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Abstract

NLI tasks necessitate a substantial degree of001
logical reasoning; as such, the remarkable per-002
formance of SoTA transformers on these tasks003
may lead us to believe that those models have004
learned to reason logically. The results pre-005
sented in this paper demonstrate that (i) models006
fine-tuned on NLI datasets learn to treat exter-007
nal negation as a distractor, effectively ignoring008
its presence in hypothesis sentences; (ii) sev-009
eral near-SoTA encoder and encoder-decoder010
transformer models fail to inductively learn the011
law of the excluded middle for a single exter-012
nal negation prefix with respect to NLI tasks,013
despite extensive fine-tuning; (iii) those mod-014
els which are are able to learn the law of the015
excluded middle for a single prefix are unable016
to generalize this pattern to similar prefixes.017
Given the critical role of negation in logical018
reasoning, we may conclude from these find-019
ings that transformers do not learn to reason020
logically when fine-tuned for NLI tasks. Fur-021
thermore, these results suggest that transform-022
ers cannot inductively learn the role of negation023
with respect to NLI tasks, calling into question024
their capacity to fully acquire logical reasoning025
abilities.026

1 Introduction027

Natural language inference (NLI) tasks require de-028

tecting inferential relations between pairs of sen-029

tences (Fyodorov et al., 2000). For NLI datasets030

such as MultiNLI (MNLI; Williams et al., 2017)031

and Stanford NLI (SNLI; Bowman et al., 2015), the032

task proceeds as follows: given a pair of sentences033

(P,H), an NLI model must determine whether the034

premise P entails the hypothesis H , H contradicts035

P , or P and H are neutral with respect to one036

another (i.e. P does not entail H and H does not037

contradict P ).038

NLI tasks require logical reasoning capabilities039

that extend beyond basic linguistic competence040

(Richardson et al., 2020). For example, understand-041

ing that "Jane is travelling to Algeria" entails "Jane 042

is travelling to Africa" requires mereological world 043

knowledge (Hovda, 2009); in particular, an agent 044

must know that Algeria is contained within Africa. 045

To understand that "Jane is travelling to Algeria" 046

does not entail "Jane is travelling to Algiers", the 047

agent must understand that Algiers is contained 048

within Algeria, but that Algeria is not solely com- 049

prised of the city of Algiers. 050

Due to the considerable amount of reasoning 051

that is required to accomplish these tasks, it is pru- 052

dent to scrutinize the degree to which current NLI 053

models are actually learning to reason logically. 054

McCoy et al.’s (2019) findings suggest, for exam- 055

ple, that even state-of-the-art (SoTA) NLI models 056

such as BERT (Devlin et al., 2019) adopt shallow, 057

textual heuristics to achieve high-scoring results 058

on the MNLI dataset, although the MNLI dataset 059

itself is likely to be—at least partially—at fault 060

(possibly because the provided training data is not 061

sufficiently representative of the task; see the dis- 062

cussion in Section 2 below). 063

This paper investigates SoTA transformer 064

(Vaswani et al., 2017) NLI models’ ablility to in- 065

ductively learn the law of the excluded middle with 066

respect to external negation (negation that occurs 067

externally to the proposition that is negated, e.g. 068

"it is not true that apples are red"), in order to eval- 069

uate the degree to which they have learned to rea- 070

son logically when performing NLI tasks. Using 071

external negation, it is possible to automatically 072

conduct adversarial attacks on examples from the 073

MNLI and SNLI datasets that modify the exam- 074

ples’ class labels in a predictable manner; given 075

a premise, hypothesis, label triple (P,H,L), we 076

may generate an adversarial example (P,¬H,L′), 077

where L′ = neutral if L = neutral, L′ = contra- 078

diction if L = entailment, and L′ = entailment if 079

L = contradiction. 080

Experiments 1 and 2 evaluate the NLI models’ in- 081

ductive learning capacity along two respective axes: 082
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Experiment 1 (Section 3) examines these models’083

ability to generalize double negation-cancellation084

to chains of repeated external negation prefixes085

longer that those seen during inoculation, with re-086

spect to a single prefix string. We observe that NLI087

models struggle to learn this pattern inductively,088

with many unable to learn it at all. Experiment089

2 (Section 4) evaluates the ability of those NLI090

models which were successfully able to learn the091

law of the excluded middle for a single external092

negation prefix to generalize this pattern to prefix093

strings not seen during fine-tuning. We find that094

those inoculated models suffer drastic decreases in095

performance when presented with unseen prefixes;096

the results of Experiment 3 (Section 5) indicate that097

this is due to catastrophic forgetting of the similar-098

ity between the prefix that they were inoculated099

against and other, highly similar prefixes.100

The experimental results contained in this paper1101

indicate that transformer models do not learn to102

reason logically when fine-tuned on NLI datasets,103

lending further support to McCoy et al.’s (2019)104

hypothesis that they are instead learning to leverage105

shallow heuristics. In Section 6, we find evidence106

(Theorem 1) that this failure of transformer models107

to inductively learn the law of the excluded middle108

arises from deficiencies in their training procedure109

and/or the structure (or lack thereof) of their in-110

put data, rather than flaws inherent to transformer111

architectures themselves.112

2 Related Work113

There is a large body of existing work on probing114

NLI models to gain insight into their reasoning abil-115

ities (Belinkov and Glass, 2019). As mentioned in116

Section 1, McCoy et al. (2019) find that language117

models fine-tuned on MNLI learn to leverage shal-118

low heurisics to achieve exceptionally high accu-119

racy on this dataset. Similarly, Chien and Kalita120

(2020) and Richardson et al. (2020) probe NLI121

models’ performance with respect to specific syn-122

tactic and semantic phenomena (e.g. coordination,123

quantification, monotonicity, etc.). They find that124

SoTA models fine-tuned on MNLI and SNLI per-125

form poorly on adversarial examples generated to126

evaluate the models with respect to these phenom-127

ena, but can be easily fine-tuned to master the adver-128

sarial data, while retaining their high performance129

on the original datasets.130

1All code available on GitHub: [link removed for
anonymity]

In all three of these papers, their respective au- 131

thors utilize the method of inoculation by fine- 132

tuning. Liu et al. (2019a) introduces this paradigm 133

as a technique for differentiating between defi- 134

ciencies in a model’s training data and deficien- 135

cies in the model itself. Inoculation by fine- 136

tuning assumes that there is an original dataset 137

(divided into train and test splits) and a smaller chal- 138

lenge/adversarial dataset (also divided into train 139

and test splits), and that model’s performance on 140

the adversarial dataset is significantly lower than 141

on the original dataset. The idea is to fine-tune 142

the model on the adversarial dataset until valida- 143

tion performance on the original test set has not 144

improved for five epochs, then measure the newly 145

fine-tuned (inoculated) model on the adversarial 146

test set. If the inoculated model maintains its perfor- 147

mance on the original test set and performs (nearly) 148

as well on the adversarial test set, this suggests that 149

the model’s poor performance on the adversarial 150

data was due to flaws (e.g. a lack of diversity) in the 151

original training data. Conversely, if the model’s 152

performance on the adversarial test set remains 153

significantly worse than on the original data after 154

inoculation, this suggests that its poor performance 155

on the adversarial data is due to a deficiency in the 156

model itself. 157

This paper probes various NLI models’ logical 158

reasoning abilities—in particular with respect to 159

external negation—using adversarial attacks along 160

with the inoculation by fine-tuning paradigm. Un- 161

like most varieties of adversarial attack, which seek 162

to perturb input examples without altering their 163

class labels, the external negation prefixes used 164

in Experiments 1-3 (Sections 3, 4, 5) do alter the 165

examples’ class labels, albeit in a predictable man- 166

ner. This is similar to the adversarial attack that 167

Niven and Kao (2019) conduct on BERT models 168

with respect to the Argument Reasoning Compre- 169

hension Task (Habernal et al., 2018); these authors 170

find that BERT cannot be inoculated against such 171

adversarial attacks, and conclude that transformer 172

models’ inability to ground text to real-world con- 173

cepts presents an insurmountable barrier to their 174

logical-reasoning abilities. 175

In a similar vein, Naik et al. (2018) conduct 176

"stress tests" on NLI models by concatenating logi- 177

cal distractor strings (e.g. "and false is not true") 178

to the input examples, and find that such distractors 179

drastically reduce SoTA NLI models’ performance 180

on these tasks. While these authors investigate 181

NLI models’ performance with respect to logical 182
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reasoning, their experiments regarding negation183

are limited to negation items appearing in these184

distractor terms, rather than negating the original185

hypothesis sentence itself.186

Yuan et al. (2023) examine pretrained language187

models’ (PLMs) deductive reasoning abilities via188

cloze tests. These authors find that PLMs are un-189

able to fully generalize rules of logical deduction190

to arbitrary contexts. Furthermore, they observe191

that these models struggle to differentiate between192

positive statements and their negated counterparts,193

in line with a wide body of recent literature sug-194

gesting that transformers have difficulty processing195

and comprehending negation (e.g. Laverghetta Jr.196

et al., 2021; Rogers et al., 2020; Ettinger, 2020). Of197

particular interest to this work, they find that while198

inoculating PLMs for deductive reasoning tasks199

improves performance, it results in catastrophic200

forgetting of previous knowledge. Similarly, in201

Sections 4 and 5 of this paper, we find that inoc-202

ulating pretrained NLI models against adversarial203

external negation prefixes causes catastrophic for-204

getting of prior knowledge of their similarity to205

related prefixes.206

In an experiment highly related to the present207

work, Laverghetta Jr. and Licato (2022) probe NLI208

models’ performance with respect to negation, and209

find that the models struggle to contend with certain210

types of negation more so than others. In line with211

the results we observe in Section 3, they find that212

the models have difficulty inoculating against those213

problematic negation categories. Unlike the exper-214

iments in this paper, Laverghetta Jr. and Licato215

(2022) do not conduct adversarial attacks involving216

negation, but rather use examples drawn from NLI217

datasets that already contain negation.218

Unique to this work is the evaluation of trans-219

formers’ ability to learn the law of the excluded220

middle and our finding that, while many cannot221

learn this pattern, a few transformer NLI models222

are in fact able to inductively learn the law of the223

excluded middle for a single external negation pre-224

fix. Additionally, the results of Experiments 2 and225

3 (Sections 4 and 5), extend Yuan et al.’s (2023)226

results (regarding catastrophic forgetting resulting227

from inoculation in the context of deductive rea-228

soning tasks) to double negation-cancellation in229

the setting of NLI tasks. Finally, Theorem 1 (see230

Section 6) is the first known proof that there exists231

(at least, in principle) an encoder transformer ca-232

pable of modeling the law of the excluded middle233

for arbitrary-length sequences of any combination234

of external negation prefixes with respect to any 235

NLI dataset. This theorem sheds further light on 236

evidence in the literature (Niven and Kao, 2019; 237

Naik et al., 2018; Yuan et al., 2023; Laverghetta Jr. 238

et al., 2021; Rogers et al., 2020; Ettinger, 2020; 239

Laverghetta Jr. and Licato, 2022, etc.) indicat- 240

ing that transformers are unable to model negation, 241

suggesting that this observed failure is not due to 242

an inherent flaw in transformer architectures them- 243

selves, but instead may be due to deficiencies in 244

their training procedure and/or the structure of their 245

input data. 246

3 Experiment 1 247

Experiment 1 probes six different transformer NLI 248

models’ ability to inductively learn the law of the 249

excluded middle with respect to external nega- 250

tion. The DeBERTa (He et al., 2020) model, de- 251

notedDeBERTaS2, is DeBERTa-large fine-tuned 252

on SNLI. The first BART (Lewis et al., 2020) 253

model, denoted BARTM
3, is BART-large fine- 254

tuned on MNLI, while the second, BARTSMFA
4, 255

is BART-large fine-tuned on MNLI, SNLI, FEVER 256

(Thorne et al., 2018), and ANLI (Nie et al., 257

2020). The first RoBERTa (Liu et al., 2019b) 258

model, RoBERTaM 5, is RoBERTa-large fine- 259

tuned on MNLI, and the second, RoBERTaS6, 260

is RoBERTa-large fine-tuned on SNLI, while the 261

third, RoBERTaSMFA
7, is RoBERTa-large fine- 262

tuned on SNLI, MNLI, FEVER, and ANLI. 263

3.1 Experimental Setup 264

For each 1 ≤ n ≤ 5 and each NLI dataset 265

D ∈ {MNLI,SNLI}, let D≤n
train and D≤n

dev denote 266

the ≤n-fold adversarial training and development 267

sets, respectively. D≤n
train and D≤n

dev are generated 268

from examples randomly drawn from the origi- 269

nal datasets’ training splits: MNLI≤n
train consists 270

of 3271 entailment, neutral, and contradiction ex- 271

amples (9813 total), SNLI≤n
train consists of 9999 ex- 272

amples (3333 of each class), MNLI≤n
dev consists of 273

4905 examples (1635 of each class), and SNLI≤n
dev 274

consists of 4998 examples (1666 of each class). 275

Each of the two datasets contains many examples 276

that are not complete sentences, but rather sentence 277

2https://huggingface.co/pepa/deberta-v3-large-snli
3https://huggingface.co/facebook/bart-large-mnli
4https://huggingface.co/ynie/bart-large-

snli_mnli_fever_anli_R1_R2_R3-nli
5https://huggingface.co/roberta-large-mnli
6https://huggingface.co/pepa/roberta-large-snli
7https://huggingface.co/ynie/roberta-large-

snli_mnli_fever_anli_R1_R2_R3-nli
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fragments, in which case the external negation pre-278

fix TNT = "it is not true that" is grammatically279

nonsensical. To account for this, the pool of pos-280

sible examples to be included into the adversarial281

datasets consists only of those in which the hypoth-282

esis H is a complete sentence. If the first word in283

H is (part of) a named entity (as determined by284

SpaCy’s EntityRecognizer8 named entitiy recog-285

nition pipeline), then the adversarial hypothesis286

Hadv = (TNT )
nH . If the first word in H does not287

belong to a named entity, then Hadv = (TNT )
nH0,288

where H0 is formed from H by lower-casing the289

first character. This is to control for potential con-290

founding factors due to irregular capitalization.291

For each 1 ≤ n ≤ 5 and each 1 ≤ k ≤ n,292

1/nth of the examples in each class in D≤n
train293

and D≤n
dev are k-fold negated by prefixing the294

adversarial trigger TNT = "it is not true that"295

to the original hypothesis sentence. For exam-296

ple, in D≤5
train, 1/5th of the examples in each297

class are 5-fold negated (by converting (P,H) to298

(P, TNTTNTTNTTNTTNTH)), 1/5th are 4-fold299

negated, 1/5th are 3-fold negated, etc.300

Finally, for all m > 1 and each NLI dataset D ∈301

{MNLI,SNLI}, let Dm
test denote the m-fold test302

set. The procedure for generating Dm
test is nearly303

identical to that of D≤m
train and Dm

dev (|Dm
test| =304

|Dm
dev|), with the exception that Dm

test consists only305

of m-fold externally-negated examples.306

For all 1 ≤ n ≤ 5, each NLI model was in-307

oculated against the adversarial sets D≤n
train and308

D≤n
dev. Following the paradigm of inoculation by309

fine-tuning, the models were fine-tuned D≤n
train,310

and validated at each epoch on the original NLI311

dataset’s development split, with early-stopping312

if validation performance does not improve after313

five epochs. Once inoculated on the ≤n-fold ex-314

ternal negation data, the models were evaluated315

on Dm
test for multiple values of m > n. This is316

to evaluate the degree to which the models are317

able to generalize the law of the excluded middle318

beyond the number of external negation prefixes319

seen during inoculation: given an original exam-320

ple (P,H,L) which is converted to an adversarial321

example (P, (TNT )
nH,L′), then L′ = L if n is322

even, and contradiction flips to entailment (and323

vice-versa) if n is odd.324

Each model was evaluated and inoculated325

on the adversarial datasets generated from the326

dataset(s) that the model was originally fine-327

8https://spacy.io/api/entityrecognizer

tuned on: BARTM and RoBERTaM were 328

evaluated on MNLIntrain/dev/test, RoBERTaS 329

and DeBERTaS on SNLIntrain/dev/test, and 330

BARTSMFA and RoBERTaSMFA on both 331

MNLIntrain/dev/test and SNLIntrain/dev/test. All 332

models were fine-tuned with a batch size of 64 333

at a learning rate of 10−5. 334

3.2 Results and Discussion 335

For the sake of brevity, model original/adversarial 336

development set accuracies pre- and post- 337

inoculation are located in Appendix C.1. Effec- 338

tively all models were able to inoculate against the 339

≤n-fold external negation data for all 1 ≤ n ≤ 5 340

(with the notable exception of BARTM , which 341

struggled for n ∈ {1, 5}); they retain their high- 342

performing accuracy on the original development 343

sets, and perform as well (or nearly so) on the chal- 344

lenge development sets after inoculation. 345

However, the models struggled to generalize this 346

knowledge tom-fold negation for values ofm > n. 347

Table 1 reports average model accuracy (individ- 348

ual model accuracies are located in Appendix C.2) 349

on m>n-fold external negation after ≤n-fold in- 350

oculation for 1 ≤ n ≤ 3, 2 ≤ m ≤ 6. A clear 351

pattern emerges in this table: before any inocu- 352

lation, we observe high model accuracy (∼80%) 353

on the m-fold negtion data for even values of m, 354

and near-random-chance accuracy (∼34%) for odd 355

values of m. This indicates that, before inocula- 356

tion, the models were essentially entirely ignoring 357

the external negation prefixes and treating them 358

as distractors; m-fold negation does not alter the 359

class label for even values of m, and so a model 360

treating the prefix as a distractor will retain high 361

accuracy on those examples, purely by chance. To 362

reiterate: these models—ostensibly fine-tuned on a 363

logical-reasoning task—have learned to entirely ig- 364

nore external negation when predicting inferential 365

relations. 366

Furthermore, when inoculated against 1-fold ex- 367

ternal negation, the pattern reverses: we note near- 368

random-chance accuracy for even values of m, and 369

high accuracy for odd values of m. After 1-fold 370

inoculation, the models have learned to treat any 371

m-fold external negation prefix as equivalent to a 372

1-fold (i.e. single) prefix. 373

Interestingly, after ≤2-fold inoculation, the mod- 374

els revert to the original pattern of high accuracy 375

for even values of m, and poor performance for 376

odd values. Despite being trained on both 1- and 377

2-fold external negation, the models merely mem- 378
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m-fold test No inoc. 1-fold inoc. ≤2-fold inoc. ≤3-fold inoc.
2 0.72 0.39 — —
3 0.36 0.86 0.32 —
4 0.84 0.39 0.95 0.35
5 0.32 0.82 0.32 0.91
6 0.86 0.43 0.95 0.35

Table 1: Average accuracy across all models on (m>n)-fold external negation after ≤n-fold inoculation (n ∈
{1, 2, 3}). For the sake of brevity, individual results for each model are located in Appendix C.2. However,
individual model accuracies largely do not deviate from the mean values in this table.

m-fold No ≤4-fold
Model test inoc. inoc.
BARTM 5 0.33 0.34
RoBERTaM 5 0.32 0.34
DeBERTaS 5 0.30 0.33
RoBERTaS 5 0.34 0.89
BARTSMFA 5 0.30 0.32
RoBERTaSMFA 5 0.32 0.79
BARTM 6 0.86 0.93
RoBERTaM 6 0.89 0.95
DeBERTaS 6 0.88 0.95
RoBERTaS 6 0.83 0.93
BARTSMFA 6 0.86 0.93
RoBERTaSMFA 6 0.84 0.95

Table 2: Accuracy for all models on m>n-fold external
negation after ≤4-fold inoculation (m ∈ {5, 6}).

orize the effect of 1-fold negation on class labels,379

and do not generalize to odd values of m > 1.380

A similar pattern emerges after ≤3-fold inocula-381

tion; after fine-tuning on 1-, 2-, and 3-fold external382

negation, the models memorize the effect (or lack383

thereof) of 2-fold negation on class labels, and do384

not generalize to even values of m > 2.385

However, Table 2 indicates that, after ≤4-386

fold inoculation, two of the RoBERTa models387

(RoBERTaS and RoBERTaSMFA) do in fact388

inductively learn to repeatedly cancel double nega-389

tion for values of m > 4. After ≤5-fold inocula-390

tion, RoBERTaM also learns the desired pattern391

(see Table 3); all three RoBERTa models have in-392

ductively learned the law of the excluded middle393

for arbitrary values of m.394

Given all six models’ difficulty with inocu-395

lation against m-fold external negation (for ar-396

bitrary values of m), it is reasonable to ques-397

tion the RoBERTa models’ ability to generalize398

the negation-cancellation patterns that they have399

learned after ≤5-fold inoculation to external nega-400

tion strings beyond the trigger TNT = "it is not401

m-fold No ≤5-fold
Model test inoc. inoc.
BARTM 6 0.86 0.34
RoBERTaM 6 0.89 0.91
DeBERTaS 6 0.88 0.31
RoBERTaS 6 0.83 0.94
BARTSMFA 6 0.86 0.30
RoBERTaSMFA 6 0.84 0.95
BARTM 7 0.32 0.93
RoBERTaM 7 0.32 0.96
DeBERTaS 7 0.28 0.95
RoBERTaS 7 0.36 0.94
BARTSMFA 7 0.29 0.92
RoBERTaSMFA 7 0.31 0.95

Table 3: Accuracy for all models on m>n-fold external
negation after ≤5-fold inoculation (m ∈ {6, 7}).

true that" that they saw during inoculation. The fol- 402

lowing experiment (Section 4) evaluates the three 403

RoBERTa models’ ability to repeatedly cancel dou- 404

ble negation with the prefix TF = "it is false that", 405

after they have been fine-tuned on D≤5
train (i.e. ≤5- 406

fold "it is not true that" prefixes). 407

4 Experiment 2 408

This experiment restricts its analysis to the three 409

RoBERTa models, as they were the only models 410

of the six evaluated in Experiment 1 (Section 3) 411

that were able to fully generalize m-fold negation- 412

cancellation to arbitrary values of m > 5. 413

4.1 Experimental Setup 414

For all m ≥ 1 and each NLI dataset D ∈ 415

{MNLI,SNLI}, let Dm
F denote the m-fold adver- 416

sarial test set. Each Dm
F was created in an identical 417

manner to the m-fold adversarial test sets Dm
test 418

defined in Section 3.1 above: Dm
F consists only of 419

examples (drawn from the dataset’s original devel- 420

opment split) modified to have m-fold externally- 421
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negated hypothesis sentences with an equal number422

of examples per class label (|Dm
F | = |Dm

test|).423

However, in place of the adversarial trigger424

TNT = "it is not true that" used in Dm
test, in this ex-425

perimentDm
F was generated using the trigger TF =426

"it is false that". These two triggers are effectively427

semantically equivalent; the phrase "not true" has428

simply been replaced by the synonymous "false".429

Assuming that the models have truly learned the430

law of the excluded middle, we should expect to431

see similar performance on Dm
F to that of Dm

test.432

After inoculation on the ≤5-fold TNT433

external negation data, each of the three434

RoBERTa models (RoBERTaS , RoBERTaM ,435

RoBERTaSMFA) was evaluated on Dm
F for all436

1 ≤ m ≤ 8. As in the procedure for Experiment 1437

(see Section 3.1), each model was evaluated on the438

adversarial datasets generated from the dataset(s)439

that the model was originally fine-tuned on.440

4.2 Results and Discussion441

Figure 1: Accuracy for the ≤5-fold TNT -inoculated
RoBERTa models on m-fold externally-negated exam-
ples with TNT (dashed) and TF (solid).

Figure 1 shows the results of this experiment:442

RoBERTaS failed to generalize the law of the ex-443

cluded middle from TNT to TF for values of m >444

2, while RoBERTaM and RoBERTaSMFA ex-445

perience precipitous decreases in accuracy at m =446

5 (and erratic accuracy thereafter). Clearly, while447

these models can generalize external negation-448

cancellation to arbitrary-length repeated TNT pre-449

fixes, they cannot extend this pattern to near-450

synonymous prefixes.451

We may object that the models have failed to452

learn the pattern for TF because they did not see453

it during inoculation. This objection may be valid,454

but belies the critical point: these models have455

failed to generalize the law of the excluded middle 456

from TNT to TF . While the models very well may 457

learn to cancel external negation prefixes after fine- 458

tuning on all possible sequences of this type (see 459

the discussion in Section 6), at that point they are 460

not learning—but rather memorizing—the pattern. 461

The results of this experiment beg the question 462

as to why the RoBERTa models cannot fully gener- 463

alize the law of the excluded middle from TNT to 464

TF . The following experiment (Section 5) exam- 465

ines the embeddings generated by the RoBERTa 466

models pre- and post-inoculation, shedding light 467

on the root of their failure to generalize the law of 468

the excluded middle to arbitrary prefixes. 469

5 Experiment 3 470

As in Experiment 2 (Section 4), this experiment 471

restricts its analysis to the three RoBERTa models. 472

5.1 Experimental Setup 473

As mentioned above, this experiment probes the 474

embeddings that these models generate before 475

and after ≤5-fold TNT inoculation. The experi- 476

ment proceeds as follows: for each dataset D ∈ 477

{MNLI,SNLI}, take a subset D′ of the original 478

development set (D′ contains ∼50-100 examples 479

of each class, depending on the size of the dataset). 480

For each 1 ≤ m ≤ 8, generate (D′)mNT and 481

(D′)mF by prefixing (TNT )
m and (TF )

m to each 482

hypothesis sentence (respectively), and compute 483

the cosine similarity between the (mean-pooled) 484

embeddings of (TNT )
mHi and (TF )

mHi for each 485

(Pi, Hi) ∈ D′. 486

For even values of m, compute the (respec- 487

tive) cosine similarities between (TNT )
mHi and 488

(TF )
2Hi (as all three models retain high accu- 489

racy on TF prefixes for m = 2); (TNT )
2Hi 490

and (TF )
mHi; (TF )

mHi and Hi (for even m, 491

(TF )
mHi should be synonymous with Hi); and 492

(TNT )
mHi and Hi, for each premise, hypothesis 493

pair (Pi, Hi) ∈ D′. 494

For odd values of m, compute the (respec- 495

tive) cosine similarities between (TNT )
mHi and 496

(TNT )
1Hi (for odd m, (TNT )

mHi should be 497

synonymous with (TNT )
1Hi); (TF )

mHi and 498

(TF )
1Hi; (TNT )

mHi and (TF )
1Hi; and (TF )

mHi 499

and (TNT )
1Hi. 500

As in Experiments 1 and 2 (Sections 3 and 4, 501

respectively), each model was evaluated using the 502

adversarial datasets generated from the dataset(s) 503

that the model was originally fine-tuned on. 504
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5.2 Results and Discussion505

Figure 2: Mean cosine similarity between (TF )
nHi and

(TF )
1Hi for the three RoBERTa models before (dashed)

and after (solid) ≤5-fold TNT inoculation.

Figure 3: Mean cosine similarity between (TNT )
nHi

and (TNT )
1Hi for the three RoBERTa models before

(dashed) and after (solid) ≤5-fold TNT inoculation.

For the sake of brevity, Appendix B reports the506

majority of the results of this experiment.507

We observe that ≤5-fold inoculation drastically508

increases the similarity between (TNT )
mHi and509

(TNT )
1Hi for all three models for odd values of510

m (Figure 3), but decreases the similarity between511

(TF )
mHi and (TF )

1Hi for m ≥ 5 (Figure 2). The512

results are analogous for even values of m (see513

Figures 4-7 in the appendix).514

Additionally, as m increases, we observe de-515

creases in mean cosine similarity for the inocu-516

lated models between (TF )
mHi and (TNT )

2Hi,517

and (TF )
mHi and (TNT )

1Hi (see Figures 8 and518

10 in the appendix, respectively). We also observe519

decreases in cosine similarity between (TF )
mHi520

and (TNT )
mHi for the inoculated models for even521

Model Before After
RoBERTaM 0.996 0.268
RoBERTaS 0.996 0.712
RoBERTaSMFA 0.996 0.646

Table 4: Cosine similarity between the RoBERTa mod-
els’ (mean-pooled) embeddings of the strings "false"
and "not true" before and after ≤5-fold inoculation.

and odd m > 4 (see Figure 12 in the appendix). 522

These results indicate that learning to cancel re- 523

peated double negation with respect to the external 524

negation prefix TNT has lead to catastrophic forget- 525

ting. In particular, it seems that learning to cancel 526

double negation for TNT has drastically altered 527

the models’ encodings of the string "not true" to 528

adapt to the task at hand, pulling its representation 529

in the embedding space away from those of other 530

negation phrases such as "false". This conjecture 531

is supported by the results in Table 4: we observe 532

that—before inoculation—the models’ representa- 533

tions of the strings "not true" and "false" are nearly 534

identical. However, after ≤5-fold TNT inoculation, 535

the models’ representations of the two strings are 536

significantly further apart in the embedding space. 537

Furthermore, the results of this experiment indi- 538

cate that the models have not learned the linguistic 539

function of negation during pre-training or original 540

fine-tuning on the MNLI and SNLI datasets, analo- 541

gous to the findings of Yuan et al. (2023) with re- 542

spect to deductive reasoning tasks. Aside from the 543

results in Table 1 indicating that these NLI models 544

simply treat external negation prefixes as distrac- 545

tors (before inoculation), we note that if the models 546

already understood the logical function of prefixes 547

such as "it is not true that", then further refining the 548

models’ knowledge of the function of that prefix 549

(i.e. fine-tuning on the ≤5-fold TNT data) should 550

not significantly alter its representation in the em- 551

bedding space relative to highly similar prefixes 552

such as "it is false that", contrary to what we ob- 553

serve in Table 4. 554

6 Discussion 555

The question arises as to why these models are un- 556

able to inductively learn the law of the excluded 557

middle: is this failure due to transformer architec- 558

tures themselves, or are inadequacies in their train- 559

ing regimens and/or the structure (or lack thereof) 560

of their input data at fault? 561

Theorem 1 proves that (encoder) transformer ar- 562
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chitectures are in fact capable of modeling the law563

of the excluded middle (at least, with respect to NLI564

tasks) for arbitrary-length sequences of any combi-565

nation of external negation prefixes—note that the566

NLI datasets, transformer models (with the excep-567

tion of BART), and set of external negation prefixes568

used in Experiments 1-3 satisfy the assumptions of569

Theorem 1. This suggests that these transformer570

NLI models’ failure to inductively learn the law of571

the excluded middle is not due to a deficiency in572

transformer architectures per se.573

Theorem 1. Let D = {(Pi, Hi, Li)}i∈I be a finite-574

cardinality NLI dataset, and for any NLI model M ,575

let Acc(M,D) denote the classification accuracy576

of M on D. Let Σ′ be a finite alphabet such that577

D ⊂ (Σ′)∗ × (Σ′)∗ × Λ (where Λ = {E ,N , C}578

denotes the set of labels). Let N ⊂ (Σ′)∗ be any579

finite-cardinality set of external-negation prefixes580

such that no prefix is a substring of one or more581

other prefixes9.582

Then there exists an alphabet Σ ⊃ Σ′ and an583

injective f : (Σ′)∗ → Σ∗ such that for any fixed584

(finite) w > maxi∈I |PiHi| and any fixed-precision585

transformer encoder (with an NLI classification586

head) T , there exists a fixed-precision transformer587

encoder T ′ such that T ′ matches the accuracy of588

T on D and on any dataset D′ formed by prefixing589

any η ∈ N∗ to each hypothesis sentence in D10.590

Proof. Appendix A.591

Critically, the proof of Theorem 1 relies on a592

function f that re-structures the input data, sug-593

gesting that the structure (or lack thereof) of purely594

textual data may be insufficient for transformers to595

inductively learn to model the law of the excluded596

middle. Furthermore, Theorem 1 merely states597

that there exists an encoder transformer capable of598

modeling the law of the excluded middle for ex-599

ternal negation with respect to NLI tasks; it makes600

no claim regarding its architectural configuration601

(i.e. layer size, floating-point precision, etc.). It602

may be the case that the transformer models of Ex-603

periments 1-3 do not have the specific architecture604

required to accomplish this task.605

The proof of Theorem 1 also does not make606

any claims regarding the (inductive) learnability607

of these tasks. It may be the case that the specific608

9Formally: for all η ∈ N , η′, η′′ ∈ (N − {η})∗, there
does not exist i, j such that η = η′i: || η′′:j

10Formally: Acc(T ′, f(D)) = Acc(T,D), and for
any η ∈ N∗ such that maxi∈I |PiηHi| ≤ w:
Acc(T ′, {f(PiηHi)}i∈I) = Acc(T,D)

parameter values required to model the role of (ex- 609

ternal) negation in the context of NLI tasks cannot 610

be reached by training on any NLI dataset using 611

gradient descent or any other currently known train- 612

ing procedures. It may also be the case that the 613

function of (external) negation is in fact learnable, 614

but only via the brute-force approach of training 615

these models on multiple-fold external negation for 616

every such prefix—in other words, (encoder) trans- 617

formers may not be capable of inductively learning 618

the law of the excluded middle. 619

7 Conclusion 620

The results of Experiments 1-3 (Sections 3, 4, 5) 621

demonstrate that near-SoTA transformer NLI mod- 622

els struggle to inductively learn the law of the ex- 623

cluded middle. Furthermore, the results of Exper- 624

iment 1 (Section 3) strongly suggest that all six 625

NLI models studied in this work learned to treat 626

the external negation prefix "it is not true that" as 627

a distractor when initially fine-tuned on the NLI 628

dataset(s) (see Table 1). Experiment 1 also suggests 629

that DeBERTa and BART models are incapable of 630

learning to inductively generalize the law of the 631

excluded middle, despite extensive fine-tuning. 632

These findings lend further support to a large 633

body of existing evidence (e.g. Niven and Kao, 634

2019; Naik et al., 2018; Yuan et al., 2023; 635

Laverghetta Jr. et al., 2021; Rogers et al., 2020; 636

Ettinger, 2020; Laverghetta Jr. and Licato, 2022) 637

indicating that transformers are unable to model 638

the meaning of negation. Unique to this work is our 639

finding that certain encoder transformers (in partic- 640

ular, RoBERTa) can learn the law of the excluded 641

middle for a single external negation prefix. 642

While the three RoBERTa models did manage 643

to grasp the function of the prefix "it is not true 644

that", the process of learning this behavior resulted 645

in catastrophic forgetting, entirely inhibiting the 646

generalization of this pattern to the highly similar 647

prefix "it is false that" (see Sections 4 and 5). 648

However, Theorem 1 proves that encoder trans- 649

formers are—in principle—capable of modeling 650

the law of the excluded middle for arbitrary-length 651

sequences of any combination of external nega- 652

tion prefixes with respect to any NLI dataset. This 653

suggests that these models’ inability to inductively 654

learn the law of the excluded middle may not be 655

a consequence of their transformer architectures, 656

but rather may result from the structure of the input 657

data and/or the procedure used to train them. 658
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8 Limitations659

While Experiments 1-3 (Sections 3, 4, 5) probe a va-660

riety of encoder and encoder-decoder transformers,661

they do not consider decoder-only models such as662

LLaMa-2 (Touvron et al., 2023) or GPT-3 (Brown663

et al., 2020); evaluation of decoder transformers is664

left to future work. Additionally, these experiments665

only utilize MNLI and SNLI for adversarial data666

generation and evaluation, although both datasets667

have been shown to consist of non-representative668

data and contain annotation artifacts that permit669

models to achieve high performance by leveraging670

shallow heuristics (McCoy et al., 2019; Richardson671

et al., 2020). However, the use of more challenging672

NLI datasets such as ANLI was precluded by all673

six models’ (including those fine-tuned on ANLI)674

already-poor performance on the ANLI test set675

prior to any adversarial attacks.676

The main limitation regarding the adversarial at-677

tacks themselves is the fact that they consist of only678

two external negation prefixes: "it is true that" and679

"it is false that". While this suffices to demonstrate680

the models’ inability to inductively learn the law of681

the excluded middle and/or generalize this knowl-682

edge to similar prefixes, future work should involve683

similar experiments conducted using a wider vari-684

ety of adversarial triggers.685

Note that Theorem 1 applies only to encoder686

transformers, as the proof is formulated using a687

variant of first-order logic (FOC[+;MOD]; Immer-688

man, 2012) that has only been shown to be an689

upper-/lower-bound for fixed-precision encoder690

transformers (Chiang et al., 2023). Additionally,691

the proof of Theorem 1 requires a fixed input length692

w. While the input sequence length of all "real-693

world" transformers is practically bounded by the694

quadratic growth rate of their self-attention mech-695

anism (Beltagy et al., 2020), this assumption of a696

fixed input size still represents a limitation in the697

expressive power of the theorem.698
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language that is recognizable by a fixed-precision873

encoder transformer classifier is definable by a sen-874

tence of FOC[+;MOD] (Chiang et al., 2023, Theo-875

rem 2), and every language defined by a sentence876

of FOC[+;MOD] is recognizable by an (arbitrary-877

precision) encoder transformer classifier (Chiang878

et al., 2023, Theorem 5). Given an FOC[+;MOD]879

formula ϕ, the language defined by ϕ is the set of880

all strings σ ∈ Σ∗ such that ϕ holds with respect to881

σ.882

The syntax of FOC[+;MOD] consists of two883

sorts:884

• Positions: (positive) integer variables p that885

range over positions in strings σ.886

• Counts: variables x ranging over the rational887

numbers Q, and terms c0+c1x1+ · · ·+cnxn,888

where each ci is a (constant) rational number889

and each xi is a count variable.890

Formulas of FOC[+;MOD] are defined as one891

of:892

• ⊤ (true) or ⊥ (false).893

• Qa(p), where a ∈ Σ, and Qa(p) ↔ σp = a894

• MODa
b (p), where a ≥ 0, b > 0, and p is a895

position variable; MODa
b (p) ↔ p ≡b a896

• ϕ ∧ ψ, ϕ ∨ ψ, or ¬ψ, where ϕ and ψ are897

formulas.11898

• x1 = x2 or x1 < x2, where x1, x2 are in the899

sort of counts.12900

• ∃x.ϕ or ∀x.ϕ, where x is a count variable and901

ϕ is a formula.902

• ∃=xp.ϕ, where x is a count variable, p is a903

position variable (∃=xp.ϕ binds p but leaves904

x free), and ϕ is a formula; ∃=xp.ϕ holds if905

and only if ϕ is true for exactly x values of p.906

In particular, note that FOC[+;MOD] does not907

permit arithmetic operations (addition or multipli-908

cation) or comparisons (=,<) of position variables,909

only of count variables. This is the primary reason910

for much of the machinery introduced in the proof911

of Theorem 1 (Appendix A.3).912

11We can derive ϕ → ψ and ϕ ↔ ψ as ψ ∨ ¬ϕ and
ϕ→ ψ ∧ ψ → ϕ, respectively.

12We can derive x1 ≤ x2 as x1 = x2 ∨ x1 < x2, x1 > x2
as x2 < x1, x1 ≥ x2 as x2 ≤ x1, and x1 ̸= x2 as ¬(x1 =
x2).

A.2 Notation 913

We now introduce additional notation employed in 914

the proof of Theorem 1 (Section A.3): 915

• σ || σ′: denotes the concatenation of the 916

strings σ and σ′. Note that when convenient 917

(and unambiguous), we omit the operator and 918

write σσ′ to denote σ || σ′. 919

•
n

||
i=k

( . . . ): denotes iterated string concatena- 920

tion. 921

• |σ|: unless otherwise specified, denotes the 922

length of the string σ. 923

• σi: denotes the ith character of the string σ. 924

• Σ∗ =
∞⋃
i=1

Σi: denotes the set of all non-empty 925

strings over the alphabet Σ. Note that un- 926

less otherwise specified, we slightly abuse 927

notation and let A∗ (for any A ⊆ Σ∗) de- 928

note the set of "flattened" strings of A—i.e. 929

A∗ =
∞⋃
i=1

⋃
a∈Ai

{
|a|
||

k=1

ak} so that for all a′ ∈ 930

A∗, a′ ∈ Σ∗. 931

• ϵ: denotes the empty string. 932

• σi:j =
j

||
k=i

σk: denotes the substring spanning 933

the ith to jth characters (inclusive) of σ; if 934

i = j, then σi:j = σi. For all 1 ≤ i ≤ |σ|, 935

j > |σ|: σi:j = σi:|σ|. For all i < 1, j ≥ 1: 936

σi:j = σ1:j . If j < 1, i > |σ|, and/or i > j, 937

then σi:j = ϵ. 938

• σi:, σ:j : denote σi:|σ| and σ1:j , respectively. 939

• σn =
n

||
i=1
σ: denotes the string σ repeated n 940

times (σ0 = ϵ). 941

• ϕ[x ⇒ y] = λx.[ϕ](y): denotes the formula 942

obtained from ϕ by replacing all instances 943

of the free variable x with the variable (or 944

constant) y. 945

• [ϕ](σ) = σ |= ϕ: indicates that the formula 946

ϕ holds for the string σ (i.e. σ belongs to the 947

language defined by ϕ). 948
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A.3 Proof949

Let Λ = {E ,N , C} denote the set of NLI labels950

and let Σ′ denote the input alphabet of (i.e. set of951

tokens for) the transformer T—we assume without952

loss of generality that Λ and Σ′ are disjoint (i.e.953

Λ ∩ Σ′ = ∅); Theorem 1 applies only to encoder954

transformers, so we need not consider the label-955

ing approach taken by encoder-decoder or decoder-956

only transformers.957

By Chiang et al. (2023) Theorem 2, T cor-958

responds to the FOC[+;MOD] formula ST de-959

fined in Equation 1. To be explicit: Chiang et al.960

(2023) Theorem 2 guarantees that there exists some961

FOC[+;MOD] formula ST that defines the lan-962

guage recognized by T . For each (Pk, Hk, Lk) ∈963

D, the input to ST is the string PkHkLk: for all964

x ∈ Λ, [ST ](PkHkLk) holds if and only if the965

transformer T assigns the label Lk to (Pk, Hk).966

ST =
∧
x∈Λ

ϕx ↔ ∃=1p.Qx(p) (1)967

Note that we may assume the existence of ϕE ,968

ϕN , and ϕC as in Equation 1 without loss of gener-969

ality. Regardless of the approach that the particular970

transformer T takes to predicting labels, the output971

of T with respect to an input σ ∈ (Σ′)∗ (OT (σ))972

must be an element of Λ. As such, for each x ∈ Λ973

and σ ∈ (Σ′)∗, [ϕx](σ) =def OT (σ) = x.974

Let Σ = Σ′∪{Ω} (where Ω is a special padding975

character introduced for formal reasons and dis-976

tinct from the actual padding character used by977

the transformer T ), and for any σ ∈ (Σ′)∗, define978

f(σ) ∈ Σ∗ as follows in Equation 2 (where w is979

the fixed input length specified in Theorem 1).980

f(σ) =
|σ|+1

||
i=1

w

||
k=i

(Ωk−1 || σk: || Ωw−|σ|) (2)981

For all (integer) count terms 1 ≤ b ≤ w, define982

MODCb(a, x) (where a, x are count variables) as983

follows (Equation 3)984

MODCb(a, x) =

w∨
y=0

yb+ a = x (3)985

Note that by Chiang et al. (2023) Theorem 1, we986

may assume without loss of generality that each ϕx987

in Equation 1 is in normal form (for some integer988

k ≥ 0), as in Equation 4.989

ϕx = ∃z1 . . . ∃zk[
k∧

i=1

∃=zip.(ϕx)i ∧ χ] (4)990

Where each (ϕx)i is quantifier-free and has no 991

free count variables, and χ is quantifier-free. 992

Now, for each x ∈ Λ, construct α((ϕx)i) as fol- 993

lows: for each a ∈ Σ′, replace Qa(p) with Q′
a(p) 994

as defined in Equation 5 (where p is a position vari- 995

able in the former, and a count variable in the latter), 996

and replace each instance of a modular predicate 997

MODx
y (p) with MODCy(x, p) (where again p is 998

a position variable in the former, and a count vari- 999

able in the latter). 1000

Q′
a(p) = ∃=pp′[Qa(p

′)∧
w∨
i=1

(MODi
w(p

′)∧p = i)]

(5) 1001

Lemma 1. For any σ ∈ (Σ′)∗ such that |σ| ≤ w, 1002

all a ∈ Σ′, and all 1 ≤ p ≤ w: [Q′
a(p)](f(σ)) ↔ 1003

[Qa(p)](σ) 1004

Proof. First, assume [Qa(p)](σ) holds. By as- 1005

sumption, σp = a, so by construction (Equation 2), 1006

f(σ)yp = a for all 1 ≤ y ≤ p and f(σ)y′p = 1007

Ω for all y′ > p. Therefore [Qa(p)](σ) → 1008

[Q′
a(p)](f(σ)). 1009

Now, assume [Q′
a(p)](f(σ)) holds. By assump- 1010

tion and construction (Equation 2), f(σ)yp = a for 1011

all 1 ≤ y ≤ p, so in particular f(σ)p = a. By con- 1012

struction, f(σ):|σ| = σ. This implies that σp = a; 1013

therefore [Q′
a(p)](f(σ)) → [Qa(p)](σ). 1014

Now, for any count variables p, z and any 1015

FOC[+;MOD] formula ϕ, define E(p, z, ϕ) as fol- 1016

lows (Equation 6). 1017

Ei
1(p, ϕ) =

i∧
j=1

ϕ[p⇒ mj ] ∧mj ≤ w (6a) 1018

Ei
2 =

i−1∧
a=1

i∧
b=a+1

ma ̸= mb (6b) 1019

Ei+2
3 (p, ϕ) = ∃m1 . . .mi[E

i+2
1 (p, ϕ) ∧ Ei+2

2 ]
(6c)

1020

E1
3(p, ϕ) = ∃m1.E

1
1(p, ϕ) (6d) 1021

E0
3(p, ϕ) = ⊤ (6e) 1022

E(p, z, ϕ) =
w∨
i=0

(Ei
3(p, ϕ) ∧ z = i) (6f) 1023

WhereEi
1(−,−), Ei

2, and Ei
3(−,−) are defined 1024

for all integers 1 ≤ i ≤ w, 2 ≤ i ≤ w, and 1025

0 ≤ i ≤ w, respectively. 1026
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Now, for each (ϕx)i in Equation 4, define1027

A((ϕx)i) as in Equation 7 (where zi and p are free1028

count variables).1029

A1((ϕx)i) = E(p, zi, α((ϕx)i)) (7a)1030

A2((ϕx)i) = ¬∃y[y > zi ∧ E(p, y, α((ϕx)i))]
(7b)

1031

A((ϕx)i) = A1((ϕx)i) ∧A2((ϕx)i) (7c)1032

Lemma 2. For any σ ∈ (Σ′)∗ such that |σ| ≤1033

w, all x ∈ Λ, and all (ϕx)i as in Equation 4:1034

[∃zi∃=zip.(ϕx)i](σ) ↔ [∃zi.A((ϕx)i)](f(σ))1035

Proof. First, note that (ϕx)i is quantifier-free1036

and has no free count variables (Chiang et al.,1037

2023, Theorem 1); therefore (ϕx)i consists only1038

of positional (Qa(p)) and modular (MODx
y (p))1039

predicates (where the only bound variable is p)1040

and logical operators acting on them. A((ϕx)i)1041

is constructed from (ϕx)i by replacing each in-1042

stance of Qa(p) and MODx
y (p) with Q′

a(p) and1043

MODCy(x, p) (where p is a position variable in1044

the first pair of terms, and a count variable in the1045

second), respectively.1046

By Lemma 1, [Qa(p)](σ) ↔ [Q′
a(p)](f(σ)) for1047

all 1 ≤ p ≤ w, where p is a position variable in the1048

left-hand side of the equation and a count variable1049

in the right-hand side. Similarly, for all p, x and1050

all 1 ≤ y ≤ w, MODx
y (p) ↔ MODCy(x, p) by1051

construction (Equation 3), where again p is a posi-1052

tion variable in the left-hand side of the equation1053

and a count variable in the right-hand side.1054

Therefore, for all 1 ≤ p ≤ w, (ϕx)i holds with1055

respect to σ if and only if α((ϕx)i) holds with1056

respect to f(σ).1057

By construction (Equation 6), E(p, z, ϕ) holds1058

for any predicate ϕ with the count variable p free if1059

and only if there are ≥ z unique values of p such1060

that ϕ holds. By definition (Equation 7), A((ϕx)i)1061

holds if and only if there are exactly zi values of p1062

such that α((ϕx)i) holds.1063

Now, for each ϕx in Equation 1, we defineA(ϕx)1064

as in Equation 8.1065

A(ϕx) = ∃z1 . . . ∃zk[
k∧

i=1

A((ϕx)i) ∧ χ] (8)1066

Lemma 3. For all x ∈ Λ and all σ ∈ (Σ′)∗ such1067

that |σ| ≤ w: [ϕx](σ) ↔ [A(ϕx)](f(σ))1068

Proof. By Lemma 2, each A((ϕx)i) of Equation 8 1069

holds for f(σ) if and only if each (ϕx)i holds for 1070

σ. As such, for each bound count variable zi, the 1071

set (of cardinality zi) of values that make A((ϕx)i) 1072

true with respect to f(σ) is identical to the set of 1073

values that make (ϕx)i true with respect to σ. The 1074

predicate χ contains no position variables (Chiang 1075

et al., 2023, Theorem 1), and is defined identically 1076

in Equation 8 as in Equation 4; therefore, χ (within 1077

A(ϕx)) holds for f(σ) if and only if χ (within ϕx) 1078

holds for σ. 1079

Now, for each external negation prefix η ∈ N , 1080

define ψη(i) and ψ′
η(i, j) (where i and j are count 1081

variables) as in Equation 9, where Q′
(−)(−) is de- 1082

fined as in Equation 5. 1083

ψη(i) =

|η|−1∧
k=0

Q′
ηk
(i+ k) (9a) 1084

ψ′
η(i, j) = ψη(i) ∧ i+ |η| − 1 = j (9b) 1085

Then define ψ(i) and ψ′(i, j) (where i and j are 1086

count variables) as in Equation 10. 1087

ψ(i) =
∨
η∈N

ψη(i) (10a) 1088

ψ′(i, j) =
∨
η∈N

ψ′
η(i, j) (10b) 1089

Now define ρ(i, j) (where i and j are count vari- 1090

ables) as in Equation 11. 1091

ρ1(k, a, b, i, j) = i ≤ a ≤ k ∧ k ≤ b ≤ j ∧ ψ′(a, b)
(11a)

1092

ρ(i, j) = ∀k[i ≤ k ≤ j → ∃a, b.ρ1(k, a, b, i, j)]
(11b)

1093

Lemma 4. For any σ ∈ (Σ′)∗ such that |σ| ≤ 1094

w, and all 1 ≤ i < j ≤ w: [ρ(i, j)](f(σ)) ↔ 1095

σi:j ∈ N∗ (i.e. if and only if the span i → j in 1096

σ is a sequence of one or more external negation 1097

prefixes). 1098

Proof. We first prove the right-to-left direction: 1099

σi:j ∈ N∗ → [ρ(i, j)](f(σ)). The proof proceeds 1100

by induction. First, assume that σ is a single ex- 1101

ternal negation prefix (i.e. σi:j ∈ N ). Then by 1102

assumption and definition (Equation 9), ψ′
σi:j

(i, j) 1103

holds; by definition (Equation 10), this implies 1104

ψ′(i, j). For all i ≤ k ≤ j, let a = i, b = j: 1105
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by definition (Equation 11), ρ1(k, a, b, i, j) holds.1106

This implies ρ(i, j). This proves the base case.1107

Now suppose σi:j = η || η′, with η ∈ N∗ and1108

η′ ∈ N . By the inductive hypothesis, ρ(i, i+ |η| −1109

1) holds. By the base case above, ρ(i + |η|, j)1110

holds. It now remains to prove that ρ(i, i + |η| −1111

1) ∧ ρ(i+ |η|, j) → ρ(i, j). For all 1 ≤ k ≤ j, if1112

k < i+ |η|, then there exist a, b < i+ |η| such that1113

ρ1(k, a, b, i, j) (by the validity of ρ(i, i+ |η| − 1)),1114

and if k ≥ i + |η|, there exist a, b ≥ i + |η| such1115

that ρ1(k, a, b, i, j) (by the validity of ρ(i+ |η|, j));1116

therefore, ρ(i, j). This proves the induction step.1117

We now prove the right-to-left direction by con-1118

tradiction: assume ρ(i, j) and σi:j /∈ N∗. By as-1119

sumption, there exists η ∈ N∗ ∪ {ϵ} such that η is1120

a substring of σi:j . For all i ≤ k ≤ j such that σk1121

is not contained within η: ¬∃a, b.ρ1(k, a, b, i, j),1122

by the assumption that external negation prefixes1123

do not overlap (see Theorem 1). Therefore, ρ(i, j)1124

does not hold—this is a contradiction.1125

Now define ρ′(i, j) as in Equation 12.1126

ρ′1(a, b, i, j) = (a ≤ i ∧ b > j) ∨ (a < i ∧ b ≥ j)
(12a)

1127

ρ′2(a, b, i, j) = a > 1 ∧ ρ′1(a, b, i, j)
(12b)

1128

ρ′(i, j) = ρ(i, j) ∧ ¬∃a, b[ρ′2(a, b, i, j) ∧ ρ(a, b)]
(12c)

1129

For all x ∈ Λ, define F1(x) as in Equation 13.1130

F1(x) = ¬∃i, j[j > i > 1 ∧ ρ′(i, j)] ∧A(ϕx)
(13)1131

F1(x) is intended to coincide with ϕx on any1132

(Pk, Hk, Lk) ∈ D (i.e. where the hypothesis is not1133

externally negated). The term j > i > 1 in Equa-1134

tion 13 allows for the possibility that the premise1135

Pk may be externally negated in the original dataset1136

D.1137

Lemma 5. For all x ∈ Λ and all σ ∈ (Σ′)∗ such1138

that |σ| ≤ w and there does not exist η ∈ N∗1139

such that η is a subsequence of σ2:: [ϕx](σ) ↔1140

[F1(x)](f(σ))1141

Proof. By Lemma 3, [ϕx](σ) ↔ [A(ϕx)](f(σ)).1142

By assumption, ¬∃i, j[j > i > 1 ∧ ρ′(i, j)] holds1143

for all such f(σ).1144

We then define A′(ϕx) by replacing each predi-1145

cate Q′
a(z) in A(ϕx) (Equation 8) with β(Q′

a(z)),1146

as defined in Equation 14 (where i and j are free 1147

count variables in A′(ϕx)). 1148

β1(Q
′
a(z)) = z < i ∧Q′

a(z) (14a) 1149

β2(Q
′
a(z)) = z ≥ i ∧Q′

a(z + (j − i) + 1)
(14b)

1150

β(Q′
a(z)) = β1(Q

′
a(z)) ∨ β2(Q′

a(z)) (14c) 1151

Lemma 6. For all (Pk, Hk, Lk) ∈ D, all x ∈ 1152

Λ, and all η ∈ N∗ such that |PkηHk| ≤ w: 1153

[ϕx](PkHk) ↔ [A′(ϕx)](f(PkηHk)) when the 1154

free variables i = |Pk|+ 1, j = |Pkη| in Equation 1155

14. 1156

Proof. We first prove that [A(ϕx)](f(PkHk)) ↔ 1157

[A′(ϕx)](f(PkηHk)). Note that A′(ϕx) is con- 1158

structed from A(ϕx) by replacing each instance 1159

of Q′
a(p) with β(Q′

a(p)). It therefore suffices to 1160

prove that for all a ∈ Σ′ and all 1 ≤ z ≤ w: 1161

[Q′
a(z)](f(PkHk)) ↔ [β(Q′

a(z))](f(PkηHk)). 1162

If z ≤ |Pk|, then [Q′
a(z)](f(PkHk)) ↔ 1163

[β(Q′
a(z))](f(PkηHk)) by definition (Equa- 1164

tion 14). Otherwise, [Q′
a(z)](f(PkHk)) ↔ 1165

[β(Q′
a(z))](f(PkηHk)) if and only if 1166

(PkHk)z = (PkηHk)z+(j−i)+1. By assumption, 1167

z+ (j − i) + 1 = z+ (|Pkη| − (|Pk|+1)) + 1 = 1168

z + |η| and (PkHk)z = (PkηHk)z+|η|. 1169

By Lemma 3 and the above result, we 1170

have: [ϕx](PiHi) ↔ [A(ϕx)](f(PiHi)) ↔ 1171

[A′(ϕx)](f(PiηHi)). 1172

Now, define F2(x) as in Equation 15, where 1173

G(E) = C, G(C) = E , and G(N ) = N . 1174

γ1x(n) =MODC2(1, n) ∧A′(ϕG(x)) (15a) 1175

γ2x(n) =MODC2(0, n) ∧A′(ϕx) (15b) 1176

γ3x(k) = i ≤ k ≤ j ∧ ψ(k) (15c) 1177

γ4x(n) = E(k, n, γ3x(k)) (15d) 1178

γ5x(n) = ¬∃y[y > n ∧ E(k′, y, γ3x(k
′))] (15e) 1179

γx = ∃n[γ4x(n) ∧ γ5x(n) ∧ (γ1x(n) ∨ γ2x(n))]
(15f)

1180

F2(x) = ∃i, j[j > i > 1 ∧ ρ′(i, j) ∧ γx] (15g) 1181

Lemma 7. Define N0, N1 ⊂ N∗ as the sets of 1182

even- and odd-length (in terms of number of pre- 1183

fixes, rather than characters) sequences of external 1184

negation prefixes, respectively. Then for all x ∈ Λ 1185

and all (Pk, Hk, Lk) ∈ D: 1186

i. for all η ∈ N0: [ϕx](PkHk) ↔ [F2(x)] 1187
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ii. for all η′ ∈ N1: [ϕG(x)](PkHk) ↔1188

[F2(x)](f(Pkη
′Hk))1189

Proof. We first prove (i). By Lemma 4 and the1190

definition of ρ′(i, j) (Equation 12), the respective1191

values of i, j that make the term j > i > 1∧ρ′(i, j)1192

hold in Equation 15 are i = |Pk| + 1 and j =1193

|Pkη|. By the definitions of E(k, n,−), ψ(−), and1194

γx (Equations 6, 10, and 15, respectively)—and1195

the assumption that η ∈ N0—the value of n that1196

makes [γx](f(PkηHk)) hold is even. Therefore,1197

the term MODC2(0, n) in γ2x(n) holds, and so1198

[A′(ϕx)](f(PkηHk)) ↔ [F2(x)](f(PkηHk)).1199

By Lemma 6 and the above result:1200

[ϕx](PkHk) ↔ [A′(ϕx)](f(PkηHk)) ↔1201

[F2(x)](f(PkηHk)).1202

We now prove (ii); the proof proceeds in a1203

similar fashion as that of (i) above. But now n1204

is odd, and so the term MODC2(1, n) in γ1x(n)1205

holds. Therefore, [A′(ϕG(x))](f(Pkη
′Hk)) ↔1206

[F2(x)](f(Pkη
′Hk)).1207

Again by Lemma 6 and the above result:1208

[ϕG(x)](PkHk) ↔ [A′(ϕG(x))](f(PkηHk)) ↔1209

[F2(x)](f(PkηHk)).1210

For all x ∈ Λ, we define F (x) as follows (Equa-1211

tion 16).1212

F (x) = F1(x) ∨ F2(x) (16)1213

We may now define the formula ST ′ in Equation1214

17 below.1215

ST ′ =
∧
x∈Λ

F (x) ↔ ∃=1p.Qx(p) (17)1216

Lemma 8. For all (Pk, Hk, Lk) ∈ D, all η ∈ N01217

such that |PkηHk| ≤ w, and all η′ ∈ N1 such that1218

|Pkη
′Hk| ≤ w:1219

i. [ST ′ ](f(PkHk)Lk) ↔ [ST ](PkHkLk)1220

ii. [ST ′ ](f(PkηHk)Lk) ↔ [ST ](PkHkLk)1221

iii. [ST ′ ](f(Pkη
′Hk)G(Lk)) ↔ [ST ](PkHkLk)1222

Proof. By Lemma 5, [F1(Lk)](f(PkHk)) holds1223

if and only if [ϕLk
](PkHk) does as well, for all1224

(Pk, Hk, Lk) ∈ D. F2(x) does not hold for any1225

x ∈ Λ by definition, and [F1(x)](f(PkHk)) ↔1226

[ϕx](PkHk) for any x ∈ Λ − {Lk} by Lemma 5.1227

This proves (i).1228

For all η ∈ N0 such that |PkηHk| ≤ w,1229

[F1(x)](f(PkHk)) does not hold for any x ∈ Λ by1230

definition, and [F2(x)](f(PkHk)) ↔ [ϕx](PkHk)1231

for all x ∈ Λ by Lemma 7(i). This proves (ii).1232

For all η′ ∈ N1 such that |Pkη
′Hk| ≤ 1233

w, [F1(x)](f(PkHk)) does not hold for any 1234

x ∈ Λ by definition, and [F2(x)](f(PkHk)) ↔ 1235

[ϕG(x)](PkHk) for all x ∈ Λ by Lemma 7(ii). This 1236

proves (iii). 1237

By Chiang et al. (2023) Theorem 5, there 1238

exists a transformer encoder T ′′ that recog- 1239

nizes the language defined by ST ′ . By 1240

Lemma 8(i), Acc(T ′′, f(D)) = Acc(T,D), and 1241

Acc(T ′′, {f(PiηHi)}i∈I) = Acc(T,D) for any 1242

η ∈ N∗ such that maxi∈I |PiηHi| ≤ w by Lemma 1243

8(ii-iii). 1244

But T ′′ is an arbitrary-precision transformer. 1245

It remains to show that we can derive a fixed- 1246

precision transformer T ′ from T ′′. Note that by 1247

definition (Equation 2), for any σ ∈ (Σ′)∗ such 1248

that |σ| < w: |f(σ)| = w(|σ| + 1). By as- 1249

sumption (Theorem 1), no input example (ad- 1250

versarial or otherwise) exceeds the fixed (finite) 1251

w > maxi∈I |PiHi| in length. It follows that the 1252

upper bound on the length of possible inputs to T ′′ 1253

(within the assumptions of Theorem 1) is w2 + w. 1254

By definition, the floating-point precision of an 1255

arbitrary-precision transformer varies as a function 1256

of input length. Let π : N → N be the function 1257

mapping input length to floating-point precision (in 1258

bits) of T ′′. Presumably, π is monotone-increasing, 1259

but it need not be: let ℓmax = max1≤n≤w2+wπ(n). 1260

Define T ′ as T ′′ with floating-point precision fixed 1261

at ℓmax. 1262

This completes the proof of Theorem 1. 1263

B Experiment 3 1264

Figure 4: Mean cosine similarity between (TNT )
nHi

and (TNT )
2Hi for the three RoBERTa models before

(dashed) and after (solid) ≤5-fold TNT inoculation.
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Figure 5: Mean cosine similarity between (TNT )
nHi

and Hi for the three RoBERTa models before (dashed)
and after (solid) ≤5-fold TNT inoculation.

Figure 6: Mean cosine similarity between (TF )
nHi and

(TF )
2Hi for the three RoBERTa models before (dashed)

and after (solid) ≤5-fold TNT inoculation.

Figure 7: Mean cosine similarity between (TF )
nHi and

Hi for the three RoBERTa models before (dashed) and
after (solid) ≤5-fold TNT inoculation.

1265

Figure 8: Mean cosine similarity between (TF )
nHi

and (TNT )
2Hi for the three RoBERTa models before

(dashed) and after (solid) ≤5-fold TNT inoculation.

Figure 9: Mean cosine similarity between (TNT )
nHi

and (TF )
2Hi for the three RoBERTa models before

(dashed) and after (solid) ≤5-fold TNT inoculation.

Figure 10: Mean cosine similarity between (TF )
nHi

and (TNT )
1Hi for the three RoBERTa models before

(dashed) and after (solid) ≤5-fold TNT inoculation.
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Figure 11: Mean cosine similarity between (TNT )
nHi

and (TF )
1Hi for the three RoBERTa models before

(dashed) and after (solid) ≤5-fold TNT inoculation.

Figure 12: Mean cosine similarity between (TNT )
nHi

and (TF )
nHi for the three RoBERTa models before

(dashed) and after (solid) ≤5-fold TNT inoculation.

C Experiment 11266

C.1 Inoculation Development Set Accuracies1267

1268
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Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Adversarial) (Original) (Adversarial)
BARTM 0.89 0.52 0.77 0.94
RoBERTaM 0.89 0.51 0.87 0.93
DeBERTaS 0.9 0.39 0.9 0.91
RoBERTaS 0.88 0.57 0.88 0.89
BARTSMFA 0.89 0.69 0.87 0.92
RoBERTaSMFA 0.87 0.51 0.86 0.91

Table 5: Model accuracy on the original and adversarial development sets before and after 1-fold inoculation.

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Adversarial) (Original) (Adversarial)
BARTM 0.89 0.61 0.86 0.94
RoBERTaM 0.89 0.63 0.87 0.97
DeBERTaS 0.9 0.48 0.9 0.96
RoBERTaS 0.88 0.66 0.88 0.94
BARTSMFA 0.89 0.72 0.88 0.95
RoBERTaSMFA 0.87 0.65 0.88 0.95

Table 6: Model accuracy on the original and adversarial development sets before and after ≤2-fold inoculation.

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Adversarial) (Original) (Adversarial)
BARTM 0.89 0.53 0.87 0.95
RoBERTaM 0.89 0.54 0.87 0.96
DeBERTaS 0.9 0.45 0.9 0.96
RoBERTaS 0.88 0.57 0.88 0.93
BARTSMFA 0.89 0.6 0.76 0.93
RoBERTaSMFA 0.87 0.54 0.88 0.94

Table 7: Model accuracy on the original and adversarial development sets before and after ≤3-fold inoculation.

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Adversarial) (Original) (Adversarial)
BARTM 0.89 0.61 0.62 0.75
RoBERTaM 0.89 0.62 0.74 0.88
DeBERTaS 0.9 0.54 0.89 0.76
RoBERTaS 0.88 0.64 0.89 0.89
BARTSMFA 0.89 0.66 0.62 0.86
RoBERTaSMFA 0.87 0.61 0.88 0.89

Table 8: Model accuracy on the original and adversarial development sets before and after ≤4-fold inoculation.

1269 1270
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Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Adversarial) (Original) (Adversarial)
BARTM 0.89 0.55 0.32 0.74
RoBERTaM 0.89 0.56 0.88 0.93
DeBERTaS 0.9 0.5 0.9 0.91
RoBERTaS 0.88 0.58 0.88 0.89
BARTSMFA 0.89 0.59 0.87 0.88
RoBERTaSMFA 0.87 0.54 0.86 0.87

Table 9: Model accuracy on the original and adversarial development sets before and after ≤5-fold inoculation.

C.2 Post-Inoculation Test Accuracy1271
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m-fold test acc. No inoc. 1-fold inoc. ≤2-fold inoc. ≤3-fold inoc.
2 0.71 0.32 — —
3 0.36 0.93 0.31 —
4 0.82 0.36 0.94 0.31
5 0.33 0.88 0.31 0.94
6 0.86 0.41 0.94 0.31

Table 10: Accuracy for BARTM on (m>n)-fold external negation after ≤n-fold inoculation (n ∈ {1, 2, 3}).

m-fold test acc. No inoc. 1-fold inoc. ≤2-fold inoc. ≤3-fold inoc.
2 0.77 0.36 — —
3 0.34 0.89 0.33 —
4 0.85 0.33 0.97 0.32
5 0.32 0.88 0.33 0.95
6 0.89 0.34 0.97 0.33

Table 11: Accuracy for RoBERTaM on (m>n)-fold external negation after ≤n-fold inoculation (n ∈ {1, 2, 3}).

m-fold test acc. No inoc. 1-fold inoc. ≤2-fold inoc. ≤3-fold inoc.
2 0.56 0.62 — —
3 0.4 0.61 0.32 —
4 0.84 0.64 0.96 0.5
5 0.3 0.51 0.32 0.96
6 0.88 0.77 0.96 0.36

Table 12: Accuracy for DeBERTaS on (m>n)-fold external negation after ≤n-fold inoculation (n ∈ {1, 2, 3}).

m-fold test acc. No inoc. 1-fold inoc. ≤2-fold inoc. ≤3-fold inoc.
2 0.74 0.32 — —
3 0.4 0.89 0.3 —
4 0.84 0.35 0.94 0.39
5 0.34 0.88 0.3 0.74
6 0.83 0.33 0.93 0.53

Table 13: Accuracy for RoBERTaS on (m>n)-fold external negation after ≤n-fold inoculation (n ∈ {1, 2, 3}).

m-fold test acc. No inoc. 1-fold inoc. ≤2-fold inoc. ≤3-fold inoc.
2 0.77 0.37 — —
3 0.33 0.91 0.31 —
4 0.84 0.34 0.94 0.29
5 0.3 0.85 0.31 0.92
6 0.86 0.41 0.94 0.28

Table 14: Accuracy for BARTSMFA on (m>n)-fold external negation after ≤n-fold inoculation (n ∈ {1, 2, 3}).

m-fold test acc. No inoc. 1-fold inoc. ≤2-fold inoc. ≤3-fold inoc.
2 0.79 0.35 — —
3 0.32 0.93 0.32 —
4 0.83 0.31 0.95 0.32
5 0.32 0.94 0.32 0.94
6 0.84 0.32 0.95 0.32

Table 15: Accuracy for RoBERTaSMFA on (m>n)-fold external negation after ≤n-fold inoculation (n ∈
{1, 2, 3}).
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