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Abstract

Machine learning models often use group attributes to assign personalized pre-1

dictions. In this work, we show that models that use group attributes can assign2

unnecessarily inaccurate predictions to specific groups – i.e., that training a model3

with group attributes can reduce performance for specific groups. We propose4

formal conditions to ensure the “fair use" of group attributes in prediction models –5

i.e., collective preference guarantees that can be checked by training one additional6

model. We characterize how machine learning models can exhibit fair use due7

to standard practices in specification, training, and deployment. We study the8

prevalence of fair use violations in clinical prediction models. Our results highlight9

the inability to resolve fair use violations, underscore the need to measure the10

gains of personalization for all groups who provide personal data, and illustrate11

actionable interventions to mitigate harm.12

1 Introduction13

Machine learning models are often used to support or automate decisions that affect people. In14

medicine, for example, models diagnose illnesses [64, 31, 73], estimate survival rates [78], and15

predict treatment response [41]. In such applications, medical decisions follow the ethical principles16

of beneficence (“do the best") and non-maleficence (“do no harm") [8]. In turn, models that support17

medical decisions are designed to perform as well as possible without inflicting harm. These principles18

explain why so many clinical prediction models use group attributes that encode characteristics like19

sex and age – i.e. characteristics that would be prohibited for models in lending or hiring. To predict20

as well as possible on a heterogeneous population, models must encode all characteristics that could21

tell people apart [47].22

The prevalence of group attributes in prediction models reflects a need for personalization,1 but23

do personalized models that use group attributes improve performance for every group? In this24

paper, we refer to this principle as fair use. Fair use enshrines the basic promise of personalization in25

applications like precision medicine – i.e., that each person who reports personal characteristics should26

expect a tailored performance gain in return. In prediction tasks with group attributes, this means27

that every group should expect better performance from a personalized model that solicits group28

membership compared to a generic model that does not. These gains should be tailored, meaning that29

every group should prefer their personalized predictions over the personalized predictions assigned to30

another group.31

1Personalization is a term that encompasses a breadth of techniques that use personal data. Here, we
use it to describe approaches that target groups rather than individuals – i.e., “categorization" rather than
“individualization" as per the taxonomy of Fan & Poole [27].
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GROUP SIZE ERROR RATE GAIN

g ng R(h0) Rg(hg) ∆g(hg, h0)

female, <30 48 38.1% 26.8% 11.3%
male, <30 49 23.9% 26.7% -2.8%
female, 30 to 60 307 30.3% 29.1% 1.2%
male, 30 to 60 307 15.4% 15.2% 0.2%
female, 60+ 123 19.3% 21.9% -2.6%
male, 60+ 181 11.0% 8.2% 2.8%

Total 1152 20.4% 19.4% 1.0%

Figure 1: Personalization can reduce performance for specific groups. We show the gains of personalization
for a classifier to screen for obstructive sleep apnea (i.e., the apnea dataset in §4). We fit a personalized
model hg and generic model h0 with logistic regression, personalizing hg with a one-hot encoding of sex and
age_group. As shown, personalization reduces training error from 20.4% to 19.4% but increases training
error at for 2 groups: (female, 60+) and (male, <30). These effects are also present on test data.

Machine learning models are trained to use group attributes in ways that improve performance at a32

population level. In practice, this means that models trained with group attributes assign predictions33

that are unnecessarily inaccurate to specific groups due to routine decisions in model specification or34

model selection (see Figure 1). In many real-world applications, this drop in performance reflects35

harm. In clinical applications, for example, inaccurate predictions undermine medical decisions and36

health outcomes. This harm is silent and avoidable. Silent because fair use violations would only37

draw attention if model developers were to evaluate the gains of personalization for intersectional38

groups. Avoidable because a fair use violation shows that a group could receive better predictions39

from a generic model or a personalized model for another group; thus we can always resolve a fair40

use violation by assigning predictions from this better performing model.41

Although many prediction models that use group attributes to assign personalized predictions, there is42

little awareness that this practice could reduce performance at a group level [see e.g., 2, 63]. Simply43

put, it is hard to imagine how a model that accounts for group membership can perform worse than44

a model that does not. Our goal in this paper is to expose this effect and lay the foundations to45

address it. To this end, we characterize how fair use violations arise, demonstrate their prevalence46

in real-world applications, and propose interventions to mitigate their harm. Specifically, the main47

contributions of our work include:48

1. We propose formal conditions to ensure the fair use of group attributes in prediction models.49

2. We characterize how common approaches to personalization in machine learning can produce50

personalized models to exhibit fair use violations. These “failure modes" delineate the root causes51

of fair use violations, and inform interventions that mitigate harm.52

3. We conduct a comprehensive study on the gains of personalization in clinical prediction models53

for decision-making, ranking, and risk assessment. Our results demonstrate the prevalence of fair54

use violations across model classes and personalization techniques, and highlight the challenges55

of resolving these violations through changes to model development.56

4. We present a case study on personalization for a model trained to predict mortality for patients with57

acute kidney injury. Our study shows how a fair use audit can safeguard against “race correction"58

in clinical prediction models, and facilitate targeted interventions that reduce harm (Appendix F).59

2 Fair Use Guarantees60

In this section, we present formal conditions for the fair use of group attributes in prediction. We61

provide notation and preliminaries for this section in Appendix A.62

2.1 Fair Use63

We start with Definition 1, which characterizes the fair use of a group attribute in terms of collective64

preference guarantees.65
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Definition 1 (Fair Use). A personalized model h : X × G → Y guarantees the fair use of a group66

attribute G if67

∆g(hg, h0) ≥ 0 for all groups g ∈ G, (1)

∆g(hg, hg′) ≥ 0 for all groups g, g′ ∈ G (2)

Condition (1) captures rationality for group g: a majority of group g prefers a personalized model68

hg to a generic model h0. Condition (2) captures envy-freeness for group g: a majority of group g69

prefers their predictions to predictions personalized for any other group. These conditions enshrine70

minimal expectations of groups from a personalized model. Without rationality, a majority in some71

group would prefer the generic model. Without envy-freeness, a majority in some group would prefer72

the personalized predictions assigned to another group.73

The fair use conditions in Definition 1 are collective, in that performance is measured over individuals74

in a group; and weak, in that the expected performance gain is non-negative – i.e., no group will75

be harmed. The conditions can be adapted to different prediction tasks by choosing a suitable risk76

metric. Since fair use conditions represent guarantees on the expected gains of personalization, a77

suitable metric should measure model performance exactly (c.f. a surrogate metric that we optimize78

to fit a model (see Figure 5 in Section 3). In classification tasks where we want accurate decisions,79

this would be the error rate. In tasks where we want reliable risk estimates, it would be the expected80

calibration error [54].81

Personalized models that obey fair use guarantees incentivize groups to truthfully report group82

membership in deployment [see e.g., 39, 62, 30]. ]83

2.2 Use Cases84

Relevant use cases for fair use guarantees include:85

Protected Classes: Models sometimes include group attributes that encode immutable characteristics86

due to application-specific norms or special provisions [see 44, 45]. For example, sex is a protected87

characteristic in employment law, but not in medicine [see e.g., 56, for a discussion on the use of sex88

to predict cardiovascular disease]. Likewise, U.S. regulations allow credit scores to use age if it does89

not harm older applicants [15]. In such cases, models should use these attributes in a way that leads90

to tailored performance gains for every group.91

Sensitive Data: Models that use attributes like hiv status should guarantee a tailored improvement92

performance for the sensitive group, hiv = +. Otherwise, it would be better not to solicit this93

information in the first place as the information could inflicts harm when leaked [see e.g., 6].94

Self-Reported Data: Certain kinds of models require users to report their data at prediction time [see95

e.g., self-report diagnostics 42, 67]. These models should obey fair use conditions to incentivize users96

to report their data truthfully (see Remark 2)97

Costly Data: Group attributes can encode data collected at prediction time — e.g., an attribute like98

tumor_subtype whose value can only be determined by an invasive medical test. Models that99

ensure fair use with respect to tumor_subtype guarantee that patients with a specific type of tumor100

will not receive a less accurate prediction after undergoing the procedure.101

3 Failure Modes of Personalization102

In this section, we describe how common approaches to personalization can reduce performance for103

specific groups. Our goal is to highlight failure modes that apply to a broad range of prediction tasks.104

We pair each failure mode with toy examples, focusing on simple classification tasks that can be105

checked manually.2106

3.1 Model Specification107

We start with misspecification – i.e., when we fit models that cannot represent the role of group108

membership in the data distribution. A common form of misspecification occurs when we personalize109

2In most cases, we train a linear classifier that minimizes the error rate on a perfectly sampled training dataset
– i.e., where 1

n

∑n
i=1 1[xi = x, yi = y, gi = g] = P (x, y, g) for all (x, y, g) ∈ X × Y × G. This condition

ensures that the training error matches the test error.
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Group Data Predictions Mistakes Gain

g n+
g n−g h0 hg Rg(h0) Rg(hg) ∆Rg(hg, h0)

young, female 0 24 − + 0 24 −24
young, male 25 0 − + 25 0 25
old, female 25 0 − + 25 0 25
old, male 0 27 − − 0 0 0

Total 50 51 50 24 26

Figure 2: Fair use violations due to model misspecification. Here, we are given n+ = 50 positive examples and
n− = 51 negative examples for 2D classification task where g ∈ {male,female} × {old,young}. We fit
two linear classifiers: h0, a generic model without group attributes, and hg a personalized model with a one-hot
encoding. As shown, personalization reduces overall error from 50 to 24. However, not all groups benefit from
personalization: (young, female) now receives less accurate predictions while (old, male) receives no
gain. Here, hg also violates envy-freeness for (young,female) as individuals in this group would receive
more accurate predictions by misreporting their group membership as (old, male).

simple models using a one-hot encoding. In such cases, models exhibit fair use violations on data110

distributions that exhibit intersectionality (see Figure 2). Consider, for example, a logistic regression111

model with a one-hot encoding that assigns higher risk to patients who are old and to patients who112

are male. This would lead to a fair use violation for patients who are old and male if their true risk113

were lower than either group alone.114

Misspecification can also arise due to a failure to account for group-specific interaction effects – e.g.,115

instances where group attributes act as mediator or moderator variables [see e.g., 7]. In Figure 3, we116

show an example that exhibits the hallmarks of personalization: a generic model performs poorly117

on “heterogeneous" groups A and C, and a personalized model that accounts for group membership118

improves overall performance by assigning more accurate predictions to A and C. In this case, the119

resulting model exhibits a fair use violation for group B because a generic model performs as well as120

possible for group B.121

Figure 3: Fair use violation resulting from model misspecification. We consider a 2D classification task with
heterogeneous groups g = {A,B,C} where an ideal model should assign a personalized intercept to each
group and a personalized slope to group B. In this case, a personalized model with a one-hot encoding would fit
a personalized intercept for each group, but fail to fit a personalized slope for group B. The personalized model
would improve overall performance by assigning more accurate predictions to groups A and C. However, it
would result in a fair use violation by performing worse for group B.

In practice, we can avoid these issues by either fitting models that are rich enough to capture these122

effects, or by training a separate model for each group. Both are challenging in tasks with multiple123

groups as we must either specify interactions for each group, or fit models using a limited amount of124

data for each group.125

3.2 Model Selection126

Model development often involves choosing one model from a family of candidate models – e.g.,127

when we set a regularization penalty to avoid overfitting, or choose a subset of variables to improve128

usability. Common criteria for model selection consist choosing a model on the basis of population-129

level performance [e.g., mean K-CV test error 4]. In practice, this choice can lead to models that130

reduce performance for a specific group. We demonstrate this effect in Figure 4. The example131
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highlights how fair use violations may be unavoidable in settings where we are forced to assign132

predictions with a single model – as there may not exist a model that ensure fair use for all groups.133

3.3 Other Failure Modes & Discussion134

Work in personalization naturally presumes that fitting a model with group attributes will provide135

a uniform performance gain to all groups. In practice, however, this only holds under restrictive136

assumptions. We include a similar discussion of other failure modes along with examples in Appendix137

E including: training with a surrogate loss function; generalization; and dataset shifts. The failure138

models that we have covered in this section are chosen since they motivate potential interventions for139

model development. For example, one could avoid the fair use violations in Figure 2 by using an140

intersectional one-hot encoding, and avoid violations across across all cases by training decoupled141

models.142

4 Empirical Study143

In this section, we study fair use in clinical prediction models – i.e. models that routinely include144

group attributes where fair use violations inflict harm. Our goals are to measure the prevalence of fair145

use violations and to evaluate how these change as a result of interventions in model development. We146

attach all software to reproduce the results in this section to our submission, and include additional147

details on our setup and additional experimental results in the supplement.148

4.1 Setup149

We work with 6 datasets for clinical prediction tasks (see Table 1). We split each dataset into a150

training sample (80%) to fit models, and a test sample (20%) to evaluate the gains of personalization.151

We use the training data from each dataset to fit 9 kinds of personalized models. Each personalized152

model belongs to one of 3 model classes: logistic regression (LR), random forests (RF), and neural153

nets (NN); and accounts for group membership using one of 3 personalization techniques.154

The three personalization techniques being: One-hot Encoding (1Hot): We fit a model with dummy155

variables for each group attribute, Intersectional Encoding (All): We fit a model with dummy variables156

for each intersectional group, and Decoupling (DCP): We fit a model for each intersectional group157

using its own data. The three techniques represent increasingly complex ways to account for group158

membership where complexity is measured by the interactions between group attributes and other159

features: 1Hot reflect no interactions; All reflect interactions between group attributes; and DCP160

reflects all possible attributes between group attributes and features.161

We evaluate the gains of personalization for each model in terms of three performance metrics: (1)162

error rate, which reflects the accuracy of yes-or-no predictions [for a diagnostic test, e.g., 26]; (2)163

expected calibration error (ECE), which measures the reliability of risk predictions [for a medical164

risk score, e.g., 13]; (3) area under ROC curve (AUC), which measures accuracy in ranking [for a165

prioritization tool, e.g., 77].166

4.2 Results167

We summarize our results for logistic regression in Table 1 and for other model classes in Appendix G.168

169

On Prevalence Our results show that personalized models can improve performance at a population170

level yet reduce performance for specific groups. These fair use violations arise across datasets,171

personalization techniques, and model classes. Consider the standard configuration used to develop172

clinical prediction models – i.e., a logistic regression model with a one-hot encoding of group173

attributes (LR+1Hot). Here, we find that at least one group experiences a statistically significant fair174

use violation in terms of error on 4/6 datasets (5/6 for AUC and ECE).175

On Personalization Techniques Our results show that there is no one personalization technique176

that minimizes fair use violations. In Table 1, for example, the best personalization technique for177

cardio_eicu is intersectional encoding while the best personalization technique for mortality178
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Test AUC Test ECE Test Error

Dataset Metrics 1Hot All DCP 1Hot All DCP 1Hot All DCP

apnea
n = 1152, d = 26
G = {age, sex}
m = 6
[66]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.750
0.001

0.002 / -0.001
1/2
0/0

0.750
0.000

0.001 / -0.016
1/4
0/0

0.803
0.053

0.119 / -0.005
4/0
3/0

7.5%
-1.5%

0.7% / -7.1%
1/3
0/3

5.5%
0.6%

0.7% / -4.6%
1/3
0/3

7.2%
-1.1%

1.7% / -6.6%
2/2
4/0

34.2%
-1.0%

0.0% / -9.9%
0/4
0/6

33.8%
-0.7%

1.8% / -7.8%
1/3
0/5

26.2%
7.0%

21.7% / -7.8%
4/1
4/1

cardio_eicu
n = 1341, d = 49
G = {age, sex}
m = 4
[60]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.768
0.000

0.002 / -0.001
2/2
0/0

0.767
-0.001

0.001 / -0.001
2/1
0/0

0.762
-0.007

0.094 / -0.099
1/2
3/1

4.4%
0.4%

1.6% / -1.5%
2/1
0/2

4.6%
0.2%

0.9% / -0.2%
1/0
0/2

8.9%
-4.1%

-1.1% / -6.3%
0/4
1/1

29.1%
-0.4%

0.0% / -3.1%
0/2
0/3

29.1%
-0.4%

0.2% / -3.1%
1/2
0/3

29.5%
-0.9%

12.9% / -8.9%
2/2
3/1

cardio_mimic
n = 5289, d = 49
G = {age, sex}
m = 4
[38]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.854
0.001

0.001 / -0.000
2/1
0/0

0.854
0.001

0.001 / -0.000
2/1
0/0

0.870
0.017

0.051 / 0.006
4/0
4/0

2.1%
-0.4%

0.5% / 0.4%
4/0
1/3

2.3%
-0.5%

0.6% / -0.2%
3/0
0/1

2.3%
-0.6%

0.6% / -2.3%
1/2
3/1

23.3%
0.3%

0.9% / -0.1%
3/0
0/3

23.4%
0.3%

0.9% / -0.1%
3/0
0/3

21.4%
2.2%

7.6% / -0.2%
3/0
4/0

heart
n = 181, d = 26
G = {sex, age}
m = 4
[17]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.870
-0.007

0.007 / -0.031
1/1
0/0

0.846
-0.030

0.024 / -0.050
1/1
0/0

0.817
-0.060

0.039 / -0.190
0/3
1/2

8.4%
2.8%

4.4% / -0.6%
2/1
0/2

17.8%
-6.6%

-1.8% / -3.1%
0/4
0/3

17.5%
-6.3%

10.1% / -4.6%
2/1
2/2

19.7%
-1.3%

0.0% / -6.1%
0/1
0/1

19.7%
-1.3%

0.0% / -12.1%
0/3
0/1

15.8%
2.6%

10.6% / -8.4%
3/1
2/1

mortality
n = 25366, d = 468
G = {age, sex}
m = 6
[38]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.848
0.000

0.005 / -0.001
3/3
0/0

0.848
0.001

0.005 / -0.000
3/2
0/0

0.880
0.033

0.111 / 0.012
6/0
6/0

2.0%
0.2%

1.5% / 0.1%
5/0
1/1

2.1%
0.1%

2.6% / -0.3%
5/1
3/2

2.5%
-0.3%

11.2% / -2.4%
3/2
5/1

23.6%
-0.2%

0.8% / -2.5%
2/4
0/4

23.4%
-0.0%

2.1% / -0.4%
3/2
1/4

20.2%
3.2%

20.1% / -0.5%
5/1
6/0

saps
n = 7797, d = 36
G = {hiv, age}
m = 4
[3]

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.890
0.001

0.014 / -0.000
1/1
0/0

0.890
0.001

0.014 / -0.001
1/1
0/0

0.888
-0.001

0.017 / -0.246
2/2
2/1

1.5%
0.1%

2.8% / -1.5%
2/0
2/2

1.5%
0.1%

2.4% / -0.6%
2/1
2/2

2.0%
-0.4%

9.4% / -19.1%
2/2
3/1

18.9%
0.0%

19.0% / -10.4%
2/1
1/1

18.9%
0.0%

0.8% / -10.4%
1/3
2/2

18.5%
0.4%

3.5% / -23.3%
2/1
2/2

Table 1: Performance of personalized logistic regression models on all datasets. We show the gains of
personalization in terms of test AUC, ECE, and error. We report: model performance at the population level, the
overall gain of personalization, the range of gains over m intersectional groups, and the number of rationality
and envy-freeness gains/violations (evaluated using a bootstrap hypothesis test at a 10% significance level).

was decoupling. These strategies change across model classes – as the corresponding strategies179

for neural networks for cardio_eicu and mortality are decoupling and using an intersectional180

encoding, respectively (see Appendix G). In general, even strategies that exhibit few violations can181

fail critically. For example, LR+DCP for saps leads to a 10% increase in error for HIV+ & >30.182

Overall, these results suggest that the most consistent way to avoid the harm from a fair use violation183

is to check.184

On Interventions in Model Development Our results show that routine decisions in model de-185

velopment can produce considerable differences in group-level performance and fair use violations.186

This suggests that if we are able to spot fair use violations, we may be able to minimize them by187

“interventions" to model development. In light of this, we consider interventions that address the188

failure modes in Section 3 – e.g., using an intersectional one-hot encoding, training decoupled models,189

and equalizing sample sizes.190

In general, we find that applying these strategies can minimize fair use violations often. For example,191

we can eliminate all fair use violations for cardio_mimic in our standard configuration by training192

decoupled models. However, there is no “best" intervention that consistently resolve these violations.193

Typically, this is because an intervention that resolves a violation for one group will precipitate a194

violation for others. In cardio_eicu, for instances, a logistic regression model fit with a onehot195

encoding will exhibit a violation on old males. Switching an intersectional encoding will fix this196

violation but introduce a new one for old females.197

On the Reliability of Gains & Violations Our results underscore the need for reliable procedures198

to discover fair use violations or claim gains from personalization. We can often find detectable199

instances of benefit or harm. For example, we find that on saps in our default configuration that we200

detect a gain from personalization for patients who are HIV negative and older than 30. Additionally,201

in cardio_eicu when training LR+All we detect a fair use violation for patients who are old females202

(see e.g., Rat Gains/Violations in Table 1). One actionable finding from an evaluation of the gains of203

personalization is a group does not experience a meaningful gain nor harm due to personalization. In204

such cases, one may wish to intervene to avoid soliciting unnecessary data: when group attributes205

encode information that is sensitive or that must be collected at prediction time (e.g., hiv_status206

or tumor_subtype), we may prefer to avoid soliciting information that is demonstrably useful for207

prediction.208
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A Notation425

Below we provide a table that consolidates and describes the notation used throughout the paper.426

Symbol Meaning
xi = (xi,1, xi,2, . . . , xi,d) feature vector of example i
yi ∈ Y label of example i
gi ∈ {gi,1, gi,2, . . . , gi,k} group membership of example i
G = G1 × G2 × . . .× Gk space of group attributes
m = |G| number of intersectional groups

ng :=
∑

1[gi = g] number of examples of group g ∈ G
n+
g :=

∑
1[gi = g, yi = +1] number of examples of group g ∈ G with yi = +1

n−g :=
∑

1[gi = g, yi = −1] number of examples of group g ∈ G with yi = −1

H0 hypothesis class of generic model
H hypothesis class of personalized models
h0 ∈: X → Y generic model
h : X × G → Y personalized model
hg : X × G → Y personalized classifier where group membership is reported truthfully (as g)

Rg(hg′ ) true risk of model h of group g if they report g
′

R̂g(hg′ ) empirical risk of model h of group g if they report g
′

∆g(h, h′) gain (i.e., reduction in true risk) for group g when using h rather than h′

∆g(hg, h0) rationality gap for group g (performance gain when reporting g as opposed to concealing it)
∆g(hg, hg′) rationality gap for group g (performance gain when reporting g as opposed to concealing it)

Table 2: Notation

Preliminaries427

We start with a dataset of n examples (xi, yi, gi)
n
i=1, where each example consists of a feature428

vector xi = [xi,1, . . . , xi,d] ∈ Rd, a label yi ∈ Y , and a vector of k categorical group attributes429

gi = [gi,1, . . . , gi,k] ∈ G1 × . . .× Gk = G – e.g., gi = [female, age ≥ 60, blood_type = O+].430

We refer to gi as the group membership of i and to the set {i | gi = g} as group g. We let431

ng := |{i |gi = g}| denote the number of examples in group g, and let m := |G| denote the number432

of intersectional groups.433

We use the data to fit a personalized model that uses group attributes h : X × G → Y; and a434

generic model that does not h0 : X → Y . We fit both models via empirical risk minimization with435

a loss function ` : Y × Y → R+, using R̂(h) and R(h) to denote the empirical risk and true risk,436

respectively. We assume that the personalized and generic models represent the best models trained437

on datasets with group attributes (xi, yi, gi)
n
i=1 and without them (xi, yi)

n
i=1:438

h ∈ argmin
h∈H

R̂(h) h0 ∈ argmin
h∈H0

R̂(h)

We evaluate the gains of personalization for a personalized model h for each group. As part of439

this evaluation, we examine how the performance of h for group g changes when they are assigned440

predictions that are personalized for another group g′ – i.e., the predictions that group g would receive441

by “misreporting" their group membership as g′. We represent this formally by using hg′ := h(·, g′)442

to denote a personalized model where group attributes are fixed to g′. Given a personalized model h,443

we measure its empirical risk and true risk for group g when they report group membership as g′ as:444

R̂g(hg′) :=
1

ng

∑
i:gi=g

` (h(xi, g
′), yi) Rg(hg′) := E [` (h(x, g′), y) | G = g] .

We assume that groups prefer models that assign more accurate predictions as measured in terms445

of true risk. We express the preferences of group g between h and h′ using the gain measure446

∆g(h, h′) := Rg(h)−Rg(h′).447

B Related Work448

Our work is related to several streams of research in algorithmic fairness. We propose to check the449

quality of personalization using preference-based notions of fairness [75, 68, 43, 70, 20]. We focus450
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on intersectional groups [c.f., 40, 35], which are more granular than those considered in the literature451

yet large enough to estimate performance [c.f., 22, 5]. We study models that use group attributes to452

assign more accurate predictions over a heterogeneous population. Several works highlight the need453

to account for group membership [75, 23, 16, 46, 50, 72], observing that it is otherwise impossible454

for a model to achieve parity – i.e., to perform equally well for all groups [33, 74, 76, 28, 1, 55, 14].455

Parity-based methods are ill-suited for personalization since they equalize performance by reducing456

performance for groups for who the model performs well, rather than improving performance for457

groups for who the model performs poorly [50, 36, 58, 51, 52].458

We study personalization in models that encode personal characteristics through categorical attributes,459

which are widely used across medicine, consumer finance, and criminal justice (see use cases in §2).460

In medicine, for example, many models are fit using logistic regression with a one-hot encoding of461

categorical attributes [63, 71, 25]. Existing work that evaluates the gain of personalization often does462

so at population-level rather at the level of group who provide personal data [37, 65]. This population-463

level focus characterizes technical work in this area: recent methods use categorical attributes to464

improve population-level performance by accounting for heterogeneity – e.g., by automatically465

including higher-order interaction effects [11, 49, 69] or recursively partitioning data [24, 12, 10, 9].466
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C Truthful Self-Reporting467

Remark 2 (Truthful Self-Reporting). Consider a prediction task where each person reports their468

group membership to a personalized model. Let ri denote the self-reported group membership of469

person i where:470

ri = gi ⇔ i reports truthfully ri ∈ G \ {gi} ⇔ i misreports ri =?⇔ i withhold

If a personalized model h : X × G → Y guarantees the fair use of a group attribute G then each
person would opt to truthfully report as this strategy would maximize their expected performance:

gi ∈ argmin
ri∈G∪{?}

E [` (h(x, ri), yi) | G = gi] .

Truthful reporting incentives reflect basic principles regarding consent in data privacy rights. In471

effect, a personalized model that exhibits a fair use violation for a specific group uses their group472

membership in a way that is coercive. If a group were allowed to report their personal information to473

the model at prediction time, they would opt to withhold or misreport this information. With respect474

to Definition 1, rationality ensures that a majority of g prefer to report group membership rather than475

withhold it. Envy-freeness ensures that a majority of group g prefer to report group membership476

rather than misreport it.477

D Testing & Verification478

Point estimates of the gains of personalization are not reliable, especially for small groups. In a479

prediction task where a personalized model performs 5% worse than a generic model, a 5% drop480

could represent 5 mistakes for a group with 100 samples, or 200 mistakes for a group with 4000481

samples. Measuring the statistical significance of gains can help us distinguish between such cases482

and inform our use of group attributes. In some applications, a significant fair use violation could483

warrant the need for a new model. In others, we may wish to ensure a significant gain to use a group484

attribute in the first place.485

In practice, we check for a rationality violation using a one-sided hypothesis test of the form:486

H0 : R(h0)−R(hg) ≤ 0 HA : R(h0)−R(hg) > 0

Here, the null hypothesis H0 assumes that group g prefers hg to h0 by default. Thus, we reject H0487

when there is enough evidence to support a rationality violation for g in a held-out dataset.488

We can use an inverted setup where HA : R(h0) − R(hg) < 0 to check for gains from personal-489

ization.The testing procedure varies based on the performance metric used to evaluate the gains of490

personalization. In general, we can apply a bootstrap hypothesis test [18]. In some cases, there491

exist more powerful tests for specific performance metrics [see e.g., the McNemar test for accuracy492

19]. We can repeat these tests across multiple groups to check for envy-freeness, or to check for all493

conditions in Definition 1. In the latter regimes, we can control for the false discovery rate using a494

standard Bonferroni correction[21], which is suitable even for non-independent tests.495

E Failure Modes of Personalization496

In this Appendix, we describe additional mechanisms that lead personalized models to exhibit fair497

use violations. The mechanisms below reflect failure modes that arise in later stages of the machine498

learning pipeline, and that are more difficult to address through interventions.499

E.1 Model Selection500

E.2 ERM with a Surrogate Loss Function501

Consider a setting where we want a personalized model that maximizes classification accuracy – i.e.,502

one that minimizes the 0–1 loss. If we fit this classifier using a linear SVM – e.g., by solving an ERM503

problem that optimizes the hinge loss – the approximation error between the 0-1 loss and the hinge504

loss can produce a fair use violation (see Figure 5). This example is specifically designed to avoid505

fair use violations that stem from model misspecification.506
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Generic
h0 = h0(x1) = h0(x2)

Personalized Model (Selected)
hS(x1, g)

Personalized Model (Discarded)
hD(x2, g)

Data Pred. Mistakes Pred. Error Gain Pred. Error Gain

(g, x1, x2) n+ n− h0 R(h0) hS R(hS) ∆Rg(h0, hS) hD R(hD) ∆Rg(h0, hD)

(0, 0, 0) 0 30 − 0 − 0 0 + 30 −30
(0, 0, 1) 0 0 − 0 − 0 0 − 0 0
(0, 1, 0) 0 20 − 0 + 20 −20 + 20 −20
(0, 1, 1) 0 0 − 0 + 0 0 − 0 0
(1, 0, 0) 25 0 − 25 + 0 25 + 0 25
(1, 0, 1) 0 0 − 0 + 0 0 − 0 0
(1, 1, 0) 15 0 − 15 + 0 15 + 0 15
(1, 1, 1) 0 0 − 0 − 0 0 − 0 0

Total 40 50 40 35 5 50 −10

g = 0 0 50 0 20 −20 50 −50
g = 1 40 0 40 15 25 0 40

Figure 4: Standard model selection criteria can lead to fair use violations. We consider a 2D classification
task with two groups g ∈ {0, 1} where we need a model that can use at most one of the binary attributes
(x1, x2) ∈ {0, 1}2. We fit a generic model and a personalized model with a one-hot encoding of group
membership choosing the variable that minimizes the overall error rate. Here, each group performs better under
different choices, defaulting to choice that benefits the majority group.

Data for Group A Data for Group B

Figure 5: Fair use violations resulting from the use of surrogate loss function in ERM. Here, we are given data
for classification task with features x = (x1, x2) and a group attribute g = {A,B}. We fit a linear SVM hg

by optimizing the hinge loss for a prediction task where evaluate the gains of personalization in terms of the
error rate (i.e., 0-1 loss). In this case, the personalized model produces a fair use violation for Group B due
to an outlier xO . We plot the data for group A and group B separately. Each plot shows the generic classifier
(h0; grey) and the personalized classifiers for the corresponding group (hA or hB ; black). As a baseline for
comparison, we show the personalized models that we would obtain by optimizing an exact loss function (i.e.,
0-1 loss, which matches the performance metric that we use to evaluate the gains for personalization). As shown,
we would expect to avoid this violation had we fit a model by optimizing the 0–1 loss directly.
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E.3 Generalization & Dataset Shifts507

Fair use violations can arise in deployment. Small samples may significantly distort the relative508

prevalence of each group, leading standard empirical risk minimization to fit a suboptimal generic509

model or personalized model (see Figure 6). Fair use violations can also arise as a result of changes510

in the data distribution [i.e., dataset shift 61, 29, 32] (see Figure 7)511

Group Training Data Data Distribution Model Predictions Observed Performance True Performance

g1 g2 n+ n− n+ n− h0(x) hg(x, g) Rg(h0) Rg(hg) ∆g(hg, h0) Rg(h0) Rg(hg) ∆g(hg, h0)

0 0 65 60 130 120 + + 60 60 0 120 120 0
1 0 60 65 120 130 + − 65 60 5 130 120 10
0 1 60 65 130 120 + − 65 60 5 120 130 −10
1 1 70 55 140 110 + + 55 55 0 110 110 0

Total 255 245 520 480 − N/A 245 235 10 480 470 0

Figure 6: Fair use violations can arise when personalizing models on small samples. Here, we show a 2D
classification task in which a personalized model only exhibits fair use violations in deployment. Here, group
(1, 0) experiences an gain once the model is deployment. In contrast, group (0, 1) experiences a fair use violation
as a result of sampling error.

Group Training Data True Distribution Model Predictions Train Performance True Performance

g1 g2 n+ n− n+ n− h0(x) hg(x, g) Rg(h0) Rg(hg) ∆g(hg, h0) Rg(h0) Rg(hg) ∆g(hg, h0)

0 0 20 0 20 0 + + 0 0 0 0 0 0
1 0 5 25 5 25 + − 25 5 20 25 5 20
0 1 5 25 30 25 + − 25 5 20 20 30 −10
1 1 20 0 20 0 + + 0 0 0 0 0 0

Total 50 50 75 45 + N/A 50 10 40 45 35 10

Figure 7: Label shift produces a fair use violation. Here, we train a linear classifier on a dataset with [one
binary feature and one binary group attribute]. As shown, personalization leads to overall improvement reducing
aggregate reduce from 50 to 24 and group-specific improvement on the training data. However, not all groups
perform equally well in deployment. While groups (0, 1) and (1, 1) see improvements, a violation (red) occurs
for group (1, 0) due to the label shift where positive examples are no longer present meanwhile they were the
majority in the training data.
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GROUP TEST AUC INTERVENTIONS

g Rg(hg) ∆g Assign h0 Assign hdcp

female, black 0.463 0.024 0.024 0.334
female, white 0.846 0.004 0.004 0.004
female, other 0.860 -0.003 0.000 0.057
male, black 0.767 -0.001 0.000 0.104
male, white 0.767 0.004 0.004 0.038
male, other 0.836 -0.002 0.000 0.017

Total 0.800 0.006 - -

TEST ERROR INTERVENTION

Rg(hg) ∆g Assign h0 Assign hdcp
g

52.2% 6.8% 6.8% 37.3%
21.7% 2.0% 2.0% 2.0%
25.5% 1.3% 1.3% 14.8%
34.0% -5.2% 0.0% 15.6%
29.2% 1.3% 1.3% 3.7%
27.9% -5.0% 0.0% 1.3%

28.3% 0.3% - -

TEST ECE INTERVENTIONS

Rg(hg) ∆g Assign h0 Assign hdcp
g

31.6% 2.3% 2.3% 12.3%
10.2% 1.9% 1.9% 2.1%
15.5% 0.9% 0.9% 5.0%
20.1% -2.0% 0.0% 4.9%
10.3% 1.2% 1.2% 1.2%
15.4% -1.6% 0.0% 0.0%

4.7% 0.2% - -

Table 3: Fair use evaluation of a personalized logistic regression model with a one-hot encoding of group
attributes for kidney. As shown, personalization can improve overall performance while reduces performance
for specific groups (red). This result holds across all performance metrics. In such cases, we can resolve fair use
violations and improve the gains from personalization by assigning personalized predictions to each group with
multiple models. Here, we show the gains when we assign each group the most accurate predictions from either
the personalized model hg or a generic classifier h0, assign each group the most accurate predictions from the
personalized model hg or a decoupled classifier hdcp. We highlight cases this intervention led to a gain in green,
and cases where it resolved a violation in yellow.

F Mortality Prediction for Acute Kidney Injury512

In this section, we evaluate the gains of personalization in model to predict mortality for patients with513

acute kidney injury. We use our results to discuss how fair use evaluations as form of auditing [53]514

can inform the use of race in clinical prediction models, and describe simple interventions to mitigate515

harm.516

F.1 Setup517

We consider a classification task to predict mortality for patients who receive continuous renal518

replacement therapy while in the ICU. The data consists of records for n = 2066 patients from519

MIMIC III and IV [38]. Here, yi = +1 if patient i dies in the ICU and Pr(yi = +1) = 51.1%. Each520

patient has k = 2 group attributes: sex ∈ {male, female} and race ∈ {white, black, other}521

and d = 78 features related to their health, lab tests, length of stay, and potential for organ failure.522

We train and evaluate personalized models using the same setup as Section 4.1.523

F.2 Results524

We show the performance of a personalized logistic regression model with a one-hot encoding in525

Table 3, and present results for other model classes in Appendix G. Overall, our findings show that526

personalization yields uneven gains at a group level. As in Section 4.2, we observe fair use violations527

across performance metrics and model classes. In this case, for example, the gains in error across528

range from -5.2% to 6.8%, and two groups experience statistically significant fair use violations:529

(male, black) and (male, other).530

On the Use of Race Clinical prediction models include group attributes when there is a “plausible"531

causal relationship between group membership and the outcome of interest. These norms have led to532

development of widely-used clinical prediction models that use race and ethnicity [25, 71]. Recently,533

Vyas et al. [71] discuss how these models can inflict harm and urge physicians to check if “race534

correction is based on robust [statistical] evidence."535

Our results highlight how fair use evaluation can provide evidence that serves as a barrier to “race536

correction" in such cases. Here, checking rationality shows that a race-specific model can reduce537

performance for specific groups – e.g., (male, black) and (male, other). Checking envy-538

freeness reveals that certain groups expect better performance by misreporting their group membership539

– e.g., (male,other) would experience 5.6% gain in test error by reporting any other race.540

Even in cases where including race can improve performance, we note that race may act as a proxy541

for broader social determinants of health. Thus, a model that includes race may act as a “smoke542

screen" in that it attributes differences in health outcomes to an immutable factor, and perpetuates543

inaction on the root causes of health disparities [57]. Given these drawbacks, the starting point should544

be evidence of gain rather than harm.545
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F.3 Interventions546

We use our results to simple interventions that can resolve fair use violations by assigning predictions547

from different models at prediction time. These interventions are admittedly simple, but have the548

benefit of being broadly applicable.549

Assigning a Generic Model We assign groups who are subject to a fair use violation the predictions550

from a generic model h0. This intervention is guaranteed to resolve all fair use violations in a way551

that strictly improves performance, and may further reduce the use of personal data in prediction. In552

this case, it resolves all rationality violations (2/3/2 in terms of error/AUC/ECE respectively). We553

also observe a potential to reduce data use: seeing how both (male, black) and (male, other)554

experience a fair use violation in terms of error, we see that we could avoid soliciting race for all555

male patients and reduce test error by 1% (as the loss in accuracy for (white, male) are offset by556

the gain in accuracy for (male,black) and (male, other).557

Assigning a Decoupled Model We assign groups who experience a fair use violation the predic-558

tions from a decoupled model hdcp
g – i.e., a model fit using only data from their group. While this559

approach may not resolve fair use violations, it can produce surprisingly large gains as decoupling560

effectively personalizes the entire model development pipeline. Our results in Table 3 show the561

potential gains of this intervention across performance metrics. Focusing on error, we see that one can:562

(1) eliminate fair use violations for 2 groups (male,black) and (male,other); (2) greatly improve563

the gains for 1 group, e.g., (female,black) who experience a gain of 37.3%; and (3) improve564

overall gains by 6.2%. We observe similar effects across other model classes and configurations.565

G Supporting Material for Sections 4 & F566

In this Appendix, we provide: (i) additional information on the datasets used in Sections 4 and F; (ii)567

results showing the gains of personalization when fitting personalized neural nets and random forests.568

G.1 Additional Information on Datasets569

Dataset n d G Prediction Task Reference
apnea 1, 152 26 Age× Sex = {<30, 30 to 60, 60+} × {Male, Female} patient has obstructive sleep apnea Ustun et al. [66]

cardio_eicu 1, 341 49 Age× Sex = {Young, Old} × {Male, Female} patient with cardiogenic shock dies Pollard et al. [60]

cardio_mimic 5, 289 49 Age× Sex = {Young, Old} × {Male, Female} patient with cardiogenic shock dies Johnson et al. [38]

heart 181 26 Age× Sex = {Young, Old} × {Male, Female} patient has heart disease Detrano et al. [17]

kidney 2066 78 Sex× Race = {Male, Female} × {White, Black, Other} mortality of patient on CRRT Johnson et al. [38]

mortality 21, 139 484 Age× Sex = {< 30, 30 to 60, 60+} × {Male, Female} mortality of patient in ICU Harutyunyan et al. [34]

saps 7, 797 36 Age× HIV = {≤ 30, 30+} × {Positive, Negative} mortality of patient in ICU Le Gall et al. [48]

Table 4: Overview of classification datasets used to train clinical prediction models in Sections 4 and F. We
describe the conditions that lead to yi under each prediction task. All datasets used are publicly available,
have been deidentified, and inspected to ensure that they contain no offensive content. In cases where data
access requires consent or approval from the data holders, we have followed the proper procedure to obtain such
consent. Datasets based on MIMIC-III [38] (kidney, mortality) and eICU [60] (cardio) are hosted on
PhysioNet under the PhysioNet Credentialed Health Data License. The heart dataset is hosted on the UCI ML
Repository under an Open Data license. The apnea and saps datasets must be requested from the authors
of the papers listed above [48, 66]. We minimally process each dataset to impute the values of missing points
(using mean value imputation), and repair class imbalances across intersectional groups (to eliminate “trivial"
fair use violations that occur due to class imbalance).

apnea We use the obstructive sleep apnea (OSA) dataset outlined in Ustun et al. [66]. In this570

dataset, we have a cohort of 1152 patients where 23% have OSA. We use all available features (e.g.571

BMI, comobordities, age, and sex) and binarize them, resulting in 26 binary features.572

cardio_eicu & cardio_mimic Cardiogenic shock is a serious acute condition where the heart573

cannot provide sufficient blood to the vital organs. Using the eICU Collaborative Research Database574

V2.0 [60] and MIMIC-III database [38], we create a cohort of patients who have cardiogenic shock575

during the course of their intensive care unit (ICU) stay. We use an exhaustive set of clinical criteria576
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based on the patient’s labs and vitals (i.e. presence of hypotension and organ hypoperfusion). The goal577

is to predict whether a patient with cardiogenic shock will die in hospital. As features, we summarize578

(minimums and maximums) relevant labs and vitals (e.g. systolic BP, heart rate, hemoglobin count)579

of each patient from the period of time prior to the onset of cardiogenic shock up to 24 hours. This580

results in a dataset containing 8,815 patients, 13.5% of whom die in hospital.581

heart We use the Heart dataset from the UCI Machine Learning Repository, where the goal is582

to predict the presence of heart disease from clinical features. It consists of 303 patients, 54.5% of583

which have heart disease. We use all available features, treating cp, thal, ca, slope and restecg as584

categorical, and all remaining features as continuous.585

kidney Using MIMIC-III and MIMIC-IV [38], we create a cohort of patients who were given586

Continuous Renal Replacement Therapy (CRRT) at any point during their ICU stay. For patients with587

multiple ICU stays, we select their first one. We define the target as whether the patient dies during588

the course of their selected hospital admission. As features, we select the most recent instances of589

relevant lab measurements (e.g. sodium, potassium, creatinine) prior to the CRRT start time, along590

with the patient’s age, the number of hours they have been in ICU when CRRT was administered,591

and their Sequential Organ Failure Assessment (SOFA) score at admission. We treat all variables as592

continuous with the exception of the SOFA score, which we treat as ordinal. This results in a dataset593

of 1,722 CRRT patients, 51.1% of which die in-hospital. We define protected groups based on the594

patient’s sex and self-reported race and ethnicity.595

mortality We follow the cohort creation steps outlined by Harutyunyan et al. [34] for their596

in-hospital mortality prediction task. We select the first ICU stay longer than 48 hours of patients597

in MIMIC-III [38], and aim to predict whether they will die in-hospital during their corresponding598

hospital admission. As features, we bin the time-series lab and vital measurements provided by599

Harutyunyan et al. [34] into four 12-hour time-bins, and compute the mean in each time-bin. We600

additionally include the patient’s age and sex as features. This results in a cohort of 21,139 patients,601

13.2% of whom die in hospital.602

saps The Simplified Acute Physiology Score II (SAPS II) is a risk score that was developed for603

predicting mortality in the ICU [48]. This study was conducted in 137 medical centers across 12604

countries contains 7,797 patients. For each patient we have access to demographics, comorbidities,605

and vitals which are used to predict the risk of mortality in the ICU. For group attributes we use age606

and HIV status. The percentage of patients in the dataset who experience mortality is 21.8%.607

G.2 Results for Neural Nets & Random Forests608

In this Appendix, we present tables that summarize the gains of personalization for neural networks609

and random forests. The following tables are analogous to Table 1, except that they also include610

results for the kidney dataset in Section F.611

G.2.1 Neural Nets612

For our neural network models we trained them with two hidden layers of size 5 and 2 and learning613

rate of 1−3. Additionally, we applied Platt scaling [59] the outputs of the neural network model to614

ensure that they were calibrated. We note similar findings described in Sections 4.2 and Section F for615

neural network models. For example, when looking at test error on cardio_eicu we are able to616

eliminate all fair use violations by decoupling models. Additionally, across datasets we are able to617

identify statistically significant fair use violations and gains as noted by the gains and violations rows.618

619
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Test AUC Test ECE Test Error

Dataset Metrics 1Hot All DCP 1Hot All DCP 1Hot All DCP

apnea

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.705
-0.012

0.114 / -0.051
3/3
1/0

0.524
-0.193

0.029 / -0.501
5/5
0/0

0.622
-0.095

-0.068 / -0.328
6/6
2/1

6.3%
-0.7%

10.9% / -8.2%
3/3
2/4

2.5%
3.2%

24.0% / 1.5%
5/5
5/5

5.3%
0.4%

9.8% / -5.7%
3/3
5/5

36.7%
-3.3%

8.4% / -5.0%
1/2
6/6

50.6%
-17.2%

7.1% / -43.5%
1/1
6/6

41.5%
-8.1%

-2.2% / -50.5%
0/0
6/6

cardio_eicu

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.739
0.001

0.067 / -0.003
0/0
0/0

0.738
-0.001

0.029 / -0.012
1/1
0/0

0.687
-0.051

0.007 / -0.090
3/3
2/2

4.5%
2.3%

2.6% / -1.2%
3/3
1/1

5.5%
1.4%

2.4% / -1.9%
3/3
2/2

5.4%
1.5%

4.9% / -3.0%
2/2
2/2

31.5%
1.6%

8.4% / -0.5%
2/3
4/4

31.8%
1.3%

5.5% / -1.3%
2/3
4/4

36.6%
-3.5%

0.1% / -10.2%
0/0
4/4

cardio_mimic

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.849
0.004

0.018 / -0.005
1/1
0/0

0.849
0.004

0.012 / -0.000
0/0
1/1

0.836
-0.009

0.004 / -0.014
2/2
4/4

3.1%
1.1%

2.1% / -0.4%
2/2
4/4

4.7%
-0.4%

1.4% / -2.3%
2/2
3/3

3.3%
1.0%

2.5% / -0.3%
2/2
3/3

23.7%
0.6%

2.0% / -1.1%
3/3
4/4

24.0%
0.2%

2.3% / -2.4%
2/2
4/4

23.9%
0.4%

1.3% / -1.4%
2/2
4/4

heart

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.457
-0.090

0.061 / -0.392
2/2
2/1

0.736
0.189

0.317 / 0.023
0/0
1/0

0.554
0.007

0.257 / -0.023
2/1
3/1

22.7%
-9.1%

4.8% / -29.8%
1/1
1/1

17.2%
-3.6%

9.8% / -9.7%
1/1
4/4

18.1%
-4.5%

6.2% / -14.8%
2/2
0/0

52.6%
-1.3%

1.6% / -9.2%
0/2
4/4

27.6%
23.7%

38.0% / 4.6%
4/4
4/4

38.2%
13.2%

28.1% / 7.1%
3/4
4/4

kidney

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.774
0.003

0.039 / -0.057
2/2
1/0

0.774
0.004

0.026 / -0.095
3/3
1/0

0.762
-0.009

0.033 / -0.152
4/4
4/4

6.0%
-0.1%

2.8% / -1.6%
2/2
3/5

6.2%
-0.4%

3.7% / -2.5%
2/2
3/3

7.3%
-1.4%

0.8% / -5.4%
1/1
2/2

29.2%
-2.1%

-0.6% / -7.5%
0/0
6/6

31.0%
-3.8%

4.7% / -5.4%
1/1
6/6

30.9%
-3.7%

-1.5% / -18.9%
0/0
6/6

mortality

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.870
-0.004

0.025 / -0.019
3/3
6/2

0.869
-0.004

-0.001 / -0.015
5/5
4/4

0.895
0.022

0.039 / 0.005
0/0
6/6

2.8%
0.6%

2.7% / -1.7%
3/3
1/5

4.3%
-0.9%

0.5% / -1.2%
2/2
4/4

3.0%
0.5%

8.0% / 0.1%
5/5
0/0

20.9%
-0.4%

5.1% / -2.2%
3/3
6/6

21.5%
-1.0%

-0.3% / -2.3%
0/0
6/6

17.7%
2.8%

12.6% / 0.1%
6/6
6/6

saps

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.157
-0.037

0.101 / -0.041
3/2
3/1

0.872
0.678

0.745 / 0.657
0/0
3/1

0.758
0.565

0.743 / -0.273
1/1
0/0

37.8%
7.5%

27.1% / 1.5%
4/4
3/3

7.8%
37.5%

43.2% / -3.5%
3/3
3/3

31.5%
13.9%

49.9% / 6.4%
4/4
3/3

63.4%
-1.8%

0.0% / -5.8%
0/1
4/4

21.7%
39.9%

53.9% / 1.4%
3/4
4/4

48.9%
12.7%

22.0% / 0.0%
3/4
4/4

Table 5: Performance of personalized neural network models on all datasets. We show the gains of personaliza-
tion in terms of test AUC, ECE, and error. We report: model performance at the population level, the overall
gain of personalization, the range of gains over m intersectional groups, and the number of rationality and
envy-freeness gains/violations (evaluated using a bootstrap hypothesis test at a 10% significance level).

G.2.2 Random Forests620

For our random forest models, we trained each with the following hyperparameters: 100 estimators,621

max depth of 20, minimum samples per split is 5, and minimum number of samples in each leaf is 2.622

For random forests, we expect that these models will perform well when optimizing error but will623

not necessarily have high AUC or be well calibrated (i.e. low ECE). We note this in the Table below.624

For example, using an intersectional encoding with random forests in effecitve in minimizing fair625

use violations on error across multiple datasets (e.g. apnea, kidney). As noted with both logistic626

regression and neural networks, we are able to reliably identify statistically significant violations.627
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Test AUC Test ECE Test Error

Dataset Metrics 1Hot All 1Hot All 1Hot All

apnea

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.757
0.002

0.064 / -0.001
1/1
4/0

0.759
0.004

0.020 / -0.009
2/2
4/2

7.7%
-0.4%

4.4% / -2.7%
2/2
4/5

7.1%
0.6%

6.8% / -0.3%
3/3
3/3

30.5%
0.8%

9.8% / -2.8%
5/5
6/6

31.2%
-0.5%

4.3% / -1.5%
2/4
6/6

cardio_eicu

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.764
0.001

0.009 / -0.022
1/1
1/1

0.772
-0.000

0.014 / -0.028
2/2
3/3

7.8%
-1.3%

3.7% / -0.8%
2/2
3/3

8.7%
-0.7%

1.0% / -3.5%
1/1
3/3

30.8%
1.0%

4.9% / -1.6%
3/3
4/4

30.2%
0.4%

1.4% / -1.8%
1/3
4/4

cardio_mimic

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.847
-0.003

-0.001 / -0.004
4/4
2/2

0.847
0.001

0.002 / -0.001
2/2
2/1

9.2%
0.4%

1.2% / 0.2%
4/4
1/1

9.7%
-0.4%

0.3% / -0.9%
1/1
3/3

24.0%
-0.2%

0.8% / -1.1%
1/1
4/4

24.3%
-0.3%

0.3% / -1.4%
1/1
4/4

heart

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.897
-0.006

0.006 / -0.025
3/1
4/0

0.896
-0.000

0.000 / -0.026
4/1
2/0

12.0%
4.6%

5.5% / -1.8%
2/2
2/2

14.4%
-2.7%

9.3% / -5.1%
1/1
2/2

17.1%
-2.6%

9.6% / -10.8%
1/2
4/4

22.4%
-2.6%

5.6% / -10.7%
0/2
4/4

kidney

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.775
0.001

0.010 / -0.017
3/2
3/0

0.778
0.003

0.009 / -0.019
3/3
3/2

8.8%
-0.7%

2.0% / -1.9%
1/1
4/6

9.0%
-1.1%

1.2% / -3.8%
1/1
3/3

29.2%
1.2%

5.3% / -0.9%
4/5
6/6

29.1%
1.0%

2.0% / -3.1%
2/5
6/6

mortality

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.806
0.002

0.005 / 0.001
0/0
6/0

0.806
-0.001

0.012 / -0.004
2/2
3/1

10.9%
-0.6%

1.4% / -1.2%
1/1
3/5

10.8%
-0.0%

1.5% / -3.1%
2/2
2/6

27.2%
0.3%

0.9% / -0.5%
3/3
6/6

27.1%
-0.1%

0.7% / -1.8%
3/4
6/6

saps

Personalized
Gain

Best/Worst Gain
Rat. Gains/Viols

EF Gains/Viols

0.879
-0.002

0.000 / -0.050
3/2
3/1

0.878
-0.002

0.050 / -0.002
2/1
4/2

4.6%
0.0%

11.2% / -1.6%
2/2
4/4

4.9%
0.1%

0.2% / -3.5%
2/2
4/4

20.1%
-0.4%

0.0% / -10.0%
0/1
4/4

20.0%
-0.4%

0.2% / -5.4%
0/2
4/4

Table 6: Performance of personalized random forest models on all datasets. We show the gains of personalization
in terms of test AUC, ECE, and error. We report: model performance at the population level, the overall gain of
personalization, the range of gains over m intersectional groups, and the number of rationality and envy-freeness
gains/violations (evaluated using a bootstrap hypothesis test at a 10% significance level).
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