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Abstract

We present knowledge continuity, a novel definition inspired by Lipschitz continuity1

which aims to certify the robustness of neural networks across input domains2

(such as continuous and discrete domains in vision and language, respectively).3

Most existing approaches that seek to certify robustness, especially Lipschitz4

continuity, lie within the continuous domain with norm and distribution-dependent5

guarantees. In contrast, our proposed definition yields certification guarantees that6

depend only on the loss function and the intermediate learned metric spaces of the7

neural network. These bounds are independent of domain modality, norms, and8

distribution. We further demonstrate that the expressiveness of a model class is9

not at odds with its knowledge continuity. This implies that achieving robustness10

by maximizing knowledge continuity should not theoretically hinder inferential11

performance. Finally, we present several applications of knowledge continuity such12

as regularization and show that knowledge continuity can also localize vulnerable13

components of a neural network.14

1 Introduction15

Deep neural networks (DNNs) have demonstrated remarkable generalization capabilities. Their16

robustness, however, has been considerably more difficult to achieve. Robustness refers to the17

preservation of model performance under natural or adversarial alterations of the input [14]. DNNs’18

lack of robustness, highlighted by seminal works such as [19, 53] and recently [6, 4], poses signifi-19

cant challenges to their adoption in critical applications, underscoring concerns for AI safety and20

trustworthiness [15, 23, 7, 6].21

Though issues of robustness emerged from computer vision applications, they have since spanned22

multiple domains [1, 29, 59, 62, 6]. This research trajectory has not only prompted significant ad-23

vancements in robustness improvements through architectural, procedural, and dataset augmentations,24

but also unveiled the sophistication of adversarial attacks—the process through which counterex-25

amples to robustness are generated [1, 29, 59, 62, 6]. In particular, a great deal of work has gone26

into certified robustness which seeks to provide theoretical robustness guarantees. Certification is27

desirable as it generally transcends any particular task, dataset, or model.28

As a result, Lipschitz continuity has emerged, promising certified robustness by bounding the deriva-29

tive of a neural network’s output with respect to its input. In this way, Lipschitz continuity directly30

captures the volatility of a model’s performance, getting at the heart of robustness. Such an approach31

has proven its merit in computer vision, facilitating robustness under norm and distributional assump-32
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tions [22, 50, 65, 63]. Its inherent ease and interpretability has lead to widespread adoption as a33

means to measure and regulate robustness among practitioners as well [58, 10, 16, 55, 47].34

Despite these successes in computer vision, there are fundamental obstacles when one tries to apply35

Lipschitz continuity into discrete or non-metrizable domains such as natural language. Firstly,36

characterizing distance in this input (and output) space is highly nontrivial, as language does not37

have a naturally-endowed distance metric. Additionally, distance in this input (and output) space38

cannot be task-invariant, as context could dramatically change the meaning of a sentence [41]. Lastly,39

key architectures such as the Transformer [57] are provably not Lipschitz continuous [30]. Most40

of these challenges are not unique to language and form the tip of the iceberg that represents the41

strong divide of robustness between discrete/non-metrizable and continuous domains [17, 38]. For a42

detailed summary of the related literature, see Appendix A.43

To address these issues, we propose a new conceptual framework which we call knowledge continuity.44

At its core, we adopt the following axiom:45

Robustness is the stability of a model’s performance with respect to its perceived46

knowledge of input-output relations.47

Concretely, our framework is grounded on the premise that robustness is better achieved by focusing48

on the probabilistic variation of a model’s loss with respect to its hidden representations, rather than49

forcing arbitrary metrics on its inputs and outputs. Our approach results in certification guarantees50

independent of domain modality, norms, and distribution. We demonstrate that the expressiveness of51

a model class is not at odds with its knowledge continuity. In other words, achieving robustness by52

improving knowledge continuity should not theoretically hinder inferential performance. We show53

that in continuous settings (i.e. computer vision) knowledge continuity generalizes Lipschitz conti-54

nuity and inherits its tight robustness bounds. Finally, we present an array of practical applications55

using knowledge continuity both as an indicator to predict and characterize robustness as well as an56

additional term in the loss function to train robust classifiers.57

Although our results apply to all discrete/non-metrizable and continuous spaces, throughout the paper58

we invoke examples from natural language as it culminates the aforementioned challenges. Further,59

the ubiquity of large language models make their robustness a timely focus.60

2 Knowledge Continuity61

In this section, we provide a formulation of knowlege continuity and explore its theoretical properties.62

Refer to Appendix B for all of the necessary background and notation.63

We start by defining a model’s perceived knowledge through a rigorous treatment of its hidden64

representation spaces. By considering the distance between inputs in some representation space in65

conjunction with changes in loss, we result in a measure of volatility analogous to Lipschitz continuity.66

Bounding this volatility in expectation then directly leads to our notion of knowledge continuity.67

With these tools, we demonstrate a host of theoretical properties of knowledge continuity including68

its certification of robustness, guarantees of expressiveness, and connections to Lipschitz continuity69

in continuous settings. We summarize our theoretical contributions as follows:70

• We define the perceived knowledge of a model as well as volatility and knowledge continuity71

within a model’s representation space (see Def. 1, 2, 3, 4, respectively).72

• We prove that knowledge continuity implies probabilistic certified robustness under perturbations in73

the representation space and constraining knowledge continuity should not hinder the expressiveness74

of the class of neural networks (see Thm. 2.1 and Prop. 2.2, 2.3, respectively).75

• We prove that in some cases knowledge continuity is equivalent (in expectation) to Lipschitz76

continuity. This shows that our axiomization of robustness aligns with existing results when77

perturbation with respect to the input is well-defined (see Prop. 2.4, 2.6).78

2.1 Defining Perceived Knowledge79

Knowledge is generally accepted as a relational concept, as it arises from the connections we make80

between ideas and experiences [21]. Herein, we capture the perceived knowledge of a model by81

focusing on the relations it assigns to input-input pairs. Specifically, these relations are exposed by82

decomposing a function f ∶ X → Y into projections to intermediate metric spaces. Formally,83
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Definition 1 (Metric Decomposition). We say that f admits a metric decomposition if there exists84

metric spaces (Z1, d1), . . . , (Zn, dn) with metrics dk for k ∈ [n] such that85

1. (Zk, dk) is endowed with its Borel σ-algebra.86

2. There exists measurable mappings h0, h1, . . . , hn where h0 ∶ X → Z1, hk ∶ Zk → Zk+187

for k ∈ [n − 1], and hn ∶ Zn → Y .88

3. f = hn ◦ hn−1 ◦ . . . ◦ h1 ◦ h0.89

To the best of our knowledge, all deep learning architectures admit metric decompositions, since90

their activations are generally real-valued. So, for all subsequent functions from X to Y , unless91

otherwise specified, we assume they are measurable and possess a metric decomposition. Further, we92

denote fk
= hk ◦ hk−1 ◦ . . . ◦ h1 ◦ h0 and adopt the convention of calling hk the kth hidden layer. In93

Appendix C, we present several metric decompositions for a variety of architectures.94

For any metric-decomposible function, an immediate consequence of our definition is that its metric95

decomposition may not be unique. However, in the context of neural networks, this is a desirable96

property. Seminal works from an array of deep learning subfields such as semi-supervised learn-97

ing [49], manifold learning [43], and interpretability [8] place great emphasis on the quality of learned98

representation spaces by examining the induced-topology of their metrics. This often does not affect99

the typical performance of the estimator, but has strong robustness implications [27]. Our results,100

which are dependent on particular metric decompositions, capture this trend. In Section 2.4, we101

discuss in detail the effects of various metric decompositions on our theoretical results.102

2.2 Defining Knowledge Continuity103

We first introduce what it means for a model’s performance to be volatile at a data point with respect104

to some learned representation of that model.105

Definition 2 (k-Volatility). Let f ∶ X → Y and L be any loss function. The k-volatility of a point106

(x, y) ∈ X × Y which we denote as σk
f (x, y) is given by107

σ
k
f (x, y) ≔ E(x′

,y
′)∼DX ,Y

f(x)≠f(x′)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆L(x,y)
f (x′

, y
′)

dk(fk(x), fk(x′))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.1)

By performing some algebra on the definition, we see that it decomposes nicely into two distinct108

terms: sparsity of the representation and variation in loss.109

σ
k
f (x, y) = E(x′,y′)∼DX ,Y [∣L(f(x), y) − L(f(x′), y′)∣

dk(fk(x), fk(x′))
] ,

= L(f(x), y)E(x′,y′) [
1

dk(fk(x), fk(x′))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

sparsity

⋅
»»»»»»»»»
1 −

L(f(x′), y′)
L(f(x), y)

»»»»»»»»»Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
variation in loss

], (2.2)

Our notion of volatility essentially measures the derivative of performance with respect to perturba-110

tions to a model’s perceived knowledge. In particular, Eq. 2.2 reveals that there are two interactions111

in play which we illustrate in Fig. 1. Informally, we say that (x, y) is highly volatile if there is a112

large discrepancy in performance between it and points that are perceived to be conceptually similar.113

Therefore, highly volatile points capture inaccurate input-input knowledge relations. Additionally,114

(x, y) experiences low volatility if the space around it is sparse with respect to DX ,Y . In other words,115

any set of perturbations applied in Zk would push (x, y) far away, with high probability. This makes116

(x, y) an isolated concept with little knowledge relationships associated with it.117

Similar to Lipschitz continuity, the boundedness of the k-volatility of f across the data distribution is118

crucial and we denote this class of functions as knowledge continuous.119

Definition 3 (ε-Knowledge Continuity at a Point). We say that f is ε-knowledge continuous at120

(x, y) ∈ X × Y with respect to a function f , loss function L, and hidden layer k if σk
f (x, y) < ε.121

Conversely, we say that (x, y) is ε-knowledge discontinuous if the previous inequality does not hold.122

Further, (x, y) is simply knowledge discontinuous if σk
f (x, y) is unbounded. Now, we extend this123

definition globally by considering the k-volatility between all pairs of points.124
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Sparse Knowledge Continuity Knowledge Continuity Knowledge Discontinuity

Figure 1: Various types of knowledge (dis)continuities. f ∶ X → Y is a measurable map, and
(Zk, dk) is one of its hidden representation. ◆ denotes knowledge continuity from sparsity: an
isolated concept with no knowledge relations close to it. So, any perturbation moves ◆ far away with
high probability. Smooth changes in loss around ⭑ implies knowledge continuity. Finally, lacks
continuity due to drastic changes in loss nearby.

Definition 4 (ε-Knowledge Continuity). We say that f is ε-knowledge continuous with respect to a125

loss function L and hidden layer k if126

E(x,y)∼D[σk
f (x, y)] < ε. (2.3)

Though the functional forms of Lipschitz continuity and knowledge continuity are similar, there are127

important differences that allow us to prove more general results. Firstly, unlike Lipschitz continuity128

which is an analytical property of the model f , knowledge continuity is a statistical one. In this way,129

non-typical data points, even if they are volatile, are ignored, whereas Lipschitz continuity treats all130

points equally. This is necessary in many discrete applications, as projecting a countable input space131

onto a non-countable metric space inevitably results in a lack of correspondence thereof. Moreover,132

the ground-truth function from X → Y may not be well-defined on all of X : consider sentiment133

classification of an alpha-numeric UUID string or dog-cat classification of Gaussian noise. Secondly,134

knowledge continuity of an estimator is measured with respect to the loss function rather than its135

output. This property allows us to achieve the expressiveness guarantees in Section 2.4, since it136

places no restrictions on the function class of estimators. Lastly, knowledge continuity measures the137

distance between inputs with the endowed metric in its hidden layers. This flexibility allows us to138

define knowledge continuity even when the input domain is not a metric space.139

2.3 Certification of Robustness140

Our first main result demonstrates that ε-knowledge continuity implies probabilistic certified robust-141

ness in the hidden representation space. In Theorem 2.1, given some reference set A ⊂ X × Y , we142

bound the probability that a δ-sized perturbation in the representation space away from A will result143

in an η change in loss. In other words, knowledge continuity is able to characterize the robustness of144

any subset of data points with positive measure.145

Theorem 2.1. Let A ⊂ X × Y such that PDX ,Y [A] > 0 and δ, η > 0. Let A′
= {(x′

, y
′) ∈ X × Y ∶146

∃(x, y) ∈ A,∆L(x,y)
f (x′

, y
′) > η}. If f ∶ X → Y is ε-knowledge continuous with respect to the147

hidden layer indexed by k and (Zk, dk) is bounded by B > 0, then148

P(x,y)∼DX ,Y [A
′ ∣ dk(fk(x), fk(A)) < δ] ≤ εδ

η (1 − exp [−Ω ( δ
B
−
√
log 1

P[A])
2

])
. (2.4)

See Appendix D for the proof. We can lose the assumptions of boundedness and knowledge of P[A]149

by taking limits of Eq. D.11 with respect to B and P[A]. This result is shown in Appendix D.150
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2.4 Expressiveness151

Our second main result demonstrates that ε-knowledge continuity can be achieved without theoreti-152

cally compromising the accuracy of the model. In other words, universal function approximation is153

an invariant property with respect to ε-knowledge continuity. Universal approximation puts limits154

on what neural networks can learn [12, 24, 37]. A major limitation of Lipschitz functions is that155

they are not universal function approximators of arbitrary functions (see Appendix A for a detailed156

discussion). However, we show that this is achievable with knowledge continuity.157

First, we formally define a universal function approximator.158

Definition 5 (Universal Function Approximator). Suppose that L is Lebesgue-integrable in both159

coordinates. Let F ⊂ YX be a set of measurable functions from X → Y such that for any f ∈ F ,160

there exists µf ≪ DX ,Y such that µf(graph(f)) = 1. Then, U ⊂ F is a universal function161

approximator of F if for every f ∈ F and every ε > 0, there exists f̂ ∈ U such that162

∫ L(f̂(x), y) dµf < ε. (2.5)

We now show that it is always possible to learn some hidden representation that is perfectly robust.163

Proposition 2.2. Let U ⊂ YX be a universal function approximator of YX with respect to some loss164

function L. Then, for any f ∈ YX and sequence ε1, ε2, . . . such that εn → 0 there are a sequence of165

εn-knowledge continuous functions in U such that ∫ L(fn(x), y) dµf < εn, for n ∈ N.166

Proof. Choose fn ∈ U such that ∫ L(fn(x), y) dµf <
1
2
εn. Consider the 1-layer metric decomposi-167

tion of f , h1 ∶ X → Z1 where Z1 = X equipped with the trivial metric (d1(x, y) = 1 if x ≠ y and 0168

otherwise). Then, fn = fn ◦ h1. So, it follows that169

Eσ
1
fn(x, y) = ∫

∆L(x,y)
fn

(x′
, y

′)
d1(h1(x), h1(x′)) dµf ≤ ∫ ∆L(x,y)

fn
(x′

, y
′) dµf ≤ εn. (2.6)

and by the construction of fn, the proof is completed. ■170

In other words, if our estimator was given “infinite representational capacity,” robustness can be171

trivially achieved by isolating every point as its own concept (as discussed in Section 2.2). We can,172

however, construct a tighter model by relaxing the assumptions on the input-output metric spaces.173

These added constraints make it so that trivial metric decompositions are no longer possible unless174

the metric in X is also trivial. We state this formally below, note the highlighted differences between175

this and Prop. 2.2.176

Proposition 2.3. Suppose (X , dX ), (Y, dY) ≔ (X , dX ) are compact metric spaces, F ⊂ YX is the177

set of all continuous functions from X to Y such that ∫ dX (x, x′)−1dµf < ∞ and L be Lipschitz178

continuous in both coordinates. Then, there exists a universal function approximator U of F that is179

knowledge continuous (i.e. Eσ
k
f (x, y) < ∞ for some k).180

See Appendix E for the proof.181

2.5 Connections to Lipschitz Continuity182

We now demonstrate that our axiomization of robustness presented in Section 1 aligns with the notion183

of robustness1 commonly prescribed in vision [14]. This unifies the certified robustness bounds with184

respect to the representation space derived in Thm. 2.1 with existing work certifying robustness with185

respect to the input space in continuous applications such as vision.186

Our first result identifies conditions under which knowledge continuity, implies Lipschitz continuity.187

Proposition 2.4. Suppose that (X , dX ), (Y, dY) are metric spaces. Let the first n metric decomposi-188

tions of f ∶ X → Y be Ki-Lipschitz continuous, for i ∈ [n]. If f is ε-knowledge continuous with189

respect to the n
th hidden layer and dY(f(x), f(x′)) ≤ η∆L(x,y)

f (x′
, y) for all x, x′

∈ X , y ∈ Y ,190

and some η > 0, then f is Lipschitz continuous in expectation. That is,191

E(x,y),(x′,y′)∼DX ,Y

dY(f(x), f(x′))
dX (x, x′) ≤ εη

n

∏
j=1

Kj . (2.7)

1Small perturbations on the input result in small changes in performance which implies small changes in
output when the loss function is Lipschitz continuous.
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The proof is presented in Appendix F and follows easily through some algebriac manipulation. Next,192

combining this proposition with an auxiliary result from [74], we directly yield a certification on the193

input space.194

Corollary 2.5. Suppose that assumptions of Prop. 2.4 are true. And also assume that (X , dX ) =195

(Rn
, ℓp), (Y, dY) = (Rm

, ℓp), for 1 ≤ p ≤ ∞. Define a classifier from f ∶ Rn
→ Rm, g,196

where g(x) ≔ arg maxk∈[m] fk(x) for any x ∈ Rn. Then, with probability 1 − εη

t
∏n

j=1 Kj ,197

g(x) = g(x + δ) for all ∥δ∥p <
p√2
2t

margin(f(x)) and t > 0. fk(x) is the k
th coordinate of f(x)198

and margin(f(x)) denotes the difference between the largest and second-largest output logits.199

See Appendix F for the proof. Our second result identifies conditions under which Lipschitz200

continuity, implies knowledge continuity.201

Proposition 2.6. Let (X , dX ), (Y, dY) be a metric spaces. Let f ∶ X → Y be ε-Lipschitz continuous202

and L(f(x), y) be η-Lipschitz continuous with respect to both coordinates. If the first n metric203

decompositions of f are Ki-Lipschitz continuous, then f is knowledge continuous with respect to the204

n
th hidden layer. That is,205

E(x,y)∼DX ,Y σ
n
f (x, y) ≤ εη

n

∏
j=1

1

Kj
. (2.8)

See Appendix F for the proof. In continuous applications such as computer vision, the assumptions of206

both propositions are generally met (i.e. our input-output spaces are metric spaces, all hidden layers207

are Lipschitz, and loss functions are locally Lipschitz). Furthermore, common architectures such as208

fully connected networks, CNNs, RNNs, and even vision transformers are Lipschitz continuous [58,209

48]. This implies that our notion of robustness is indeed an appropriate generalization that transcends210

domain modality since in continuous settings we can recover the strong bounds of Lipschitz continuity211

while expanding into new discrete and non-metrizable territory.212

3 Practical Applications213

In addition to the theoretical guarantees yielded by knowledge continuity in Section 2, we now214

demonstrate that knowledge continuity can be easily applied in practice.215

Using knowledge continuity to predict adversarial robustness. For a given model, f , and hidden216

representation, k, we first determine the smallest εk such that f is εk-knowledge continuous. Then,217

we collate all εk through a simple average. When we regress these scores from a series of model218

families and sizes against their empirical adversarial robustness strong correlation is observed. In219

particular, knowledge continuity alone is able to explain 35% of the variance in adversarial attack220

success rate. We present a detailed discussion of these experiments in Appendix G.221

Knowledge continuity can localize vulnerable hidden representations. Since knowledge continuity222

is layer-specific, we repeat the previous experiment, but holding the index of the hidden representation223

constant. We plot the relationship between explained variance of adversarial robustness and layer224

index. We find that models belonging to different families result in dramatically different curves.225

We tune our regularization hyperparameters according to these curves and find they yield superior226

performance. These results are represented in Appendix G, H, and I.227

Regulating knowledge continuity. Motivated by the theoretical results in Section 2, we devise228

algorithms to estimate the k-volatility of a given model during training. These algorithms are229

described in Appendix I along with guarantees on their convergence rate and unbiasedness. Then,230

we directly append this estimate of volatility to our loss function as a regularization term. By231

minimizing this regularized loss, we find that the adversarial robustness of the resulting model232

significantly improves. Moreover, our method outperforms existing works both in terms of robustness233

and training speed (up to 2× for TextFooler [29] and 3× for ALUM [36]). These results are presented234

in Appendix I, Table 1.235

4 Conclusion236

In this paper, we propose a novel definition, knowledge continuity, which addresses key limitations237

associated with Lipschitz robustness. We demonstrate that our definition certifies robustness across238

domain modality, distribution, and norms. We also show that knowledge continuity, in contrast to239

Lipschitz continuity, does not affect the universal approximation property of neural networks. We240

further establish conditions under which knowledge continuity and Lipschitz continuity are equivalent.241

Lastly, we present several practical applications that directly benefit the practitioner.242
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A Related Works458

There have been extensive studies on developing robust neural networks with theoretical guarantees.459

These approaches with respect to our contribution can be organized into the following categories.460

Certified robustness with Lipschitz continuity. The exploration of Lipschitz continuity as a461

cornerstone for improving model robustness has yielded significant insights, particularly in the462

domain of computer vision. This principle, which ensures bounded derivatives of the model’s output463

with respect to its input, facilitates a smoother model behavior and inherently encourages robustness464

against adversarial perturbations. This methodology, initially suggested by [19], has since been465

rigorously analyzed and expanded upon. Most theoretical results in this area focus on certifying466

robustness with respect to the ℓ2-norm [9, 71, 20, 2, 32, 22, 3]. A recent push, fueled by new467

architectural developments, has also expanded these results into ℓ∞-norm perturbations [74, 73, 75].468

Further, Lipschitz continuity also serves practitioners as a computationally effective way to train469

more robust models [55, 65, 56, 11]. This stands in contrast to (virtual) adversarial training methods470

which brute-force the set of adversarial examples, then iteratively re-trains on them [42, 51, 67].471

Though Lipschitz continuity has seen much success in continuous domains, it does not apply to472

non-metrizable domains such as language. Further, architectural limitations of prevalent models such473

as the Transformer [57, 30] exacerbate this problem. These challenges highlight a critical need for a474

new approach that can accommodate the specificities of discrete and non-metrizable domains while475

providing robustness guarantees.476

Achieving robustness in discrete/non-metrizable spaces. Non-metrizable spaces, where it is non-477

trivial to construct a distance metric on the input/output domains, pose a unique challenge to certified478

robustness. Instead of focusing on point-wise perturbations, many studies have opted to examine479

how the output probability distribution of a model changes with respect to input distribution shifts480

by leveraging information bottleneck methods [54, 60, 46]. Most of these bounds lack granularity481

and cannot often be expressed in closed-form. In contrast to these theoretical approaches, recent482

efforts have refocused on directly adapting the principles underlying Lipschitz continuity to language.483

Virtual adversarial training methods such as [36, 70] mimic the measurement of Lipschitz continuity484

by comparing the textual embeddings with the KL-divergence of the output logits. Along these lines,485

techniques akin to those used in adversarial training in vision have also been translated to language,486

reflecting a shift towards robustness centered around the learned representation space [34, 18, 29].487

Though these approaches have seen empirical success, they lack theoretical guarantees. As a result,488

their implementations and success rate is heavily task-dependent [36, 70]. There have also been489

attempts to mitigate the non-Lipschitzness of Transformers [72, 69] by modifying its architecture.490

These changes, however, add significant computational overhead.491

Other robustness approaches. In parallel, other certified robustness approaches such as randomized492

smoothing [10, 33, 31] give state-of-the-art certification for ℓ2-based perturbations. Notable works493

such as [28, 61] have sought to generalize these techniques into language, but their guarantees494

strongly depend on the type of perturbation being performed. On the other hand, analytic approaches495

through convex relaxation inductively bound the output of neurons in a ReLU network across496

layers [66, 68, 64]. These works, however, are difficult to scale and also do not transfer easily to497

discrete/non-metrizable domains.498

Our approach, inspired by Lipschitz continuity, distills the empirical intuition from the works499

of [36, 70] and provides theoretical certification guarantees independent of perturbation-type [28, 61]500

and domain modality. We demonstrate that knowledge continuity yields many practical applications501

analogous to Lipschitz continuity which are easy to implement and are computationally competitive.502

B Notations and Background503

Notations. Let R≥0
≔ [0,∞). For any function f ∶ X → Y , we denote graph(f) ≔ {(x, y) ∈504

X × Y ∶ f(x) = y}. Let [n] denote the set {1, 2, . . . , n} for n ∈ N. (X ,FX ,PX ), (Y,FY ,PY)505

are probability spaces and (X × Y,FX ⊗ FY ,PX × PY) denotes the product measurable space of506

the probability spaces X ,Y . Since our contribution focuses on the supervised learning regime, we507

colloquially refer to X ,Y as the input and labels, respectively. We call any probability measure PX×Y508

absolutely continuous to PX ×PY (i.e. DX ,Y(E) = 0 for every E ∈ X ×Y with (PX ×PY)(E) = 0)509

a data-distribution and denote it as DX ,Y . If (Z, dZ) is a metric space with metric d and A ⊂ Z ,510
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then for any z ∈ Z , dZ(z,A) = infa∈A dZ(a, z). We say that a metric space is bounded by some511

B ∈ R≥0, if supx′,x∈X d(x, x′) < B. Denote by IdZ ∶ Z → Z the identity function of Z . Let512

L ∶ Y ×Y → R≥0 be a loss function such that L(y, y′) = 0 if and only if y = y
′. For any f ∶ X → Y513

and (x, y), (x′
, y

′) ∈ X × Y , we denote ∆L(x,y)
f (x′

, y
′) ≔ ∣L(f(x), y) − L(f(x′), y′)∣. Unless514

otherwise specified, it will be assumed that f is a measurable function from X to Y with a metric515

decomposition (see Def. 1).516

Lipschitz continuity. Given two metric spaces (X , dX ), (Y, dY) a function f ∶ X → Y is K-517

Lipschitz continuous if there exists K ∈ R≥0 such that for all x, x′
∈ X , dY(f(x), f(x′)) ≤518

KdX (x, x′).519

C Examples of Metric Decompositions520

We present several common neural network architectures and some possible metric decompositions521

for them.522

Example 1. Suppose that f ∶ Rn
→ Rm is a fully-connected neural network with n hidden layers,523

weight matrices Wi, biases bi for i ∈ [n], and activation functions σi for i ∈ [n − 1]. Let r(Wi)524

denote the number of rows of Wi. Then, for any 1 < p ≤ ∞ consider the set of metric spaces525

(Rn
, ℓp), (Rr(W1), ℓp), . . . , (Rr(Wn), ℓp), (Rm

, ℓp), we define the metric decomposition of hi such526

that h0 ∶ Rn
→ Rr(W1), hi ∶ R

r(Wi) → Rr(Wi+1), and hn ∶ Rr(Wn) → Rm. Each of these functions527

are simply the hidden layers in the fully-connected network. That is,528

hi(x) = σi(Wix + bi). (C.1)

Example 2. If f is a convolutional neural network, we can decompose it in the same way as before.529

Except, hi is now the convolution operation.530

Example 3. We present two distinct metric decompositions of a residual network. Consider two531

fully-connected layers A,B such that x
A
→ A(x) B

→ B(A(x)) x
→ B(A(x)) + x. Here, the input x532

feeds back into the output layer B creating a residual block (the set of layers between the input and533

the residual connection).534

We can aggregate each residual block as one metric decomposition. That is, let h = B(A(x)) + x.535

Then, x
h
→ h(x). Clearly, this is the same function as before; moreover, we yield the metric decom-536

position of h(x). This is the approach we use in practice when dealing with residual connections.537

Moreover, this is also the standard way to count layers in computer vision and natural language538

processing.539

We can also represent each layer within the residual block as a part of a metric decomposition. Define540

A
′ ∶ x ↦ (A(x), x), B′ ∶ (A(x), x) ↦ (B(A(x)), x) and x

′ ∶ (B(A(x)), x) ↦ (B(A(x))+x, x).541

Then, it follows that x → A
′
→ B

′
→ x

′ forms a metric decomposition. Here, the metric in each542

layer is with respect to the quotient space where (a, a′) ∼ (b, b′) if and only if a = b. Therefore, we543

also recover the same vector space structure.544

We again emphasize that any particular metric decomposition does not affect our theoretical results.545

Our propositions and theorems only rely on the fact that a metric decompositions exist.546

D Proof of Robustness547

Lemma D.1. Let (X, d) be a metric space. Suppose that x ∈ X and fx(z) = d(x, z). Then, fx is548

1-Lipschitz with respect to the metric d. Moreover, if A ⊂ X and fA(z) = infa∈A d(x, a). Then, fA549

is also 1-Lipschitz.550
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Proof. Fix some x ∈ X . By the definition of 1-Lipschitzness, it suffices to show that for all z, y ∈ X ,551

∣fx(z) − fx(y)∣ ≤ d(z, y). Thus,552

∣fx(z) − fx(y)∣ = ∣d(x, z) − d(x, y)∣,
= ∣d(x, z) + d(z, y) − d(z, y) − d(x, y)∣,
≤ ∣d(x, y) − d(z, y) − d(x, y)∣,
≤ d(z, y).

The latter statement follows from the same argument above with obvious modification. ■553

Next, we state the McDiarmid’s Inequality [40] and Lévy’s Inequalities [5] without proof.554

Definition 6. A function f ∶ X1 ×X2 × . . . ×Xn → R satisfies the bounded differences property if555

there are constants c1, c2, . . . , cn such that for all 1 ≤ i ≤ n and x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn,556

sup
x′
i∈Xi

∣f(x1, . . . , xi, . . . , xn) − f(x1, . . . , x
′
i, . . . , xn)∣ ≤ ci. (D.1)

Theorem D.2 (McDiarmid’s Inequality). Assume that the function f ∶ X1 ×X2 × . . . ×Xn → R557

satisfy the bounded differences property with bounds c1, . . . , cn. Consider the independent random558

variables Y1, . . . , Yn where Yi ∈ Xi for all 1 ≤ i ≤ n. Then, for any ε > 0,559

P[f(Y1, . . . , Yn) − E[f(Y1, . . . , Yn)] ≥ ε] ≤ exp(− 2ε
2

∑n
i=1 c

2
i

) , (D.2)

P[f(Y1, . . . , Yn) − E[f(Y1, . . . , Yn)] ≤ −ε] ≤ exp(− 2ε
2

∑n
i=1 c

2
i

) . (D.3)

Let (X, d) be a metric space and f ∶ X → R be a Lipschitz function f with Lipschitz constant C.560

Consider the measure space formed by X , the σ-algebra of all Borel sets of X and a probability561

measure P. Let Y be a random variable taking values in X and distributed according to P.562

Definition 7 (Concentration Functions). For all t > 0, the concentration functions of X is defined by563

α(t) = sup
A⊂X∶P(A)≥1/2

P[d(Y,A) ≥ t], (D.4)

where d(Y,A) = infx∈A d(x, Y ).564

Informally, the concentration function α(t) represents the scatter of the random variable Y in the565

metric space. Specifically, for a fixed t > 0, if α(t) ≈ 0, then Y is dispersed throughout the metric566

space since for any subset of X that has significant probability mass, with high probability Y is t567

away from this subset.568

Theorem D.3 (Lévy’s Inequalities). For any Lipschitz function f with Lipschitz constant C > 0,569

P[f(Y ) ≥ Mf(Y ) + t] ≤ α ( t

C
) and P[f(Y ) ≤ Mf(Y ) − t] ≤ α ( t

C
) , (D.5)

where Mf(Y ) is the median of f(Y ). That is, P[f(Y ) ≥ Mf(Y )] ≥ 1/2 and P[f(Y ) ≤570

Mf(Y )] ≤ 1/2.571

Proof. Here, we directly quote a proof from [5]. Consider the set A = {x ∈ X ∶ f(x) ≤ Mf(Y )}.572

By the definition of a median, P[A] ≥ 1/2. On the other hand, by the Lipschitz property of f ,573

At = {x ∈ X ∶ d(x,A) ≤ t

C
} ⊂ {x ∈ X ∶ f(x) < Mf(Y ) + t

C
} .

The inequalities now follow from the definition of the concentration function (the second follows574

from the first by considering −f ). ■575

Leveraging Thm. D.2 and Thm. D.3, we can bound the distance between a fixed non-measure zero576

set and a point. Other than the boundedness of the metric space, we assume all the same notation as577

before.578
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Lemma D.4. Suppose that (X, d) is a bounded metric space such that supx,x′
∈X d(x, x′) < B for579

some B > 0. Let A ⊂ X such that P[A] > 0 and δ > 0. Then,580

P[d(Y,A) ≥ δ] ≤ exp
⎛
⎜
⎝
−

2

B2
(δ −B

√
1

2
log

1

P[A])
2⎞
⎟
⎠
.

Proof. Let fA(x) = d(x,A). Then, by Lem. D.1, fA(⋅) is 1-Lipschitz with respect to d. Since the581

metric space is bounded by constant B > 0, f satisfies the bounded differences propety with constant582

B. By Theorem D.2,583

P[E[fA(Y )] − fA(Y ) ≥ δ] ≤ e
−2δ2/B2

. (D.6)

If δ = E[fA(Y )], then the left-hand side becomes P[fA(Y ) ≤ 0] ≥ P[A]. Therefore, by the584

previous inequality,585

P[A] ≤ P[fA(Y ) ≤ 0], (D.7)

P[A] ≤ exp(−2E[fA(Y )]2/B2), (D.8)

E[fA(Y )] ≥ B

√
1

2
log

1

P[A] . (D.9)

Therefore,586

P[d(Y,A) ≥ δ +B

√
1

2
log

1

P[A]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

(a)

] ≤ e
−2δ2/B2

. (D.10)

The statement of the theorem then follows directly from a substitution of the term labeled (a)587

above. ■588

Now, we are ready to prove the main regarding robustness (Thm. 2.1). For coherence, we restate the589

statement of the theorem before detailing the proof.590

Theorem. Let A ⊂ X × Y such that PX [A] > 0 and δ, η > 0. Let A′
= {(x′

, y
′) ∈ X × Y ∶591

∃(x, y) ∈ A,∆L(x,y)
f (x′

, y
′) > η}. If f ∶ X → Y is ε-knowledge continuous with respect to the592

hidden layer indexed by k and (Zk, dk) is bounded by B > 0, then593

P(x,y)∼DX ,Y [A
′ ∣ dk(fk(x), fk(A)) < δ] ≤ εδ

η (1 − exp [−Ω ( δ
B
−
√
log 1

P[A])
2

])
. (D.11)

Proof. By the definition of conditional probability, we have that594

P(x′,y′)∼D [A′ ∣ dk(fk(x), fk(x′)) < δ] =
P(x′,y′)∼D [A′ and dk(fk(x), fk(x′)) < δ]

P(x′,y′)∼D[dk(fk(x), fk(x′))]
. (D.12)

We start by bounding the numerator of Eq. D.12. By the definition of ε-knowledge continuity,595

Eσ
k
f (x, y) = ∬

∆L(x,y)
f (x′

, y
′)

dk(fk(x), fk(x′))
d(P × P), (D.13)

≥ ∬
dk(fk(x),fk(x′))<δ

∆L(x,y)
f (x′

, y
′)

dk(fk(x), fk(x′)
d(P × P), (D.14)

≥
1

δ
∬

dk(fk(x),fk(x′))<δ
∆L(x,y)

f (x′
, y

′) d(P × P), (D.15)

δ Eσ
k
f (x, y) ≥ ∬

dk(fk(x),fk(x′))<δ
(x,y)∈A

∆L(x,y)
f (x′

, y
′) d(P × P). (D.16)
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This gives us an upper-bound of expectation of ∆L(x,y)
f (x′

, y
′) over the set of all points that are596

within δ-radius from A. Next, by Markov’s inequality,597

P[A′ and dk(fk(x), fk(x′)) < δ] ≤
δ Eσ

k
f (x, y)
η , (D.17)

≤
δε
η . (D.18)

The last inequality follows from the fact that f is ε-knowledge continuous. Now, by applying the598

complement of Lem. D.4, we lower-bound the denominator and yield the following599

P(x′,y′)∼D [A′ ∣ dk(fk(x), fk(x′)) < δ] ≤ εδ

η (1 − exp (− 2
B2 (δ −B

√
1
2
log 1

P[A])
2

))
. (D.19)

The proof is concluded by applying big-Omega notation to the exponentiated. ■600

Corollary D.5. If (Zk, dk) is unbounded, then601

P(x,y)∼DX ,Y [A
′ ∣ dk(fk(x), fk(A)) < δ] ≤ εδ

η(1 − P[A]) . (D.20)

If P[A] = 0, then602

P(x,y)∼DX ,Y [A
′ ∣ dk(fk(x), fk(A)) < δ] ≤ εδ

η . (D.21)

Proof. These results follow from directly taking the limit as B → ∞ and applying some of the603

bounds acquired in the proof of Thm. 2.1. This yields Eq. D.20. Next, setting P[A] = 0 easily results604

in Eq. D.21. ■605

E Proof of Expressiveness606

Here, we show the main result regarding the expressiveness of ε-knowledge continuous estimators607

(Prop. 2.3). For completeness, we restate the statement of the proposition before proceeding with the608

proof.609

Proposition. Suppose (X , dX ), (Y, dY) ≔ (X , dX ) are compact metric spaces, F ⊂ YX is the610

set of all continuous functions from X to Y such that ∫ dX (x, x′)−1dµf < ∞ and L be Lipschitz611

continuous in both coordinates. Then, there exists a universal function approximator U of F that is612

knowledge continuous (i.e. Eσ
k
f (x, y) < ∞ for some k).613

Proof. By assumption, X = Y and dX = dY . First, we consider the set of all Lipschitz continuous614

functions from X → X . Clearly, the set of all Lipschitz continuous functions separate points in X615

by the fact that the dX is Lipschitz continuous (see Lem. D.1). Thus, since X is compact, by the616

Stone-Weierstrass Theorem [52] the set of Lipschitz continuous functions must be dense in the set of617

all continuous functions from X to X . This implies that for any sequence ε1, ε2, . . . we can choose618

Lipschitz continuous functions f1, f2, . . . such that ∫ L(fn(x), y) dµf < εn. It remains to show that619

each of these functions are in fact knowledge continuous. Since X is a metric space, we consider the620

trivial metric decomposition of our sequence of functions (see Remark ??). Specifically, we denote621
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h1 = IdX and proceed to bound Eσ
1
f(x, y).622

Eσ
1
fn(x, y) = ∬

∆L(x,y)
fn

(x′
, y

′)
dX (x, x′) (dµf × dµf), (E.1)

≤ ∬ ∣L(fn(x), y) − L(fn(x′), y) + L(fn(x′), y) − L(fn(x′), y′)∣
dX (x, x′) (dµf × dµf),

(E.2)

≤ ∬ ∣L(fn(x), y) − L(fn(x′), y)∣
dX (x, x′) d(µf × µf) (E.3)

+∬ ∣L(fn(x′), y) − L(fn(x′), y′)∣
d(x, x′) (dµf × dµf), (E.4)

≤ ∬ LdX (f(x), f(x′))
dX (x, x′) d(µf × µf) +∬ LdX (y, y′)

dX (x, x′) d(µf × µf), (E.5)

≤ ∬ LK d(µf × µf) + LB ∫ 1

dX (x, x′) dµf , (E.6)

= LK + LB ∫ dX (x, x′)−1dµf , (E.7)

where L is the Lipschitz constant of L, K is the Lipschitz constant of the fn, and B bounds the metric623

space X (since any compact metric space is bounded). The remaining assumption in the proposition624

concludes the proof of the proposition. ■625

F Proof of Equivalence Between Lipschitz Continuity and Knowledge626

Continuity627

We present the proofs of the results that establish conditions when knowledge continuity implies628

Lipschitz continuity and vice versa. As before, we restate all of the statements before providing their629

proof. First, we identify conditions under which knowledge continuity implies Lipschitz continuity630

(Prop. 2.4).631

Proposition. Suppose that (X , dX ), (Y, dY) are metric spaces. Let the first n metric decompositions632

of f ∶ X → Y be Ki-Lipschitz continuous, for i ∈ [n]. If f is ε-knowledge continuous with respect633

to the n
th hidden layer and dY(f(x), f(x′)) ≤ η∆L(x,y)

f (x′
, y) for all x, x′

∈ X , y ∈ Y , and some634

η > 0, then f is Lipschitz continuous in expectation. That is,635

E(x,y),(x′,y′)∼DX ,Y

dY(f(x), f(x′))
dX (x, x′) ≤ εη

n

∏
j=1

Kj . (F.1)

Proof. We proceed to bound the knowledge continuity of f from below.636

Eσ
k
f (x, y) ≥ E(x,y)∼DX ,Y E(x′

,y
′)∼DX ,Y

y
′
=y

∆L(x,y)
f (x′

, y)
dk(fk(x), fk(x′))

, (F.2)

≥ E(x,y)∼DX ,Y E(x′
,y

′)∼D
y
′
=y

∆L(x,y)
f (x′

, y)
∏n

j=1 KjdX (x′, x) , (F.3)

≥ E(x,y)∼DX ,Y E(x′
,y

′)∼D
y
′
=y

1
η
dY(f(x), f(x′))

∏n
j=1 KjdX (x, x′) , (F.4)

= E(x,y),(x′,y′)∼DX ,Y

1
η
dY(f(x), f(x′))

∏n
j=1 KjdX (x, x′) . (F.5)

Eq. F.2 comes from the fact that we take the expectation only over pairs of points (x, y), (x′
, y

′)637

where y = y
′ and also because the summand is always nonnegative. Then, we inductively apply the638
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definition of Ki-Lipschitz continuity to yield Eq. F.3. Eq. F.4 follows directly from the assumption639

in the statement of the proposition. Since the expression in Eq. F.4 now has no dependence on the640

label distribution, we may expand the expectation which results in Eq. F.5. Lastly, by the definition641

of ε-knowledge continuity,642

ε ≥ E(x,y),(x′,y′)∼DX ,Y

1
η
dY(f(x), f(x′))

∏n
j=1 KjdX (x, x′) ,

εη
n

∏
j=1

Kj ≥ E(x,y),(x′,y′)∼DX ,Y

dY(f(x), f(x′))
dX (x, x′) ,

and this concludes the proof of the proposition. ■643

To prove Cor. 2.5, we need the following auxiliary result from [74].644

Proposition F.1. For a neural network f ∶ Rn
→ RK with Lipschitz constant L under ℓp-norm,645

define the resulting classifier g as g(x) ≔ arg maxk∈[K] fk(x) for an input x. Then, g is provably646

robust under perturbations ∥δ∥p <
p√2
2L

margin(f(x)), i.e.647

g(x + δ) = g(x) for all∥δ∥p <

p
√
2

2L
margin(f(x)). (F.6)

Here, margin(f(x)) is the difference between the largest and second largeset output logit.648

The following proof is from [74].649

Proof. Let fj(x) denote the j
th coordinate of f(x). We proceed by way of contraposition. Suppose650

that g(x) ≠ g(x + δ) for some δ ∈ Rn. We show that ∥δ∥p ≥
p√2
2L

margin(f(x)). Let g(x) = α and651

g(x + δ) = β. Then,652

∥f(x + δ) − f(x)∥p = (
K

∑
k=1

∣fk(x + δ) − f(x)k∣p)
1/p

, (F.7)

≥ (∣fα(x + δ) − fα(x)∣p + ∣fβ(x + δ) − fβ(x)∣p)1/p . (F.8)

The minimum of Eq. F.8 is achieved when fα(x + δ) = fβ(x + δ) = (fα(x) + fβ(x))/2. Then,653

through a direct substitution we have that654

∥f(x + δ) − f(x)∥p ≥

p
√
2

2
(fα(x) − fβ(x)), (F.9)

by the definition of margin(f(x)), fα(x) − fβ(x) ≥ margin(f(x)). Lastly, by the definition of655

L-Lipschitz continuity, we have that656

L∥δ∥p ≥ ∥f(x + δ) − f(x)∥p ≥

p
√
2

2
margin(f(x)). (F.10)

Rearranging this expression results in the proposition. ■657

We are now ready for the proof of Cor. 2.5. We simply Prop. F.1 in conjunction with Markov’s658

inequality to bound the Lipschitz constant.659

Corollary. Suppose that assumptions of Prop. 2.4 are true. And also assume that (X , dX ) = (Rn
, ℓp),660

(Y, dY) = (Rm
, ℓp), for 1 ≤ p ≤ ∞. Define a classifier from f ∶ Rn

→ Rm, g, where g(x) ≔661

arg maxk∈[m] fk(x) for any x ∈ Rn. Then, with probability 1 − εη

t
∏n

j=1 Kj , g(x) = g(x + δ)662

for all ∥δ∥p <
p√2
2t

margin(f(x)) and t > 0. fk(x) is the k
th coordinate of f(x) and margin(f(x))663

denotes the difference between the largest and second-largest output logits.664
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Proof. By Prop. 2.4, we have that665

E(x,y),(x′,y′)∼DX ,Y

dY(f(x), f(x′))
dX (x, x′) ≤ εη

n

∏
j=1

Kj . (F.11)

By Markov’s inequality,666

P(x,y),(x′,y′)∼DX ,Y [dY(f(x), f(x
′))

dX (x, x′) ≥ t] ≤
εη
t

n

∏
j=1

Kj . (F.12)

We yield the corollary by directly applying Prop. F.1 assuming that f is t-Lipschitz continuous. ■667

Next, we establish conditions under which Lipschitz continuity implies knowledge continuity668

(Prop. 2.6).669

Proposition. Let (X , dX ), (Y, dY) be a metric spaces. Let f ∶ X → Y be ε-Lipschitz continuous670

and L(f(x), y) be η-Lipschitz continuous with respect to both coordinates. If the first n metric671

decompositions of f are Ki-Lipschitz continuous, then f is knowledge continuous with respect to the672

n
th hidden layer. That is,673

E(x,y)∼DX ,Y σ
n
f (x, y) ≤ εη

n

∏
j=1

1

Kj
. (F.13)

Proof. Let us start with the definition of ε-Lipschitz continuity and lower-bound it. For any674

(x, y), (x′
, y

′) ∈ X × Y ,675

dY(f(x), f(x′))
dX (x, x′) ≤ ε, (F.14)

dY(f(x), f(x′))
∏n

j=1
1
Kj

dk(fk(x), fk(x′))
≤ ε, (F.15)

1
η
∣L(x, y) − L(x′

, y
′)∣

∏n
j=1

1
Kj

dk(fk(x), fk(x′))
≤ ε, (F.16)

∣L(x, y) − L(x′
, y

′)∣
dk(fk(x), fk(x′))

≤ εη
n

∏
j=1

1

Kj
. (F.17)

Eq. F.15 follows from inductively applying the definition of Lipschitz continuity on the metric676

decompositions of f . Specifically, di+1(f i+1(x), f i+1(x′)) ≤ Kidi(f i(x), f i(x)). Then, by the677

Lipschitz continuity of L in both coordinates we yield Eq. F.16. Since the Lebesgue integral preserves678

order, Eq. F.17 directly implies the statement of the proposition and this concludes the proof. ■679

G Predicting Adversarial Robustness with Volatility680

As discussed in Section 3, we regress k-volatility scores for a variety of models across all layers681

against their empirical adversarial robustness. Herein, we describe this experimental procedure and682

detail the results. Throughout this section, we adopt the shorthand KVS ≔ Eσ
k
f (x, y) and refer to683

this as the knowledge volatility score.684

We run all our experiments against the IMDB dataset [39] with TextFooler [29] as the benchmark685

adversarial attack. We run linear regression to predict the number of successful adversarial attacks,686

using model type and model size. We then incorporate our vulnerability score, calculated over all687

layers, and notice how our R2 changes.688

For our linear regression, we use the LinearRegression class from sklearn (version 1.3.2), and default689

hyperparameters (α = 1.0, max_iter = 1000). To calculate the number of adversarial attacks, we690

use TextFooler algorithm [29] on a holdout test set with respect to a pretrained model. We say that691

an adversarial attack is successful if the model previously characterized it correctly, but under the692

perturbation of TextFooler, the model now classifies it incorrectly.693

For each model, we lay out our features as follows:694
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Figure 2: Regression analysis of Knowledge discontinuity vs. number of successful attacks under
TextFooler. Knowledge discontinuities alone can explain 35% of the variance of successful adversarial
attacks against a model (R2

= 0.35). The line of best fit is given by SucessfulAttacks = 49(KVS) +
2254.

1. A 0 or 1 representing whether this model is encoder-only695

2. A 0 or 1 representing whether this model is decoder-only696

3. A 0 or 1 representing whether this model is encoder-decoder697

4. A floating point representing the natural log of the number of parameters in this model698

5. The vulnerability score associated with this model699

For example, the following vector represents bert-large:700

[1, 0, 0, 19.630, 54.044]

We choose to use the logarithm of the model size. Intuitively, we expect that past a certain size,701

a well-trained model will perform so well that it essentially masters the task, and there is little702

adversarial robustness to be gained by adding more parameters.703

After running our linear regression, we proceed to obtain the coefficients, and then calculate the per-704

mutation importance of each of our features. We get the following results below for our coefficients:705

Without vulnerability score With vulnerability score

encoder -548.43 1484.91
decoder -556.89 -2816.49
encoder-decoder 1105.32 1331.57
ln(num_params) -362.59 65.50
vulnerability score N/A 95.74

706

We calculate importance values using 100 random permutations. We ultimately get the following707

table:708

Without vulnerability score With vulnerability score

encoder 0.0652 0.403
decoder 0.0195 0.712
encoder-decoder 0.177 0.291
ln(num_params) 0.0442 -6.08e-05
vulnerability score — 2.57

R
2 0.282 0.479

709

Notice the importance of the vulnerability score, especially in proportion to the other features. Clearly,710

this illustrates both the predictive power and importance of our vulnerability score.711
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H Localizing Volatile Hidden Representations712

We seek to localize volatile hidden representations, both in the sense of which layers are more volatile,713

and which areas of the representation space for a given layer are more volatile. We consider the same714

selection of models in Appendix G, the same dataset (IMDB), and the same attack (TextFooler).715

Throughout this section, we adopt the shorthand KVS ≔ Eσ
k
f (x, y) and refer to this as the knowledge716

volatility score.717

H.1 Per-Layer Volatility718

We start by plotting the KVS for each of our models, against the actual number of successful719

adversarial attacks. We use this as a proxy for analyzing volatility, since the more volatile, the higher720

the correlation between these two variables.721

Then, to analyze this on a per-layer basis, we notice that KVS can be calculated independently for722

any given layer, since each layer emits its own distance metric.723

Thus, we ultimately plot R2 vs relative depth for our given models. We notice that the foremost and724

final hidden layers are most explanatory (see Fig. 4). However, we see that GPT2 admits a surprising725

behavior, in that its middle hidden layers are most participatory in adversarial vulnerability. We726

now specifically look at this as a case study. To do this, we repeat the experiments in Appendix G727

across 10 relative depths and plot the R
2 with and without GPT2 (see Fig. 3). Indeed, without GPT2728

we see that the trend of R2 seems to be more linear. These results directly inform the choice of729

hyperparameters in Appendix I since we want to minimize KVS only over the highly salient layer,730

rather than all of them.731
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Figure 3: The explained variance of knowledge continuities for each relative depth across all models
and without GPT2. The distribution of points warrant the use of various parameterizations of the
Beta distribution in Alg. 2 for different models.
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Figure 4: The KVS versus relative depth for BERTBase-Uncased, BERT-Large-Uncased, T5-Base,
T5-Small,RoBERTa-Base, RoBERTa-Large, GPT2. Notice that we can track which layers are
responsible for what portion of the vulnerability score of each model. Notice that GPT2 has a spike
toward the middle, and teeters out toward the end– perhaps this is because the deeper layers are
responsible for decoding, and have less of an effect on classification performance. Such a plot could
be a useful for both practical applications and future research, as a computationally efficient method
to roughly assess how different layers may contribute to adversarial vulnerability.

H.2 Per-Model Volatility732

We start by exploring the KVS of each of our test models. We notice that KVS cannot be predicted733

by surface-level features such as size or model type alone. This is shown clearly in Fig. 5. Yet, as734

discussed in Appendix G, it is still able to predict actual adversarial vulnerability with moderate735

power. Thus, we conjecture that KVS captures a complex aspect of the model’s vulnerability which736

cannot be solely attributed to its size or type.737

I Regularizing Knowledge Continuity738

In this section, we provide a comprehensive overview of regulating knowledge continuity to achieve739

robustness. We first show a simple algorithm that estimates k-volatility. Then, we demonstrate how740

this can be used to augment any loss function to achieve regularization. We present some theoretical741

guarantees that revolve around the unbiasedness of our estimation algorithm and some guarantees742

of its rate of convergence. Lastly, we present detailed discussion of the results shown in Table 1743

including training details and ablation studies over the hyperparameters.744

I.1 Estimating Knowledge Continuity Algorithmically745

We first present a method for estimating the knowledge continuity of a hidden representation space.746

This is shown in Alg. 1. In the following subsection, we provide some guidance to choosing the747

subsampling hyperparameter M . In theory, one should choose M = N . However, if N ≫ 1, this can748

become quickly intractable. Therefore, we multiplicatively bound the error of the unbiased estimator749

with respect to M and the variance of k-volatility. As discussed in the main text, the choice of metric750
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Figure 5: The KVS of each model, in the ascending order of model size. As shown, a model’s KVS
cannot be solely attributed to its size or type.
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Figure 6: Left: Actual Adversarial Attacks, Right: Predicted Vulnerabilities using KVS

(or representation space) which we enforce knowledge continuity against is crucial as it determines751

the type of robustness we will achieve. Therefore, in Alg. 2, we incorporate this detail by sampling752

the index of the hidden layer using some Beta distribution specified by hyperparameters α, β. Note753

that we choose the Beta distribution for simplicity, however, it can be replaced by any distribution754

like a mixture of Gaussians.755

In contrast to existing adversarial training methods such as [26] and [51] which only use the embed-756

dings, our algorithm gives the practitioner more control over which hidden layer (or distance metric)757

to enforce smoothness. In this way, if the practitioner has some knowledge a priori of the attacker’s758

strategy, they may choose to optimize against the most suitable metric. We present a brief discussion759

of the various tradeoffs when choosing α, β in the following section as well as a detailed empirical760

analysis in the following subsections. λ is the weight we put on the regularizer in relation to the loss761

function L. We provide a detailed ablation study of the effects of λ in the following subsections.762

We surprisingly find that even for λ ≪ 1 we can achieve significant edge in terms of robustness763

over existing methods. This is in contrast to virtual adversarial training methods such as [36] which764

requires applying a λ-value magnitudes larger. Moreover, for larger λ, we find that the accuracy of765

the model is not compromised. This provides some empirical support for Theorem 2.2.766
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Algorithm 1 Estimating knowledge continuity.

Input: A batch of N data points {(xi, yi)}Ni=1, M ≤ N , neural network f with n hidden layers,
and some k ∈ [n]
Output: An estimation of Eσ

k
f (x, y).

Subsample M indices n1, . . . , nm uniformly at random from [N] without replacement
σ
k
f ← 0

Losses ← {L(f(xni
), yni

)}Mi=1
for (i, j) ∈ [M] × [M] do

Dist ← dk(fk(xni
), fk(xnj

))
σ
k
f ← σ

k
f + ∣Lossesi − Lossesℓ∣/DIST

end for
return σ

k
f

Algorithm 2 Regularization of knowledge continuity.
Input: α, β,M, λ > 0.
A neural network f with n hidden layers, loss function L, and batch {(xi, yi)}Ni=1.
Output: Loss with added knowledge continuity regularization score.
X ∼ Beta(α, β)
σ
k
f ← (Alg. 1)(f,M, k ← max(⌊Xn⌋, 1))

return 1
N
∑N

i=1 L(f(xi), yi) + 1
M2λσ

k
f

I.2 Theoretical Guarantees of Knowledge Continuity Regulation767

In this subsection, we demonstrate that Alg. 1 is indeed an unbiased estimator for knowledge768

continuity and also provide some bounds on the rate of convergence of this estimation.769

Proposition I.1 (Alg. 1 is an Unbiased Estimator). Assuming that each data point in the batch,770

{(xi, yi)}Ni=1 ∼ DX ,Y , is sampled i.i.d., then Alg. 1 is an unbiased estimator for Eσ
k
f (x, y).771

Proof. Let θ̂ be the random variable representing the output of Alg. 1. It suffices to show that772

E[θ̂] = Eσ
k
f (x, y),

where the expectation on the left-hand side is taken over the set of all batches. By the definition of773

Alg. 1,774

E[θ̂] = E
⎛
⎜⎜
⎝

M

∑
i=1

M

∑
j=1

1

M2

∆L
(xnj ,ynj )xni ,yni

f

dk(fk(xni
), fk(xnj)

⎞
⎟⎟
⎠
, (I.1)

=

M

∑
i=1

M

∑
j=1

1

M2
E
⎛
⎜⎜
⎝

∆L
(xnj ,ynj )xni ,yni

f

dk(fk(xni
), fk(xnj)

⎞
⎟⎟
⎠
, (I.2)

= Eσ
k
f (x, y). (I.3)

The second equality follows from the linearity of expectation. ■775

Next, we state a proposition that gives some theoretical guidance for choosing the hyperparameter M776

in Alg. 1. In practice, one should choose M to be the batch size as to ensure accurate estimation of777

the knowledge discontinuity score. We recognize, however, that if N ≫ 1, choosing M = N may be778

intractable. We multiplicatively bound the error of the unbiased estimator with respect to M and the779

overall variance of the δ-knowledge discontinuity.780

Definition 8. A random variable θ̂ is an (ε, δ)-multiplicative estimator of a random variable θ if781

P[θ̂ ∉ (1 ± ε)θ] ≤ 1 − δ.
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The next result is a well-known result from [44] with applications found in [13] and [25].782

Theorem I.2 (Median of Means). Given ε, δ > 0, and an unbiased estimator θ, θ̂. We can achieve an783

(ε, δ)-multiplicative estimator of θ with K independent samples of θ̂ where784

K = O (Var(θ̂)
(εEθ̂)2

ln
1

δ
) ,

where Var(θ̂) is the variance of the estimator θ̂.785

Proposition I.3. Suppose ε, δ, δ
′
> 0, then we can achieve an (ε, δ)-multiplicative estimator of the786

δ
′-knowledge discontinuity in layer j with M = Θ(K) using Alg. 1 where787

K = O ( δ
′
Var(KD)

(εE[∆L(f ;x, y)])2 ln
1

δ
) ,

where ∆L(f ;x, y) difference in loss of f on any two data points sampled from D and KD is the788

random variable that represents the δ
′-knowledge discontinuities across D.789

Proof. Consider a variation of the algorithm where we only draw a pair of points. In other words, fix790

M = 2. Denote the two data points we are considering to be (x1, y1), (x2, y2). Then, let791

X ≔ {
∣L(f ;x1,y1)−L(f ;x2,y2)∣

dj(hj(x),hj(x′)) , if∥hj(x1) − hj(x2)∥ < δ
′
,

0 o/w.

Since we’ve already shown that X is an unbiased estimator (see Prop. I.1) of the δ
′-knowledge792

discontinuities, it remains to find the variance and squared expectation and apply the Median of793

Means theorem (see Theorem I.2). First, we lower bound (EX)2:794

(EX)2 = (1
2
∫
D∣X

E(x′,y′)∼D∣Vx
[∣L(f ;x, y) − L(f ;x′

, y
′)∣

dj(hj(x), hj(x′)) ] dµX)
2

,

(from Prop. I.1)

=
1

4
∫
D∣X×D∣X

E(x′,y′)∼D∣Vx1
[∣L(f ;x1, y1) − L(f ;x′

, y
′)∣

dj(hj(x), hj(x′)) ] ⋅

E(x′,y′)∼D∣Vx2
[∣L(f ;x2, y2) − L(f ;x′

, y
′)∣

dj(hj(x), hj(x′)) ] dµX(x1)dµX(x2),

≥
1

4δ2
∫
D∣X×D∣X

E(x′,y′)∼D∣Vx1
[∣L(f ;x1, y1) − L(f ;x′

, y
′)∣] ⋅

E(x′,y′)∼D∣Vx2
[∣L(f ;x2, y2) − L(f ;x′

, y
′)∣] dµX(x1)dµX(x2),

(since dj(hj(x), hj(x′)))

≥
1

4δ2
∫
D∣X

(E(x′,y′)∼D∣Vx
[∣L(f ;x, y) − L(f ;x′

, y
′)∣])2 dµX(x),

(only consider terms where x1 = x2)

≥
1

4δ2
∫
D∣X

(∫
D∣Vx

∣L(f ;x, y) − L(f ;x′
, y

′)∣2) dµX(x),

(only consider terms in the product that agree)

≥
1

4δ2
∫
D∣X×D∣X

∣L(f ;x, y) − L(f ;x′
, y

′)∣2χδ(x, x′) dµ(x)dµ(x′)

which follows from Tonelli’s theorem and χδ(x, x′) = 1 if and only if dj(hj(x), hj(x′)) < δ and 0
otherwise. Then, by symmetry, this is equivalent to795

=
E[∆L(f ;x, y)]2

4δ2
.
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Figure 7: Regulating knowledge continuity on a host of vision models (ResNet50, MobileNetV2, and
ViT16). Base models are trained with cross-entropy loss. KCReg (Our) models are finetuned with the
additional regularization objective described in Alg. 2. Two adversarial attacks are then performed:
the fast-gradient sign method from [19], and an iterative attack SI-NI-FGSM from [35]. We see
that regulating knowledge continuity consistently improves/stabilizes robustness. Performance is
measured using F1 and the attack strength corresponds to the maximum perturbation magnitude in
L2 allowed. Since the pixel values of the images are bounded between [0, 1], we also constrain the
attack strength to be between [0, 1].

The last equality follows from the fact that Now, we bound the variance of the estimator by above:796

VarX = EX2
− (EX)2,

= ∫
D∣X×D∣X

∣L(f ;x1, y1) − L(f ;x2, y2)∣2

dj(hj(x), hj(x′))2 dµ(x1)dµ(x2) − (EKD)2

(from Prop. I.1)

= EKD2
− (EKD)2 = Var(KD).

Thus, combining both expressions with Theorem. I.2 we yield the desired result. ■797

I.3 Regulating Knowledge Continuity “In the Wild”798

We compare our regularization algorithm with several state-of-the-art adversarial and virtual adver-799

sarial training algorithms. These results are presented in Table. 1. Additional experiments on MNIST800

are also performed. These are presented in Fig. 7.801

I.4 Ablation Studies802

Herein, we present ablation studies for the crucial hyperparameters in our regularization algorithm,803

Alg. 2: λ which is the weight we assign the knowledge continuity regulation loss and (α, β) which804

determines the sampling behavior of the index of the hidden representation space.805
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Table 1: Comparison of our knowledge continuity algorithm to existing works across various model
families and adversarial attack methods. TF, BA, ANLI denote adversarial attacks [29], [34], and
[45], respectively. Regulating knowledge continuity to improve robustness is superior across almost
all tasks and attacks.

Arch. Method IMDB IMDBTF IMDBBA ANLIR1 ANLIR2 ANLIR3

Base 93.6 47.9 45.2 44.5 45.6 33.8
BERT TF 93.3 69.2 62.5 ✗ ✗ ✗
∼110M params ALUM 93.5 56.9 47.8 45.2 46.7 46.3

KCReg (ours) 94.8 75.1 84.9 45.6 46.9 45.3

Base 93.6 63.9 54.9 42.7 44.9 43.4
GPT2 TF 92.0 64.5 51.3 ✗ ✗ ✗
∼1.5B params ALUM 94.9 49.4 27.5 43.8 45.2 44.6

KCReg (ours) 94.9 87.8 90.6 47.1 48.1 44.7

Base 93.7 53.9 39.3 46.1 44.7 46.0
T5 TF 96.8 77.8 60.6 ✗ ✗ ✗
∼220M params ALUM 95.1 67.1 51.9 44.5 44.8 44.4

KCReg (ours) 94.9 89.3 91.3 48.2 45.0 44.3
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Figure 8: The accuracy of the model (both not under/under adversarial attack) on the IMDB dataset
versus varying the weight given to the knowledge continuity regularization term (λ).

Ablation Study of λ. The weight given to the regularizer (λ) is ablated over, with the results shown806

in Fig. 8. For any positive λ, there is an immediate large improvement in adversarial robustness. Next,807

as λ is systematically increased by factors of 10, we do not see a significant change in the accuracy808

(not under attack). This corroborates Theorem. 2.2, as it demonstrates that regulating knowledge809

discontinuities (no matter how strongly) is not at odds with minimizing the empirical risk of our810

model. On the other hand, we also do not see a significant increase in adversarial robustness as811

λ increases. This may imply that we have reached the threshold of adversarial robustness under812

TextFooler [29]. Specifically, the adversarial attacks generated by TextFooler may not be valid in813

that they have flipped the ground-truth label. Therefore, we believe that a good λ for this particular814

application should lie somewhere between 0 and 1 × 10
−4.815

Ablation Study of (α, β) In this subsection, we briefly discuss how the α, β hyperparameters which816

determine the shape of the Beta distribution in Alg. 2 affect the final performance and robustness of817

our model on the IMDB dataset. Recall that the shape of the Beta distribution determines the index818

of the hidden layers we are using the compute the knowledge continuity. Thus, they are crucial in819

determining the behavior of our regularizer.820
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Figure 9: The Beta distributions that we ablated over with the probability density function of their
parameterizations shown.

We finetune {BERT, T5, GPT2} models on the IMDB dataset with the hyperparameters described in821

the next subsection. The results are displayed in Table 2. Across all models we observe a decrease in822

robustness for α = 1, β = 2. These values correspond to a right-skewed distribution which places823

high sampling probability on the earlier (closer to the input) hidden layers. Intuitively, perturbations824

in the early layers should correspond to proportional textual perturbations in the input text. Pure825

textual perturbations with respect to some metric like the Levenshtein distance should be only826

loosely if not completely (un)correlated with the actual labels of these inputs. Therefore, enforcing827

knowledge continuity with respect to this metric should not see increase robustness. Moreover, we828

also observe a larger decrease in accuracy (not under attack) with the same parameters. This suggests829

that maintaining this sort of knowledge continuity in the earlier layers is harder to converge on and830

there may be a “push-and-pull” behavior between optimizing knowledge continuity and accuracy831

(not under attack). Surprisingly, we observe no significant difference between the other α, β values832

shown in the table.

Table 2: We train finetune {BERT, T5, GPT2} using knowledge continuity regularization, as described
in Alg. 2. We varied the α, β hyperparameters for the Beta distribution as to determine the effect of
these parameters on model performance and robustness. The rows of the table are labeled with the
format: Model+Reg(α,β). The bolded entries of the table correspond to the best performing metrics
out of the knowledge continuity regulated models.

Model IMDB IMDBTF

BERTBASE 93.6 47.9
BERTBASE+Reg(2,1) 94.8 75.1
BERTBASE+Reg(2,2) 89.2 74.1
BERTBASE+Reg(1,2) 87.0 68.2

GPT2 93.6 63.9
GPT2+Reg(2,1) 94.6 85.0
GPT2+Reg(2,2) 94.9 87.8
GPT2+Reg(1,2) 93.1 84.9

T5BASE 93.7 53.9
T5BASE+Reg(2,1) 95.0 88.9
T5BASE+Reg(2,2) 94.9 89.3
T5BASE+Reg(1,2) 94.6 88.1

833
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We did not formally benchmark other configurations of α, β such as increasing their magnitude to834

impose a sharper distribution. During training, we noticed that using these sharper distributions835

both significantly slowed the model’s convergence and decreased the model’s accuracy (not under836

attack). It could be that though knowledge continuity itself is a local property the enforcement of837

this local property requires change on a global scale. In other words, one cannot simply reduce the838

knowledge discontinuities or uniformly converge with respect to one layer without participation from839

other layers. The extent to which other layers are involved in the regularization of a specific one is an840

interesting question that we leave for future research.841

I.5 Training Details842

In this section, we describe in detail the training objectives, procedures, algorithms, and hyperparme-843

ters that we used in the main text and further experiments done in the appendix.844

Brute-Force Adversarial Training. For all models undergoing adversarial training, we first finetune845

the model against the training set. Then, attack it using the TextFooler [29] algorithm with examples846

from the training set. After the attacks are concluded, we then incorporate the text of successful847

adversarial attacks back into the training set and proceed to finetune again. This procedure iteratively848

continues. For the sake of computational efficiency, for all models we applied this procedure once.849

The parameters we are using during the adversarial attack is the same hyperparameters we actually850

use at test-time. Specifically, we impose a query budget of 300 queries.851

Plain Finetuning on IMDB. The IMDB dataset consist of 50,000 examples with 25,000 for training852

and 25,000 for testing. We split the test set 40%-60% to create a validation and test set of 10,000853

and 15,000 examples, respectively. Examples were sampled uniformly at random during the splitting854

process. Since adversarial attacks were costly, we uniformly subsampled 5,000 examples from this855

15,000 to benchmark robustness in the experiments related to the regularizer. However, for the856

experiments estimating the knowledge vulnerability score, we performed adversarial attacks on all857

15,000 datapoints in the test set. We found no significant difference between robustness estimation858

on this 5,000 subsample versus and the entire 15,000 dataset.859

We train all models using the following hyperparameter and optimizer configurations:

Table 3: Training hyperparameters and optimizer configurations for finetuning models {BERT, GPT2,
T5} on IMDB without any form of regularization or adversarial training.

HYPERPARAMETER VALUE

OPTIMIZER ADAM
ADAM β1 0.9
ADAM β2 0.999

ADAM ε 1 × 10
−8

MAX GRADIENT NORM 1.0
LEARNING RATE SCHEDULER LINEAR
EPOCHS 20
BATCH SIZE 32
LEARNING RATE 5 × 10

−5

WEIGHT DECAY 1 × 10
−9

860

Knowledge Discontinuity Regulation on IMDB. For enforcing the knowledge discontinuity on861

IMDB, we use a constant λ = 1 × 10
−2 for all models. As shown in Table 2, we varied α, β ∈862

{1, 2} × {1, 2} and displayed the best models in terms of robustness in Table. 1 in the main text.863

We train all models for 50 epochs. Other than that all the other hyperparameters and optimizer864

configurations are the same as regular finetuning (see Table 3).865

Knowledge Discontinuity Regulation on ANLI. Optimizing over the ANLI dataset was significantly866

harder than on IMDB. As a result, for each model class {BERT, GPT2, T5} we performed a quick867

hyperparameter search over λ (1 × 10
−4), the learning rate (5 × 10

−5), and weight decay (1 × 10
−9)868

fixing the parameterization of the Beta distribution to be the best values on the IMDB dataset. That is,869

for T5: α = 2, β = 1; BERT-Base-Uncased: α = 2, β = 1; GPT2: α = 2, β = 2.870
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ALUM on IMDB and ANLI. We train all ALUM models for 50 epochs (the same as knowledge871

discontinuity regularized models). For hyperpararmeters specific to the ALUM algorithm we choose872

all of the same ones as its authors, [36], with the exception of α (analogous to the λ in our algorithm,873

essentially the weight put on the virtual adversarial training loss term). The authors of the original874

paper choose α = 10. We, however, found that this applied to finetuning does not converge at all.875

Thus, with a rough binary search in the parameter space we found α = 1 × 10
−3 to be the best with876

respect to both performance and robustness.877

We keep the same hyperparameters on ANLI, however, we impose early stopping during the training878

process. That is, we choose the best model with respect to its performance on the dev set.879

J Limitations880

The certification guarantees of our definition knowledge continuity is a probabilistic one. Specifically,881

this randomness is over the data distribution. However, this does not protect against out-of-distribution882

attacks that plague large language models such as [59, 76]. More work is needed to yield deterministic883

results that do not become vacuous in discrete settings. As mentioned in Section 2.4, our expres-884

siveness bounds only apply under little restrictions to the metric decompositions of the estimator f .885

Though we see some empirical verification for this in Appendix I, it remains unclear whether or not886

we can tighten these bounds.887

K Broader Impacts888

This contribution is concerned with robust deep learning models. As deep learning becomes ubiqui-889

tous as the mode for artificial intelligence, their applications in increasingly critical areas to the lay890

and corporations alike demand not only both high inferential accuracy and confidence. Robustness ad-891

dresses this latter point, by making deep learning models more robust, we improve the trustworthiness892

of their decision-making and protect them against adversaries. More specifically, our contribution893

unifies separate robustness efforts from continuous and discrete domains.894

L Reproducibility895

All of our experiments were conducted on four NVIDIA RTX A6000 GPUs as well as four NVIDIA896

Quadro RTX 6000 GPUs. The rest of our code base including implementations of the algorithms and897

figures described in the manuscript are attached as supplementary materials.898
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