
One-Step Generalization Ratio Guided Optimization for Domain Generalization

Sumin Cho * 1 Dongwon Kim * 1 Kwangsu Kim 1

Abstract
Domain Generalization (DG) aims to train models
that generalize to unseen target domains but often
overfit to domain-specific features, known as un-
desired correlations. Gradient-based DG methods
typically guide gradients in a dominant direction
but often inadvertently reinforce spurious corre-
lations. Recent work has employed dropout to
regularize overconfident parameters, but has not
explicitly adjusted gradient alignment or ensured
balanced parameter updates. We propose GENIE
(Generalization-ENhancing Iterative Equalizer), a
novel optimizer that leverages the One-Step Gen-
eralization Ratio (OSGR) to quantify each param-
eter’s contribution to loss reduction and assess
gradient alignment. By dynamically equalizing
OSGR via a preconditioning factor, GENIE pre-
vents a small subset of parameters from domi-
nating optimization, thereby promoting domain-
invariant feature learning. Theoretically, GENIE
balances convergence contribution and gradient
alignment among parameters, achieving higher
OSGR while retaining SGD’s convergence rate.
Empirically, it outperforms existing optimizers
and enhances performance when integrated with
various DG and single-DG methods.

1. Introduction
Deep neural networks (DNNs) achieve high accuracy when
training and test data share a similar distribution. How-
ever, in real-world applications, data distributions often shift,
causing performance degradation(Muandet et al., 2013). Do-
main Generalization (DG) addresses this issue by training
models to generalize to out-of-distribution data from un-
seen domains. The main challenge is to prevent overfitting

*Equal contribution 1Department of Computer Science and
Engineering, University of Sungkyunkwan, Suwon, Korea.
Correspondence to: Sumin Cho <jsm0707@skku.edu>,
Dongwon Kim <kdwaha@skku.edu>, Kwangsu Kim
<kim.kwangsu@skku.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. Heatmaps visualizing normalized parameter update mag-
nitudes by parameter ID for different optimizers throughout train-
ing on the VLCS dataset in the DG. Previous optimizers (SGD,
Adam, SAM) exhibit an imbalanced parameter update distribution,
where a subset of parameters dominates the optimization process.
In contrast, GENIE uniformly adjusts parameter-wise OSGR, mit-
igating overfitting to specific parameters and promoting a more
balanced optimization across the entire parameter space.

to domain-specific features—known as spurious correla-
tions—while learning invariant features and causal relation-
ships that generalize across diverse domains(Shi et al., 2022;
Hemati et al., 2023; Shah et al., 2020a; Ye et al., 2024).

Several DG methods have attempted to guide the gradient
toward a dominant direction during training (Parascandolo
et al., 2021; Shahtalebi et al., 2021; Shi et al., 2022; Rame
et al., 2022). However, this dominant direction often itself
driven by spurious features, inadvertently reinforcing un-
desired correlations. This suggests that aligning gradients
toward a single dominant direction is insufficient to fully
solve the problem, highlighting the need for other perspec-
tives.

A recent approach (Michalkiewicz et al., 2023) introduced
a parameter-wise dropout mechanism based on Gradient
Signal-to-Noise Ratios (GSNR) to suppress overly predic-
tive parameters and reduce their influence on optimization.
While this strategy mitigates parameter updates driven by
spurious correlations, it does not adjust the magnitudes of
updates based on their individual contributions to general-

1

One-Step Generalization Ratio Guided Optimization for Domain Generalization

ization. This raises the open question of how to design opti-
mizers that explicitly balance parameter updates according
to their principled contributions to generalization, thereby
mitigating the influence of spurious correlations.

Motivated by this perspective, we propose Generalization-
ENhancing Iterative Equalizer (GENIE), a novel optimizer
for addressing parameter imbalance. Recent work (Liu
et al., 2020) introduced the One-Step Generalization Ratio
(OSGR) that measures how effectively a single gradient
update reduces test loss compared to training loss, provid-
ing insight into a model’s generalization potential. OSGR
reflects the contributions of individual parameters to gener-
alization, based on their convergence speed and degree of
gradient alignment. To leverage this insight, GENIE inte-
grates a preconditioning factor that dynamically balances
parameter-wise OSGR throughout training. This prevents a
small subset of parameters from dominating the optimiza-
tion, thereby promoting more robust and domain-invariant
feature learning.

Our theoretical analysis shows that existing optimizers
typically focus on either convergence speed or gradient
alignment, often resulting in suboptimal generalization.
In contrast, GENIE explicitly balances both, achieving
a higher OSGR while maintaining the convergence rate
of SGD(Robbins & Monro, 1951) in non-convex settings.
We empirically validated GENIE on five standard DG
datasets(Li et al., 2017; Fang et al., 2013; Venkateswara
et al., 2017; Beery et al., 2018; Peng et al., 2019) where it
consistently outperformed established optimizers, even with
extended iterations. Furthermore, using our optimizer in ex-
isting DG and Single-DG (SDG) algorithms enhances their
performance. We summarize our contributions as follows:

• We propose GENIE, a novel optimizer that addresses
the overlooked issue of parameter imbalance in DG. It
suppresses over-predictive parameters while promoting
balanced parameter updates.

• We incorporate OSGR, previously used as a general-
ization metric, into the optimizer’s core principle. This
provides an efficient and novel perspective on general-
ization for addressing DG.

• GENIE is a domain-agnostic optimizer. It is vali-
dated across multiple DG benchmarks and SDG tasks,
demonstrating its broad applicability and scalability.

2. Related Work
2.1. Domain Generalization

Existing DG methods address domain shift through two
main strategies: (1) Feature Alignment, which aims to align
features across domains to ensure consistent optimization,

including methods such as domain-invariant feature learning
(Sun & Saenko, 2016; Arjovsky et al., 2019; Krueger et al.,
2021), data augmentation (Xu et al., 2020; Yan et al., 2020;
Wang et al., 2020), and feature disentanglement (Nam et al.,
2021; Mahajan et al., 2021). (2) Gradient Alignment, which
focuses on aligning gradients across domains to ensure sta-
ble learning dynamics. Representative approaches include
minimizing gradient differences (Koyama & Yamaguchi,
2020), increasing gradient inner products (Shi et al., 2022),
updating weights only when gradient directions align (Paras-
candolo et al., 2021; Shahtalebi et al., 2021), and reducing
inter-domain gradient variance (Rame et al., 2022). Re-
cently, Sharpness Aware Minima (SAM)(Foret et al., 2021)
has improved in-distribution generalization, inspiring the
development of optimizers specifically designed for OOD
tasks (Zhang et al., 2024; Wang et al., 2023). However, most
DG studies overlook imbalanced parameter updates caused
by differences in convergence speed or generalization ca-
pacity during optimization.

2.2. Preconditioning

Preconditioning improves the efficiency of optimization al-
gorithms by incorporating curvature information of the loss
function or adjusting the magnitude and direction of pa-
rameter updates. It accelerates convergence and enhances
stability during training and can be categorized into three
main types (Ye, 2024; Amari et al., 2021) (1) Hessian Based
Preconditioning: utilizes the inverse or approximations of
the Hessian matrix to capture curvature information. (Mon-
tavon et al., 2012; Dennis & Moré, 1977) (2) Adaptive
Learning Rate Based Preconditioning: dynamically adjusts
learning rates based on gradient magnitudes, as seen in opti-
mizers like AdaGrad (Duchi et al., 2011), RMSProp (Hinton
et al., 2012), and Adam (Kingma, 2014). (3) Normalization-
Based Preconditioning: normalizes inputs and activations,
as exemplified by Batch Normalization(Ioffe & Szegedy,
2015), to improve the Hessian’s condition number and en-
hance training stability. Previous preconditioning methods
aim to optimize speed and stability. The application of
preconditioning to improve model generalization remains
underexplored.

3. Method
3.1. Preliminary

To address the challenge of generalization in unseen target
domains, a recent study(Liu et al., 2020) introduced the
concept of OSGR R(Z, n). OSGR quantifies how well
model updates contribute to generalization by measuring
the ratio of loss reduction between test D′ and training data
D after a single optimization step:

R(Z, n) =
ED,D′∼Zn∆LD′

ED∼Zn∆LD
, (1)

2

One-Step Generalization Ratio Guided Optimization for Domain Generalization

where ∆LD′ and ∆LD represent the loss changes on test
and training data, respectively. OSGR is influenced by two
key factors: (1) the contribution of each parameter to loss
reduction, characterized by the gradient magnitude, and
(2) the alignment of parameter gradients across the data
distribution. Higher OSGR indicates better generalization,
reflecting consistent and balanced parameter updates.

To better understand these dynamics, the following theorem
links OSGR to parameter-wise statistics:

Theorem 3.1 (From Paper(Liu et al., 2020)). The relation-
ship between gradient updates and generalization can be
expressed as follows:

R(Z, n) = 1− 1

n

∑
j

ED∼Zn [g2j]∑
j′ ED∼Zn [g2j′]

· 1

rj +
1
n

, (2)

where j denotes the parameter index, g2j is the squared gra-
dient magnitude, ρ2j is the noise variance, and n is the num-
ber of samples. Parameters with higher Gradient Signal-

to-Noise Ratios (GSNR), defined as rj =
g2
j

ρ2
j

, yield higher
OSGR, contributing more significantly to generalization.

A recent study (Michalkiewicz et al., 2023) leveraged GSNR
to suppress overly predictive parameters during training,
aiming to prioritize robust features and reduce noisy up-
dates. However, this approach overlooks parameter-wise
imbalances in OSGR, which limits overall generalization
performance.

In this context, we propose a preconditioning-based ap-
proach that dynamically balances OSGR across parameters.
By incorporating parameter-specific preconditioning fac-
tors, our method ensures that updates are aligned with both
gradient magnitude and noise characteristics, preventing
overfitting to noisy or well-learned features. This strategy
not only enhances generalization but also ensures stable
convergence in diverse DG settings.

3.2. Proposed Method

Based on Theorem 3.1, Michalkiewicz et al. (2023) intro-
duced a gradient-masking approach that prioritizes updates
for parameters with low GSNR, aiming to enhance their
contribution to generalization. They argue that boosting
updates to low-GSNR parameters can increase the overall
GSNR and thus improve the optimization signal-to-gradient
ratio (OSGR). Inspired by this perspective, we hypothesize
the following relationship:

Conjecture Uniformly distributed OSGR across parameters
indicate better generalization performance.

This conjecture guides the design of our method. Rather
than modifying the dropout ratio across parameters, we in-
troduce a preconditioning term that more accurately adjusts

the OSGR. Next, we inject noise into all parameters to en-
courage exploration toward better optima. Finally, we apply
random dropout to stabilize parameter updates and reduce
overfitting.

3.2.1. PRECONDITIONING

We propose a preconditioning factor pj to ensure balanced
contributions of each parameter to the OSGR, thus enhanc-
ing generalization. The key idea is to maintain equitable
parameter influence on the overall generalization perfor-
mance throughout the optimization process. We propose the
following corollary for this purpose.

Corollary 3.2 (Preconditioning and OSGR). If each pa-
rameter j applies a preconditioner pj , the OSGR can be
expressed as:

R′(Z, n) =
∑
j

pjED∼Zn [g2j]∑
j′ pj′ED∼Zn [g2j′]

· 1
1

n·rj + 1
, (3)

or equivalently:

R′(Z, n) = 1− 1

n

∑
j

pjED∼Zn [g2j]∑
j′ pj′ED∼Zn [g2j′]

· 1

rj +
1
n

. (4)

From Corollary 3.2, to maintain a balanced influence of
parameter j on the overall OSGR, we propose:

pj =
1

ED∼Zn

[
g2j
] (rj + 1

n

)
. (5)

This leads to the OSGR:

R′(Z, n) = 1− 1

n

∑
j

1∑
j′

(
rj′ +

1
n

) = 1− 1

nEj∈J

(
rj +

1
n

) ,
(6)

where Ej∈J

(
rj +

1
n

)
represents the average GSNR con-

tribution across parameters.Without preconditioning, pa-
rameters with large g2j but low GSNR may receive higher
weights in the OSGR expression, inflating the subtraction
term. Our preconditioning alleviates this issue and improves
the OSGR. This dynamic adjustment with preconditioning
mitigates parameter-wise imbalances, ensuring that well-
generalized features are not overwhelmed by noisy or overly
dominant parameters.

In implementation, we ignore the 1
n term as n is sufficiently

large, and clipping variance by tanh(1
σ2) for stability. More

detailed analysis on influence of variance is described in
Section 3.3.3. This preconditioner pj is straightforward to
compute and requires only the gradient statistics mt and
variance σt, which can be estimated during training. This
efficiency makes it suitable for a wide range of DG tasks.

3

One-Step Generalization Ratio Guided Optimization for Domain Generalization

3.2.2. NOISE INJECTION

To enhance exploration during optimization, we introduce
noise injection, where a noise term scaled by the variance is
added to the gradient. Specifically, the noise scale is deter-
mined by 1 − tanh(1

σ2), reducing noise for high variance
parameters while increasing it for low variance parameters.
Motivated by (Mansilla et al., 2021), this injection boosts
updates to parameters with low preconditioning value.

3.2.3. RANDOM MASK

To further stabilize updates and mitigate overfitting, we ap-
ply a random dropout mask. This mask, sampled from a
Bernoulli distribution, selectively zeroes out gradient com-
ponents. By applying random masking after the precondi-
tioning step, all parameters are equally considered to ensure
robust updates.

3.3. Analysis

We provide a comprehensive theoretical analysis of our
method from three perspectives. First, we examine gen-
eralization through the OSGR, which highlights how our
effectively balances OSGR value across parameters. Second,
we formalize our approach under the PAC-Bayes framework,
showing that our method explicitly minimizes a tighter gen-
eralization bound. Finally, we establish that our optimizer
retains the convergence rate of standard SGD while en-
abling more robust generalization. Proofs are provided in
Appendix C.

3.3.1. GENERALIZATION ANALYSIS WITH OSGR

We obtain the following corollary regarding the OSGR of
these optimizers:

Corollary 3.3 (OSGR of Optimizers). The OSGR of our
proposed optimizer is:

ROurs = 1− 1

nEj∈J

(
rj +

1
n

) , (7)

Comparing the resulting OSGR across different optimizers,
we have:

ROurs ≥ RSGD ≈ RAdam. (8)

This corollary demonstrates that our proposed precondition-
ing achieves better generalization by attaining a higher over-
all OSGR. The following remarks provide further context
and analysis:
Remark 3.4 (Conceptual Components of Optimizers). The
preconditioning applied by common optimizers can be
viewed as the element-wise product of two conceptual com-
ponents:

• Convergence Term: controls the effective step size,

Algorithm 1 Algorithm for GENIE
Input: Mini-batches {Bt}Tt=1, Learning Rate α, Total
Steps T .
Hyperparameters: β ∈ [0, 1], Dropout Probability p
Initialize: Parameters θ0, m0 ← 0, v0 ← 0.
for t = 1 to T do

Compute Gradient:

gt = ∇L(θt;Bt)

Update Moving Averages:

mt ← βmt−1+(1−β)gt, vt ← βvt−1+(1−β)g2t

Calculate GSNR and Preconditioning:

σ2
t = vt −m2

t , rj = tanh(
1

σ2
t

)m2
t

ĝt ←
mt

1− βt
· 1
vt
· rt

Noise Injection:

Noiset ← ξt
[
1− tanh(

1

σ2
t

)
]
, ξt ∼ N (0, σ2)

Random Mask:

Mj ∼ Bernoulli(p)

ĝt ← (ĝt +Noiset)⊙M

Update Parameters:

θt+1 ← θt − αg̃t

end for
Output: Final parameters θT+1.

thus contributing to faster convergence. It includes
terms such as ED∼Zn [g2j] or ED∼Zn [gj].

• Alignment Term: adjusts gradients toward stable di-
rections. It includes the GSNR term rj .

Table 1 summarizes the convergence term, alignment term
and their resulting OSGR, including SGD, Adam, and our
method.
Remark 3.5 (Optimizer-Specific Analysis). SGD maintains
a baseline OSGR value with no explicit adjustment. Adam
introduces a convergence component combined with a par-
tial alignment factor. In contrast, our method effectively
integrates both aspects in a balanced manner.

Overall, this analysis highlights how each optimizer’s de-
sign affects generalization through gradient alignment and

4

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 1. Comparison of optimizers with preconditioning split into Convergence and Alignment, and OSGR as a separate column.EW

means weighted averaging with weight
∑

j Wj = 1

OPT. PRECONDITIONING OSGR WEIGHT

CONVERGENCE ALIGNMENT

SGD – – 1− 1

n
EWSGD

(1

rj +
1
n

)
WSGD,j =

ED∼Zn [g2j]∑
j′ ED∼Zn [g2j′]

ADAM
1∣∣ED∼Zn(gj)

∣∣
√

1
1

n·rj
+ 1

EWADAM

(1
1

n·rj
+ 1

)
WADAM,j =

√
ED∼Zn [g2j]∑

j′

√
ED∼Zn [g2j′]

GENIE 1

ED∼Zn(g2j)
rj +

1

n
1− 1

nEj∈J

(
rj +

1
n

) WGENIE,j =
1

|J |

convergence speed.Incorporating both perspectives, Our
method leads to a higher OSGR and thus improves gen-
eralization performance. Furthermore, we demonstrate that
the alignment term in our preconditioning achieves a higher
OSGR value than those of existing preconditioning methods.
Detailed justifications are provided in the Appendix C.

3.3.2. GENERALIZATION ANALYSIS WITH PAC-BAYES
BOUND

While the previous analysis is based on alignment and con-
vergence dynamics using OSGR, we now adopt a comple-
mentary perspective grounded in the PAC-Bayes framework.
We formulate the generalization analysis under a one-step
update setting, where the KL divergence between successive
parameter distributions reveals the connection between our
preconditioning and a tighter generalization bound.
Theorem 3.6 (PAC-Bayes Interpretation of Precondition-
ing). Let D ∼ Zn be a dataset sampled i.i.d. from a data
distribution Z . For any λ > 0, and any data-dependent
distribution p̃ over parameters θ, the following PAC-Bayes
bound holds:

EDEθ∼p̃[R(θ)] ≤ EDEθ∼p̃

L(θ)︸︷︷︸
T1

+
λC2

8n
+

KL(p̃∥π)
λ︸ ︷︷ ︸
T2

 .

Assume that p̃ = N (θt+1,Σp̃) and π = N (θt,Σπ), where

Σp̃ = diag(qj · ρ2j) and Σπ = diag(ρ2j). Let qj =
E[g]2
E[g2

j]
be

a variance adaptation factor from SVAG optimizer(Balles &
Hennig, 2018) that minimizes the variance to reduce maxT1

term. (θt+1 = θt − q ⊙ g)

Then, minimizing the T2 term via gradient descent yields an
update direction:

∇θtKL(p̃∥π) = 1

E[g2j]
· E[gj]

2

ρ2j︸ ︷︷ ︸
GENIE

·gj,t,

which matches the preconditioning rule of our optimizer.
Remark 3.7 (Sharpness and Generalization via KL). This re-
sult shows that our method not only improves sharpness—as
done in SAM—but also directly enhances generalization by
minimizing both terms in the PAC-Bayes bound. Specifi-
cally, the variance adaptation factor qj reduces the variabil-
ity of scaled gradients, thereby tightening the empirical loss
term T1 through more stable updates. Simultaneously, the
1
ρ2 term minimizes the KL divergence term T2, which con-
trols model complexity. The resulting GENIE term balances
gradient magnitude and variance, offering a theoretically
grounded preconditioning rule that leads to tighter and more
stable generalization guarantees.

3.3.3. CONVERGENCE ANALYSIS

This section analyzes the convergence properties of GENIE
under non-convex settings. Specifically, we adopt three
widely used assumptions in the optimization literature:
Assumption 3.8. (Bounded Gradient) There exists a con-
stant G > 0 such that

∥∇L(θt)∥ ≤ G for all t. (9)

Assumption 3.9. (L-smooth) The loss function L is L-
smooth, meaning there exists a constant L > 0 such that for
all θ1, θ2:

∥∇L(θ1)−∇L(θ2)∥ ≤ L∥θ1 − θ2∥. (10)

Assumption 3.10. (Lower bounded variance) The variance
of the stochastic gradients have lower bound by a constant
1/Su:

E[∥gt −∇L(θt)∥2] ≥ 1/Su, ∀t. (11)

Under these assumptions, we establish the following result
regarding the convergence rate:
Theorem 3.11. Under Assumption 3.8 Assumption 3.9, and
Assumption 3.10 the average gradient norm over T itera-
tions can be expressed as:

5

One-Step Generalization Ratio Guided Optimization for Domain Generalization

E[∥∇L(θ)∥2] ≤ O

(
1

Pl

(
1 +

G · S2
u

2

)
1√
T̂

)
. (12)

where Pl is lower bound of preconditioning value.
Remark 3.12 (Convergence Rate and Intuition). Theo-
rem 3.11 shows that the average gradient norm converges
at O(T−1/2), the standard rate for stochastic gradient meth-
ods in non-convex optimization. This implies that GENIE
retains the fundamental convergence properties of SGD.
Remark 3.13 (Influence of G ·Su and Su). The term G ·S2

u

represents a trade-off associated with the GSNR. A higher
GSNR upper bound(G · Su) indicates a stronger gradient
signal, which enhances generalization performance. How-
ever, it also acts as a multiplicative factor in the gradient
norm, potentially slowing down convergence and thereby
creating a trade-off. Furthermore, the variance term(Su)
has a significant impact on the bound, further influencing
the overall convergence behavior. To address this issue, we
regulate the variance term using the tanh function, which
effectively balances the interplay between generalization
and convergence dynamics.

4. Experiment
Dataset. We followed the standardized protocols of Do-
mainBed (Gulrajani & Lopez-Paz, 2021), which include
dataset splits, hyperparameter searches, and model selection
using validation sets. Our approach was evaluated on five
DG benchmark datasets: PACS (Li et al., 2017), VLCS
(Fang et al., 2013), OfficeHome (Venkateswara et al., 2017),
TerraIncognita (Beery et al., 2018), and DomainNet (Peng
et al., 2019).

Evaluation. In accordance with DomainBed protocols,
models were trained for 15,000 iterations on DomainNet
and 5,000 iterations on the other datasets. For all DG and
SDG experiments, we employed the Training-domain Val-
idation Set approach, partitioning the source domain into
training and validation subsets. The optimal model was
selected based on validation performance. We followed pre-
vious DG methods by constructing 20 train-validation splits,
with each split repeated 3 times.

Implementation Details. We used ResNet-50 (He et al.,
2016b) pre-trained on ImageNet (He et al., 2016a) as back-
bone architectures. Detailed implementation details are pre-
sented in Appendix D. The detailed results and correspond-
ing confidence intervals of all experiments are provided in
Appendix E.

4.1. Comparison of Optimizers on DG

Experiment Setup. We examined the impact of various
optimization methods on generalization performance under

domain shifts using Baseline ERM (Vapnik, 1999). The
evaluated methods included: Standard optimizers (SGD
(Robbins & Monro, 1951)), Adaptive optimizers (Adam
(Kingma, 2014), AdamW (Loshchilov & Hutter, 2019), Ad-
aBelief (Zhuang et al., 2020), AdaHessian (Yao et al., 2021),
YOGI (Zaheer et al., 2018)), Sharpness-aware optimizers
(SAM (Foret et al., 2021), GAM (Zhang et al., 2023b), FAD
(Zhang et al., 2023a)) and our proposed GENIE.

Results. As shown in Table 2, our optimizer achieved supe-
rior performance across most datasets, surpassing existing
methods. GENIE outperformed Adam, the default optimizer
in most DG algorithms(Zhang et al., 2023a), by 5.69%. Ad-
ditionally, it achieved improvements of 6.36% over SGD
and 4.37% over SAM. In particular, it achieved remark-
able performance on VLCS, which is prone to early con-
vergence and overfitting(Matsuura & Harada, 2020), and
on TerraIncognita, a wildlife image dataset with significant
challenges such as lighting variations, motion blur, occlu-
sions, and severe class imbalance(Beery et al., 2018). These
results suggest that GENIE effectively prevents overfitting
and enhances the learning of causal relationships by bal-
ancing parameter contributions during training. Optimizers
designed for generalization, such as SAM, GAM and FAD,
outperform standard optimizers, underscoring the signifi-
cant role of optimization in generalization. These results
emphasize the need for developing optimizers specifically
tailored for DG.

Table 2. Comparison of optimizers on DG datasets. Results de-
noted by * are reproduced from (Zhang et al., 2023a) using the
same protocol as our paper. The best results for each dataset are
highlighted in bold.

OPT. PACS VLCS OFFICE TERRA DOMAIN AVG.
HOME INC NET

ADAM* 84.2 77.3 67.6 44.4 43.0 63.3
ADAMW* 83.6 77.4 68.8 45.2 43.4 63.7
SGD* 79.9 78.1 68.5 44.9 43.2 62.9
YOGI* 81.2 77.6 68.3 45.4 43.5 63.2
ADABELIEF* 84.6 78.4 68.0 45.2 43.5 63.9
ADAHESSIAN* 84.5 78.6 68.4 44.4 44.4 64.1
SAM* 85.3 78.2 68.0 45.7 43.4 64.1
GAM* 86.1 78.5 68.2 45.2 43.8 64.4
FAD* 88.2 78.9 69.2 45.7 44.4 65.3

GENIE 87.8 80.7 69.7 52.0 44.1 66.9

Results. As reported in Table 3, GENIE consistently outper-
formed other optimizers, even at 5,000 iterations, while in-
curring lower computational overhead than SGD and Adam.
Additionally, GENIE achieved an average of 1.3× faster
training compared to SAM, as SAM’s update rule requires
two sequential (non-parallelizable) gradient computations
per step, which doubles the training time. These results ex-
perimentally validate the theoretical convergence analysis in
Section 3.3.3, confirming GENIE’s ability in computational
efficiency and convergence speed.

6

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 3. Training time (sec) and average accuracy at different iter-
ation levels.

OPT. ITER. TRAINING AVG.

TIME PACS VLCS OFFICE
(/S) HOME

SGD 5000 5,273 69.8 76.7 51.3
10000 10,546 73.9 77 62.5
15000 15,783 75.8 77.7 63.9

ADAM 5000 5,443 84.2 77 63.6
10000 10,934 86.1 77 65.2
15000 16,531 84.5 77 65.2

SAM 5000 5,775 82.4 79.4 69.4
10000 11,500 83.5 80.3 69.6
15000 17,191 84.1 80.4 70

GENIE 5000 4,292 88.4 81.3 70
(OURS) 10000 8,582 87.1 81.3 69.2

15000 12,876 86.9 81.3 69.1

4.2. Integration with Current DG Algorithms

Experiment Setup. GENIE is a versatile optimizer that
integrates seamlessly with various DG algorithms without
requiring changes to the training procedure or model archi-
tecture. To validate its compatibility, we combined GENIE
with several well-performing DG algorithms—CORAL(Sun
& Saenko, 2016) and RSC(Huang et al., 2020) using ResNet-
50 as the backbone—and compared its performance against
other optimization techniques.

Results. The performance evaluation results for DG are
summarized in Table 5. GENIE consistently outperforms
existing optimization methods, demonstrating its robustness
and broad applicability. These results validate GENIE’s
scalability and compatibility with various DG algorithms.
Unlike other DG methods, which often require multiple
source domains or architecture modifications, GENIE seam-
lessly integrates with existing training pipelines, providing
consistent performance gains without additional complexity.
This establishes GENIE as an algorithm-agnostic and highly
adaptable optimization framework for DG tasks.

4.3. Single Domain Generalization

Experiment Setup. We evaluated performance in Single
Domain Generalization (SDG), which is more constrained
but better reflects real-world applications. The flexibility
to operate in SDG without structural modifications is an
advantage of our method over certain existing methods that
are limited to multi-source settings. In SDG, the model is
trained and validated on a single domain and tested on the
others, with results averaged across all source domains. We
compared GENIE with Adam, SGD, and SAM, and applied
it to existing DG methods.

Results. The SDG performance results are presented in
Table 4. As in previous DG settings, our optimizer out-

performed existing optimizers. When applied to DG meth-
ods, conventional optimizers reduced performance, whereas
GENIE achieved the highest performance as a standalone
model and also improved DG methods when used as an
optimizer. These results show that our method enhances DG
performance without requiring architectural modifications
or multiple source domains, and performs well even as a
standalone method.

Table 4. Experimental results of GENIE under the SDG setting.

ALGORITHM PACS VLCS OFFICE TERRA AVG.
HOME INC

ADAM 64.3 56.2 50.7 33.5 51.2
SGD 49.5 60.4 45.9 22.8 44.7
SAM 57.7 66.7 59.2 26.8 52.6
GENIE (OURS) 69.5 69.9 58.6 36.0 58.5

RSC+ADAM 56.8 51.6 2.1 31.6 35.5
RSC+SGD 22.2 39.8 1.7 17.6 20.3
RSC+GENIE(OURS) 68.2 68.7 54.4 33.2 56.1

CORAL+ADAM 64.3 56.2 50.7 33.5 51.2
CORAL+SGD 49.5 60.4 45.9 22.8 44.7
CORAL+GENIE(OURS) 70.9 69.2 56.4 36.7 58.3

4.4. Model Analysis

Ablation. We conducted an ablation study using the PACS
dataset in a DG setting to evaluate the effects of Precon-
ditioning, Noise Injection, and Random Mask (Table 6).
The version without all three components corresponds to
ERM trained with Adam, while the version incorporating
all three represents our proposed GENIE optimizer. Ex-
perimental results show that GENIE achieved the highest
performance, improving accuracy by 4.9% compared to
ERM. Even when using only Preconditioning, performance
improved by 3.8%, indicating that a simple preconditioning
technique can enhance generalization. Additionally, in the
Cartoon and Sketch domains, where objects are placed on
a white background, models trained with Noise Injection
and Random Mask performed better. Here, we conclude
that preconditioning alone is enough for DG, but you can
optionally utilize Noise Injection and Random Mask for
additional robustness.

Sensitivity Analysis. GENIE employs two key hyperpa-
rameters: the dropout probability P and the coefficient B ,
which is used to compute the moving average and variance
of gradients. To analyze the sensitivity of these hyperparam-
eters, we conducted a grid search while keeping all other
training settings fixed. As shown in Figure 2, GENIE consis-
tently outperformed SGD, Adam, and SAM across a wide
range of P and B values, demonstrating strong robustness
to hyperparameter variation. Notably, while this experi-
ment involved hyperparameter tuning via grid search, all
other experiments followed the DomainBed protocol, using
validation performance for hyperparameter selection.

7

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 5. Integration with DG methods. Results obtained from the original literature and DomainBed (Gulrajani & Lopez-Paz, 2021) are
denoted with †, while results taken from (Zhang et al., 2023a) are denoted with *.

ALGORITHM PACS VLCS OFFICEHOME TERRAINC AVG.

ERM†(VAPNIK, 1999) 85.5 77.5 66.5 46.1 68.9
IRM†(ARJOVSKY ET AL., 2019) 83.5 78.6 64.3 47.6 68.5
GROUPDRO†(SAGAWA ET AL., 2020) 84.4 76.7 66.0 43.2 67.6
I-MIXUP†(XU ET AL., 2020) 84.6 77.4 68.1 47.9 69.5
MLDG†(LI ET AL., 2018A) 84.9 77.2 66.8 47.8 69.2
MMD†(LI ET AL., 2018B) 84.7 77.5 66.4 42.2 67.7
DANN†(GANIN ET AL., 2016) 83.7 78.6 65.9 46.7 68.7
CDANN†(LI ET AL., 2018C) 82.6 77.5 65.7 45.8 67.9
MTL†(BLANCHARD ET AL., 2021) 84.6 77.2 66.4 45.6 68.5
SAGNET†(NAM ET AL., 2021) 86.3 77.8 68.1 48.6 70.2
ARM†(ZHANG ET AL., 2021) 85.1 77.6 64.8 45.5 68.3
VREX†(KRUEGER ET AL., 2021) 84.9 78.3 66.4 46.4 69
MIXSTYLE*(ZHOU ET AL., 2021) 85.2 77.9 60.4 44 66.9
MIRO*(CHA ET AL., 2022) 85.4 78.9 69.5 45.4 69.8
GENIE (OURS) 87.8 80.7 69.7 52.0 72.6

RSC(HUANG ET AL., 2020)+ADAM* 84.5 77.9 65.7 44.5 68.2
RSC+ADAMW* 83.4 77.5 66.3 45.1 68.1
RSC+SGD* 82.6 78.1 67 43.9 67.9
RSC+GENIE(OURS) 87.3 80.6 68.1 49.5 71.4

CORAL(SUN & SAENKO, 2016) + ADAM* 86 78.9 68.7 43.7 69.3
CORAL+ADAMW* 86.4 79.5 69.8 45.0 70.2
CORAL+SGD* 85.6 78.2 69.5 45.8 69.8
CORAL+GENIE(OURS) 87.9 80.7 70.6 48.4 71.9

Table 6. Ablation study on the PACS dataset. Results are reported
for evaluations on four domains: Art, Cartoon, Photo, and Sketch.

PRE NOISE MASK PACS AVG.

CONDITION A C P S

X X X 88.0 79.7 96.7 72.7 84.2
O X X 89.5 82.3 98.4 79.4 87.4
O O X 85.4 77.4 98.6 78.7 85.0
O X O 84.6 79.9 98.3 77.4 85.1

O O O 89.3 84.1 98.7 81.6 88.4

OSGR of Network Parameters Over Time. To assess
whether our approach enhances the overall OSGR of net-
work parameters during training, we tracked the average
OSGR of all parameters throughout the training process. As
shown in Figure 4, the OSGR measurements on the VLCS
dataset show that GENIE achieves an OSGR closer to 1
than prior optimizers. This means superior generalization
performance. These findings align with the theoretical Gen-
eralization analysis in Section 3.3.1 , confirming that GENIE
ensures more stable and balanced parameter updates during
training, which ultimately leads to improved generalization.
Interestingly, while SAM is designed for better generaliza-
tion performance, it exhibits inferior OSGR values. This

Figure 2. Performance sensitivity of GENIE to dropout probability
P and coefficient B.

suggests that the sharpness-aware regime alone is insuffi-
cient for generalization, and that the OSGR regime should
also be considered when addressing generalization in DG
tasks. This observation is consistent with our PAC-Bayesian
analysis in Section 3.3.2, which reveals that inducing bal-
anced OSGR values leads to tighter generalization bounds,
reinforcing the role of OSGR as a necessary complement to
sharpness-aware optimization.

Loss Landscape. We analyzed the convergence paths of
SGD, Adam, and GENIE in the loss landscape using the
FashionMNIST dataset(Xiao et al., 2017). As shown in Fig-

8

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Figure 3. UMAP visualization of learned features on the PACS dataset with Sketch as the unseen target domain. (A) Before training.
(B)–(D) After training with SGD, Adam, and GENIE.

Figure 4. OSGR measurements over training iterations for different
optimizers on the VLCS dataset. The OSGR values were calculated
for all iterations and averaged every 200 iterations for clarity and
ease of comparison.

ure 5, each corner represents the local minima of a specific
source domain. All optimizers started at (-1,3) and were
updated for 30 steps under the same conditions. SGD and
Adam follow steep direction and converge quickly. How-
ever, fast convergence often causes overfitting to specific
source domains in OOD scenarios. Generalizable features
are learned later in training(Pérez et al., 2019; Shah et al.,
2020b; Nakkiran et al., 2019), so rapid convergence can pre-
vent the model from acquiring them sufficiently. In contrast,
as demonstrated in the theoretical analysis in Section 3.3.2,
GENIE leads optimization toward flatter minima by effec-
tively reducing sharpness, thereby improving generaliza-
tion(Foret et al., 2021).

Feature Visualization. To examine how the GENIE opti-
mizer operates at the feature level, we performed UMAP
visualizations(McInnes et al., 2018) on the PACS dataset,
with the Sketch domain held out as the unseen target. Each
color represents a different class. The results Figure 3 show
that GENIE leads to clear class separation across domains,
suggesting effective domain-invariant feature learning.

Figure 5. Optimization trajectories on a simulated loss landscape.

5. Conclusion
We introduce GENIE, an optimizer that leverages OSGR to
guide gradients in effective directions, preventing overly pre-
dictive parameters from dominating while ensuring all pa-
rameters contribute equitably to learning. GENIE achieves a
higher OSGR with improved generalization and ensures fast
convergence rate comparable to SGD. Empirically, it out-
performs state-of-the-art optimizers across five DG bench-
marks, demonstrating robust performance under significant
domain shifts and limited data. Seamlessly integrating
with existing DG and SDG methods, GENIE consistently
achieves performance improvements. This work highlights
the potential of OSGR as a guiding principle, paving the
way for its use in few-shot learning, meta-learning, and
other tasks requiring solutions to source-domain overfitting.

Acknowledgements
This work was supported by Korea Internet & Secu-
rity Agency(KISA) grant funded by the Korea govern-
ment(PIPC) (No.RS-2023-00231200, Development of per-
sonal video information privacy protection technology capa-
ble of AI learning in an autonomous driving environment)

9

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Impact Statement
Our work proposes GENIE, an optimization method that
enhances domain generalization by ensuring stable and bal-
anced updates. GENIE mitigates overfitting, promotes flat-
ter minima, and improves OOD performance, contributing
to more robust and generalizable models.

References
Amari, S.-i., Ba, J., Grosse, R. B., Li, X., Nitanda, A.,

Suzuki, T., Wu, D., and Xu, J. When does preconditioning
help or hurt generalization? In International Conference
on Learning Representations, 2021.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Balles, L. and Hennig, P. Dissecting adam: The sign, magni-
tude and variance of stochastic gradients. In International
Conference on Machine Learning, pp. 404–413. PMLR,
2018.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In Proceedings of the European conference on
computer vision (ECCV), pp. 456–473, 2018.

Blanchard, G., Deshmukh, A. A., Dogan, U., Lee, G., and
Scott, C. Domain generalization by marginal transfer
learning. Journal of machine learning research, 22(2):
1–55, 2021.

Cha, J., Lee, K., Park, S., and Chun, S. Domain gener-
alization by mutual-information regularization with pre-
trained models. In Avidan, S., Brostow, G., Cissé, M.,
Farinella, G. M., and Hassner, T. (eds.), Computer Vision
– ECCV 2022, pp. 440–457, Cham, 2022. Springer Nature
Switzerland.

Dennis, Jr, J. E. and Moré, J. J. Quasi-newton methods,
motivation and theory. SIAM review, 19(1):46–89, 1977.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Fang, C., Xu, Y., and Rockmore, D. N. Unbiased metric
learning: On the utilization of multiple datasets and web
images for softening bias. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 1657–
1664, 2013.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations, 2021.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., March, M., and Lempitsky, V. Domain-
adversarial training of neural networks. Journal of ma-
chine learning research, 17(59):1–35, 2016.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. In International Conference on Learning
Representations, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016b.

Hemati, S., Zhang, G., Estiri, A., and Chen, X. Under-
standing hessian alignment for domain generalization. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 19004–19014, 2023.

Hinton, G., Srivastava, N., and Swersky, K. Neural networks
for machine learning lecture 6a overview of mini-batch
gradient descent. Cited on, 14(8):2, 2012.

Huang, Z., Wang, H., Xing, E. P., and Huang, D. Self-
challenging improves cross-domain generalization. In
Vedaldi, A., Bischof, H., Brox, T., and Frahm, J.-M.
(eds.), Computer Vision – ECCV 2020, pp. 124–140,
Cham, 2020. Springer International Publishing.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. pmlr, 2015.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Koyama, M. and Yamaguchi, S. When is invariance useful
in an out-of-distribution generalization problem? arXiv
preprint arXiv:2008.01883, 2020.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A.,
Binas, J., Zhang, D., Priol, R. L., and Courville, A.
Out-of-distribution generalization via risk extrapola-
tion (rex). In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 5815–5826. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/krueger21a.html.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Deeper,
broader and artier domain generalization. In Proceedings

10

https://proceedings.mlr.press/v139/krueger21a.html
https://proceedings.mlr.press/v139/krueger21a.html

One-Step Generalization Ratio Guided Optimization for Domain Generalization

of the IEEE international conference on computer vision,
pp. 5542–5550, 2017.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. Learning
to generalize: Meta-learning for domain generalization.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 32, 2018a.

Li, H., Pan, S. J., Wang, S., and Kot, A. C. Domain general-
ization with adversarial feature learning. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 5400–5409, 2018b.

Li, Y., Gong, M., Tian, X., Liu, T., and Tao, D. Domain
generalization via conditional invariant representations.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 32, 2018c.

Liu, J., Bai, Y., Jiang, G., Chen, T., and Wang, H.
Understanding why neural networks generalize well
through gsnr of parameters. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?
id=HyevIJStwH.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

Mahajan, D., Tople, S., and Sharma, A. Domain generaliza-
tion using causal matching. In International conference
on machine learning, pp. 7313–7324. PMLR, 2021.

Mansilla, L., Echeveste, R., Milone, D. H., and Ferrante,
E. Domain generalization via gradient surgery. In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, pp. 6630–6638, 2021.

Matsuura, T. and Harada, T. Domain generalization using
a mixture of multiple latent domains. In Proceedings of
the AAAI conference on artificial intelligence, volume 34,
pp. 11749–11756, 2020.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Michalkiewicz, M., Faraki, M., Yu, X., Chandraker, M.,
and Baktashmotlagh, M. Domain generalization guided
by gradient signal to noise ratio of parameters. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6177–6188, 2023.

Montavon, G., Orr, G., and Müller, K.-R. Neural networks:
tricks of the trade, volume 7700. springer, 2012.

Muandet, K., Balduzzi, D., and Schölkopf, B. Domain
generalization via invariant feature representation. In
International conference on machine learning, pp. 10–18.
PMLR, 2013.

Nakkiran, P., Kaplun, G., Kalimeris, D., Yang, T., Edelman,
B. L., Zhang, F., and Barak, B. Sgd on neural networks
learns functions of increasing complexity. In Proceedings
of the 33rd International Conference on Neural Informa-
tion Processing Systems, pp. 3496–3506, 2019.

Nam, H., Lee, H., Park, J., Yoon, W., and Yoo, D. Reducing
domain gap by reducing style bias. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8690–8699, June 2021.

Parascandolo, G., Neitz, A., Orvieto, A., Gresele, L., and
Schölkopf, B. Learning explanations that are hard to vary.
In International Conference on Learning Representations,
2021.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang,
B. Moment matching for multi-source domain adaptation.
In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1406–1415, 2019.

Pérez, G. V., Louis, A. A., and Camargo, C. Q. Deep
learning generalizes because the parameter-function map
is biased towards simple functions. In 7th International
Conference on Learning Representations, ICLR 2019,
2019.

Rame, A., Dancette, C., and Cord, M. Fishr: Invari-
ant gradient variances for out-of-distribution generaliza-
tion. In Chaudhuri, K., Jegelka, S., Song, L., Szepes-
vari, C., Niu, G., and Sabato, S. (eds.), Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learn-
ing Research, pp. 18347–18377. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/rame22a.html.

Robbins, H. and Monro, S. A Stochastic Approxima-
tion Method. The Annals of Mathematical Statis-
tics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/
1177729586. URL https://doi.org/10.1214/
aoms/1177729586.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks. In International
Conference on Learning Representations, 2020.

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., and Netra-
palli, P. The pitfalls of simplicity bias in neural networks.
Advances in Neural Information Processing Systems, 33:
9573–9585, 2020a.

11

https://openreview.net/forum?id=HyevIJStwH
https://openreview.net/forum?id=HyevIJStwH
https://proceedings.mlr.press/v162/rame22a.html
https://proceedings.mlr.press/v162/rame22a.html
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., and Netra-
palli, P. The pitfalls of simplicity bias in neural networks.
Advances in Neural Information Processing Systems, 33:
9573–9585, 2020b.

Shahtalebi, S., Gagnon-Audet, J.-C., Laleh, T., Faramarzi,
M., Ahuja, K., and Rish, I. Sand-mask: An enhanced
gradient masking strategy for the discovery of invari-
ances in domain generalization, 2021. URL https:
//arxiv.org/abs/2106.02266.

Shi, Y., Seely, J., Torr, P., Siddharth, N., Hannun, A.,
Usunier, N., and Synnaeve, G. Gradient matching for
domain generalization. In International Conference on
Learning Representations, 2022.

Sun, B. and Saenko, K. Deep coral: Correlation alignment
for deep domain adaptation. In Computer Vision–ECCV
2016 Workshops: Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III 14, pp. 443–
450. Springer, 2016.

Vapnik, V. N. An overview of statistical learning theory.
IEEE transactions on neural networks, 10(5):988–999,
1999.

Venkateswara, H., Eusebio, J., Chakraborty, S., and Pan-
chanathan, S. Deep hashing network for unsupervised
domain adaptation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
5018–5027, 2017.

Wang, P., Zhang, Z., Lei, Z., and Zhang, L. Sharpness-
aware gradient matching for domain generalization. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3769–3778, 2023.

Wang, Y., Li, H., and Kot, A. C. Heterogeneous domain
generalization via domain mixup. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3622–3626. IEEE, 2020.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., and
Zhang, W. Adversarial domain adaptation with domain
mixup. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 34, pp. 6502–6509, 2020.

Yan, S., Song, H., Li, N., Zou, L., and Ren, L. Improve un-
supervised domain adaptation with mixup training. arXiv
preprint arXiv:2001.00677, 2020.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. Adahessian: An adaptive second order
optimizer for machine learning. In proceedings of the

AAAI conference on artificial intelligence, volume 35, pp.
10665–10673, 2021.

Ye, Q. Preconditioning for accelerated gradient de-
scent optimization and regularization. arXiv preprint
arXiv:2410.00232, 2024.

Ye, W., Zheng, G., Cao, X., Ma, Y., and Zhang, A. Spurious
correlations in machine learning: A survey. arXiv preprint
arXiv:2402.12715, 2024.

Zaheer, M., Reddi, S., Sachan, D., Kale, S., and Kumar, S.
Adaptive methods for nonconvex optimization. Advances
in neural information processing systems, 31, 2018.

Zhang, M., Marklund, H., Dhawan, N., Gupta, A., Levine,
S., and Finn, C. Adaptive risk minimization: learning to
adapt to domain shift. In Proceedings of the 35th Inter-
national Conference on Neural Information Processing
Systems, pp. 23664–23678, 2021.

Zhang, R., Fan, Z., Yao, J., Zhang, Y., and Wang, Y. Domain-
inspired sharpness-aware minimization under domain
shifts. In The Twelfth International Conference on Learn-
ing Representations, 2024.

Zhang, X., Xu, R., Yu, H., Dong, Y., Tian, P., and Cui, P.
Flatness-aware minimization for domain generalization.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 5189–5202, Octo-
ber 2023a.

Zhang, X., Xu, R., Yu, H., Zou, H., and Cui, P. Gradient
norm aware minimization seeks first-order flatness and
improves generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 20247–20257, 2023b.

Zhou, K., Yang, Y., Qiao, Y., and Xiang, T. Domain gener-
alization with mixstyle. In International Conference on
Learning Representations, 2021.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek, N.,
Papademetris, X., and Duncan, J. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradients.
Advances in neural information processing systems, 33:
18795–18806, 2020.

12

https://arxiv.org/abs/2106.02266
https://arxiv.org/abs/2106.02266

One-Step Generalization Ratio Guided Optimization for Domain Generalization

A. Notation

Table 7. Final Revised Notation Table

Symbol Description

f neural network
L(θ) loss function
Z data distribution defined over X × Y
n number of data samples
D,D′ training/test dataset drawn from Z
θ, θj model parameters, parameter j
θt,j parameter j at optimization step t

gD,j(θ) gradient of parameter j averaged over training set D
gt gradient at step t

g2j squared gradient magnitude for parameter j
mt, vt first and second moment of gradients
ρ2j noise variance of parameter j’s gradient
σ2
j variance of gradient averaged over training set

rj gradient signal-to-noise ratio (GSNR), rj =
g2j
ρ2j

pj proposed preconditioning factor for parameter j
R(Z, n) one-step generalization ratio (OSGR)
ξt ∼ N (0, σ2) Gaussian noise for noise injection
Mj ∼ Bernoulli(p) random dropout mask
α learning rate
β1, β2 hyperparameters for moving averages
ϵ small constant for numerical stability
J set of parameter index
G bounded gradient constant
Su lower bound of gradient variance
L smoothness constant
Pl lower bound of preconditioning value
Wj weighting factor used in optimizers
p̃, π probability measure
λ hyperparameter in PAC-Bayes bound
Σp̃,Σπ covariance matrix of Gaussian distribution
ϵ, ϵ′ random error terms in gradients
KL(p̃∥π) KL divergence between distributions

B. Details of Table 1
We start out from a reinterpretation of the widely-used ADAM optimizer, which maintains moving averages of stochastic
gradients and their element-wise square,

m̃t = β1m̃t−1 + (1− β1)gt, m̂t =
m̃t

1− βt+1
1

, (13)

ṽt = β2ṽt−1 + (1− β2)g
2
t , v̂t =

ṽt

1− βt+1
2

, (14)

13

One-Step Generalization Ratio Guided Optimization for Domain Generalization

with β1, β2 ∈ (0, 1) and updates

θt+1 = θt − α
m̂t√
v̂t + ε

(15)

with a small constant ε > 0 preventing division by zero. Ignoring ε and assuming |mt,i| > 0 for the moment, we can rewrite
the update direction as

mt√
vt

= sign(mt)

√
vt
m2

t

=
1√

1 +
vt−m2

t

m2
t︸ ︷︷ ︸

T1

◦ sign(mt)︸ ︷︷ ︸
T2

. (16)

Here, we divide the preconditioning into two terms. The convergnece term T2 which modulates update size is :

sign(mt) =
ED∼Zn (gj)

|ED∼Zn (gj)|
(17)

The alignment term T1 which includes GSNR is :

1√
1 +

vt−m2
t

m2
t

=

√
1

1
n·rj + 1

(18)

The Equation (18) can be justified by definition of GSNR using Equation (19) and Equation (20). The variance of gradient
average is:

vt −m2
t =

ρ2j
n

(19)

and
m2

t = g̃2j (20)

C. Proof of Theorems
C.1. Convergence Analysis

We provide the detailed derivation and proof for Theorem 3.11. From Assumption 3.9, we start with:

L(θt+1) ≤ L(θt) + ⟨∇L(θt), θt+1 − θt⟩︸ ︷︷ ︸
T1

+
L

2
∥θt+1 − θt∥2︸ ︷︷ ︸

T2

, (21)

where the first term, T1, is given by:
T1 = ⟨∇L(θt), θt+1 − θt⟩. (22)

Using our preconditioning, which we defined as:

p =
1

g̃2 + ρ2

n

· g̃
2

ρ2
=

n

n+ ρ2

g̃2

· 1
ρ2

, (23)

which satysifies, given Assumption 3.10:
n

n+ ρ2

g̃2

≤ 1,
1

ρ2
≤ Su (24)

For T2, we have:

T2 =
L

2
λ2∥p⊙ gt∥2 ≤

L

2
λ2∥Su · gt∥2, (25)

14

One-Step Generalization Ratio Guided Optimization for Domain Generalization

and its expectation satisfies, using Assumption 3.8:

E[T2] ≤
L

2
λ2S2

uG
2. (26)

For T1, we decompose:
T1 = ⟨∇L(θt), θt+1 − θt⟩ = −λt⟨∇L(θt), p⊙ gt⟩, (27)

T1 ≤ −λtPl∥∇L(θt)∥ · ∥gt∥︸ ︷︷ ︸
T3

+λt

∑
j

|[∇L(θt)]j | ·
|gt,j |
ρ2t,j

· 1(sign[[∇L(θt)]j] ̸= sign[gt,j])︸ ︷︷ ︸
T4

. (28)

Now, considering T3, we evaluate its expectation:

E[T3] = −λtPlE[⟨∇L(θt), gt⟩], (29)

Pl is lower bound of our preconditioning value. Considering T4:

E[T4] = λt

∑
j

E

[
|[∇L(θt)]j | ·

|gt,j |
ρ2t,j

· 1(sign[[∇L(θt)]]j ̸= sign[gt,j])

]
. (30)

Thus, we obtain:

E[T4] = λt

∑
j

E

[
|[∇L(θt)]j | ·

|gt,j |
ρ2t,j

| P (sign[[∇L(θt)]j] ̸= sign[gt,j])

]
. (31)

Next, we analyze the probability term:
P (sign[∇L(θt)]j] ̸= sign[gt,j]) (32)

and bound it as follows:

P (sign[∇L(θt)]j ̸= sign[gt,j]) ≤ P (|[∇L(θt)]j − gt,j | ≥ |[∇L(θt)]j |). (33)

Using Chebyshev’s inequality:

P
(∣∣[∇L(θt)]j − gt,j

∣∣ ≥ ∣∣[∇L(θt)]j∣∣) ≤ Var
(
[∇L(θt)]j − gt,j

)∣∣[∇L(θt)]j∣∣2 =
σ2∣∣[∇L(θt)]j∣∣2 =

ρ2t/n∣∣[∇L(θt)]j∣∣2 . (34)

n is the number of gradient samples.

Replacing the n to step T, we bound the expectation:

E[T4] ≤ λt

∑
j

E

[
|[∇L(θt)]j | ·

|gt,j |
ρ2t,j

·
ρ2t,j/T∣∣[∇L(θt)]j∣∣2

]
≤ λt

|J |
T

(35)

|J | is the number of parameters indicated by the size of parameter index set. Now, summing the inequalities until step T :

E[L(θt+1)] ≤ E[L(θt)]− λtPl∥∇L(θt)∥2 + λt ·
|J |
T

+
L

2
λ2
tS

2
uG

2. (36)

Rearranging:

E[L(θt+1)] ≤ L(θ0)− λtPl

T∑
t=1

∥∇L(θt)∥2 + T · λt

(
|J |
T

+
L

2
λtS

2
uG

2

)
. (37)

This results in:
1

T

T∑
t=1

∥∇L(θt)∥2 ≤
L(θ0)− E[L(θt+1)]

λtPl · T
+

1

Pl

(
|J |
T

+
L

2
λtS

2
uG

2

)
. (38)

15

One-Step Generalization Ratio Guided Optimization for Domain Generalization

1

T

T∑
t=1

∥∇L(θt)∥2 ≤
L(θ0)− E[L(θ∗)]

λtPl · T
+

1

Pl

(
|J |
T

+
L

2
λtS

2
uG

2

)
. (39)

Taking T →∞, the convergence rate is:

E[∥∇L(θt)∥2] ≤
L(θ0)− L(θ∗)

λtPl · T
+

|J|
T + L

2 λtS
2
uG

2

Pl
. (40)

From the final steps of our derivation, we analyze the convergence rate of the algorithm.

Taking λT as:

λT =

√
L(θ0)− L(θ∗)

T · ℓ
, (41)

we have:

E[∥∇L(θ)∥] ≤ 1

Pl
·
√
ℓ
L(θ0)− L(θ∗)

T
+

G · S2
u

2 · Pl

√
ℓ
L(θ0)− L(θ∗)

T
+
|J |

Pl · T
. (42)

Denoting 1√
T̂

as:

1√
T̂

=

√
L(θ0)− L(θ∗) · ℓ

T
, (43)

Finally, we rewrite the bound, concluding that:

E[∥∇L(θ)∥2] ≤ O

(
1

Pl

(
1 +

G · S2
u

2

)
1√
T̂

)
■ (44)

C.2. Proof of Corollary 3.2

We utilized (Liu et al., 2020) for proving Corollary 3.2. In one gradient descent step, the model parameter is updated by
∆θ = θt+1 − θt = −λp⊙ gD(θ), where λ is the learning rate and p is preconditioning. If λ is small enough, the one-step
training and test loss decrease can be approximated by:

∆L[D] ≈ −∆θ · ∂L[D]

∂θ
+O(λ2) = λp⊙ gD(θ) · gD(θ) +O(λ2), (45)

∆L[D′] ≈ −∆θ · ∂L[D
′]

∂θ
+O(λ2) = λp⊙ gD(θ) · gD′(θ) +O(λ2). (46)

Usually, there are some differences between the directions of gD(θ) and gD′(θ), so statistically ∆L[D] tends to be larger
than ∆L[D′], and the generalization gap would increase during training. When λ → 0, in one single training step, the
empirical generalization gap increases by ∆L[D]−∆L[D′]. For simplicity, we denote this quantity as:

∇ := ∆L[D]−∆L[D′] ≈ λgD(θ) · gD(θ)− λgD(θ) · gD′(θ), (47)

which can be further simplified as:

∇ = λ(p⊙ g̃(θ) + p⊙ ϵ)(g̃(θ) + ϵ′)− λ(p⊙ g̃(θ) + p⊙ ϵ)(g̃(θ) + ϵ′), (48)

∇ = λ(g̃(θ) + ϵ)(ϵ− ϵ′). (49)

Here, we replaced the random variables by gD(θ) = g̃(θ) + ϵ and gD′(θ) = g̃(θ) + ϵ′, where ϵ and ϵ′ are random variables
with zero mean and variance σ2(θ). Since E[ϵ′] = E[ϵ] = 0, ϵ and ϵ′ are independent. The expectation of ∇ is:

ED,D′∼Zn(∇) = E(λp⊙ ϵ · ϵ′) +O(λ2) = λ
∑
j

pj · σ2(θj) +O(λ2), (50)

where σ2(θj) is the variance of the average gradient of the parameter θj . For simplicity, when it involves a single model
parameter θj , we will use only a subscript j instead of the full notation. For example, we use σ2

j , rj , and gD,j to denote
σ2(θj), r(θj), and gD(θj), respectively.

16

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Expectation Analysis

Consider the expectation of ∆L[D] and ∆L[D′] when λ→ 0:

ED∼Zn(∆L[D]) ≈ λED∼Zn(p⊙ gD(θ) · gD(θ)) = λ
∑
j

pjED∼Zn(g2D,j). (51)

ED,D′∼Zn(∆L[D′]) = ED,D′∼Zn(∆L[D]−∇) ≈ λ
∑
j

pj(ED∼Zn(g2D,j)− σ2
j), (52)

which simplifies further as:
ED,D′∼Zn(∆L[D′]) ≈ λ

∑
j

pj(ED∼Zn(g2D,j)− ρ2j/n). (53)

Simplification of R(Z, n)

Substituting Equation (53) and Equation (51) into R(Z, n), we have:

R(Z, n) = 1−
∑

j pjρ
2
j

n
∑

j pjED∼Zn(g2D,j)
. (54)

When rj =
ED∼Zn (gD,j)

2

ρ2 We can rewrite Equation (53) as:

R(Z, n) = 1− 1

n

∑
j

pjED∼Zn(g2D,j)∑
j′ pjED∼Zn(g2D′,j)

· 1

rj +
1
n

, (55)

or equivalently:

R(Z, n) =
∑
j

pjED∼Zn(g2D,j)∑
j′ pjED∼Zn(g2D′,j)

· 1(
1 + 1

n·rj

) . ■ (56)

C.3. Generalization Analysis

C.3.1. PAC BAYES BOUND AND PRECONDITIONING

Theorem C.1 (PAC-Bayes bound). For any λ > 0 and any data-dependent probability measure p̃,

ESEθ∼p̃[R(θ)] ≤ ESEθ∼p̃

[
L(θ)︸︷︷︸
T1

+
λC2

8n
+

KL
(
p̃ ∥π

)
λ︸ ︷︷ ︸
T2

]
.

Here, R(θ) denotes the expected loss over the true data distribution. The SAM algorithm primarily focuses on minimizing
the T1 term in Theorem C.1, following the inequality:

LD(θ) ≤ Eϵ∼N (0,ρ)

[
LD(θ + ϵ)

]
≤ max

∥ϵ∥2≤ρ

[
LD(θ + ϵ)

]
. (57)

In contrast, our method simultaneously minimizes both the T1 and T2 terms. First, we determine a preconditioning vector q
to reduce ESEθ∼p̃[L(θ)]. To minimize variance-induced error, we adopt the variance adaptation factor introduced in the
SVAG optimizer(Balles & Hennig, 2018), and solve:

E
[
∥q ⊙ g − E[g]∥22

]
=
∑
j

q2jE[g2j]− 2qjE[g]2 + E[g]2. (58)

Minimizing this expression yields the optimal preconditioning:

qj =
E[g]2

E[g2j]
.

17

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Next, assume p̃ = N (θt+1,Σp̃) and π = N (θt,Σπ), with both covariances defined as:

Σp̃ = diag(q1 · ρ21, q2 · ρ22, . . . , q|J| · ρ2|J|), Σπ = diag(ρ21, ρ
2
2, . . . , ρ

2
|J|),

Here, the prior π can be treated as a data-driven prior which is approximated with stochastic gradient descent using all
data excluding the current mini-batch. Assuming the variances do not significantly change between steps. Then the KL
divergence can be written as follows:

KL(p̃∥π) = 1

2

[∑
i∈J

qi · ρ2i
ρ2i

+
∑
i∈J

(θt+1,i − θt,i)
2

ρ2i
− |J |+

∑
i∈J

log

(
ρ2i

qi · ρ2i

)]
(59)

The gradient of this KL term with respect to θt is:

[∇θtKL(p̃∥π)]j = −
(θt+1,j − θt,j)

ρ2j
=

E[gj]2

E[g2j]
· gj,t
ρ2j

=
1

E[g2j]
· E[gj,t]

2

ρ2j︸ ︷︷ ︸
GENIE

·gj,t. (60)

This shows that minimizing the KL divergence in the PAC-Bayes bound via gradient descent naturally leads to the same
preconditioning structure. Therefore, our method considers both sharpness (through variance adaptation) and generalization
(via KL divergence minimization), whereas SAM focuses solely on sharpness.

C.3.2. OSGR BASED ANALYSIS

From Section 3.2.1, the OSGR of our method is given by:

Rours = 1− 1

n

∑
j

1∑
j′

(
rj′ +

1
n

) = 1− 1

nEj∼J

(
rj +

1
n

) . (61)

Similarly, from Theorem 3.1, the OSGR of SGD is given by:

Rsgd = 1− 1

n

∑
j

ED∼Zn [g2j]∑
j′ ED∼Zn [g2j′]

· 1

rj +
1
n

. (62)

Replacing the term
∑

j

ED∼Zn [g2
j]∑

j′ ED∼Zn [g2
j′]

to
∑

Wj = 1 which represents a weighted average, we rewrite it as:

Rsgd = 1− 1

n

∑
j∈J

Wj

(
1

rj +
1
n

)
. (63)

If we assume uniform weight Wj =
1
|J| , by Jensen’s inequality:

0 ≤ 1− 1

n

∑
j∈J

Wj

(
1

rj +
1
n

)
≤ 1− 1

nEj∈J

(
rj +

1
n

) ≤ 1. (64)

Thus, we conclude:
0 ≤ Rsgd ≤ Rours ≤ 1. ■ (65)

In the same way, with any preconditioning,

R(Z, n) = 1− 1

n

∑
j

pjED∼Zn(g2D,j)∑
j′ pjED∼Zn(g2D′,j)

· 1

rj +
1
n

, (66)

18

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Replacing the term
∑

j

pjED∼Zn (g2
D,j)∑

j′ pjED∼Zn (g2
D′,j)

to
∑

Wj = 1 with Wj =
1
|J| , which represents a average, we rewrite it as:

Rprecondition = 1− 1

n

∑
j∈J

Wj

(
1

rj +
1
n

)
. (67)

Also by Jensen’s inequality, we obtain:
0 ≤ Rprecondition ≤ Rours ≤ 1. ■ (68)

Consequently, this result establishes that our method achieves the highest OSGR value among preconditioning methods
such as Adam, RMSprop, and SVAG(Balles & Hennig, 2018).

However, the assumption of uniform weights Wj =
1
|J| can be overly restrictive. In practice, preconditioning methods aim

to balance the contribution of parameter updates, which becomes especially important when there exists a strong imbalance
in the GSNR distribution. We consider the case where a dominant coordinate exists, denoted as jmax = argmaxj∈J rj , and
define the remaining coordinates as J ′ = J \ {jmax}, with j′max = argmaxj∈J′ rj , such that rj′max

≪ rjmax .

To demonstrate that our method still yields a higher OSGR under such imbalance, we consider the difference:

n(Rours −Rprecondition) =
∑
j∈J

Wj

(
1

rj +
1
n

)
− 1

Ej∈J

(
rj +

1
n

) . (69)

For sufficiently large n, the 1
n terms can be neglected:

n(Rours −Rprecondition) ≈
∑
j∈J

Wj

(
1

rj

)
− 1

Ej∈J(rj)
. (70)

Separating the contribution of the dominant coordinate jmax, we have:

n(Rours −Rprecondition) =
∑
j∈J′

Wj

(
1

rj

)
+Wjmax

(
1

rjmax

)
− 1

Ej∈J(rj)
. (71)

Since Ej∈J(rj) ≥ rjmax
|J| , this difference is lower-bounded by:

n(Rours −Rprecondition) ≥
∑
j∈J′

Wj

(
1

rj

)
+Wjmax

(
1

rjmax

)
− |J |

rjmax

. (72)

Further bounding the terms using rj ≤ rj′max
for all j ∈ J ′, we obtain:∑

j∈J′

Wj

(
1

rj

)
+Wjmax

(
1

rjmax

)
− |J |

rjmax

≥ (1−Wjmax)

(
1

rj′max

)
+Wjmax

(
1

rjmax

)
− |J |

rjmax

. (73)

Therefore, if the following condition holds:

(1−Wjmax)rjmax ≥ |J |rj′max
, (74)

then Rours ≥ Rprecondition, and our method guarantees superior OSGR performance compared to other preconditioning
strategies. This result highlights the robustness of our formulation, particularly under skewed GSNR distributions.

D. Implementation Details
D.1. Training details

As introduced in the experimental section, we follow the standard training, hyperparameter search methods, and evaluation
protocol proposed by DomainBed (Gulrajani & Lopez-Paz, 2021) to ensure a fair comparison. For each dataset, the
models were trained for 15,000 iterations on DomainNet and 5,000 iterations on the other datasets. The search space of
hyperparameters is provided in Table 8. All experiments were conducted on an NVIDIA GeForce RTX 4090 under the
environment of Python 3.8.10, PyTorch 1.13.1, Torchvision 0.14.1, and CUDA 11.7.

19

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 8. The search space of hyperparameters.

PARAMETER DEFAULT VALUE SEARCH DISTRIBUTION

BATCH SIZE 32 2UNIFORM(3,5.5)

LEARNING RATE 0.015 10UNIFORM(−3,−1)

RESNET DROPOUT 0.0 [0.0, 0.1, 0.5]
WEIGHT DECAY 0.0 10UNIFORM(−6,−2)

D.2. Pseudo code

Algorithm 2 Unified Algorithm for RMSProp, Adam, and GENIE
Input: Mini-batches {Bt}Tt=1, learning rate α, total steps T
Preconditioning Parameters: β, β1, β2 ∈ [0, 1], noise scale σ, m0 ← 0, v0 ← 0
Initialize: Parameters θ0
for t = 1 to T do
▷ Compute Gradient: Sample mini-batch Bt and compute

gt = ∇L(θt;Bt).

▷ Compute Preconditioned Gradient:
RMSProp:

vt ← βvt−1 + (1− β)g2t , g̃t ←
gt√
vt + ϵ

.

Adam:
mt ← β1mt−1 + (1− β1)gt, vt ← β2vt−1 + (1− β2)g

2
t ,

m̂t ←
mt

1− βt
1

, v̂t ←
vt

1− βt
2

, g̃t ←
m̂t√
v̂t + ϵ

.

GENIE:
mt ← βmt−1 + (1− β)gt, vt ← βvt−1 + (1− β)g2t ,

σ2
t = vt −m2

t , rt = tanh(
1

σ2
t

)m2
t

ĝt ←
mt

1− βt
· 1
vt
· rt,

Noiset ← ξt
[
1− tanh(

1

σ2
t

)
]
, ξt ∼ N (0, σ2),

g̃t ← ĝt + Noiset.

g̃t ← g̃t ⊙M, Mj ∼ Bernoulli(p)

▷ Update Parameters:
θt+1 ← θt − αg̃t.

end for
Output: Final parameters θT+1 for RMSProp, Adam, and GENIE.

D.3. Code

1 [caption={Python implementation of preconditioning updates.}, label={lst:preconditioning}]
2 def _initialize_preconditioning(self, current_state):
3 self.prev_state = current_state

20

One-Step Generalization Ratio Guided Optimization for Domain Generalization

4 self.gmean = {k: torch.zeros_like(param) for k, param in
self.network.named_parameters()}

5 self.ge2 = {k: torch.zeros_like(param) for k, param in
self.network.named_parameters()}

6 self.scale = 0.0
7

8 def _update_preconditioning(self, lr, moving_avg):
9 grad_sgd = {}

10 pgrad = {}
11 pGsnr = {}
12

13 # Update scale factors
14 self.scale = (moving_avg * self.scale + 1.0)
15 scale1 = (1 - moving_avg) * self.scale
16 scale2 = 2.0 - scale1
17 rho = (1.0 - moving_avg) * scale2 / ((1.0 + moving_avg) * scale1)
18

19 with torch.no_grad():
20 # Update gradients and variance
21 for k, param in self.network.named_parameters():
22 delta = param.grad.data.detach()
23 self.gmean[k] = self.gmean[k] * moving_avg + delta * (1.0 - moving_avg)
24 self.ge2[k] = self.ge2[k] * moving_avg + (delta ** 2) * (1.0 - moving_avg)
25

26 gm = self.gmean[k] / scale1
27 ge2 = self.ge2[k] / scale1
28 var = ge2 - gm.square()
29 var /= (1.0 - rho)
30 var = torch.where(var > 0.0, var, torch.zeros_like(var) + 1e-8)
31

32 invvar = torch.clamp(1 / var, min=0.0, max=10.0)
33 mvar = rho * var
34 mvar = torch.where(mvar > 0.0, mvar, torch.zeros_like(mvar) + 1e-8)
35

36 # Preconditioned gradient scaling
37 tanh_invvar = torch.tanh(invvar)
38 pGsnr[k] = (1.0 / (1.0 + mvar / (gm.square() + 1e-8))) * tanh_invvar
39

40 # Add noise for stochastic gradient adjustment
41 noise_scale = torch.sum(tanh_invvar * torch.abs(gm) *
42 (1.0 / (1.0 + mvar / (gm.square() + 1e-8)))) /

torch.sum(tanh_invvar)
43 noise = torch.normal(torch.zeros_like(delta), torch.ones_like(delta)) *

noise_scale
44 grad_sgd[k] = (1 - tanh_invvar) * noise
45

46 # Compute preconditioned gradients
47 for k, param in self.network.named_parameters():
48 pgrad[k] = self.gmean[k] / scale1 * pGsnr[k].view_as(param)
49

50 # Apply gradients with dropout-based masking
51 for k, param in self.network.named_parameters():
52 mask = (torch.rand_like(param) > self.hparams[’p’]).float() / (1 -

self.hparams[’p’])
53 self.prev_state[k] -= (pgrad[k] + grad_sgd[k]) * mask * lr

E. Experimental Details and Results
E.1. Dataset

This section introduces five representative DG datasets utilized in this paper.

• PACS (Li et al., 2017): This dataset includes 4 different domain styles—Photo, Art Painting, Cartoon, and Sketch. Each

21

One-Step Generalization Ratio Guided Optimization for Domain Generalization

domain contains 7 categories and consists of 9,991 images. It is well-suited for evaluating generalization performance
across style variations.

• OfficeHome (Venkateswara et al., 2017): This dataset consists of 4 different domain styles—Art, Clipart, Product, and
Real-world. Each domain includes 65 categories, with a total of 15,588 samples.

• VLCS (Fang et al., 2013): Derived from four distinct datasets—Caltech101, LabelMe, VOC2007, and SUN09—this
dataset includes 5 shared classes across domains, containing a total of 10,729 images. It is ideal for evaluating
distributional differences between datasets.

• Terra Incognita (Beery et al., 2018): Comprising photographs of wildlife, this dataset is collected from 4 different
locations—L100, L38, L43, and L46. It includes 10 categories and 24,788 samples and is commonly used to measure
model generalization performance in real-world scenarios.

• DomainNet (Peng et al., 2019): This large-scale dataset includes 6 domains—Clipart, Infograph, Painting, Quickdraw,
Real, and Sketch. It comprises 345 categories and a total of 586,575 samples.

E.2. Detailed Results: Comparison with Existing Optimizers

We compare the performance of existing optimizers with our proposed GENIE optimizer on five datasets from the same DG
benchmark. The dataset-specific experimental results are presented in Table 9,Table 10, Table 11, Table 12, and Table 13.
Additionally, we analyze the performance and training time as the number of iterations increases, as shown in Table 14,
Table 15, Table 16.

Table 9. Comparison Results on the PACS Dataset.

OPTIMIZER ART CARTOON PHOTO SKETCH AVG.

ADAM* 88.0±1.2 79.7±0.5 96.7±0.4 72.7±0.9 84.3
ADAMW* 84.1±1.5 80.7±1.2 96.9±0.4 72.8±0.6 83.6
SGD* 85.1±0.4 76.0±0.3 98.3±0.4 60.3±6.1 79.9
YOGI* 84.4±1.7 79.7±0.6 95.8±0.3 65.1±1.5 81.2
ADABELIEF* 85.4±2.2 80.4±1.1 97.4±0.7 75.1±1.4 84.6
ADAHESSIAN* 88.4±0.6 80.0±0.9 97.7±0.4 71.7±4.1 84.5
SAM* 85.7±1.2 81.0±1.4 97.1±0.2 77.4±1.8 85.3
GAM* 85.9±0.9 81.3±1.6 98.2±0.4 79.0±2.1 86.1
FAD* 88.5±0.5 83.0±0.8 98.4±0.2 82.8±0.9 88.2

GENIE (OURS) 88.7±0.7 82.8±1.3 98.5±0.1 81.3±0.4 87.8

Table 10. Comparison Results on the VLCS Dataset.

OPTIMIZER CALTECH LABELME SUN VOC AVG.

ADAM* 98.9±0.4 65.9±1.5 71.0±1.6 74.5±2.0 77.3
ADAMW* 98.3±0.1 65.1±1.7 70.9±1.3 75.2±1.5 77.4
SGD* 98.4±0.2 64.7±0.7 72.5±0.8 76.6±0.8 78.1
YOGI* 98.1±0.7 63.9±1.2 72.5±1.6 75.7±1.2 77.6
ADABELIEF* 98.0±0.1 63.9±0.4 73.4±1.0 78.2±1.8 78.4
ADAHESSIAN* 99.1±0.3 65.0±1.7 72.7±1.3 77.7±1.0 78.6
SAM* 98.5±1.0 66.2±1.6 72.0±1.0 76.1±1.0 78.2
GAM* 98.8±0.6 65.1±1.2 72.9±1.0 77.2±1.9 78.5
FAD* 99.1±0.5 66.8±0.9 73.6±1.0 76.1±1.3 78.9

GENIE (OURS) 99.3±0.3 67.2±1.5 76.6±0.3 79.7±0.8 80.7

22

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 11. Comparison Results on the OfficeHome Dataset.

OPTIMIZER ART CLIPART PRODUCT REAL-WORLD AVG.

ADAM* 63.9±0.8 48.1±0.6 77.0±0.9 81.8±1.6 67.6
ADAMW* 66.1±0.7 48.7±0.6 76.6±0.8 83.6±0.4 68.8
SGD* 65.3±0.8 48.8±1.4 76.7±0.3 83.0±0.7 68.5
YOGI* 63.5±1.0 49.2±1.2 76.2±0.5 84.5±0.6 68.3
ADABELIEF* 65.6±2.0 48.1±0.9 74.8±0.8 83.6±0.9 68
ADAHESSIAN* 63.0±2.9 50.0±1.4 77.7±0.8 83.0±0.5 68.4
SAM* 63.5±1.2 48.6±0.9 77.0±0.8 82.9±1.3 68
GAM* 63.0±1.2 49.8±0.5 77.6±0.6 82.4±1.0 68.2
FAD* 63.5±1.0 50.3±0.8 78.0±0.4 85.0±0.6 69.2

GENIE (OURS) 66.2±0.5 55.0±0.4 77.5±0.4 80.0±0.5 69.7

Table 12. Comparison Results on the TerraIncognita Dataset.

OPTIMIZER L100 L38 L43 L46 AVG.

ADAM* 42.2±3.4 40.7±1.2 59.9±0.2 35.0±2.8 44.4
ADAMW* 44.2±6.8 39.8±1.9 60.3±2.0 36.6±1.8 45.2
SGD* 41.8±5.8 39.8±3.9 60.5±2.2 37.5±1.1 44.9
YOGI* 43.9±2.2 42.5±2.6 60.5±1.1 34.8±1.6 45.4
ADABELIEF* 42.6±6.7 43.0±2.0 60.2±1.3 35.1±0.3 45.2
ADAHESSIAN* 42.5±4.8 39.5±1.0 58.4±2.6 37.3±0.8 44.4
SAM* 42.9±3.5 43.0±2.2 60.5±1.6 36.4±1.2 45.7
GAM* 42.2±2.6 42.9±1.7 60.2±1.8 35.5±0.7 45.2
FAD* 44.3±2.2 43.5±1.7 60.9±2.0 34.1±0.5 45.7

GENIE (OURS) 55.2 ± 4.8 47.5± 2.1 59.2± 0.4 45.9± 1.0 52.0

Table 13. Comparison Results on the DomainNet Dataset.

OPTIMIZER CLIP INFO PAINT QUICK REAL SKETCH AVG.

ADAM* 63.0±0.3 20.2±0.4 49.1±0.1 13.0±0.3 62.0±0.4 50.7±0.1 43.0
ADAMW* 63.0±0.6 20.6±0.2 49.6±0.0 13.0±0.2 63.6±0.2 50.4±0.1 43.4
SGD* 61.3±0.2 20.4±0.2 49.4±0.2 12.6±0.1 65.7±0.0 49.6±0.2 43.2
YOGI* 63.3±0.1 20.6±0.1 50.1±0.3 13.2±0.3 62.8±0.1 51.0±0.2 43.5
ADABELIEF* 63.5±0.2 20.5±0.1 50.0±0.3 13.2±0.3 63.1±0.1 50.7±0.1 43.5
ADAHESSIAN* 63.3±0.2 21.4±0.1 50.8±0.3 13.6±0.1 65.7±0.1 51.4±0.2 44.4
SAM* 63.3±0.1 20.3±0.3 50.0±0.3 13.6±0.2 63.6±0.3 49.6±0.4 43.4
GAM* 63.0±0.5 20.2±0.2 50.3±0.1 13.2±0.3 64.5±0.2 51.6±0.5 43.8
FAD* 64.1±0.3 21.9±0.2 50.6±0.3 14.2±0.4 63.6±0.1 52.2±0.2 44.4

GENIE (OURS) 62.5±0.5 21.3±0.4 50.0±0.4 14.0±0.4 64.0±0.7 52.6±0.8 44.1

23

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 14. Comparison of Optimizers on PACS Dataset Across Iterations.

OPTIMIZER ITERATION TRAINING TIME (/S) ACCURACY AVG.

[0] [1] [2] [3] [0] [1] [2] [3] TIME ACC

SGD 5000 1785 1819 1823 1848 73.4 61.2 96 48.4 1819 69.8
10000 3570 3643 3646 3749 76.8 65.1 97.4 56.1 3652 73.9

150000 5371 5478 5465 5609 77.6 67.1 97.8 60.9 5481 75.9

ADAM 5000 1672 1668 1707 1714 86.2 78.2 95.7 76.6 1690 84.2
10000 3321 3348 3392 3408 86.2 81.7 95.7 80.8 3367 86.1

150000 4989 5030 5067 5092 80.2 81.7 95.5 80.8 5045 84.6

SAM 5000 2661 2717 2729 2689 84.9 74 98.2 72.6 2699 82.4
10000 5378 5425 5479 5392 87.1 75.7 98.1 73.2 5419 83.5

150000 8113 8125 8228 8073 87.2 77.1 98.4 73.8 8135 84.1

GENIE(OURS) 5000 1862 2017 1532 1419 89.3 84.1 98.7 81.6 1708 88.4
10000 3732 4054 3065 2836 87.6 80.9 98.4 81.6 3422 87.1

150000 5607 6077 4586 4256 88.2 80.1 98.4 80.9 5132 86.9

Table 15. Comparison of Optimizers on VLCS Dataset Across Iterations.

OPTIMIZER ITERATION TRAINING TIME (/S) ACCURACY AVG.

[0] [1] [2] [3] [0] [1] [2] [3] TIME ACC

SGD 5000 9154 4947 9315 9119 97 61.9 73.3 74.6 8134 76.7
10000 18311 10054 18641 18312 97.6 60.3 72.7 77.2 16330 77

150000 27732 14956 27918 27419 98.1 62.4 72.6 77.8 24506 77.7

ADAM 5000 9087 4900 9154 9210 98.1 63 73 73.8 8088 77
10000 18148 10024 18404 18312 98.1 63 73 73.8 16222 77

150000 27532 14963 27615 27387 98.1 63 73 73.8 24374 77

SAM 5000 9544 5611 9523 9555 99 63.5 74.6 80.5 8558 79.4
10000 19068 11203 18984 18749 98.9 64.1 76.1 81.9 17001 80.3

150000 28510 16817 28772 27860 99 64.6 75.3 82.6 25490 80.4

GENIE(OURS) 5000 8726 4631 7118 5485 99.5 68.6 76.9 80.4 6490 81.4
10000 17452 9273 14235 10885 99.5 68.6 76.9 80.4 12961 81.4

150000 26164 13917 21396 16314 99.5 68.6 76.9 80.4 19448 81.4

Table 16. Comparison of Optimizers on OfficeHome Dataset Across Iterations.

OPTIMIZER ITERATION TRAINING TIME (/S) ACCURACY AVG.

[0] [1] [2] [3] [0] [1] [2] [3] TIME ACC

SGD 5000 6,634 6,436 5,842 4,554 46.2 40.1 56.8 61.9 5,867 51.3
10000 13,334 12,665 11,722 8,899 56.8 46.4 70.6 76.2 11,655 62.5

150000 20,031 18,565 17,676 13,175 58.5 47.1 73.4 76.6 17,362 63.9

ADAM 5000 8,000 8,147 5,799 4,255 57.8 49.4 73.8 73.4 6,550 63.6
10000 16,260 16,602 11,605 8,379 59.8 52.2 73.8 74.8 13,212 65.2

150000 24,776 25,466 17,387 13,062 59.8 52.2 73.8 74.8 20,173 65.2

SAM 5000 6,639 6,598 5,884 5,151 65.4 54.2 77.1 81.1 6,068 69.4
10000 13,359 12,964 11,813 10,189 65.1 54.5 77.9 80.9 12,081 69.6

150000 20,140 18,983 17,722 14,946 65.5 55.1 78.6 80.9 17,948 70

GENIE(OURS) 5000 4,777 5,846 4,025 4,061 66.5 55.4 77.8 80.3 4,677 70
10000 9,553 11,624 8,062 8,211 65.8 53.3 77.8 79.9 9,363 69.2

150000 14,261 17,333 12,229 12,369 65.8 53.3 77.1 80.3 14,048 69.1

24

One-Step Generalization Ratio Guided Optimization for Domain Generalization

E.3. Integration with DG methods

The detailed performance of previous DG methods employed with our optimizer is presented in Table 17, Table 18, Table 19,
Table 20.

Table 17. Integration with existing DG algorithms on the PACS dataset.

ALGORITHM ART CARTOON PHOTO SKETCH AVG.

ERM†(VAPNIK, 1999) 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5
IRM†(ARJOVSKY ET AL., 2019) 84.8±1.3 76.4±1.1 96.7±0.6 76.1±1.0 83.5
GROUPDRO†(SAGAWA ET AL., 2020) 83.5±0.9 79.1±0.6 96.7±0.3 78.3±2.0 84.4
I-MIXUP†(XU ET AL., 2020) 86.1±0.5 78.9±0.8 97.6±0.1 75.8±1.8 84.6
MLDG†(LI ET AL., 2018A) 85.5±1.4 80.1±1.7 97.4±0.3 76.6±1.1 84.9
MMD†(LI ET AL., 2018B) 86.1±1.4 79.4±0.9 96.6±0.2 76.5±0.5 84.7
DANN†(GANIN ET AL., 2016) 86.4±0.8 77.4±0.8 97.3±0.4 73.5±2.3 83.7
CDANN†(LI ET AL., 2018C) 84.6±1.8 75.5±0.9 96.8±0.3 73.5±0.6 82.6
MTL†(BLANCHARD ET AL., 2021) 87.5±0.8 77.1±0.5 96.4±0.8 77.3±1.8 84.6
SAGNET†(NAM ET AL., 2021) 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3
ARM†(ZHANG ET AL., 2021) 86.8±0.6 76.8±0.5 97.4±0.3 79.3±1.2 85.1
VREX†(KRUEGER ET AL., 2021) 86.0±1.6 79.1±0.6 96.9±0.5 77.7±1.7 84.9
MIXSTYLE(ZHOU ET AL., 2021) 86.8±0.5 79.0±1.4 96.6±0.1 78.5±2.3 85.2

RSC+GENIE(OURS) 87.8±0.6 82.4±0.8 97.4±0.9 81.4±2.0 87.3
CORAL+GENIE(OURS) 88.8±0.2 82.5±0.5 98.2±0.1 82.2±0.2 87.9

Table 18. Integration with existing DG algorithms on the VLCS dataset.

ALGORITHM CALTECH LABELME SUN VOC AVG.

ERM†(VAPNIK, 1999) 98.0±0.3 64.7±1.2 71.4±1.2 75.2±1.6 77.3
IRM†(ARJOVSKY ET AL., 2019) 98.6±0.1 64.9±0.9 73.4±0.6 77.3±0.9 78.6
GROUPDRO†(SAGAWA ET AL., 2020) 97.3±0.3 63.4±0.9 69.5±0.8 76.7±0.7 76.7
I-MIXUP†(XU ET AL., 2020) 98.3±0.6 64.8±1.0 72.1±0.5 74.3±0.8 77.4
MLDG†(LI ET AL., 2018A) 97.4±0.2 65.2±0.7 71.0±1.4 75.3±1.0 77.2
MMD†(LI ET AL., 2018B) 97.7±0.1 64.0±1.1 72.8±0.2 75.3±3.3 77.5
DANN†(GANIN ET AL., 2016) 99.0±0.3 65.1±1.4 73.1±0.3 77.2±0.6 78.6
CDANN†(LI ET AL., 2018C) 97.1±0.3 65.1±1.2 70.7±0.8 77.1±1.5 77.5
MTL†(BLANCHARD ET AL., 2021) 97.8±0.4 64.3±0.3 71.5±0.7 75.3±1.7 77.2
SAGNET†(NAM ET AL., 2021) 97.9±0.4 64.5±0.5 71.4±1.3 77.5±0.5 77.8
ARM†(ZHANG ET AL., 2021) 98.7±0.2 63.6±0.7 71.3±1.2 76.7±0.6 77.6
VREX†(KRUEGER ET AL., 2021) 98.4±0.3 64.4±1.4 74.1±0.4 76.2±1.3 78.3
MIXSTYLE(ZHOU ET AL., 2021) 98.6±0.3 64.5±1.1 72.6±0.5 75.7±1.7 77.9

RSC+GENIE(OURS) 99.1±0.3 68.3±1.3 76.0±0.4 79.1±0.6 80.6
CORAL+GENIE(OURS) 99.0±0.3 68.3±1.0 76.6±1.3 78.9±0.9 80.7

25

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 19. Integration with existing DG algorithms on the OfficeHome dataset.

ALGORITHM ART CLIPART PRODUCT REAL-WORLD AVG.

ERM†(VAPNIK, 1999) 61.3±0.7 52.4±0.3 75.8±0.1 76.6±0.3 66.5
IRM†(ARJOVSKY ET AL., 2019) 58.9±2.3 52.2±1.6 72.1±2.9 74.0±2.5 64.3
GROUPDRO†(SAGAWA ET AL., 2020) 60.4±0.7 52.7±1.0 75.0±0.7 76.0±0.7 66
I-MIXUP†(XU ET AL., 2020) 62.4±0.8 54.8±0.6 76.9±0.3 78.3±0.2 68.1
MLDG†(LI ET AL., 2018A) 61.5±0.9 53.2±0.6 75.0±1.2 77.5±0.4 66.8
MMD†(LI ET AL., 2018B) 60.4±0.2 53.3±0.3 74.3±0.1 77.4±0.6 66.4
DANN†(GANIN ET AL., 2016) 59.9±1.3 53.0±0.3 73.6±0.7 76.9±0.5 65.9
CDANN†(LI ET AL., 2018C) 61.5±1.4 50.4±2.4 74.4±0.9 76.6±0.8 65.7
MTL†(BLANCHARD ET AL., 2021) 61.5±0.7 52.4±0.6 74.9±0.4 76.8±0.4 66.4
SAGNET†(NAM ET AL., 2021) 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1
ARM†(ZHANG ET AL., 2021) 58.9±0.8 51.0±0.5 74.1±0.1 75.2±0.3 64.8
VREX†(KRUEGER ET AL., 2021) 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4
MIXSTYLE(ZHOU ET AL., 2021) 51.1±0.3 53.2±0.4 68.2±0.7 69.2±0.6 60.4

RSC+GENIE(OURS) 63.2±2.5 54.8±0.3 76.0±0.7 78.3±1.9 68.1
CORAL+GENIE(OURS) 66.5±0.2 56.7±0.3 78.8±0.1 80.4±0.6 70.6

Table 20. Integration with existing DG algorithms on the TerraIncognita dataset.

ALGORITHM L100 L38 L43 L46 AVG.

ERM†(VAPNIK, 1999) 54.3±0.4 42.5±0.7 55.6±0.3 38.8±2.5 47.8
IRM†(ARJOVSKY ET AL., 2019) 54.6±1.3 39.8±1.9 56.2±1.8 39.6±0.8 47.6
GROUPDRO†(SAGAWA ET AL., 2020) 41.2±0.7 38.6±2.1 56.7±0.9 36.4±2.1 43.2
I-MIXUP†(XU ET AL., 2020) 59.6±2.0 42.2±1.4 55.9±0.8 33.9±1.4 47.9
MLDG†(LI ET AL., 2018A) 54.2±3.0 44.3±1.1 55.6±0.3 36.9±2.2 47.8
MMD†(LI ET AL., 2018B) 41.9±3.0 34.8±1.0 57.0±1.9 35.2±1.8 42.2
DANN†(GANIN ET AL., 2016) 51.1±3.5 40.6±0.6 57.4±0.5 37.7±1.8 46.7
CDANN†(LI ET AL., 2018C) 47.0±1.9 41.3±4.8 54.9±1.7 39.8±2.3 45.8
MTL†(BLANCHARD ET AL., 2021) 49.3±1.2 39.6±6.3 55.6±1.1 37.8±0.8 45.6
SAGNET†(NAM ET AL., 2021) 53.0±2.9 43.0±2.5 57.9±0.6 40.4±1.3 48.6
ARM†(ZHANG ET AL., 2021) 49.3±0.7 38.3±2.4 55.8±0.8 38.7±1.3 45.5
VREX†(KRUEGER ET AL., 2021) 48.2±4.3 41.7±1.3 56.8±0.8 38.7±3.1 46.4
MIXSTYLE(ZHOU ET AL., 2021) 54.3±1.1 34.1±1.1 55.9±1.1 31.7±2.1 44

RSC+GENIE(OURS) 56.5±3.2 44.5±3.7 55.9±1.0 40.9±0.3 49.5
CORAL+GENIE(OURS) 57.0±1.2 42.9±0.7 54.1±0.8 39.4±1.3 48.4

E.4. Detailed SDG performance.

This section reports a detailed comparison of our optimizer with existing optimizers across four datasets in the SDG setting.
It also provides the performance of previous methods when employed with our optimizer. Table 21, Table 22 Table 23,
Table 24

E.5. Model Analysis

Figure 6. visualizes the behavior of SGD, Adam, and GENIE on various loss landscapes, with the number of iterations fixed
at 30 for consistency. The results show that GENIE does not directly converge to the minima of the training data, whereas
Adam and SGD quickly converge to the minima. While this behavior might be advantageous in IID scenarios, it can lead to
overfitting to the source domain in OOD settings.Figure 7 provides a more detailed analysis of the experiment. It further
elaborates on the parameter update patterns observed across optimizer.

26

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Table 21. Detailed performance on the PACS dataset in the SDG setting.

ALGORITHM ART CARTOON PHOTO SKETCH AVG.

ERM+ADAM 77.5 72.1 54.4 53.3 64.3
ERM+SGD 64.0 66.0 40.8 27.1 49.5
ERM+SAM 70.1 75.6 42.5 42.7 57.7
ERM+GENIE(OURS) 78.6±0.6 81.9±0.9 53.8±2.2 63.5±5.2 69.5

RSC+GENIE(OURS) 79.8±2.0 81.0±1.2 56.7±3.3 65.9±4.6 70.9
CORAL+GENIE(OURS) 78.9±0.6 78.6±2.2 53.9±1.2 61.3±3.4 68.2

Table 22. Detailed performance on the VLCS dataset in the SDG setting.

ALGORITHM CALTECH LABELME SUN VOC AVG.

ERM+ADAM 33.7 53.5 62.3 75.4 56.2
ERM+SGD 46.3 52.4 65.6 77.3 60.4
ERM+SAM 54.4 68.1 65.8 78.7 66.7
ERM+GENIE(OURS) 56.6±4.3 75.4±1.1 67.2±1.4 80.5±0.3 69.9

RSC+GENIE(OURS) 56.3±2.5 72.0±1.5 68.8±1.7 79.6±1.1 69.2
CORAL+GENIE(OURS) 55.9±1.3 71.7±1.8 67.2±1.8 79.9±1.4 68.7

Table 23. Detailed performance on the OfficeHome dataset in the SDG setting.

ALGORITHM ART CLIPART PRODUCT REAL-WORLD AVG.

ERM+ADAM 52.6 46.5 45.6 58 50.7
ERM+SGD 47.7 41.4 43.2 51.5 45.9
ERM+SAM 60.1 57.8 55.8 63.1 59.2
ERM+GENIE(OURS) 59.4 ± 0.7 58.7 ± 0.9 54.1 ± 0.5 62.0 ± 0.3 58.6

RSC+GENIE(OURS) 55.8 ± 2.6 52.5 ± 2.0 49.7 ± 3.0 59.7 ± 2.0 54.4
CORAL+GENIE(OURS) 58.0 ± 0.9 54.8 ± 1.5 51.3 ± 0.3 61.4 ± 0.7 56.4

Table 24. Detailed performance on the TerraIncognita dataset in the SDG setting.

ALGORITHM L100 L38 L43 L46 AVG.

ERM+ADAM 27.0 25.5 42.9 38.6 33.5
ERM+SGD 22.1 17.9 22.3 29 22.8
ERM+SAM 21.1 21.6 30.3 34.2 26.8
ERM+GENIE(OURS) 28.5 ± 0.5 29.4 ± 1.5 41.7 ± 1.8 44.5 ± 1.3 36.0

RSC+GENIE(OURS) 27.1 ± 1.5 22.6 ± 1.7 39.7 ± 3.0 43.3 ± 1.1 33.2
CORAL+GENIE(OURS) 29.3 ± 1.0 29.8 ± 1.8 43.9 ± 1.3 43.6 ± 1.6 36.7

27

One-Step Generalization Ratio Guided Optimization for Domain Generalization

Figure 6. Optimization trajectories on a simulated loss landscape.

Figure 7. Heatmaps visualizing normalized parameter update magnitudes by parameter ID for different optimizers throughout training on
the VLCS dataset in the DG.

28

