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Abstract

Multimodal foundation models hold significant potential for automating radiology
report generation, thereby assisting clinicians in diagnosing cardiac diseases. How-
ever, generated reports often suffer from serious factual inaccuracy. In this paper,
we introduce a fact-aware multimodal retrieval-augmented pipeline in generating
accurate radiology reports (FactMM-RAG). We first leverage RadGraph to mine
factual report pairs, then integrate factual knowledge to train a universal multimodal
retriever. Given a radiology image, our retriever can identify high-quality reference
reports to augment multimodal foundation models, thus enhancing the factual
completeness and correctness of report generation. Experiments on two benchmark
datasets show that our multimodal retriever outperforms state-of-the-art retrievers
on both language generation and radiology-specific metrics, up to 6.5% and 2%
score in F1CheXbert and F1RadGraph. Further analysis indicates that employing
our factually-informed training strategy imposes an effective supervision signal
without relying on explicit diagnostic label guidance, and successfully propagates
fact-aware capabilities from the multimodal retriever to the multimodal foundation
model in radiology report generation.

1 Introduction

Within hospitals worldwide, chest radiology serves as a critical technique in identifying cardiac
diseases and abnormalities. Results of a chest radiograph are typically consolidated in a radiology
report, including the source X-ray and a radiologist-produced findings section detailing clinical
observations. Manually generating these reports, however, can be both time-consuming and
potentially inaccessible in under-resourced hospitals [18, 39]. Recent multimodal foundation models
have exhibited remarkable capabilities in challenging healthcare tasks, motivating an automation of
this process to enhance physicians’ efficiency on clinical decision-making and improve patient health
outcomes [25, 31, 40, 43, 57].

Although prior medical multimodal foundation models have demonstrated promising capa-
bilities on report generation given the radiology image, they still suffer from serious hallucinations by
generating factually inaccurate reports [1, 32, 33]. Factual correctness is especially critical in chest
radiology domains, as minute textual differences can drastically invert radiology report meaning
and downstream prescribed treatments [7, 28, 46]. Retrieval-Augmented Generation (RAG) has
emerged as a popular paradigm to address this issue by grounding text generation with retrieved
relevant knowledge given a query [4, 11, 23]. However, developing medical multimodal retrievers
remains challenging, requiring retrievers to bridge the gap between symptomatic image semantics
and factually-equivalent report text.
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To capture fine-grained details in chest radiographs and improve the factual completeness
of generated reports, we introduce FactMM-RAG, a fact-aware multimodal retrieval-augmented
pipeline for generating accurate radiology reports given a radiology image. By designing a novel
report pair-mining procedure incorporating factual knowledge, we develop a fact-aware retriever
to augment multimodal foundation models in generating accurate chest X-ray radiology reports.
Specifically, we first leverage RadGraph [20] to mine factually-oriented report pairs by annotating
consistent radiology entities and relations between query and reference reports with certain
abnormalities. Next, we train a universal multimodal encoding architecture through mined report
pairs to conduct multimodal dense retrieval. Given an unseen patient’s radiology image, our retriever
encodes it and searches for the most similar factually-informed reference report from an available
report corpus. Passing them together into a multimodal foundation model unlocks its fact-aware
potential to generate more accurate radiology reports.

Our experiments reveal that our retriever outperforms all state-of-the-art retrievers in both
language generation and clinically relevant metrics on the MIMIC-CXR and CheXpert datasets,
achieving up to 6.5% and 2% score in F1CheXbert and F1RadGraph for final RAG evaluation.
We also investigate our retriever’s fact-aware capability controlled by factual similarity thresholds
and confirm that our factually-informed training strategy can impose a useful supervision signal
without relying on explicit diagnostic label guidance. Further analysis through retrieval evaluation
metrics shows that the fact-aware capability of our retriever can be effectively propagated to the
multimodal foundation models. Lastly, our case study highlights that among reports describing the
same symptom from different retrievers, those generated by our model are more accurate and achieve
greater factual correctness.

Our main contributions can be summarized as follows:

• We propose a fact-aware medical multimodal retriever to augment multimodal foundation
models in generating accurate chest X-ray radiology reports.

• We design a method for mining factually-informed radiology report pairs that trains multi-
modal encoders to retrieve high-quality reference reports.

• We demonstrate that on two benchmark datasets, our medical multimodal retriever out-
performs state-of-the-art medical multimodal retrievers on both language generation and
clinically relevant metrics.

The rest of this paper is organized as follows. We review related work in in Section 2. We discuss the
pipeline of FactMM-RAG in Sections 3. Section 4 and 5 discuss our experimental setup and results.

2 Related Work

Retrieval Augmented Generation. Retrieval Augmented Generation, utilizing external knowledge
to enhance language models, has shown great promise in text-generation performance on factual
accuracy especially for Open-Domain QA. [2, 19]. Guu et al. [12], Lewis et al. [23] involve
end-to-end training through both generators and retrievers; Shi et al. [37], Yu et al. [51] adapt the
end-to-end pattern by employing black-box LLM training signal propagation for retriever tuning.
Further works have expanded RAG to multiple modalities, employing unified image-text encoders
[34] or separate pretrained encoders [9, 35] and plugging retrieved documents into multimodal
foundation models [4, 15]. Yasunaga et al. [47] similarly integrates multimodal retrieval with both
text and image generation capabilities.

Medical Multimodal Retriever. Joint training of image-text pairs in a shared embedding
space, as exemplified by CLIP [34], facilitates visual and textual modality interactions, providing
flexible representations for general-domain downstream tasks. Adapting general-domain multimodal
retrievers to medical domains, however, is non-trivial due to the necessity of specialized knowledge.
Zhang et al. [55] introduces an unsupervised approach for radiology image representation
learning from paired text descriptions. Huang et al. [16] leverages global image-report and
local sub-region features for multimodal retrieval and classification. Wang et al. [44], You et al.
[48] propose medical knowledge extraction for constructing contrastive learning image-text
pairs. Zhang et al. [52] addresses the limited diversity within medical datasets, curating a
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Figure 1: An overview of the FactMM-RAG system. It mainly contains three stages: (1) Leverag-
ing RadGraph to characterize each radiology report and mine factually-informed report pairs; (2)
Integrating factual knowledge into the training of the universal multimodal retriever; (3) Given the
radiology image, employing the fact-aware multimodal retriever to search for factually-informed
reference reports and augmenting the multimodal foundation model in generating accurate radiology
reports.

large biomedical image-text collection towards a biomedical multimodal foundation model.
Nevertheless, these existing medical multimodal retrievers neglect specific image information and do
not adequately emphasize factual accuracy, resulting in imprecision when retrieving radiology reports.

Medical Multimodal Foundation Model. Significant efforts have been made in applying
multimodal foundation models to the medical imaging domain [25, 31, 40, 43]. As chest X-ray
radiology is the most commonly performed imaging examination, tailored medical multimodal
foundation models for this critical area has gathered much attention [3, 5, 6, 42, 45]. Jain et al.
[20] advances this area by designing a novel information extraction schema to structure radiology
reports from chest radiographs; Delbrouck et al. [7], Miura et al. [30] take a step forward, using
reinforcement learning from semantic rewards to improve the factual quality of generated radiology
reports; Chen et al. [6] recently has also developed an instruction-tuned multimodal foundation
model capable of sophisticated interpretation and analysis of chest X-rays.

One closely related line of work to ours is retrieval-based radiology report generation given
only radiology images. For instance, Li et al. [24] proposes a retrieval policy module to update
radiology reports via hierarchical reinforcement learning; Endo et al. [10] employs image-text
embeddings from contrastive learning for retrieval-augmented radiology report generation; Ramesh
et al. [36] proposes synthesizing additional reports and reducing hallucinations from reference report
priors to improve report generation.

3 Methodology

In this section, we present the overall methodology of FactMM-RAG. We first detail the training
procedure of our fact-aware medical multimodal retriever in Section 3.1. We then provide the pipeline
for retrieval-augmented radiology report generation with our multimodal retriever in section 3.2. The
overview is illustrated in Figure 1.

3.1 Fact-aware Multimodal Retrieval

This section discusses the training process of the multimodal retriever with factual knowledge. Each
patient in the corpus has a chest X-ray radiology image along with its corresponding report. We
begin by annotating each report using RadGraph [20], then constructing factual report pairs to train
our multimodal retriever. We describe these steps as follows.
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Chest Radiograph Annotation. Since radiology reports are free-text, we utilize the Rad-
Graph information extraction tool to extract structured knowledge graphs from them. Specifically,
RadGraph employs named entity recognition and relation extraction models to identify radiological
entities (e.g. carina, lungs, abnormalities) and the clinical relations between them (e.g. modify,
located at, suggestive of). Each radiology report is then segmented into distinct regions and stored
as [(entity1, entity label1, relation1), (entity2, entity label2, relation2), . . .]. After
characterizing the chest radiograph for each report in the training corpus, we construct factual report
pairs.

Factual Report Pairs Mining. Each report has an associated medical label describing the
symptom. We first utilize the query report to search for other reports with the same symptom,
aiming to eliminate false negatives when constructing report pairs. Rather than solely relying on the
diagnostic labels, we further capture the factually-oriented pathology semantics between different
reports. Following F1RadGraph [20], we calculate the factual similarity s(qtxt, dtxt) between query
report qtxt and other reports dtxt in the annotated format as follows,

s(qtxt, dtxt) =
2 · (q̂txt ∩ d̂txt)

length(q̂txt) + length(d̂txt)
, (1)

where q̂txt, d̂txt denotes reports with only annotated entities and relations in RadGraph structured
form. We then set a strict threshold δ to filter out searched reports with low similarity score:

Nqtxt = {dtxt ∈ D|s(qtxt, dtxt) > δ}. (2)
where Nqtxt

denotes factual positive report pairs for qtxt and D is the total training corpus. Since
each query report is associated with a corresponding radiology image, these factual report pairs can
also be applied to the query report’s radiology image. Next, we train our multimodal retriever with
mined factual report pairs.

Multimodal Dense Retrieval. Following previous work [56], we universally encode each
query image qimg and other image-text pairs (dtxt, dimg) in the training corpus, using one encoder,
MARVEL:

q = MARVEL(qimg); (3)
d = MARVEL(dtxt, dimg), (4)

where each image-text pair is represented as a single embedding. We then model the relevance score
f(q, d) between the query image and other image-text pairs by cosine similarity:

f(q, d) = cos(q,d). (5)
To inject factually-oriented medical knowledge into multimodal retrieval, we train the encoder to
minimize the following loss,

L = −
∑

qimg∈D

∑
d+∈Nqimg

log
ef(q,d

+)/τ

ef(q,d+)/τ +
∑

d− ef(q,d−)/τ
, (6)

where d+ are obtained through factual report pair mining and d− are in-batch negative samples
[22]. Then, we use our multimodal retriever and foundation model to perform retrieval-augmented
radiology finding generation.

3.2 Retrieval Augmentation for Accurate Radiology Report Generation

Given our trained fact-aware multimodal retriever, we encode the query image and each report in the
training corpus. Then, we retrieve the report with the highest relevance score to the query image as
the factually-informed relevant report. Subsequently, we pass the query image along with the relevant
report into a multimodal foundation model to perform retrieval-augmented generation training. The
multimodal foundation model is finetuned by standard autogressive loss,

L = − 1

n
log

n∏
i

pθ(yi|qimg, d
∗
txt, xinstr, y<i), (7)

where qimg is the query image, d∗txt is the retrieved factually-informed relevant report, xinstr is the
prompt instruction, and y is the ground-truth report. During inference, we retrieve a relevant report
from the training corpus using an unseen patient X-ray image, and pass them into the multimodal
foundation model to generate findings with higher factual accuracy.
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4 Experimental Setup

Dataset. Following Delbrouck et al. [8], we use the processed MIMIC-CXR [21] to train both
retriever and foundation model. This dataset contains 125,417 training radiology image-report pairs,
991 validation pairs, and 1,624 test pairs. They are sourced from the Beth Israel Deaconess Medical
Center. CheXpert [17] is another chest X-ray dataset from Stanford Health Care. Since it contains
complete finding reports only for a testing dataset containing 1000 pairs, we use it as zero-shot
evaluation.

Evaluation Metrics. We evaluate our proposed system using both natural language genera-
tion and medically-tailored evaluation metrics. For language fluency measures, we use ROUGE-L
[26] to evaluate the longest common subsequence overlap between the generated and reference
findings, and BERTScore [53] to evaluate non-clinical semantic sentence similarity.

For clinical accuracy measures, we employ CheXbert [38] to generate the ground-truth di-
agnostic labels for finding reports. Following Delbrouck et al. [8], we then calculate the F1CheXbert
[54], which is the F1-score for 5 observations (Cardiomegaly, Edema, Consolidation, Atelectasis,
Pleural Effusion) by comparing the generated report with the reference report’s classifications.
Beyond using the limited diagnostic labels for evaluation, we also adopt F1RadGraph [20] to measure
factual correctness by calculating the overlap in radiological entities and clinical relations between
the generated report and the reference report. See Appendix A for more details.

Baselines. We mainly compare our retriever with other baselines under the multimodal
RAG setting. We include the following baselines, CLIP [34] is a multimodal retriever pretrained
from general-domain image-text pairs; GLoRIA [16] leverages attention-weighted image regions
with contextual words to learn localized and global representations for radiology images and reports;
MedCLIP [44] and CXR-CLIP [48] build on CLIP and utilize diagnostic labels as training signals for
learning radiology image and text representations; BiomedCLIP [52] extends the radiology-specific
dataset and pretrains on a larger magnitude of biomedical data to learn multimodal representations;
Med-MARVEL utilizes universal encoder MARVEL [56] to conduct contrastive learning on each
patient’s self image-report pair without further training on factual image-report pairs.

We also compare our method with non-RAG approaches. "No Retriever" refers to directly
fine-tuning the backbone to generate reports without retrieval augmentation; ORGan [14] first
creates an observation plan, then feeds the plan and radiographs to generate the report through a tree
reasoning mechanism. Upper-bound results using an oracle in training corpus with top-1 factual
similarity to test query report are also presented.

Implementation Details. In our experiments, we use MARVEL [56] as our multimodal
retriever backbone. MARVEL is a language model based on T5-ANCE [50], trained with
modality-balanced hard negatives. We use LLaVA [27] as our multimodal foundation model
backbone. Since each radiology study contains multiple image views for each patient, we select
the frontal view. We also concatenate the finding and impression sections to form the X-ray report.
To reduce training costs and address factual report pair imbalances, we rerank the retrieved reports
by factual similarity and use the top 2 factual report pairs for each query to train our multimodal
retriever. We leave more training details in Appendix A.

5 Evaluation Results

In this section, we present our experimental results. We first evaluate the overall performance between
different retrievers under two settings in section 5.1. Next, we discuss the ablation studies in section
5.2. We then explore the fact-aware capability of our retriever in section 5.3 and section 5.4. Lastly,
we show the superiority of our retriever through a case study in section 5.5.

5.1 Overall Performance

The results of our fact-aware RAG system are shown in Table 1. In MIMIC-CXR, FactMM-RAG
outperforms state-of-the-art retrievers by a significant margin, up to 6.5% in F1CheXbert and 2%
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Table 1: Overall performance of FactMM-RAG and baselines under the multimodal retrieval-
augmentation setting. Models are evaluated by textual similarity and factual similarity between
generated and reference reports. FactMM-RAG outperforms the best baseline with p-value < 0.05.

MIMIC-CXR CheXpert
Model Factual Similarity Textual Similarity Factual Similarity Textual Similarity

F1CheXbert F1RadGraph ROUGE-L BERTScore F1CheXbert F1RadGraph ROUGE-L BERTScore

No Retriever 0.496 0.234 0.294 0.549 0.371 0.173 0.231 0.469
ORGan [14] 0.541 0.240 0.308 0.552 0.431 0.181 0.232 0.470

CLIP [34] 0.507 0.241 0.300 0.552 0.381 0.172 0.231 0.468
GLoRIA [16] 0.476 0.232 0.294 0.543 0.397 0.173 0.231 0.468
MedCLIP [44] 0.517 0.238 0.298 0.549 0.408 0.182 0.238 0.471
CXR-CLIP [48] 0.501 0.243 0.302 0.553 0.406 0.183 0.241 0.471
BiomedCLIP [52] 0.502 0.233 0.293 0.546 0.380 0.173 0.232 0.469

Med-MARVEL [56] 0.537 0.237 0.306 0.549 0.454 0.185 0.243 0.472
FactMM-RAG 0.602 0.257 0.307 0.561 0.475 0.185 0.236 0.475
Oracle 0.972 0.523 0.495 0.677 0.951 0.384 0.350 0.548

Table 2: Ablation study of FactMM-RAG including multimodal retrieval and backbone variation.

MIMIC-CXR CheXpert
Model Factual Similarity Textual Similarity Factual Similarity Textual Similarity

F1CheXbert F1RadGraph ROUGE-L BERTScore F1CheXbert F1RadGraph ROUGE-L BERTScore

Setting: Multimodal Retrieval

CLIP [34] 0.341 0.160 0.238 0.489 0.285 0.130 0.207 0.439
GLoRIA [16] 0.346 0.137 0.211 0.453 0.359 0.135 0.216 0.447
MedCLIP [44] 0.539 0.198 0.261 0.508 0.478 0.161 0.225 0.454
CXR-CLIP [48] 0.516 0.215 0.277 0.524 0.444 0.167 0.230 0.458
BiomedCLIP [52] 0.502 0.233 0.293 0.546 0.386 0.142 0.216 0.441
Med-MARVEL [56] 0.550 0.212 0.279 0.525 0.479 0.160 0.222 0.454
FactMM-RAG 0.605 0.249 0.297 0.547 0.491 0.174 0.237 0.467
Oracle 0.992 0.429 0.399 0.612 0.999 0.438 0.362 0.554

Setting: Multimodal Retrieval Augmented Generation

ClueWeb-LLaVA1.5 0.602 0.257 0.307 0.561 0.495 0.180 0.239 0.473
WebQA-LLaVA1.5 0.572 0.262 0.304 0.562 0.456 0.184 0.237 0.474
Med-MARVEL-LLaVA1.5 0.581 0.260 0.311 0.563 0.475 0.185 0.236 0.474
ClueWeb-LLaVA1.6 0.601 0.252 0.303 0.558 0.492 0.178 0.237 0.471

in F1RadGraph. In CheXpert zero-shot evaluation, FactMM-RAG outperforms state-of-the-art
retrievers by 2% and 1.2% in these two metrics, indicating our retriever’s generalization capability
compared to other models.

To establish the effectiveness of our RAG approach, we also show that FactMM-RAG sig-
nificantly outperforms the fine-tuned backbone without retrieval augmentation by 10% and achieves
competitive improvement over the SOTA non-RAG ORGan baseline.

Besides, we can observe that adopting the baseline retrievers on top of multimodal founda-
tion models only yields marginal gains compared to the finetuning of foundation model generation
without retrieval-augmentation. This shows that reports retrieved by baseline retrievers are
factually-inferior to those from our retriever, potentially passing misleading information that prevents
the foundation model from generating factual reports.

Specifically, compared to the retriever Med-MARVEL, we also observe factual-correctness
performance gain based on two clinical metrics. Both use the same universal encoder backbone, but
FactMM-RAG benefits from the injected factual medical knowledge, allowing it to search for the
most similar and factually correct reports, thereby assisting the multimodal foundation model in
generating more accurate reports.

5.2 Ablation Study

Multimodal Retrieval. Instead of relying on the multimodal foundation model to generate reports,
we also evaluate the performance of the multimodal retrievers by directly encoding radiology images
from the testing corpus and searching for the closest report from the training corpus for comparison
with ground-truth reports. Table 2 shows that our retriever also achieves the best factual retrieval
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(a) Threshold: 0 (b) Threshold: 0.4 (c) Threshold: 0.8 (d) Threshold: 1.0

Figure 2: Factual performance of FactMM-RAG controlled by different F1CheXbert and F1RadGraph
thresholds. We vary the F1RadGraph thresholds under one fixed F1CheXbert threshold selected from
{0, 0.4, 0.6, 0.8}.
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Figure 3: Retrieval evaluation of FactMM-
RAG with different F1CheXbert and
F1RadGraph thresholds. MRR calculates
mean reciprocal rank at which the first rele-
vant report that meets two factual similarity
thresholds with query report is retrieved.
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Figure 4: Analysis of fact-aware capability propa-
gation. The x-axis MRR measures the retriever’s
performance on retrieving factually relevant re-
ports.

performance compared to other baselines under this setting across two datasets. This demonstrates
that training the multimodal retriever with mined factually-informed report pairs can enhance its
radiology image understanding capabilities and directly align it with precise reports.

Backbone Variation. We also investigate the impact of different retriever and foundation
model backbones on radiology report generation in Table 2. We initialize our retriever model from
two checkpoints: WebQA and ClueWeb in [56]. We observe that the ClueWeb checkpoint provides a
marginal gain compared to the WebQA checkpoint. This can be attributed to the larger scale of the
ClueWeb dataset used for pretraining. We also utilize Med-MARVEL as our retriever backbone,
which exhibits similar performance to other backbones after training. This implies that even if
our retriever is initialized with a backbone from a general domain, our factually-informed training
strategy enables it to fully leverage medical knowledge and quickly adapt to the radiology-specific
domain without degrading performance.

5.3 Fact-aware Capability Control

The factual similarity threshold in Equation 1 plays a critical role in controlling the fact-awareness of
our multimodal retriever. We examine the performance of FactMM-RAG under different thresholds,
as shown in Figure 2. Not only utilizing F1RadGraph thresholds, we also employ F1CheXbert to
curate additional thresholds from the report’s diagnostic labels to mine report pairs.

Under the same F1CheXbert threshold for mining report pairs, we observe that an increase
in the F1RadGraph threshold correlates with an improvement in factual performance. However,
adopting stricter thresholds for identifying report pairs does not yield further improvements and
reaches saturation. After calculating the average number of report pairs per query, we find that high
thresholds can exclude many relevant report pairs, as shown in Figure 3. This exclusion results in the
potential loss of factually useful pairs, thereby hindering the training of our multimodal retriever
driven by additional factual medical knowledge.

Rather than relying on diagnostic labels from CheXbert to identify high-quality report pairs, Figure
2a demonstrates that the F1RadGraph threshold alone can also effectively mine factual report pairs
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Table 3: Case study on generated reports from MIMIC-CXR. Cyan text indicates radiological
consistency with the ground-truth report. Orange text highlights extra accurate details provided
by FactMM-RAG compared to Med-MARVEL. Red text denotes observations missing in Med-
MARVEL.

Radiology Image Med-Marvel FactMM-RAG Reference
Single portable view of the chest. There
are bilateral pleural effusions, moderate on
the left and small on the right. There is also
pulmonary vascular redistribution and hazy
alveolar infiltrate. cardiac silhouette is en-
larged but unchanged. Median sternotomy
wires and mediastinal clips are again noted.

A left-sided pacemaker is in place with
leads terminating in the right atrium and
right ventricle. The patient is status post
median sternotomy and CABG. The heart
is moderately enlarged. There is mild pul-
monary edema. A small left pleural effusion
is present. There is atelectasis at the left
lung base. No pneumothorax is seen.

The patient is status post median ster-
notomy and CABG. Left-sided dual-
chamber pacemaker is noted with leads ter-
minating in right atrium and right ventricle,
unchanged. Cardiomegaly is similar. There
is continued mild to moderate pulmonary
edema, slightly improved compared to the
prior exam. Small layering bilateral pleural
effusions also may be slightly decreased in
the interval. Bibasilar airspace opacities
likely reflect atelectasis. There is no pneu-
mothorax. No acute osseous abnormalities
are visualized.

F1RadGraph 0.218 0.413
CheXbert Observations Cardiomegaly, Edema, Pleural Effusion Cardiomegaly, Edema, Atelectasis, Pleural

Effusion
Cardiomegaly, Edema, Atelectasis, Pleural
Effusion

The heart is mildly enlarged. The aorta is
mildly tortuous. The mediastinal and hilar
contours appear unchanged. There is no
pleural effusion or pneumothorax. Streaky
left basilar opacity suggests minor atelec-
tasis. There is no definite pleural effusion
or pneumothorax. The bones appear dem-
ineralized. There is mild-to-moderate right-
ward convex curvature centered along the
mid thoracic spine.

Heart size is mildly enlarged. The aorta is
tortuous. Mediastinal and hilar contours are
otherwise unremarkable. Pulmonary vas-
culature is normal. Linear opacities in the
left lower lobe are compatible with subseg-
mental atelectasis. No focal consolidation,
pleural effusion or pneumothorax is present.
There are no acute osseous abnormalities.

Moderate enlargement of the cardiac silhou-
ette with a left ventricular predominance
is unchanged. The aorta remains tortu-
ous, and the hilar contours are stable. Pul-
monary vascularity is not engorged. There
is minimal atelectasis within the lung bases,
but no focal consolidation is present. No
pleural effusion or pneumothorax is identi-
fied. There are no acute osseous abnormal-
ities.

F1RadGraph 0.333 0.526
CheXbert Observations Cardiomegaly, Atelectasis Cardiomegaly, Atelectasis Cardiomegaly, Atelectasis

for training our multimodal retriever. As the F1RadGraph threshold increases, FactMM-RAG even
matches the performance under high threshold settings in Figure 2d. This signifies that employing
our training strategy with curated factual query-report pairs still imposes useful supervision signals
without relying on explicit diagnostic label guidance.

5.4 Fact-aware Capability Propagation

To further understand the benefits of our retriever for the foundation model, we explore the effective
propagation of fact-aware capabilities from the retriever to the foundation model. To demonstrate this
behavior, we use the mined factual report pairs as reference reports for the query report. We then use
the retrieval metric Mean Reciprocal Rank (MRR) as an intermediate evaluation, shown in Figure 4.
From the plot, we observe that as training progresses, the retrieval metric increases alongside two
clinical metrics. This factually-oriented upward trend in our retriever’s performance in Figure 4a is
also reflected in the foundation model’s performance in Figure 4b. This indicates that employing
a factually-informed reference report selection strategy to train our multimodal retriever can also
enhance the foundation model’s ability to generate factually accurate radiology reports.

5.5 Case Study

In this section, we present two examples from MIMIC-CXR to qualitatively analyze our retriever’s
fact-aware capability, as illustrated in Table 3. In the first example, we observe that FactMM-
RAG provides symptom observations consistent with the ground-truth report and generates more
accurate factual details compared to Med-MARVEL, e.g., “post median sternotomy, atelectasis, not
pneumothorax”; In the second example, we further observe that although both retrievers generate
reports with diagnostic labels matching the ground-truth report, FactMM-RAG provides additional
details compared to Med-MARVEL, such as “pulmonary vasculature is normal, no acute osseous
abnormalities”. These characteristics confirm that adopting our fact-aware retriever can assist
multimodal foundation models in generating more accurate radiology reports. We also show the
retrieved reports from two samples in the Appendix A.

8



6 Conclusion

In this paper, we aim at improving radiology report generation by introducing a fact-informed medical
multimodal retriever for retrieval-augmented generation. In particular, we utilize RadGraph to
annotate chest radiograph reports and mine clinically-relevant pairs. We integrate factual information
into a universal multimodal retriever, presenting FactMM-RAG, a fact-aware multimodal retrieval-
augmented radiology report generation pipeline. FactMM-RAG outperforms all state-of-the-art
retrievers evaluated by factual correctness and textual coherence for final report generation in MIMIC-
CXR and CheXpert datasets. We further confirm the benefit of our multimodal retriever from the
analysis of fact-aware capability control and propagation. Given the pervasive applications of machine
learning in clinical diagnoses using chest X-rays, we hope our factual-informed approach inspires
further work in multimodal generative artificial intelligence in healthcare contexts.

7 Limitations

Despite the strong performance of our FactMM-RAG pipeline, we acknowledge potential limitations
of our proposed method. In particular, our work only emphasizes chest radiology domains. It is
also worth exploring our retrieval-augmented factual report generation pipeline in broader medical
domains, such as brain scan or histology datasets.

Another concern lies in the chosen evaluation metrics, F1RadGraph and F1CheXbert. F1CheXbert
reflects high-level observational accuracy, while F1RadGraph assesses the correctness of radiology
entities and clinical relationships. However, other radiologically-specific metrics, such as report
conciseness and clarity, should also be considered [41, 49]. Ideally, we should incorporate methods
of evaluation directly aligned with human evaluations or involve domain expertise itself in our
pair-mining and final evaluation procedure. Moreover, it is worth exploring a long-tail evaluation by
leveraging more fine-grained ground-truth label annotations [13].

8 Societal Impact

Automated radiology report generation offers significant societal benefits, including improved
diagnostic accuracy, increased efficiency, and enhanced access to care in underserved areas. These
systems can help radiologists focus on complex cases, reduce human error, and provide valuable
insights into public health trends, ultimately leading to better patient outcomes and more informed
healthcare policies.

However, there are also potential downsides. Overreliance on AI could diminish critical
thinking among medical professionals, and biased algorithms may exacerbate healthcare inequalities.
Additionally, concerns about data privacy, job displacement, and legal accountability must be
addressed to ensure that the benefits of these systems are realized without compromising patient trust
or care quality.
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A Appendix

A.1 Retriever Training Procedure

To training our fact-aware multimodal retriever, we not only use mined factual report pairs as positive
reports to the query image, but also incorporate the query image’s corresponding report. Following
[50, 56], we also adopt modality-balanced hard negatives to train the retriever after in-batch negative
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Visual Question Answering:

Generate a radiology report from this image: <image>

Retrieval Augmented Generation:

Here is a report of a related patient: "<document>"
Generate a radiology report from this image: <image>

Figure 5: Prompt templates for Visual Question Answering and Retrieval Augmented Generation

Table 4: Case study on retrieved reports from MIMIC-CXR. Cyan text indicates radiological consis-
tency with the ground-truth report. Orange text highlights extra accurate details provided by FactMM-
RAG compared to Med-MARVEL. Red text denotes observations missing in Med-MARVEL.

Radiology Image Med-Marvel FactMM-RAG Reference
A single portable chest radiograph was ob-
tained. Bilateral pleural effusions and mild
atelectasis have increased. Cardiomegaly
is unchanged. There is no consolidation or
pneumothorax. Pacing leads, sternotomy
wires, vascular clips, and abdominal surgi-
cal clips are unchanged.

No focal consolidation is identified. There
is unchanged appearance of opacifications
in the left lung base, likely due to a combi-
nation of atelectasis and pleural effusion.
There is a small right pleural effusion. Mild
pulmonary edema persists. The heart is
moderately enlarged, but stable. Left sided
pacemaker is seen with transvenous leads
in the right atrium, right ventricle, and left
ventricle.

The patient is status post median ster-
notomy and CABG. Left-sided dual-
chamber pacemaker is noted with leads ter-
minating in right atrium and right ventricle,
unchanged. Cardiomegaly is similar. There
is continued mild to moderate pulmonary
edema, slightly improved compared to the
prior exam. Small layering bilateral pleural
effusions also may be slightly decreased in
the interval. Bibasilar airspace opacities
likely reflect atelectasis.There is no pneu-
mothorax. No acute osseous abnormalities
are visualized.

F1RadGraph 0.274 0.345
CheXbert Observations Cardiomegaly, Atelectasis, Pleural Effusion Cardiomegaly, Edema, Atelectasis, Pleural

Effusion
Cardiomegaly, Edema, Atelectasis, Pleural
Effusion

The heart is mildly enlarged with a left
ventricular configuration. There is mild-to-
moderate unfolding of the thoracic aorta.
The arch is partly calcified. The mediasti-
nal and hilar contours appear unchanged.
There are streaky left basilar opacities sug-
gesting minor atelectasis. A small eventra-
tion is noted along the anterior right hemidi-
aphragm. There is an air-fluid level in the
stomach. Air-fluid levels are seen in the
epigastric region. There is no evidence for
free air. Cholecystectomy clips project over
the right upper quadrant. Moderate degen-
erative changes are similar along the mid
thoracic spine.

Moderate enlargement of the cardiac sil-
houette is unchanged. The aorta remains
tortuous. The mediastinal and hilar con-
tours are normal. Pulmonary vasculature
is normal. Streaky atelectasis is noted in
the left lower lobe. The right lung is clear.
No focal consolidation, pleural effusion or
pneumothorax is present. Multiple clips are
noted within the left upper abdomen.

Moderate enlargement of the cardiac silhou-
ette with a left ventricular predominance
is unchanged. The aorta remains tortu-
ous, and the hilar contours are stable. Pul-
monary vascularity is not engorged. There
is minimal atelectasis within the lung bases,
but no focal consolidation is present. No
pleural effusion or pneumothorax is identi-
fied. There are no acute osseous abnormali-
ties.

F1RadGraph 0.197 0.621
CheXbert Observations Cardiomegaly, Atelectasis Cardiomegaly, Atelectasis Cardiomegaly, Atelectasis

training from the multimodal dense retrieval stage. We use AdamW [29] as our optimizer and training
epochs = 15, early stopping epoch = 5, batch size = 32, learning rate = 5e-6, and the temperature
hyperparameter τ = 0.01. For our MARVEL backbone, we use T5-ANCE [50] as the text encoder
and vision transformer [9] as the vision encoder. Models are trained using 1 NVIDIA RTX A6000
for 10 hours.

A.2 RAG Finetuning Procedure

To create a RAG dataset for fine-tuning LLaVA, we search the nearest-neighbor document d∗txt for a
query image qimg using a retriever’s embeddings. We filter out any results that involve retrieving a
patient’s own report, the same patient’s other studies, or malformed reports in the training dataset
(specified by being less than 5 characters). We apply the prompt templates in Figure 5, and fine-tune
LLaVA-1.5 for one epoch. Models are trained using 8x NVIDIA RTX A6000 for 4 hours, with
epochs=1, learning rate=2e-5, global batch size=128, from vicuna-7b-v1.5 checkpoint. We save the
checkpoint after one full pass of the training dataset for final evaluation.
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A.3 Evaluation Details

Here, we provide implementation details regarding the evaluation methodology.

F1-RadGraph. For F1-RadGraph score computation, we follow previous work (MIMIC-CXR-RRS)
2 in employing RGER as F1-Radgraph score computation on an instance level. Using the radgraph
library implementation, this equates to utilizing reward_level="partial".

F1-CheXbert. F1-CheXbert score computation consists of the micro-averaged F1-score between
5 selected classes from the CheXbert labeler. Naturally, F1-CheXbert scores are only computable
over entire datasets. For instance-level CheXbert scores (used for pair mining), we employ the
proportion of equivalent predicted classes between a reference and predicted text sample. These
instance-level F1-CheXbert scores can be computed using np.sum(ref == hyp) / 5, and take on
values ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

CheXpert Hidden Test Set. We use the 1000 hidden test reports from MIMIC-CXR-RRS and
download the CheXpert images from Stanford AIMI Shared Datasets 3.

Oracle Retrieval. Oracle Retrieval is performed via ground-truth access to a reference document’s
generated report. For training queries, this is always known, and an oracle retriever would obtain
documents as Oracle(qi)

.
= argmax

j∈corpus,j ̸=i
s(qi, dj), where s(q, d) is the sum of the F1-RadGraph

and F1-CheXbert instance-wise scores. In practice, this results in retrieving samples with F1-
CheXbert=1.0 and the largest F1-RadGraph score within the partition. Test-time retrieval performs
the same operation, without the restriction of j ̸= i as self-retrieval is not possible due to the corpus
being the training dataset.

Oracle RAG. Oracle-LLaVA is obtained by fine-tuning LLaVA under identical conditions, utilizing
Oracle Retrieval for retrieving documents in the training and test set.

A.4 Case study on Retrieved Reports

We now conduct case study on the retrieved reports shown in Table 4. We show that our FactMM-
RAG captures most of the factual details in retrieved reports compared to the ground-truth reports.
Thus, the factual correctness of our retriever can be propagated to the multimodal foundation models
effectively. However, the reports retrieved from Med-MARVEL contain erroneous information, which
negatively impacts the report generation by multimodal foundation models.

2https://vilmedic.app/papers/acl2023/
3https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
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Justification: We do not include the theoretical results.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our novel architecture fully and report training details such as
hyperparameters and prompts in the appendix.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: Since MIMIC dataset is highly sensitive and may contain ethics issues related
to patient privacy, we plan to release our code upon paper acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have discussed the experimental details in main body and appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report our major results with statistical significance.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We report it in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conduct our research in conformity with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed in section 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our model/code is documented well and we plan to release the codebase upon
acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing. We passed the MIMIC data usage
training related to human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing. We passed the MIMIC data usage
training related to human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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