method enhances
encoding of long-term dependencies and improves the overall performance of the model. Due to
the high efficiency of the Transformer model, several highly general pre-trained models have been
designed, such as BERTDevlin et al. (2018), GPT-3Brown et al. (2020), and ELMOPeters et al.
(2018), for a variety of tasks with fine-tuning. These context-sensitive embeddings are more expres-
sive than the static word-embedding models that map each word (or idiomatic phrase) to a single
vector, regardless of context, but they are much harder to study semantically as any metrics for word
similarity become necessarily contextual.

1.1.3 SEMANTIC EMBEDDINGS FROM MORPHOLOGICAL FEATURES

Several approaches have been proposed to specifically encode morphological features into word
embedding models. One method is character-based learning on word segmentsCao & Rei (2016),
which divides words into segments, treating morphemes separately. However, the character-based
model performed worse on semantic similarity and semantic analogy tasks than traditional word-
based models.

Another is vector representation by composing characters using bidirectional LSTMs(Ling et al.,
2015). This model excels in morphologically rich languages, languages that indicate part of speech
by adding affixes rather than changing the position in a sentence, but learning complicated rules for
how characters link together is inefficient on larger corpora.

1.1.4 WORD EMBEDDING ANALOGIES

There is also some prior work examining vector-based analogies in word embedding space. For
example, one research paper (Bolukbasi et al., 2016) examines the semantic quality of gender as a
difference vector in embedding space for the w2vNEWS embedding (a variant of Word2Vec). The
paper focuses specifically on gender bias in word representation and use, and uses similar methods
to this paper to explore the semantic representation of gender.
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1.2 CONTRIBUTIONS

The contributions of this work are two-fold. First, systematic experiments around morphological
analogy completion reveal that Word2Vec, gloVe, and FastText word embeddings all fail to capture
the same quality of semantic information around meaning-modifying prefixes (such as un-, re-, or
anti-) as between oft-touted “common-sense” examples. Furthermore, these models fail to capture
the relationships encoded morphologically by part-of-speech modifying suffixes (such as -tion, -
ing, or -ly). Second, a broad statistical examination of word-pair distance-vectors corroborates the
absence of morphological features in these commonly-used word-embedding models.

2 METHODS

This work consists primarily of exploratory experiments on pre-trained language models. This sec-
tion describes the models, datasets, and analogy-completion tasks used for this work, as well as
the methods of statistical analysis used to examine the semantic representation of morphological
features.

2.1 PRETRAINED MODELS

This work uses three popular pre-trained word-embedding models: Word2Vec (Mikolov et al.,
2013a), GloVe (Pennington et al., 2014), and FastText (Bojanowski et al., 2016). Each of these
pre-trained models represent words (and some idiomatic phrases) as a single vector. This work uti-
lized pre-trained variants with 300-length vectors for each model. These word-embedding models
are static, or context-insensitive, in that the same word in different sentences always receives the
same embedding. This means that words with multiple highly distinct meanings (polysemy) are
sometimes ill-represented, but has the advantage that the relationship between two words across all
contexts can be modeled as the difference between those two vectors.

2.2 ANALOGY COMPLETION

Word embeddings achieve analogy completion with algebraic vector operations. For example, in
the classic case of ”man is to king as woman is to queen”, we can obtain the word ”queen” by
adding the vector of ”woman” to ”king” and subtracting the vector of ”man”. This operation allows
for pairwise analogy for any given three words, by searching for the word whose embedding is
nearest to the predicted vector. The capacity for word embeddings to solve these kinds of analogy-
completion problems (without explicitly training for them) has been a compelling demonstration of
the depth and versatility of the word embedding models. As demonstrated in table 2.2 using 10
hand-crafted examples, Word2Vec (by way of example) appears to accurately represent a variety
of semantic features. It is noteworthy that of the 10 examples, 8 are perfectly completed, 1 has a
plausible but unintended answer, and only 1 has an unreasonable answer.

Table 1: Examples of Analogy Completion with Semantic Information using Word2Vec
Parent Analogy Target Word Computed Answer Success

man : king as woman : queen queen queen Yes
student : learn as teacher : teach teach teach Yes
big : small as wide : narrow narrow narrow Yes
man : woman as uncle : aunt aunt aunt Yes
little : big as dwarf : giant giant dwarfs No
boy : girl as man : woman woman woman Yes
high : low as up : down down down Yes
paris : france as tokyo : japan japan japan Yes
brother : sister as grandson : granddaughter granddaughter granddaughter Yes
food : eat as toy : play play Legos No
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2.3 MOST-COMMON-WORD DATASETS

The experiments in this paper used a public dataset of most common words from Google’s Trillion
Word Corpus 1, pre-processed by Google’s N-gram models. This dataset contains the first ten thou-
sand most common words calculated from 1,024,908,267,299 words of text analyzed by Google’s
AI research teams. To examine morphological feature representation in embedding space, a list of
the 22 most common prefixes and 30 suffixes 2 was also used.

A dataset of word pairs consisting of a root word and an affix-root compound was generated for each
affix. The most common words were initially filtered for the presence of the affix morpheme, and
then were further filtered to those with valid roots when truncating the affix. Note that some valid
pairs were omitted by the procedure because the affix changed the spelling of the root component
(e.g. happy : happily), and some pairs that were generated were semantically implausible (e.g.
member : remember). In total 6730 pairs of words (affix-modified and root words) were generated.
This will be called the “affix-pairs dataset”.

2.4 MORPHOLOGICAL (AFFIX) ANALOGY COMPLETION

A large number of pairwise morphological analogy completion tasks were generated by selecting
two words with the same affix and their corresponding root words (say, a : b and c : d), then applying
algebraic vector operations (b - a + c) and comparing the resulting vector to the closest words in the
embedding space.

Grouped morphological analogy completion tasks were also created by taking the arithmetic mean of
the difference vectors for each affix, and then testing whether each modified word could be predicted
by added the mean difference vector to the root word.

2.5 DISTRIBUTIONS OF DISTANCE VECTORS

To further explore morphological feature encoding in word embeddings, the distribution of differ-
ences (and differences of differences) of word-pair vectors is analyzed. In particular, this distribution
is compared to the distribution of differences between random pairs of words selected uniformly
from the 10000 most common words. If morphological features are well represented by the em-
bedding space, the norms of the difference vectors (between the root word and the modified word)
should be tightly clustered (more tightly than the differences between random words). Furthermore,
the difference between the word-pair difference vectors (the differences between “modification vec-
tors”) should be close to zero. (In other words, if the same kind of semantic analogy exists for
morphological features as for other semantic features, the difference vectors between root words
and the words modified by the same affix should be very similar.)

3 EXPERIMENTAL RESULTS

This section considers, in-turn, analogy-completion tasks, distributions of difference vectors, and
structural similarities in the morphological relationships encoded by each of the word embeddings.

3.1 DO WORD EMBEDDINGS SOLVE PAIRWISE MORPHOLOGICAL ANALOGIES?

No. Across word pairs using the same affix, no tested pair of word-pairs resulted in success-
ful analogy completion in Word2Vec, GloVe, or FastText. Pairs of word-pairs were randomly
sampled for each affix and embedding, and word-pairs with the most similar difference vectors (as
measured by Euclidean norm) were also explicitly tested. The 10 pairs of word pairs (from the affix-
pairs dataset) with most similar difference vectors in Word2Vec are summarized in Table 3.1. This
result stands in stark contrast to the non-morphological semantic analogies, where many previously
untested analogies are completed successfully.

1https://ai.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
2https://www.scholastic.com/content/dam/teachers/lesson-plans/migrated-files-in-body/prefixes suffixes.pdf
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Table 2: Examples of Analogy Completion with Morphological Information
Parent Analogy Target Word Computed Answer Success

fixed : fix as fined : fine fine fining No
presented : present as allowed : allow allow permitted No
supported : support as signed : sign sign signing No
informed : inform as worked : work work working No
sorted : sort as covered : cover cover kind No
intended : intend as viewed : view view see No
extended : extend as owned : own own owns No
played : play as liked : like like loved No
returned : return as blamed : blame blame blames No
passed : pass as ended : end end ending No

3.2 DO WORD EMBEDDINGS SOLVE AVERAGE MORPHOLOGICAL ANALOGIES?

No. Across all affixes and the three considered embeddings, there was not a single instance
of successful analogy completion using the average difference vector for a given affix. This
outcome generally agrees with the pairwise analogy result, but further demonstrates that the pairwise
result is not merely a consequence of unbiased noise.

3.3 DO AFFIX-WORD-PAIR DIFFERENCES CLUSTER MORE TIGHTLY THAN RANDOM PAIRS?

Unclear. As seen in Figure 3.3, the difference vectors for ”ed” (selected as an example due to its
comparatively small average distribution of difference vectors) have a different distribution shape but
have comparable range to the differences of random pairs of words. No affix under consideration
demonstrated a substantially narrower distribution.

3.4 DO DIFFERENCES OF DIFFERENCE VECTORS CLUSTER NEAR ZERO?

No. As shown in Figure 3.3, differences between word-modification vectors for the suffix “-ed”
have a mean well away from zero.

As shown in Figure 3.4, the mean difference between modification vectors for pairs involving
the same affix was well away from zero for all affixes considered and in many cases exceeded
the difference between random words.

3.5 DO DIFFERENT WORD EMBEDDINGS ENCODE MORPHOLOGICAL FEATURES
STRUCTURALLY?

Yes. Although this result is surprising in contrast to the other results in this paper, the three word
embeddings considered show a high correlation between the rank order of affixes by difference
of modification vectors, as shown in Table 3.5. Examples such as ”tion”, ”ious”, and ”de” have
high mean norms compared to others such as ”s”, ”ed”, and ”ty” for all models. This suggests
that while some affixes are better represented than others, these patterns are mostly consistent
throughout all three models. Note that GloVe and Word2Vec have the most similar structural
trends, which is likely a result of their more similar training procedure and data (relative to FastText).

Although this kind of structure is not predictive in the sense of enabling analogy-completion, it does
show that morphological features are reflected in the topology of the embedding space. For example,
across all of the embeddings, pluralization is the most analogous operation, perhaps because words
and their plurals have very similar meanings to begin with.

3.6 SUMMARY

These experiments demonstrate that morphological features with semantic content are generally
not represented in commonly used word embeddings, at least not to the same extent that non-
morphological semantic qualities, such as gender, age, location, or opposites seem to be encoded.
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Figure 1: From top to bottom: the distribution of (Euclidean) norms of difference vectors between
pairs of words chosen uniformly from the 10000 most common; the distribution of norms of dif-
ference vectors for root words and root words plus “ed”; the distribution of norms of differences
between pairs of difference vectors for word-pairs from the “-ed” set. All numbers from Word2Vec.

At the same time, there appear to be structural similarities (relating to the spread of modification
vectors) between embeddings produced by different methods. Returning to the motivating question
of the paper, extant word embeddings do reflect some properties of morphological features, but do
not generalize across morphological analogies as humans do.
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Figure 2: Mean Euclidean norm of differences between word-modification vectors for three word
embeddings are plotted for each affix from the suffix and prefix list.

Table 3: Pairwise Spearman’s Rank Coefficient for Word2Vec, FastText, and GloVe.
Model Names Coefficient
Word2Vec + FastText 0.66449
Word2Vec + GloVe 0.88337
FastText + GloVe 0.58122

4 DISCUSSION

Here, the limitations and implications of the work are discussed. While the experiments conducted
were confined to common English words, three static word-embedding models, and analogy comple-
tion experiments, they are very suggestive that morphological features may not be well-represented
by fairly modern word-embedding approaches.

7



4.0.1 LIMITATIONS

One limitation of this work is the simplification of the morphological model considered. We ex-
cluded words with modified root when combined with an affix due to the complexity of such modifi-
cation in English and the difficulty of its inclusion into the experiment. If we were able to encompass
all words with affix regardless of transformation, we would acquire a larger and more representa-
tive morphological model, although this seems unlikely to alter the qualitative outcomes of these
experiments.

The scope of our experiment is also limited to three commonly-used word-embedding models:
Word2Vec, FastText, and GloVe. To gain a better understanding of word embedding as a whole,
an examination of other models of different characteristics and publication times is likely to yield
a more well-rounded result. Furthermore, all embedding models considered here are context-
less, meaning that there is no sentence-level information to handle challenges such as polysemy.
It is much more difficult to construct rigorously quantitative analogy-completion experiments for
context-sensitive transformer-based models, but the authors observe anecdotally that naive initial
attempts failed to elicit clear evidence of morphological feature encoding.

4.0.2 IMPLICATIONS

This work at once reproduces oft-touted instances of semantic analogy completion (for example,
woman:queen::man:king) and yet also shows that many morphological relationships that reflect deep
semantic features of human language do not have comparable representation in Word2Vec, FastText,
and GloVe. Furthermore, statistical analysis of word-pair distance-vectors suggests that the words
in question are not near to each other in embedding space, and their difference vectors do not share
a common direction.

This is a surprising and unfortunate result. Without the ability to quantitatively represent the effect of
morphological modification of words, it will be difficult to develop language models that reproduce
humans’ ability to generate and understand novel words, as well as to generalize from much smaller
sets of textual examples.

In fact, this shortcoming may be a natural consequence of the Continuous-Bag-of-Words Represen-
tation. Since this approach to estimating word relationships based on frequency of proximity largely
ignores the relationship of words that do not co-occur, and many morphologically-modified words
are either semantically or grammatically incompatible (for example, because of verb-tense agree-
ment), morphological feature relationships may be relatively unconstrained by the model training
objective.

5 CONCLUSION

Our experiments show that morphological features are at best indirectly represented in common
CBOW word embeddings. Both the empirical distributions of embedding-space distances and per-
formance on analogy completion tasks suggest this conclusion.

The questions of why morphological features are under-represented remains unanswered. Is this just
a pitfall of CBOW-based embeddings? How could we address this problem? Does this suggest, by
contrast, a pattern in human acquisition of language?

Methods that explicitly utilize morphological learning might significantly improve the efficiency and
accuracy of word embedding models and provide a better solution to many NLP problems. Such
models could learn from a much smaller set of root words compared to Word2vec, which treats
root words and its derivatives as individual entries. A reduction in the complexity of the model
can decrease the computational resources required and increase the accuracy of the embedding.
Mimicking natural language learning of human more closely, word embedding models that contain
morphological learning could potentially lead to revolutionary performance in zero-shot NLP tasks,
including those with novel words.
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