
Online Matching with Stochastic Rewards:
Provable Better Bound via Adversarial Reinforcement Learning

Qiankun Zhang * 1 Aocheng Shen * 1 Boyu Zhang 1 Hanrui Jiang 1 Bingqian Du 2

Abstract

For a specific online optimization problem, for ex-
ample, online bipartite matching (OBM), research
efforts could be made in two directions before it
is finally closed, i.e., the optimal competitive on-
line algorithm is found. One is to continuously
design algorithms with better performance. To
this end, reinforcement learning (RL) has demon-
strated great success in literature. However, little
is known on the other direction: whether RL helps
explore how hard an online problem is. In this
paper, we study a generalized model of OBM,
named online matching with stochastic rewards
(OMSR, FOCS 2012), for which the optimal com-
petitive ratio is still unknown. We adopt an ad-
versarial RL approach that trains two RL agents
adversarially and iteratively: the algorithm agent
learns for algorithms with larger competitive ra-
tios, while the adversarial agent learns to pro-
duce a family of hard instances. Through such
a framework, agents converge at the end with a
robust algorithm, which empirically outperforms
the state of the art (STOC 2020). Much more sig-
nificantly, it allows to track how the hard instances
are generated. We succeed in distilling two struc-
tural properties from the learned graph patterns,
which remarkably reduce the action space, and
further enable theoretical improvement on the
best-known hardness result of OMSR, from 0.621
(FOCS 2012) to 0.597. To the best of our knowl-
edge, this gives the first evidence that RL can
help enhance the theoretical understanding of an
online problem.

*Equal contribution 1School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan, China
2School of Computer Science and Technology, Huazhong Univer-
sity of Science and Technology, Wuhan, China. Correspondence
to: Qiankun Zhang <qiankun@hust.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Optimization in an online setting is one of the most sig-
nificant research branches in combinatorial optimization,
because it captures more practical real-world applications
by considering sequential variables or constraints arriving
over time. For example, in online advertising, a search
engine like Google must select an advertiser to show for a
search request, without any knowledge of the future requests
that may follow. This scenario is intrinsically modeled by
the online bipartite matching (OBM) problem proposed by
Karp et al. (1990). To deal with the challenge of the uncer-
tainty of inputs, theoretical studies (See Mehta (2013) for a
survey) constantly improve the ratio between the (expected)
solution given by an algorithm and the optimal solution to a
corresponding offline benchmark, which is called competi-
tive ratio. Recently, there has been a line of research using
machine learning (ML) techniques to solve online optimiza-
tion problems, among which, reinforcement learning (RL)
achieves remarkable success in finding high-performance
algorithms (Du et al., 2022a; Kong et al., 2019; Wang et al.,
2019; Alomrani et al., 2021). These successes essentially
stem from the similarities in sight between RL and online
algorithms. Both of them deal with sequences of inputs,
and target on finding strategies that optimize (maximize or
minimize) their objectives (or cumulative rewards).

However, almost all existing works target training algo-
rithms for online optimization problems, for which the op-
timal competitive ratios have been known. In other words,
their results indicate that the RL agents can eventually con-
verge to perform the best on the worst-case inputs, and
the learned policies are broadly consistent with the best-
known theoretical algorithms (e.g., the online primal-dual
algorithms). These attempts are significant but preliminary.
There is a large class of open-ended online optimization
problems, which may face critical challenges from two di-
rections: one is to find robust algorithms as previous works,
corresponding to improve the lower bound of competitive
ratio; another one is to construct hard instances, correspond-
ing to an upper bound, such that no algorithm can achieve a
competitive ratio better than that. Applying RL approaches
to such problems raises the following interesting questions:

1

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

Our Research Questions

• Can RL help enhance our (theoretical) under-
standing in the hardness of an online problem?

• Can and how can RL be applied to an unclosed
online problem?

This paper gives an attempt to address these issues. We
focus on a concrete problem, named Online Matching with
Stochastic Rewards (OMSR) proposed by Mehta & Pani-
grahi (2012), which generalizes the classic OBM model.
This model is more practical to the online advertising plat-
form, where payments are given by advertisers only when
their ads are clicked by a user. The click-through-rate can be
used as an estimation of the probability of those clicks. Only
when the user actually clicks the ad, which is dominated by
a stochastic process, the advertiser should pay for it. The
randomness coming from the problem itself brings remark-
able difficulties in theoretical analysis. While an optimal
1− 1/e ≈ 0.632-competitive algorithm is known to OBM,
OMSR remains open: an upper bound of 0.621 1 (Mehta &
Panigrahi, 2012) and a lower bound of 0.572 2 (Huang &
Zhang, 2020) are known the best.

Our paper studies OMSR and considers both directions in
learning robust algorithms and hard instances. We set up
an adversarial reinforcement learning (Pinto et al., 2017)
framework for OMSR. The framework consists of an iter-
ative process between an adversary agent (adv) and an
algorithm agent (alg): adv learns the hardest instances
which make the current alg perform the worst; alg then
learns for a better performance over these hard instances 3.
Besides obtaining a robust algorithm for OMSR as what
previous works have done, much more significantly and in-
terestingly, we observe two structural properties from graph
patterns of hard instances learned by adv, named a consis-
tency property and an exclusivity property. These properties
not only help reduce the action space in training adv, but
further serve as ingredients for theoretically proving an im-
proved upper bound for OMSR. Precisely, our main results
are concluded as follows:

• We prove that there is no algorithm for OMSR with
a competitive ratio of more than 0.597, beating the
best known upper bound of 0.621 (Mehta & Panigrahi,
2012).

• We empirically show that our algorithms learned by

1Meaning that OBSR is strictly harder than OBM.
2This bound is for a restricted case of stochastic rewards prob-

lem where the success probabilities over edges are infinitesimal.
See Section 2 for details.

3More precisely, for robustness, alg should be trained over a
mixture of hard instances and some randomly generated instances.
See Section 4 for details.

alg performs better than the state-of-the-art (SOTA).

Extensive experiments are conducted to evaluate both hard
instances and algorithms learned through our framework.

1.1. Related Works

Theoretical results for OMSR. Like the well-known on-
line optimization problem, AdWords (Mehta et al., 2005;
Huang et al., 2020), OMSR is also a variant of the online bi-
partite matching problem, which is first proposed by Mehta
& Panigrahi (2012). They give an upper bound of 0.621 for
OMSR as a hardness result. Also, they propose two algo-
rithms, named Balance and Ranking, for a special case when
success probabilities are all equal, and prove that they are
0.567 and 0.534-competitive respectively. For the unequal
probability case, Mehta et al. (2014) prove that Balance
can achieve 0.534-competitive. Later, these bounds are im-
proved by Huang & Zhang (2020). They prove that the com-
petitive ratios of the Balance algorithm are 0.576 for equal
success probabilities and 0.572 for unequal case. Their
results are restricted to small success probabilities (e.g.,
smaller than 0.01), which is close to the real click-through-
rate in an internet advertising platform. Meanwhile, another
series of work (Goyal & Udwani, 2019; Huang et al., 2023)
also analyzes Balance and Ranking but against a weaker
benchmark. In this paper, we evaluate our algorithms in
both equal and unequal success probability settings, varying
from 0 to 1, by viewing Balance as a baseline.

Reinforcement learning for online optimization. These
series of work are the most relevant to ours, and can be
roughly divided into two main categories. One is about
designing high-performance algorithms towards real-world
datasets. Wang et al. (2019) propose a Q-learning for node
batches, for a dynamic generalization of OBM; Alomrani
et al. (2021) train an algorithm agent based on historical
data, and evaluate it on two generalizations of OBM: edge-
weighted OBM and online submodular maximization. The
other line is about designing robust algorithms using RL
towards worst-case inputs. Kong et al. (2019) find optimal
algorithms for three well-studied online problems, relying
on prior knowledge of hard instances. They claim that
the RL agent can learn the behavior as theoretically op-
timal algorithms, i.e., the primal-dual algorithms. Zuzic
et al. (2020) propose a GAN-like framework based on Yao’s
Lemma. They work on AdWords problem but whether their
framework can be used for those unclosed problems is not
yet clear. Compared to these works, our paper is new in:
(1) studying an open-ended online problem; (2) utilizing an
adversarial RL approach to model online optimizations as a
game; (3) obtaining theoretical bounds with an assistance
of learned patterns; (4) generalization ability to other online
problems. Besides, using RL to solve (offline) combinato-

2

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

rial optimization problems is not young (Bello et al., 2016;
Zhang et al., 2020a; Nazari et al., 2018; Kool et al., 2018;
Khalil et al., 2017; Du et al., 2022b; Boutilier & Lu, 2016;
Shao et al., 2022). We refer to surveys (Mazyavkina et al.,
2020; Bengio et al., 2018; Yang & Whinston, 2020) for
readers interested in this area.

Adversarial reinforcement learning. Our idea of adver-
sarial RL is similar to Pinto et al. (2017), who train an agent
to operate in the presence of a destabilizing adversary. They
jointly train the adversary to learn an optimal destabilization
policy. Subsequently, follow-up work targets on finding its
applications, for example, in video captioning (Hua et al.,
2022), grasping moving objects (Wu et al., 2022), robotics
(Jiang et al., 2021), and so forth (Ma et al., 2018; Zhang
et al., 2020b; Spooner & Savani, 2020; Gisslén et al., 2021).
The idea behind online algorithm design is exactly adversari-
ally constructing hard instances while improving algorithms.
That is why our methods are intuitively effective. Moreover,
for robustness, Vinitsky et al. (2020); Dong et al. (2023)
train agents against multiple adversaries instead of a single
one. We utilize a similar but slightly different approach that
trains the algorithm agent against a mixture of hard instances
and some randomly generated instances. See Appendix D
for details.

Other related work. Recently, there is another line of
work designing online algorithms with predictions given by
machine learning (Antoniadis et al., 2020; Wang et al., 2020;
Diakonikolas et al., 2021; Purohit et al., 2018; Wei & Zhang,
2020; Li et al., 2023a;b; Yang et al., 2023), with an objective
to see how much improvements can be made on competitive
ratios with such predictions. Although they also concern
about theoretical guarantees, their bounds depend on how
precise these predictions are. Our work focuses on a better
understanding of challenges from the online optimization
problem itself.

1.2. Roadmap

In Section 2, we present the formal definition of the OMSR
problem, along with a benchmark problem we evaluate
algorithms against, and provide an overview of existing
algorithms and (upper and lower) bounds. We omit de-
tails that are not so necessary to grasp our main ideas and
contributions for readers who are new to OMSR, or even
online algorithms. Our framework, as illustrated in Figure 1,
is described in detail in Section 3 and Section 4. Specifi-
cally, our framework is made up of two RL agents: an adv
to generate hard (or worst-case) instances, and an alg to
learn robust algorithms. Each agent views the other as its
environment, and rewards are opposite to each other. We
train the agents iteratively and from scratch: at first, adv
is trained against an arbitrary or a simple known algorithm,

for example, a greedy policy; alg is next learned against
those hard instances; followed by repeating until a conver-
gence. In our task on OMSR, we start from our baseline
algorithm, Balance. After the iterative training, the hard
instances learned by adv help give a provable upper bound
for OMSR, beating the best-known upper bound in previ-
ous literature, as presented in Section 3. Section 4 will
then present what alg learns against those hard instances,
beating our baseline empirically.

Environment

RL Alg.

Policy

Agent

Reward

O
b

se
rv

at
io

n A
ctio

n

A
d

v
er

sa
ry

 a
g

en
t Environment

RL Alg.

Policy

Agent

Reward

O
b

serv
atio

n

A
ct

io
n

A
lg

o
rith

m
 a

g
en

t

Worst-case instances

Robust Algorithm

Figure 1. Our adversarial reinforcement learning framework.

2. Preliminaries
Formal definition of OMSR. Consider a bipartite graph
G = (U ∪ V,E). There are n advertisers in U =
{u1, u2, · · · , un} known in advance, and m search requests
in V = (v1, v2, · · · , vm) arriving one by one. Upon
the arrival of each search request vj , j ∈ [m], its adja-
cent edges are revealed associated with a vector pj =
(p1j , p2j , · · · , pnj) to represent the success probabilities
(click-through-rates) on every edge 4. The algorithm then
has to choose an available ui and assign vj to it immediately
and irreversibly. If vj is assigned to ui, a coin is tossed to
determine whether or not this assignment is successful with
probability pij , independent of previous outcomes. If so, ui

becomes unavailable for future online vertices.5 Conversely,
if the assignment is unsuccessful, ui remains available for
another attempt of assignment. The objective of OMSR is
to maximize the expected number of successful matchings.
Existing studies vary on: (1) assuming success probabilities
are sufficiently small 6 (e.g. pij < 0.01,∀(i, j) ∈ E) or
not; (2) assuming success probabilities are identical (i.e.,
∀(i, j) ∈ E, pij = p) or not. For a clear presentation for

4If their is no edge between some ui and vj , let pij = 0.
5Note that in classic OBM, there are no stochastic processes

on edges, so any assignments made by algorithms are successful
in the context of this problem.

6OMSR is simplified under this assumption.

3

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

readers not familiar with OMSR, we focus on the restricted
case of identical and infinitesimal success probabilities in
our paper, but our experiments are not restricted to this as-
sumption in Section 4. Under this assumption, the input
instance is simplified as a matrix Pn×m where for each
(i, j) ∈ E, pij = p, and otherwise pij = 0.

Benchmark and evaluation. To evaluate the performance
of an algorithm, denoted as ALG, we compare it to an offline
and non-stochastic version of OMSR, named budgeted al-
location (BA) problem (Mehta & Panigrahi, 2012; Huang
& Zhang, 2020) (See Appendix A for details). For a given
instance (input graph) G, we define the optimal solution,
denoted as OPT(G), as the maximum objective value can be
found over the same G of BA. Further, we define the com-
petitive ratio (CR) of an algorithm as the infimum of ratio
between ALG(G) and OPT(G) over all possible input graphs
in an input space G, that is, CR = infG∈G

ALG(G)
OPT(G) . Note that

CR ∈ [0, 1), and the closer to 1 the better. We make an early
clarification on our abuse of CR in our experiments: CR is
defined as the competitive ratio of an algorithm on a specific
input graph G, i.e., CR = ALG(G)

OPT(G) .

Existing algorithms and bounds. For hardness result
(upper bound), Mehta & Panigrahi (2012) prove that no
algorithm for OMSR has a competitive ratio of more than
0.621 < 1− 1/e ≈ 0.632, indicating that OMSR is strictly
harder than OBM, for which the optimal CR is 0.632. As
one of our main results, we improve this bound to 0.597.
For algorithm design (lower bound), the current SOTA is
achieved by an algorithm named Balance (Huang & Zhang,
2020), which is also our baseline for evaluating learned
algorithms. Balance 7 is a deterministic greedy strategy pre-
sented as follows and it is our starting point for training adv
as the environment at the first iteration. CR of Balance varies
on whether probabilities on all edges are equal. Table 1
concludes the above results related to our work.

Balance Algorithm:

Upon the arrival of each online vertex, match it to a
neighbor with the fewest failure attempts.

3. Learning Worst Cases: a Provable Better
Bound

Recall that our adversarial RL framework trains adv and
alg iteratively. This section first presents how to set up the
adv agent to learn hard instances against the current alg
in every single iteration. At the very beginning, we could
initialize alg as any random policy. In our experiments,

7Balance is for the special case when all success probabilities
equal. See a generalized-Balance algorithm in Appendix B.2 for
the case without this assumption.

to compare with the baseline, we train adv to generate
worst-case instances against Balance in the first iteration.
After several iterations such that the agents converge to a
Nash equilibrium, graph instances can be sampled from
the learning outcomes of adv in each iteration. We distill
two properties related to learned patterns, which are what
we call a consistency property and an exclusivity property,
from statistical observations. Combining them up proves an
improved upper bound for OMSR as stated in Table 1.

3.1. MDP Formulation

We formulate the adv as a Markov Decision Process (MDP)
model. Recall that in OMSR, the input instance is a matrix
Pn×m for n offline vertices and m online vertices. pij = p
or 0 for ∀i ∈ n.j ∈ m according to whether there exists an
edge (i, j). Columns are revealed online one by one. In a
nutshell, adv is trained to construct P gradually, generating
the j-th column P[:,j] of P at the state sj . alg serves as
the environment, which runs the current algorithm on P and
produces a reward equal to 1− CR. Details are presented as
follows.

Environment. The current matching policy is defined by
alg, and a calculator on CR.

State Space. A state sj at a timestep j is the current (par-
tial) matrix of P , i.e. P[:,1:j−1]. A terminal state Ŝ is
reached when a complete P is generated. The length
of an episode is T = m.

Action space. At state sj , an action aj ∈ Aj taken by adv
is to select a subset U ′ ⊆ U , and set pij = p for i ∈ U ′,
in other words, determine the neighbor of vj . The size
of action space |Aj | is 2n.

Transition. The transition from state sj to the next state
sj+1 is deterministic. If action aj is taken, the j-th
column in matrix P is updated and moves on to the
next episode step, j + 1.

Reward. If an episode ends, all taken actions will receive
a reward of 1− CR, where CR is the competitive ratio
of the current algorithm environment running on the
generated instance.

Policy. At state sj , a stochastic policy π(aj |sj) outputs a
distribution, the support of which is 2U .

3.2. Training Algorithm

We use the Cross-Entropy method for reinforcement learn-
ing. The steps are as follows with hyperparameters
Nbatch = 1024 and α = 30%:

1. Initialize the policy distribution π(0) as random.
2. Generate Nbatch matrices of P from π(k).
3. For each episode, compute the total reward by sum-

ming up all the rewards at each step.

4

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

Table 1. Existing bounds of OMSR

Lower Bound (Algorithms) Upper Bound (Hardness)

Equal Prob. 0.576 (Balance) (Huang & Zhang, 2020)
0.621 (Mehta & Panigrahi, 2012) → 0.597 (This paper)

Unequal Prob. 0.572 (Huang & Zhang, 2020)

4. Select the top α elite episodes with the highest total
rewards.

5. Update the policy to π(k+1) for the set S of steps
(s, a, r) in elite episodes by:

π(k+1) = argmax
π

∑
(s,a,r)∈S

log π(a|s). (1)

6. Repeat steps 2-5 until convergence.

We use a feed-forward neural network with a single hidden
layer with 2n+2 neurons and ReLU for non-linearity. A
fixed learning rate for the Adam optimizer is set as 10−3.
We also take an ϵ-greedy strategy, where the agent takes the
action given by π with probability ϵ, and takes a random
action with probability (1− ϵ). We set ϵ = 0.5.

3.3. Bridging Statistics and Theory

To understand in depth what adv learns and how it behaves
in generating worst cases, we conduct experiments towards
the output of adv’s networks in every iteration. Our empiri-
cal observations indicate two immediate properties on the
learned graph patterns, which contribute to a formal proof
of the upper bound as claimed. Recall that the size of graph
instances is n ×m, where n and m denote the number of
offline and online vertices, respectively. We experiment on
different choices of n and m. Besides, we also consider the
success probability p varying from 0 to 1.

Expected number of offline neighbors. For each online
vertex, adv outputs a distribution on its offline neighbor
subset. Figure 2 plots the expected number of neighbors
for online vertices from 1 to m in their arriving order. The
larger numbered vertices come later. We experiment on
m = 240 (Figure 2(a)) and m = 200 (Figure 2(b)). We
observe a clear trend that vertices arrive later may have
fewer neighbors. Such observations are in fact consistent
with our intuition in constructing hard instances in OBM and
its related problems: Early matching mistakes will lead to
few choices for later arriving vertices, which are constructed
with fewer neighbors.

Online vertices with identical neighbors. Another key
observation is the adjacent arriving online vertices tend to
share identical neighbors. To see this, we experiment on
graph instances with only two offline vertices, that is, n = 2.

0 40 80 120 160 200 240
Online vertices

0
1
2
3
4
5
6

Ex
pe

ct
ed

 n
ei

gh
bo

rs

(a)

p = 1/40
p = 1/10
p = 1/2

0 40 80 120 160 200
Online vertices

0

1

2

3

4

5

(b)

p = 1/40
p = 1/10
p = 1/2

Figure 2. The expected number of each online vertex neighbors.
The curve plots the expectation as a function of the index of online
vertex.

Figure 3(a) shows instances sampled from adv’s output. In
this case, the first x vertices have edges with both offline
vertices, while the remaining ones has only one neighbor.
To further validate such finding, we restrict adv generates
instances as Figure 3(a) and train it to find an optimal num-
ber of x. Figure 3(b) shows the probability distribution of
x and the competitive ratios on the corresponding graph
instances. The competitive ratio is minimized when x = 40,
meaning that the worst instance is conducted when the first
half online vertices has two neighbors, while the other half
has only one.

To summarize the above empirical findings, we define a
consistency property as follows, which restricts the graph
patterns that adv generates, and thus reduces the size of the
action space.

Definition 3.1 (Consistency Property). A bipartite graph G
satisfies a consistency property if the online vertices V of
G can be partitioned into k disjoint subsets V1, V2, . . . , Vk,
such that V = V1 ∪ V2 ∪ · · · ∪ Vn, and for each i ∈ [k], all
vertices in Vi have the same neighbors.

Correlations between online vertices groups. Consis-
tency property allows us to partition the online vertices into
groups such that vertices in the same group can be viewed
identically. So in the following discussion, we use a single
online vertex to represent a group of online vertices. We
further investigate correlations on how these groups are con-
nected to offline neighbors. Take n = 4 as an example.
Figure 4 presents hard instances sampled from adv’s output
with the smallest four competition ratios during all training
iterations until the convergence. We define an exclusivity
property as follows to capture the learned patterns. Intu-

5

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

𝑣1

𝑣𝑥

…

𝑣𝑥+1

𝑣𝑚

…

𝑢1

𝑢2

(a)

0 10 20 30 40 50 60 70 80
x

0.50

0.75

1.00

1.25

1.50

CR

0.00

0.01

0.02

0.03

0.04

p

CR
p

(b)

Figure 3. Figure (a) presents the worst-case instances learned under
n = 2, where the first x (green) vertices have both neighbors, and
the remaining m− x (blue) vertices have only one neighbor. The
curves in Figure (b) plot both the CR as a function of the value x,
and the probability distribution p of x.

itively, the exclusivity property ensures the later coming
online vertex can only have edges to offline vertices, which
have identical earlier coming online neighbors. For exam-
ple, in the last graph of Figure 4, vertex green connects to all
four offline vertices. Vertex blue connects to the first three,
and vertex orange connects to a subset of blue’s neighbors
(also a subset of green’s neighbors). Definition 3.2 gives a
formal definition.

Definition 3.2 (Exclusivity Property). Given a bipartite
graph G with online vertices V . Let Nj denote the neighbor
set of a vertex vj ∈ V . G is said to satisfy an exclusivity
property if for each j ∈ [m] and any j′ < j, Nj ⊆ Nj′ or
Nj ∩Nj′ = ∅.

Figure 4. Worst-case instances learned under n = 4. Each instance
has four offline vertices drawn on the left-hand-side, and four
groups of online vertices drawn on the right-hand-side. Each
online vertex group is drawn in a different color, and its neighbors
are circled in the same color.

3.4. A Provable Upper Bound for OMSR

The properties introduced above not only effectively reduce
the action spaces for training adv, but also contribute to
a useful lemma that suffices to prove our main theoretical
results as stated in Theorem 3.3.

Theorem 3.3. No algorithm for the OMSR problem can
achieve a competitive ratio of more than 0.597.

Proof sketch. We provide a proof sketch of Theorem 3.3
in the rest of this section, and leave a formal proof in Ap-
pendix C. The proof consists of two ingredients: we first
show that the Balance algorithm is optimal on a family of
instances that satisfies both consistency and exclusivity prop-
erties as defined in Definition 3.1 and Definition 3.2. By
such optimality, to prove an upper bound γ of OMSR, it then
suffices to find instances where Balance is γ-competitive.

Consider the graph instances learned by adv as introduced
in earlier sections. For a ease of notation, let Gn denote
graph instances with n offline vertices and satisfies both
consistency and exclusivity properties as defined in Defi-
nition 3.1 and Definition 3.2. Further, or easy calculation
on OPT(Gn)

8, we restrict all vertices groups in Gn contains
1/p identical online vertices. Gn is formally defined as:

Definition 3.4. Gn is a family of bipartite graphs, which
satisfy the consistency and exclusivity properties, with of-
fline vertices U = {u1, u2, · · · , un} and online vertices
V = V1 ∪ V2 ∪ · · · ∪ Vn. For each i ∈ n, Vi contains 1/p
identical vertices that have the same probabilities vector
towards U . Besides, probabilities on edges between ui and
all vertices in Vi can not be 0, i.e., ∀vj ∈ Vi, pij = p.

Remarks on Gn. By definition, Gn has n offline vertices
and n/p online vertices divided into n groups. Further,
for ∀n ∈ Z+, OPT(Gn) = n. Much more importantly, Gn

brings great convenience for a theoretical proof on upper
bound through the following lemma.

Lemma 3.5. Balance is optimal on Gn.

Lemma 3.5 indicates the optimality of Balance on Gn. To
show an upper bound of 0.597 of OMSR, it then suffices
to construct instances from Gn where Balance is 0.597-
competitive. For a consideration of the page limit and a
clear presentation, we provide proof of a weaker bound of
0.61 on G3, which is slightly larger than 0.597 as claimed in
Theorem 3.3, but yet beats the previous best-known 0.621
as stated by Mehta & Panigrahi (2012).

Lemma 3.6. There exists a subset of instances in G3, such
that no algorithm on them can achieve a competitive ratio
of more than 0.61.

Let’s see how Balance runs on one of these instances
G⋆

3 ∈ G3 as presented in Figure 5 and compute the expected
number of successful offline vertices. Briefly speaking, we
need to compute the probabilities of whether u1, u2, and
u3 are successful, together with 23 cases, and take an ex-
pectation. The expected number of successful vertices in
u1, u2, u3 is 3(1− 11/(18e)− 11/(9e2)), deriving a com-
petitive ratio of (1 − 11/(18e) − 11/(9e2) < 0.61. The
complete proof is shown in Appendix C.

8Computing the optimal solution of an offline BA problem
need run a Max-Flow algorithm.

6

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

Figure 5. G⋆
3 with |U | = 3 and |V | = 3k, where k = 1/p and

p → 0. Online vertices are listed at the top and arrive from left to
right. Offline vertices are at the bottom.

Combining with Lemma 3.5 completes the proof of
Lemma 3.6.

Finally, to obtain our final result as stated in Theorem 3.3,
the adv finds Gn’s as n grows up. The smallest competitive
ratio, 0.597, is achieved when n = 7. Table 2 records these
results as n grows from 1 to 10.

3.5. Evaluations on Hard Instances

We set up experiments to further validate the hardness of
graph instances we construct.

The performance of algorithms on the learned worst-
case distributions. To validate that adv can efficiently
find hard instances in iterative training, we evaluate the
performance of the algorithm learned by alg and Bal-
ance on the worst-case distributions in each iteration. We
take experiments with different success probabilities (p =
1/40, 1/10, 1/5 and 1/2), and plot the results in Figure 6.
The results show that, in general, the performance of algo-
rithms gets worse on the hard instances generated by the
learned distributions in iterative training. In addition, we
find that when the success probabilities are small enough
(e.g. p = 1/40), the learned algorithm and Balance perform
almost identically in the experiments. This may imply that
Balance is optimal when p is vanishing.

Gn v.s. baselines. We compare the hardness of Gn to some
other instances that are well known to be hard for OBM and
its related problem, for example, the Thick-z and Triangular
graphs (formally defined in Appendix B.1). Besides, we
also compare with the worst-case instance constructed in
Mehta & Panigrahi (2012). We experiment on the perfor-
mances of algorithms learned by alg in each iteration from
0 to 10 running on these instances. Figure 7 shows that
the learned algorithm gets better performance after iterative
training, and converges to the corresponding CRs of these in-
stances. The algorithm performs worst on the hard instances
in our paper, and this experimentally indicates the generated

2 4 6 8 10

0.60

0.62

0.64

0.66

0.68

CR

p = 1/40

Learned alg
Balance

2 4 6 8 10

0.62

0.63

0.64

0.65

0.66

0.67

0.68
p = 1/10

Learned alg
Balance

2 4 6 8 10
T

0.62

0.63

0.64

0.65

0.66

CR

p = 1/5

Learned alg
Balance

2 4 6 8 10
T

0.645

0.650

0.655

0.660

0.665

0.670

0.675
p = 1/2

Learned alg
Balance

Figure 6. The average CRs of learned algorithm and Balance run-
ning on the learned worst-case distributions in each iteration
T from 1 to 10. There are 4 experiments on different p =
1/40, 1/10, 1/5 and 1/2. The solid and dashed curves plot the CR
as a function of the iteration T for learned algorithm and Balance,
respectively. In the figure with p = 1/40, the solid and dashed
curves are nearly coincident.

instances are harder than other known worst-case instances.

0 2 4 6 8 10
T

0.35

0.40

0.45

0.50

0.55

0.60

0.65

CR

Triangular
Thick-z
MP12
Ours

Figure 7. The average CRs of learned algorithms from iteration 0
to 10 running on some specific worst-case instances. The curve
plots the CR as a function of the iteration T .

4. Learning Robust Algorithms: Experimental
Evaluations

This section introduces the other component of our frame-
work, the algorithm agent alg. We utilize a similar design
for the agent as previous literature (Alomrani et al., 2021;
Kong et al., 2019). The algorithm agent takes the input
instances generated from adv in Section 3 as the environ-
ment, and learns robust algorithms under the given input
instances.

7

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

Table 2. The competitive ratio on Gn rounded to three decimal places.

Gn n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

CR 0.632 0.623 0.610 0.605 0.604 0.599 0.597 0.597 0.598 0.599

We defer the MDP formulation and training details in Ap-
pendix D.

4.1. Evaluations

We evaluate the performances of algorithms learned by alg
in both equal and unequal probabilities cases 9 by the fol-
lowing experiments. For an easy calculation on OPT, we
restrict input instances to Gn as defined in Definition 3.4.

The average CRs of algorithms under worst-case distribu-
tions in different iterations. Let T denote the number of
iterations. (An iteration consists of one training for adv and
alg) We fix the number of offline vertices as n = 6, and
the number of online vertices in one group is 1/p, where p is
the probability on the edges. For equal probability case, the
probability on each edge is identical and sampled randomly.
For unequal probability case, the probability on each edge
is sampled independently. Figure 8 plots the average CR

under worst-case distributions in iterations from 0 to 10.
At the beginning (T = 0) when it is initialized as random,
alg performs poorly against the trained adversary inputs,
with around 0.307 (equal) and 0.225 (unequal). Average
CRs converge to 0.635 (equal) and 0.614 (unequal), better
than that of Balance.

0 2 4 6 8 10
T

0.3

0.4

0.5

0.6

CR

0.635

Balance
CR = 0.615

equal p

0.307

0 2 4 6 8 10
T

0.614

Balance
CR = 0.594

unequal p

0.225

Figure 8. The average CRs of algorithms under worst-case distribu-
tions in iteration 0 to 10. The curve plots the CR as a function of
the iteration T . As a comparison, the dashed line represents the
CR of Balance under worst-case distributions in the last iteration
(0.615 for equal and 0.594 for unequal).

The average CRs of algorithms with different sizes of
offline vertices. Table 3 lists the average CRs of algorithms
under different numbers of offline vertices n. The CRs of
the learned algorithm and Balance are equal when n = 1.

9Please refer to Appendix D.3 for training details for the un-
equal probability case.

As n grows up, CRs of both algorithms decrease. Moreover,
it can be observed that the learned algorithm consistently
outperforms Balance on average.

Table 3. The average CRs of algorithms under worst-case distribu-
tions with different numbers of offline vertices.

Case Algotrithm n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Equal
Learned alg 0.716 0.655 0.649 0.639 0.637 0.635

Balance 0.716 0.654 0.649 0.635 0.621 0.615

Unequal
Learned alg 0.678 0.658 0.648 0.639 0.632 0.614

Balance 0.678 0.622 0.617 0.610 0.600 0.594

The average CRs of algorithms under worst-case distri-
butions with different success probabilities. For equal
probability p, we train adv and alg with m = n/p, n = 6.
Success probabilities p vary from 0 to 1. We observe in
Figure 9 a tiny gap of CR when p < 0.5. When p > 0.5, our
learned algorithms significantly outperform Balance.

10 3 10 2 10 1 100

p

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

CR

Learned alg
Balance

Figure 9. The average CRs of algorithms under worst-case distribu-
tions with n = 6 varying on p. As a comparison, the dashed line
represents the CR of Balance.

5. Conclusions and Limitations
There has been extensive literature research on using ML
methods to solve classic combinatorial optimization prob-
lems or apply techniques in combinatorial algorithms to
enhance the ability of ML. However, research that uses ML
to illuminate the understanding of online optimization prob-
lems is rare. To the best of our knowledge, this paper gives
the first successful attempt by improving the best-known
upper bound with insights from RL for a specific online

8

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

matching problem. Besides, our framework can also learn
robust (optimal) algorithms as done in previous literature.
We point out a major limitation but also an interesting future
research direction: while we get insights from what adv
learns, it is pretty hard to summarize what alg learns al-
though it performs better than the SOTA algorithm and its
competitive ratio. If we could achieve it, the lower bound
for OMSR would also be improved. Nevertheless, we be-
lieve that our framework gives a representative example and
could be generalized to other online optimization problems.

Impact Statement
This paper advances the field of ML by enhancing the the-
oretical understanding of an online combinatorial problem
via RL. To the best of our knowledge, this gives the first
successful attempt in such a field. We believe in the great
potential of ML to assist in theory studies in the future. In
ethical aspects, we are not aware of related issues in this
paper.

Acknowledgements
Qiankun Zhang is supported by National Natural Science
Foundation of China (Grant No. 62302183) and CCF-
Huawei Huyanglin Fund - Theoretical Computer Science
Special Project (No. CCF-HuaweiLK2023004). Bingqian
Du is supported by National Natural Science Foundation of
China (Grant No. 62302187).

References
Alomrani, M. A., Moravej, R., and Khalil, E. B. Deep

policies for online bipartite matching: a reinforcement
learning approach. arXiv preprint arXiv:2109.10380,
2021.

Antoniadis, A. F., Gouleakis, T., Kleer, P., and Kolev, P.
Secretary and online matching problems with machine
learned advice. ArXiv, abs/2006.01026, 2020.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. Eur. J. Oper. Res., 290:405–421, 2018.

Boutilier, C. and Lu, T. Budget allocation using weakly cou-
pled, constrained markov decision processes. In Ihler, A.
and Janzing, D. (eds.), Proceedings of the Thirty-Second
Conference on Uncertainty in Artificial Intelligence, UAI
2016, June 25-29, 2016, New York City, NY, USA. AUAI
Press, 2016.

Diakonikolas, I., Kontonis, V., Tzamos, C., Vakilian, A.,
and Zarifis, N. Learning online algorithms with distribu-
tional advice. In International Conference on Machine
Learning, 2021.

Dong, J., Hsu, H.-L., Gao, Q., Tarokh, V., and Pajic, M. Ro-
bust reinforcement learning through efficient adversarial
herding. arXiv preprint arXiv:2306.07408, 2023.

Du, B., Huang, Z., and Wu, C. Adversarial deep learning for
online resource allocation. ACM Transactions on Model-
ing and Performance Evaluation of Computing Systems,
6(4):1–25, 2022a.

Du, Y., Li, J., Li, C., and Duan, P. A reinforcement learning
approach for flexible job shop scheduling problem with
crane transportation and setup times. IEEE Transactions
on Neural Networks and Learning Systems, 2022b.

Gisslén, L., Eakins, A., Gordillo, C., Bergdahl, J., and Toll-
mar, K. Adversarial reinforcement learning for procedural
content generation. In 2021 IEEE Conference on Games
(CoG), pp. 1–8. IEEE, 2021.

Goyal, V. and Udwani, R. Online matching with stochastic
rewards: Optimal competitive ratio via path based for-
mulation. Proceedings of the 21st ACM Conference on
Economics and Computation, 2019.

Hua, X., Wang, X., Rui, T., Shao, F., and Wang, D. Adver-
sarial reinforcement learning with object-scene relational
graph for video captioning. IEEE Transactions on Image
Processing, 31:2004–2016, 2022.

Huang, Z. and Zhang, Q. Online primal dual meets online
matching with stochastic rewards: configuration lp to the
rescue. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1153–1164,
2020.

Huang, Z., Zhang, Q., and Zhang, Y. Adwords in a
panorama. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 1416–
1426. IEEE, 2020.

Huang, Z., Jiang, H., Shen, A., Song, J., Wu, Z., and Zhang,
Q. Online matching with stochastic rewards: Advanced
analyses using configuration linear programs. In Inter-
national Conference on Web and Internet Economics, pp.
384–401. Springer, 2023.

Jiang, Y., Zhang, T., Ho, D., Bai, Y., Liu, C. K., Levine, S.,
and Tan, J. Simgan: Hybrid simulator identification for
domain adaptation via adversarial reinforcement learning.
2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2884–2890, 2021.

9

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

Karp, R. M., Vazirani, U. V., and Vazirani, V. V. An optimal
algorithm for on-line bipartite matching. In Proceedings
of the twenty-second annual ACM symposium on Theory
of computing, pp. 352–358. ACM, 1990.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017.

Kong, W., Liaw, C., Mehta, A., and Sivakumar, D. A new
dog learns old tricks: Rl finds classic optimization algo-
rithms. In International conference on learning represen-
tations, 2019.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Li, P., Yang, J., and Ren, S. Learning for edge-weighted on-
line bipartite matching with robustness guarantees. arXiv
preprint arXiv:2306.00172, 2023a.

Li, P., Yang, J., Wierman, A., and Ren, S. Robust learning
for smoothed online convex optimization with feedback
delay. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023b.

Ma, X., Driggs-Campbell, K., and Kochenderfer, M. J. Im-
proved robustness and safety for autonomous vehicle
control with adversarial reinforcement learning. In 2018
IEEE Intelligent Vehicles Symposium (IV), pp. 1665–1671.
IEEE, 2018.

Mazyavkina, N., Sviridov, S. V., Ivanov, S., and Burnaev, E.
Reinforcement learning for combinatorial optimization:
A survey. Comput. Oper. Res., 134:105400, 2020.

Mehta, A. Online matching and ad allocation. Foundations
and Trends in Theoretical Computer Science, 8(4):265–
368, 2013.

Mehta, A. and Panigrahi, D. Online matching with stochas-
tic rewards. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pp. 728–737. IEEE,
2012.

Mehta, A., Saberi, A., Vazirani, U. V., and Vazirani, V. V.
Adwords and generalized on-line matching. 46th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS’05), pp. 264–273, 2005.

Mehta, A., Waggoner, B., and Zadimoghaddam, M. On-
line stochastic matching with unequal probabilities. In
Proceedings of the twenty-sixth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 1388–1404. SIAM,
2014.

Nazari, M., Oroojlooy, A., Snyder, L., and Takác, M. Rein-
forcement learning for solving the vehicle routing prob-
lem. Advances in neural information processing systems,
31, 2018.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. K. Ro-
bust adversarial reinforcement learning. In International
Conference on Machine Learning, 2017.

Purohit, M., Svitkina, Z., and Kumar, R. Improving online
algorithms via ml predictions. In Neural Information
Processing Systems, 2018.

Shao, Z., Yang, J., Shen, C., and Ren, S. Learning for robust
combinatorial optimization: Algorithm and application.
In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications, pp. 930–939. IEEE, 2022.

Spooner, T. and Savani, R. Robust market making
via adversarial reinforcement learning. arXiv preprint
arXiv:2003.01820, 2020.

Vinitsky, E., Du, Y., Parvate, K., Jang, K., Abbeel, P., and
Bayen, A. Robust reinforcement learning using adversar-
ial populations. arXiv preprint arXiv:2008.01825, 2020.

Wang, S.-F., Li, J., and Wang, S. Online algorithms for
multi-shop ski rental with machine learned advice. arXiv:
Data Structures and Algorithms, 2020.

Wang, Y., Tong, Y., Long, C., Xu, P., Xu, K., and Lv, W.
Adaptive dynamic bipartite graph matching: A reinforce-
ment learning approach. In 2019 IEEE 35th international
conference on data engineering (ICDE), pp. 1478–1489.
IEEE, 2019.

Wei, A. and Zhang, F. Optimal robustness-consistency
trade-offs for learning-augmented online algorithms. Ad-
vances in Neural Information Processing Systems, 33:
8042–8053, 2020.

Wu, T., Zhong, F., Geng, Y., Wang, H., Zhu, Y., Wang, Y.,
and Dong, H. Grasparl: Dynamic grasping via adversarial
reinforcement learning. ArXiv, abs/2203.02119, 2022.

Yang, J., Li, P., Li, T., Wierman, A., and Ren, S. Anytime-
competitive reinforcement learning with policy prior. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Yang, Y. and Whinston, A. A survey on reinforce-
ment learning for combinatorial optimization. ArXiv,
abs/2008.12248, 2020.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., and Chi,
X. Learning to dispatch for job shop scheduling via deep
reinforcement learning. Advances in Neural Information
Processing Systems, 33:1621–1632, 2020a.

10

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

Zhang, K., Hu, B., and Basar, T. On the stability and con-
vergence of robust adversarial reinforcement learning: A
case study on linear quadratic systems. Advances in Neu-
ral Information Processing Systems, 33:22056–22068,
2020b.

Zuzic, G., Wang, D., Mehta, A., and Sivakumar, D. Learning
robust algorithms for online allocation problems using
adversarial training. arXiv preprint arXiv:2010.08418,
2020.

11

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

A. Benchmark: Budgeted Allocation (BA) Problem
Formal definition of BA. Consider a bipartite graph G(U ∪ V,E) with n vertices in U and m vertices in v all known
at the very beginning. For each i ∈ [n] and each j ∈ [m], edge (ui, vj) is associated with pij . Compared to OMSR, pij
represents a weight instead of a probability over an edge. For each vertex vj , the algorithm has to assign it to one of its
neighbors ui, and after that, ui gains a deterministic weight of pij . The total weights gained by each ui are constrained to be
no greater than 1. The objective of this problem is to maximize the total weights among all vertices in U .

We address that BA is a proper benchmark for OMSR, basically because for any given instances, the expected solution of
OMSR can be upper bounded by the optimal solution of BA. Readers may refer to Lemma 1 in Mehta & Panigrahi (2012)
for details.

B. Baselines
B.1. Baselines for Hard Instances

Triangular graphs. If an instance G = (U ∪ V,E) is a triangular graph, it satisfies that U = {u1, u2, · · · , un},
V = V1 ∪ V2 ∪ · · · ∪ Vn, and the neighbors of each online vertex in set Vi is {ui, ui+1, · · · , un}. The size of Vi is randomly
chosen from the set {k1, k1 + 1, · · · , k2}, where k1 and k2 are hyperparameters. The probabilities on edges associated with
vertex in Vi are 1/|Vi|.

Thick-z graphs. If an instance G = (U ∪ V,E) is a thick-z graph, it satisfies that U = {u1, u2, · · · , u2n}, V =
V1 ∪ V2 ∪ · · · ∪ V2n, the neighbors of each online vertex in the first n set Vi, i ∈ [n] is {ui} ∪ {un+1, un+2, · · · , u2n},
and the vertex in the last n set Vi, i ∈ (n, 2n] has only one neighbor ui. The size of Vi is randomly chosen from the set
{k1, k1 + 1, · · · , k2}, where k1 and k2 are hyperparameters. The probabilities on edges associated with vertices in Vi are
1/|Vi|.

Random graphs. We used a random graph generator to generate some random graphs. For a graph G = (U ∪ V,E) with
U = {u1, u2, · · · , u2n} and V = V1 ∪ V2 ∪ · · · ∪ V2n, the generator first determines the edge set E. For each pair (u, V),
the generator determines whether all edges (u, v), v ∈ V , should be included in E, with a probability of 0.5. The size of Vi

is randomly chosen from the set {k1, k1 + 1, · · · , k2}, where k1 and k2 are hyperparameters. The probabilities on edges
associated with vertices in Vi are 1/|Vi|.

Hard-instances in MP12 (Mehta & Panigrahi, 2012). The hard-instances G = (U ∪ V,E) in MP12 satisfies that
U = {u1, u2, · · · , un}, V = V1 ∪ V2 ∪ · · · ∪ Vn, and the neighbors of each online vertex in set Vi is {ui, ui+1, · · · , un}.
Choose value k from the set {k1, k1 + 1, · · · , k2}, where k1 and k2 are hyperparameters, and set sizes of Vi, i ∈ [n] as k.
The probabilities on all edges are 1/k.

B.2. Baselines for Robust Algorithms: Balance

Balance (Equal Probability). On the arrival of each online vertex vj ∈ V , Balance matches it to the available neighbor
with the least failure attempts, breaking ties arbitrarily. Huang & Zhang (2020) prove Balance achieves 0.576-competitive
under the small-probability assumption.

Generalized-Balance (Unequal Probability). In this case, success probabilities vary on edges, meaning that each edge
contributes differently to the marginal gains of the offline vertex. Instead of the number of failure attempts, Generalized-
Balance uses a similar indicator, total success probabilities on edges matched to an offline vertex, named as load Li

of an offline vertex ui. On the arrival of each online vertex vj ∈ V , match it to the available neighbor ui⋆ with i⋆ =
argmax1≤i≤|U | pij(1− g(Li)), where g : [0, 1] → [0, 1] is a monotonic non-decreasing function, and break ties arbitrarily.
Readers may easily verify when all pij = p, it reduces to the algorithm in equal probabilities case. Generalized-Balance can
achieve 0.572-competitive under the small-probability assumption.

12

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

C. Omitted proofs
C.1. Proof of Lemma 3.5

For each offline vertex u ∈ U , let the load Lu denote the total success probabilities on edges matched to u. The insight
and details on the load definition are in Appendix B.2. Lu is capped by 1. To better capture the stochastic rewards in our
analysis, we change the objective of this problem from maximizing the expected number of successful offline vertices to
maximizing the total loads by Lemma C.1.

Lemma C.1. For any algorithm running on Gn, the expected load on a vertex u is equal to its probability of success.

Proof. Let xuv be the random variables that if the algorithm matches u to v, set xuv = 1; and otherwise, set xuv = 0. Recall
all probabilities on the edges are equal to p and p → 0. The expected load on u by definition is E[Lu] =

∑
v∈V p · E[xuv].

For a specific matching assignments xu = (xu1, · · ·xum), the probability that u succeeds is 1 −
∏

v∈V (1 − p · xuv) =
1− exp(

∑
v∈V −p ·xuv) = 1− (−p ·

∑
v∈V xuv +1) = p ·

∑
v∈V xuv (p → 0). Therefore, the probability that u succeeds

under the matching assignments produced by algorithm is that E[p ·
∑

v∈V xuv] =
∑

v∈V p · E[xuv] = E[Lu].

The next two lemmas show the key property to prove the optimality and how Balance performs with this property on Gn.

Let Ni denote the shared neighbors of vertices in Vi.

Lemma C.2. There exists an optimal algorithm on Gn that equally distributes the load of each group Vi among all Vi’s
neighbors.

Proof. Configure a set partition process. During the execution of the algorithm, it partitions the offline vertex set into a
family of subsets S. Initially, set S = {U}. When the first group of online vertices V1 arrives, N1 ⊆ U . At this time,
partition U to N1 and U \N1, and replace U with non-empty set N1 and U \N1 in S. For the algorithm, since Lu for all u
are equal to zero, these offline vertices are identical to the algorithm.

Suppose that algorithm (unequally) distributes the load increment ℓ1, · · · , ℓ|N1| for each offline vertices, and ℓπ(1) ≤ · · · ≤
ℓπ(|N1|), ℓπ(1) < ℓπ(|N1|), where π is a permutation of |N1|. If this assignment is better than equal distribution, this means
there exists at least one offline vertex that accommodates more load. W.l.o.g., assume that this vertex is π(1). Let ℓ̄
denote the load increment when equally distributing the load, and inequality ℓπ(1) < ℓ̄ < ℓπ(|N1|) holds. Thus, if π(1) can
accommodate more load, the load increment of Lπ(1) by the unrevealed arrivals is greater than 1− ℓ̄, since Lπ(1) is capped
by 1. But the input is adversarial, imagine there is an adversary who reveals the online vertices according to the previous
assignments made by the algorithm. Thus, the adversary can rearrange the order of offline vertices in N1 for the unrevealed
vertices, because these vertices in N1 are identical. So, the input can be modified as swapping vertices π(1) and π(|V1|). At
this time, future increment of the load has to be 1− ℓπ(|N1|) < 1− ℓ̄. The result is worse than equally distributing the load.
By contradiction, we show that equally distributing the load of Vi is optimal. Further, after the assignment of Vi, the vertices
in N1 have the same load ℓ̄.

When the i-th group of online vertices Vi arrives, by Definition 3.2, there exists S ∈ S, such that Ni ⊆ S. It also partitions
Ni to Ni and S \Ni, and replace S with non-empty set Ni and S \Ni in S. For the algorithm, the vertices in Ni all have
the same load. Therefore, it is optimal for the algorithm to distribute the load equally based on the previous analysis. This
completes the proof by induction on i.

Lemma C.3. When Balance runs on Gn, it equally distributes the load of each group Vi among all Vi’s neighbors.

Proof. Configure the same set partition process in the proof of Lemma C.2. When the first group of online vertices Vi

arrives, the loads of all the vertices are equal to 0. Since Balance matches each online vertices to the neighbor with the
lowest load, and |Vi| = 1/p, p → 0, it distributes the load from V1 to all its neighbors equally. When the i-th group of online
vertices Vi arrives, the set S ∈ S, such that Ni ⊆ S, the vertices in Ni also has the same load, so Balance equally distributes
the load of Vi. This completes the proof by induction on i.

Lemma C.2 and Lemma C.3 complete the proof of Lemma 3.5.

13

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

C.2. Proof of Lemma 3.6

Recall G⋆
3 in Figure 5, and G⋆

3 satisfies the symmetry property.

We first calculate the expected number of successful matchings of the Balance algorithm on G⋆
3, i.e. ALG(G⋆

3). Consider the
instance G⋆

1 ∈ G1 where there is only one offline vertex u1 and one set of online vertices V1 in which vertices are connected
to u1, with equal probability p → 0. Let k = 1/p. In this case, each vertex in V1 tries to get matched with u1, so u1 success
with probability 1− (1− p)

k
= 1− (1− 1/k)

k
= 1− 1/e (k → ∞). Thus, the expected number of successes for G⋆

1 is
1− 1/e.

For G⋆
3, we calculate the expected number of successes in 8 cases corresponding to the outcomes of vertices in V1. Let U⋆

be a subset of {u1, u2, u3}, and denote the set of offline vertices that get matched to a vertex in V1 successfully.

These 8 cases are listed below according to the vertices in set U⋆.

1. |U⋆| = 0. There is one subcase with no success in {u1, u2, u3}, i.e. U⋆ = ∅, and this happens with probability
(1−p)k = 1/e; in this case, the expected number of successes overall is the same as double that for G⋆

1, i.e. 2(1−1/e).

2. |U⋆| = 1. This case happens with probability
(
k
1

)
· p(1− p)k−1 = 1/e. There are three subcases with equal probability:

(a) U⋆ = {u1}. This happens with probability 1/(3e); in this case, the expected number of successes for V2 and V3

is the same as that for G⋆
1, i.e. 2(1− 1/e); Therefore, the expected number of successes overall is 3− 2/e.

(b) U⋆ = {u2}. This happens with probability 1/(3e); in this case, the expected number of successes for V2 and V3

is 1− 1/e, since no vertex in V2 can be matched. Therefore, the expected number of successes overall is 2− 1/e.

(c) U⋆ = {u3}. This case is similar to last subcase, so the expected number of successes overall is 2− 1/e.

3. |U⋆| = 2. This case happens with probability
(
k
2

)
· p2(1 − p)k−2 = 1/(2e). There are three subcases with equal

probability:

(a) U⋆ = {u1, u2}. This happens with probability 1/(6e); in this case, the expected number of successes for V2 and
V3 is 1− 1/e; Therefore, the expected number of successes overall is 3− 1/e.

(b) U⋆ = {u1, u3}. This case is the same as last subcase, so the expected number of successes overall is 3− 1/e.

(c) U⋆ = {u2, u3}. This happens with probability 1/(6e); in this case, the number of successes overall is 2.

4. |U⋆| = 3. In this case, U⋆ = {u1, u2, u3} happens with probability 1− 5/(2e)1− 5/(2e); in this case, the number of
successes overall is 3.

Combining the above, the expected number of successes overall is 3(1− 11/(18e)− 11/(9e2)). Therefore, the competitive
ratio of G⋆

3 is 1− 11/(18e)− 11/(9e2) < 0.61. That is, Balance achieves 0.61-competitive on G⋆
3.

Finally, together with Lemma 3.5 where Balance is optimal on G⋆
3, the proof is completed.

C.3. Proof of Theorem 3.3

We illustrate the worst-case instances G⋆
n, n ∈ {4, 5, 6, 7} corresponding to the values in Table 2 in Figure 10. By Lemma 3.5,

it is sufficient to compute the competitive ratio of the Balance algorithm on graph G⋆
7, which is 0.597.

Because OPT(G⋆
7) = 7, the ratio of G⋆

7 is 1
7ALG(G

⋆
7). We calculate the expected number of success matches on G⋆

7 (i.e.
ALG(G⋆

7)) in the rest of this section. We use a dynamic programming approach for the calculation, rather than what we do in
the proof of Lemma 3.6.

Let Hi, i ∈ [7] denote the set of offline vertices, which successfully match the online vertices in Vi.

Thus,

ALG(G⋆
7) =

7∑
i=1

E [|Hi|] = E

[
7∑

i=1

|Hi|

]
. (2)

14

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

u1

u2

u3

u4

V1

V2

V3

V4

u1

u2

u3

u4

u5

V1

V2

V3

V4

V5

u1

u2

u3

u4

u5

u6

V1

V2

V3

V4

V5

V6

u1

u2

u3

u4

u5

u6

u7

V1

V2

V3

V4

V5

V6

V7

Figure 10. G⋆
n, n = 4, 5, 6, 7 from left to right with |U | = n and |V | = kn, where k = 1/p and p → 0. To simplify the illustration, we

use a single node to represent the online vertex set Vi, i ∈ [n], with the edges representing the edges between all vertices in the online
vertex sets and the offline vertices, since online vertices have the same neighbors.

15

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

As Hi, i > 1 depends on H1, rephrase the expectation expression as a conditional expectation with respect to H1:

E

[
7∑

i=1

|Hi|

]
=
∑
h1

Pr[h1]E

[
7∑

i=1

|Hi|

∣∣∣∣∣H1 = h1

]
(3)

=
∑
h1

Pr[h1]

(
|h1|+ E

[
7∑

i=2

|Hi|

∣∣∣∣∣H1 = h1

])
. (4)

Hi, i > 2 also depends on H2, so rephrase the factor of E
[∑7

i=2 |Hi|
∣∣∣H1 = h1

]
in Eqn.(4):

E

[
7∑

i=2

|Hi|

∣∣∣∣∣H1 = h1

]
=
∑
h2

Pr[h2|H1 = h1]E

[
7∑

i=2

|Hi|

∣∣∣∣∣H1 = h1, H2 = h2

]
(5)

=
∑
h2

Pr[h2|H1 = h1]

(
|h2|+ E

[
7∑

i=3

|Hi|

∣∣∣∣∣H1 = h1, H2 = h2

])
. (6)

For Eqn.(6), the value of conditional expectation E
[∑7

i=3 |Hi|
∣∣∣H1 = h1, H2 = h2

]
only depends on the number of

remaining vertices in the set {u3, u4, · · · , v7} after the occurrence of H1 and H2.

Thus, let f1(k) represent conditional expected value when there has k vertices remaining in the set {u3, u4, · · · , v7} (after
h1 and h2). Then we have

f1(k) = k · ALG(G⋆
1) = k

(
1− 1

e

)
. (7)

To calculate Eqn.(6), it needs to compute the value of Pr[h2|H1 = h1]. We define p(n)i as follows, and recall that k → ∞ is
the size of Vi,

p
(n)
i =

{(
k
i

)
pi(1− p)k−i = 1

i!·e i < n,

1−
∑n−1

i=0 pi i = n.
(8)

Therefore,

Pr[h2|H1 = h1] =
p
(7−|h1|)
|h2|(
7−|h1|

h2

) . (9)

Let f2(j, k) represent the conditional expected value when u2 is matched (j = 0) or unmatched (j = 1) and the set
{u3, u4, · · · , v7} has k vertices remaining after h1. From Eqn.(7), (8) and (9), we rephrase Eqn.(6) using f2

f2(J,K) =

J∑
j=0

K∑
k=0

p
(J+K)
j+k(
J+K
j+k

) ·
(
K

k

)
· (j + k + f1(K − k)). (10)

We calculate the values of f2(j, k) and present them in Table 4.

Table 4. The values of function f2(j, k) when j = 0, 1 and k = 0, 1, · · · , 5.

f2(j, k) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

j = 0 0 1− e−2 2− 3e−2 3− 11
2e2 4− 49

6e2 5− 87
8e2

j = 1 1− 1
e 2− 3

2e − 3
2e2 3− 11

6e − 11
3e2 4− 49

24e − 49
8e2 5− 87

40e − 87
10e2 6− 1631

720e − 1631
144e2

16

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

Remarks. ALG(G⋆
3) = f2(1, 2) = 3− 11

6e − 11
3e2 , and ALG(G⋆

4) = f2(1, 3) = 4− 49
24e − 49

8e2 . Thus, the competitive ratio
of Balance on G⋆

4 is ALG(G⋆
4)

OPT(G⋆
4)

= 1
4 (4−

49
24e − 49

8e2) ≈ 0.605.

Let f3(i, j, k) represent the conditional expected value when u1 is matched (i = 0) or unmatched (i = 1) and u2 is matched
(j = 0) or unmatched (j = 1) and the set {u3, u4, · · · , v7} has k vertices remaining. From Eqn.(4), we have

f3(I, J,K) =

I∑
i=0

J∑
j=0

K∑
k=0

p
(I+J+K)
i+j+k(
I+J+K
i+j+k

) ·
(
K

k

)
· (i+ j + k + f2(J − j,K − k)). (11)

We calculate the values of f3(i, j, k) and present part of them in Table 5.

Table 5. The values of function f3(i, j, k) when i = j = 1 and k = 0, 1, · · · , 5.

k f3(1, 1, k)

0 2− 3
2e − 3

2e2

1 1
6e3 (−15− 15e− 11e2 + 18e3)

2 1
24e3 (−164− 82e− 49e2 + 96e3)

3 1
40e3 (−498− 166e− 87e2 + 200e3)

4 1
720e3 (−13536− 3384e− 1631e2 + 4320e3)

5 1
5040e3 (−128680− 25736e− 11743e2 + 35280e3)

The expected number of successes of G⋆
7 is f3(1, 1, 5). Therefore, Balance achieves competitive ratio of 1

7f3(1, 1, 5) ≈ 0.597
on G⋆

7.

Remarks. Using the values of function f3, we can obtain the competitive ratio of Balance on G⋆
5 and G⋆

6, which are
1
5f3(1, 1, 3) ≈ 0.604 and 1

6f3(1, 1, 4) ≈ 0.599, respectively. In addition, we can also obtain the competitive ratio of Balance
on G3 in (Mehta & Panigrahi, 2012), which is 1

3f3(1, 1, 1) ≈ 0.621.

D. Agent alg Setup
D.1. MDP Formulation

Recall that the input instance is a probability matrix P sampled from π. In general, alg reads P column-by-column, and
takes an action at state sj to match vj to which neighbor. We first highlight the main differences in OMSR to the RL agents
for other OBM problems:

1. To achieve robustness, in the environment, all distributions learned by adv from previous iterations will be taken into
consideration with a discounted factor, as well as a mixture of a random distribution.

2. In the construction of state space, besides the current graph patterns, i.e., the partial P , we involve another observation:
the number of failure attempts for each offline vertex, denoted by a vector L of size n. The main reason comes from
the idea behind Balance: fewer failure attempts bring a larger marginal gain in success probability.

3. Because of the endogenous randomness from OMSR, i.e., a matching is successful with a certain probability p, special
treatments are necessary: (1) an indicator on whether each offline vertex is successful must be observed in state space;
(2) the transition is random. Different states will be observed according to whether the matching taken by an action is
successful; (3) positive rewards are only given to successful matchings.

Environment. Suppose this is (T + 1)-th iteration of training. Environment samples instances over a distribution π given
by: with probability βγk−i∑k−1

j=0 γj
sampled from πk; with probability 1−β sampled from a random distribution πrand, where

πk, k ∈ [T] represents the policy distribution learned by adv in k-th iteration, and β, γ are hyperparameters.

17

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

State Space. At timestep j, online vertex vj arrives with the j-th column P[:,j] of P . A state sj consists of P[:,j] and two
vectors of size n towards n offline vertices: L for the number of previous failure attempts and w for whether each
offline vertex is successful or not. A terminal state Ŝ is reached when the complete P is revealed. The length of an
episode is T = m.

Action space. An action aj ∈ Aj is a vector of size n + 1, with only one component set as 1 and n components set 0,
indicating that which neighbor is matched to vj or leaving vj unmatched.

Transition. sj is transited to sj+1 with probability p if aj produces a successful matching, and to s′j+1 with probability
1− p otherwise. sj+1 and s′j+1 differ in vectors L and w.

Reward. Reward raj
is set as 1 if aj produces a successful matching, and 0 otherwise.

Policy. A stochastic policy π(aj |sj) outputs a distribution over the actions in Aj , yielding an expected return Qπ(sj , aj),
which represents the expected future return obtained by taking action aj in state sj .

D.2. Training Algorithm

We use a simple DQN algorithm. Our model is a feed-forward neural network with two hidden layers and ReLU for
non-linearity. The first layer contains 3n+ 2 neurons and the second contains 2n+3 neurons. We set a fixed learning rate of
10−3 for the Adam optimizer and a batch size of Nbatch = 16. For ϵ-greedy, we set ϵ = 0.2.

D.3. Training for Unequal Probability Case

The training details for the algorithm agent in this case are consistent with the MDP formulation in Section 4. So we only
discuss the differences in the adversary agent. Note that the equal probability case is a special case of the unequal probability
case.

Recall that in OMSR, the input instance is a matrix Pn×m for n offline vertices and m online vertices. The difference
between the MDP in Section 3 and that in this case is that the values in the matrix P are not only p or 0, but are randomly
selected. We typically randomly select a value k from the set {k1, k1 + 1, · · · , k2}, and set the probability of the edge to be
1/k or set the probability to be 0. k1 and k2 are hyperparameters. When k1 = k2, this special case corresponds to the equal
probability case. The details of MDP formulation are presented as follows.

Environment. The current matching policy defined by alg, and a calculator on CR.

State Space. A state sj at a timestep j is the current (partial) matrix of P , i.e. P[:,1:j−1]. A terminal state Ŝ is reached
when a complete P is generated. The length of an episode is T = m.

Action space. At state sj , an action aj ∈ Aj taken by adv is to determine the probabilities in the j-th row. It selects a
value in {0, 1/k1, 1/(k1 + 1), · · · , 1/k2}, and sets it as pij . The size of action space |Aj | is (k2 − k1 + 2)n.

Transition. The transition from state sj to the next state sj+1 is deterministic. If action aj is taken, the j-th column in
matrix P is updated and moves on to the next episode step, j + 1.

Reward. If an episode ends, all taken actions will receive a reward of 1 − CR, where CR is the competitive ratio of the
current algorithm environment running on the generated instance.

Policy. At state sj , a stochastic policy π(aj |sj) outputs a distribution on (k2 − k1 + 2)n cases.

E. Supplementary Experiments
We present more empirical evaluations of the trained hard instances and robust algorithms to demonstrate the effectiveness
of our framework. Our codes are given in the supplementary material.

18

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

E.1. Experiments for Hard Instances Validation

The performance of algorithms on the worst-case instances in different iterations. In the equal probability case, we
evaluate the performance of the learned algorithms in each iteration, against the corresponding outputs of the adversary
agent. We compare these results to our baseline: Balance to show how Balance performs on these hard instances. In
Figure 11, we plot the average competitive ratios as a function of the (equal) probability p on edges in each iteration. In
general, the learned algorithms perform similarly to the Balance algorithm when p < 0.5. However, when p > 0.5, the
learned algorithms significantly outperform Balance. As the number of iterations increased, the curves become smoother,
and if fix p, the performance of algorithms get worse. This indicates that adv can generated hard instances in iterative
training. Note that, as p tends to 1, Balance performs poorly under the outputs of adv with only 0.5-competitive. This also
indicates that adv can learn worst-case instances for alg, since if p = 1, OBSR reduces to OBM, Balance is known to
perform bad.

0.0 0.2 0.4 0.6 0.8 1.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75

1

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0
2

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0
3

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0

0.50

0.55

0.60

0.65

0.70

0.75

CR

4

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0
5

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0
6

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0

0.50

0.55

0.60

0.65

0.70

0.75

7

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0
8

Learned alg
Balance

0.0 0.2 0.4 0.6 0.8 1.0
9

Learned alg
Balance

Figure 11. The average CRs of learned algorithms and Balance under the worst-case distributions in each iteration, with m = n/p varying
on p.

The performance of algorithms on known worst cases. To see the performances of Balance and our algorithms (from
training iterations 1 to 10) on the worst instances given in both MP12 (Mehta & Panigrahi, 2012) (their G3 and G4) and this
paper (G∗

6 and G∗
7 in Figure 10). Figure 12 plots the results. The algorithm learned by alg can converge to optimal CRs

on these instances. It shows that the worst-case instances generated by adv make the algorithm perform worse than other
known hard instances.

19

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

0 2 4 6 8 100.2

0.3

0.4

0.5

0.6

0.7

CR Balance
CR = 0.620

MP12 G3

0 2 4 6 8 10

Balance
CR = 0.621

MP12 G4

0 2 4 6 8 10
T

0.2

0.3

0.4

0.5

0.6

0.7

CR Balance
CR = 0.599

Our G*
6

0 2 4 6 8 10
T

Balance
CR = 0.597

Our G*
7

Figure 12. The CRs of learned algorithms from iteration 0 to 10 running on some specific worst-case instances. As a comparison, the
dashed line represents the CR of Balance.

E.2. Experiments for Robust Algorithms Evaluation

The performance of algorithms on baselines. We take experiments and evaluations on some instances which are well
known to be hard for OBM and related problems, including triangular graphs and thick-z graphs. We also test the average
performance on some randomly generated instances. These instances are formally defined in Appendix B.1.

We test the learned algorithm in each iteration T on the triangular graphs. Figure 13 plots the average CRs as a function of
iteration T , in both equal and unequal cases.

0 2 4 6 8 10
T

0.45

0.50

0.55

0.60

0.65

CR

0.643

Balance
CR = 0.623

equal p

0 2 4 6 8 10
T

0.617

Balance
CR = 0.615

unequal p

Figure 13. The average CRs of algorithms on triangular graphs in iteration 0 to 10. The curve plots the CR as a function of the iteration T .
As a comparison, the dashed line represents the CR of Balance (0.623 for equal and 0.615 for unequal).

We test the learned algorithm in each iteration T on the thick-z graphs. Figure 14 plots the average CRs as a function of
iteration T , in both equal and unequal cases.

We test the learned algorithm in each iteration T on the random graphs. Figure 15 plots the average CRs as a function of
iteration T , in both equal and unequal cases.

20

Online Matching with Stochastic Rewards: Provable Better Bound via Adversarial Reinforcement Learning

0 2 4 6 8 10
T

0.35
0.40
0.45
0.50
0.55
0.60
0.65

CR
0.631

Balance
CR = 0.619

equal p

0 2 4 6 8 10
T

Balance
CR = 0.605

unequal p

Figure 14. The average CRs of algorithms on thick-z graphs in iteration 0 to 10. The curve plots the CR as a function of the iteration T . As
a comparison, the dashed line represents the CR of Balance (0.619 for equal and 0.605 for unequal).

0 2 4 6 8 10
T

0.4
0.5
0.6
0.7
0.8
0.9

CR

0.870

Balance
CR = 0.857

equal p

0 2 4 6 8 10
T

Balance
CR = 0.803

unequal p

Figure 15. The average CRs of algorithms on random graphs in iteration 0 to 10. The curve plots the CR as a function of the iteration T .
As a comparison, the dashed line represents the CR of Balance (0.857 for equal and 0.803 for unequal).

21

