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Abstract

Research in machine learning is making progress in fixing its own reproducibility
crisis. Reinforcement learning (RL), in particular, faces its own set of unique chal-
lenges. Comparison of point estimates, and plots that show successful convergence
to the optimal policy during training, may obfuscate overfitting or dependence
on the experimental setup. Although researchers in RL have proposed reliability
metrics that account for uncertainty to better understand each algorithm’s strengths
and weaknesses, the recommendations of past work do not assume the presence of
out-of-distribution observations. We propose a set of evaluation methods that mea-
sure the robustness of RL algorithms under distribution shifts. The tools presented
here argue for the need to account for performance over time while the agent is
acting in its environment. In particular, we recommend time series analysis as a
method of observational RL evaluation. We also show that the unique properties of
RL and simulated dynamic environments allow us to make stronger assumptions
to justify the measurement of causal impact in our evaluations. We then apply
these tools to single-agent and multi-agent environments to show the impact of
introducing distribution shifts during test time. We present this methodology as a
first step toward rigorous RL evaluation in the presence of distribution shifts.

1 Introduction

The field of RL has enjoyed some spectacular recent advancements, like reaching superhuman levels at
board games [Silver et al., 2016, 2018, Bakhtin et al., 2022], sailboat racing [McKinsey and Company,
2021], multiplayer poker [Brown and Sandholm, 2019], and real-time strategy games [Berner et al.,
2019, Vinyals et al., 2019]. Transitioning RL toward a rigorous science, however, has been a more
complicated journey. Like other fields in machine learning, progress in RL might be compromised
by a lack of focus on reproducibility combined with more emphasis on best-case performance. To
remedy this problem, reliability metrics have been proposed to improve reproducibility by making
RL evaluation more rigorous. Some examples include the dispersion and risk of the performance
distribution [Chan et al., 2020], and interquartile mean with score distributions [Agarwal et al., 2021].
Past work, however, does not assume the presence of distribution shift during test time.

In general, distribution shift in machine learning occurs when there is a difference between the
training and test distributions, which can significantly impact performance when the machine learning
system is deployed in the real world [Koh et al., 2021]. In supervised learning, distribution shift could
cause a decrease in accuracy. We will focus on distribution shift in RL, which could cause a decline
in expected returns. This impact on performance is a symptom of overfitting in deep RL, which is
a problem that requires carefully designed evaluation protocols for detection [Zhang et al., 2018].
While there are many types of distribution shift, we will focus on test-time adversarial examples and
the introduction of new agents in multi-agent ad hoc teamwork.
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Taking inspiration from car crash tests and safety ratings from trusted organizations, like the ratings
standards of the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute
for Highway Safety (IIHS), we believe RL would benefit from techniques that evaluate robust
performance after training. Here, we contribute some recommendations for evaluation protocols
using time series analysis to measure the performance of RL agents that encounter distribution
shift at test time. Specifically, we recommend (1) the comparison of time series forecasting models
of agent performance, (2) using prediction intervals to capture the distribution and uncertainty of
future performance, and (3) counterfactual analysis when distribution shift has been applied by the
experimenter. We are not recommending a strict set of rules that must be rigidly followed, but we
believe this methodology is a promising start towards reliable comparison of pretrained RL agents
exposed to distribution shift in both single and multi-agent environments.

In section 2, we mention past related work on distribution shift and RL reproducibility. In section 3,
we argue why time series analysis is needed for evaluation of RL algorithms under distribution shift.
In section 4, we outline our recommendations for RL evaluation with time series analysis. In section
5, we provide examples of such analyses in single and multi-agent RL. In section 6, we conclude
with suggestions for future research in RL evaluation and describe how it can advance ML safety and
regulation.

2 Related Work

Distribution (or dataset) shift occurs when the data distribution at training time differs from the data
distribution at test time [Quinonero-Candela et al., 2008]. The focus of this paper is not to detect
distribution shift [Rabanser et al., 2019], but to assume it exists while measuring agent performance.
There has been work on reproducibility under distribution shift for supervised learning [Koh et al.,
2021], but RL will be the focus here. In particular, we focus on how overfitting to the training
environment can affect the agent’s performance during evaluation in a test environment [Zhang et al.,
2018]. Although we are taking a time series perspective in this paper, we are not proposing a new
method of machine learning to train time series models [Ahmed et al., 2010, Masini et al., 2023]. We
will use time series only as a method of evaluation of RL performance.

The distribution shifts of focus in this paper will be adversarial attacks on images (Atari game
observations) and agent switching in multi-agent environments. There has been extensive research on
adversarial attacks on supervised learning models, like support vector machines and neural networks
[Huang et al., 2011, Biggio et al., 2012, Goodfellow et al., 2014, Kurakin et al., 2016]. While we will
focus on the adversarial attacks proposed in Huang et al. [2017], there has been related research on
adversarial attacks in single-agent [Kos and Song, 2017, Pattanaik et al., 2017, Rakhsha et al., 2020,
Zhang et al., 2020], and multi-agent RL [Gleave et al., 2019, Ma et al., 2019, Figura et al., 2021,
Fujimoto et al., 2021, Casper et al., 2022, Cui et al., 2022]. Another set of experiments will test the
ad hoc teamwork of the group of agents [Stone et al., 2010, Barrett and Stone, 2015, Rahman et al.,
2021, Mirsky et al., 2022], where agent switching will be treated as a distribution shift among the
group.

Rigorous evaluation of RL algorithms is still a topic that requires further investigation. Henderson
et al. [2018] show that even subtle differences, like random seeds and code implementation, can affect
the training performance of deep RL agents. Engstrom et al. [2020] give a more thorough study of
RL implementation and provide evidence that seemingly irrelevant code-level optimizations might be
the main reason why Proximal Policy Optimization [Schulman et al., 2017] tends to perform better
than Trust Region Policy Optimization [Schulman et al., 2015]. Colas et al. [2018] show how the
number of random seeds relates to the probability of statistical errors when measuring performance
in the context of deep RL. The inherent brittleness in current deep RL algorithms calls into question
the reproducibility of some published results. This has led to proposals for rigorous and reliable RL
evaluation techniques grounded in statistical practice. Chan et al. [2020] recommended reliability
metrics like interquartile range (IQR) and conditional value at risk (CVaR). Jordan et al. [2020]
suggested metrics like performance percentiles, proposed a game-theoretic approach to quantifying
performance uncertainty, and developed a technique to quantify the uncertainty throughout the entire
evaluation procedure. Agarwal et al. [2021] recommended stratified bootstrap confidence intervals,
score distributions, and interquartile means. For multi-agent cooperative RL, Gorsane et al. [2022]
proposed a standard performance evaluation protocol using RL recommendations from past papers.
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Figure 1: In this simplified plot of agent performance in the presence of worsening distribution shifts
over time. All three agents have average returns of 10. It is clear, however, that agent 3 is the least
desired agent over time. Even though agent 3 starts out with the highest average returns, it seems
to have overfit to the training environment and fails to maintain its superior performance. Point
estimates alone would not capture this behavior.

3 The Need to Measure Performance Over Time

3.1 A Time Series Perspective

We argue for time series analysis as a solution to the problems that point estimates and confidence
intervals alone cannot fix. Because we are not certain of the agent’s future performance, forecasting
the agent’s performance is needed if we assume RL agents will inevitably encounter distribution shifts
in its environment after training. Point estimates alone can fail to explain decreases in performance at
test time. In Figure 1, we assume three agents that act in an environment that experiences increasing
distribution shift as the number of episodes continues. Each episode can be interpreted as a day’s
performance of an RL agent. This is motivated by a hypothetical scenario where RL developers are
deploying their agents in an environment that experiences changes they did not anticipate. All agents
achieve the same average returns, but there is a clear difference of performance over time. In this
hypothetical example, Agent 3 seems to have overfit to the training environment because it starts high
but ends as the lowest performer. In the longer term, Agent 2 is preferable because its decrease in
performance is slower, and eventually outperforms Agent 3. Agent 1 represents the ideal RL agent
because its performance over time never decreases.

As shown in previous work [Chan et al., 2020, Agarwal et al., 2021], confidence intervals are
important to quantify the uncertainty of point estimates of aggregate performance. In evaluating
performance in the presence of distribution shift, however, confidence intervals for mean scores
are insufficient. If we want to account for the uncertainty of the performance trends, it would be
preferable to understand the distribution of values and where we expect our forecasting model to
generate the next data point sampled [Buteikis, 2020]. Hence, when evaluating trends in performance
under distribution shift, prediction intervals can be more helpful than confidence intervals. Time
series analysis can also be used to measure the causal impact of distribution shift on one (or many)
agents. One way to accomplish this is counterfactual analysis. That is, we need a model of the agent
acting in the environment as if the change had never taken place. In our methodology, we will assume
the trained agents have achieved a clear, steady trend in performance (as opposed to noisy or random)
in the absence of distribution shift.

We now provide the following definition of RL agent time-series performance measurements, similar
to how performance is measured in RL training research, that will be relevant in the next subsection:

Definition 1. Let XA(t) the time series performance for t = 1 . . . N , where A is an RL agent
in a simulated deterministic environment M. For each XA(t), there is an associated sample of
performance measurements xA(t) = (xA,1(t), . . . , xA,M (t)). Here, the i in xA,i(t) is a random seed
i ∈ S, where S is a finite set of M random seeds. Hence, we define:

XA(t) = E[xA,i(t)] =

∑
i∈S x

A,i(t)

M
(1)
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which is the expected performance2 at time t over all the random seeds in S.

Within-episode performance is difficult to measure because it requires knowledge of the particular
environment’s states to know when to make an intervention. To make our methodology more
general, we measure the impact of distribution shift over many episodes, where XA(t) is the expected
performance at an episode t. This allows us to measure the positive (or negative) impact of distribution
shifts over time. An example of this could be measuring the energy usage or customer satisfaction of
a RL-trained HVAC system each day over a week if exposed to distribution shift.

3.2 RL and the Fundamental Problem of Causal Inference

Practitioners of causal inference must remember its fundamental problem:

Fundamental Problem of Causal Inference 3.1 (Holland [1986]). Let Ya(u) on unit u be the
random variable where a = 1 denotes exposure to the treatment, and a = 0 denotes exposure to
the control. Then it is impossible to observe both Ya=1(u) and Ya=0(u) on u and, therefore, it is
impossible to observe the treatment effect on u: Ya=1(u)− Ya=0(u).

Another way of explaining this problem is that if we were to expose a unit u to some intervention, we
will never see the world where we never exposed the unit u to that intervention. That is, observing
individual treatment effect is impossible. This has not discouraged researchers from developing
methods that circumvent this problem [Spirtes et al., 2000, Pearl, 2009, Imbens and Rubin, 2015,
Peters et al., 2017]. These methods usually require assumptions that manage the messiness of the
real world, which makes it possible to construct valid arguments in favor of causal inference. RL
agents in simulated environments, however, allow us to make assumptions that might be too strong
for less predictable units (like humans or animals). In a deterministic environment, with a given
random seed, regardless of how many times you reach a state s, the agent will choose the same action
and receive the same reward at state s. That is, RL agents in deterministic environments with fixed
random seeds allow us to circumvent the fundamental problem of causal inference because we can
just reset the environment and see what happens when we choose to intervene or not. This does not
contradict Henderson et al. [2018], where they argue that different random seeds can lead to different
performances and behaviors. Here, we claim that different RL agents with their own random seed
may exhibit different behaviors, but will repeat those behaviors if the random seeds are fixed. Now
that we are concerned with RL evaluation over time, we can make the following assumption:

RL Fixed Seed Assumption 3.2. Let T , such that 1 ≤ T ≤ N , be the time an intervention occurs.
Let G designate groups such that G = 1 indicates the treatment group and G = 0 indicates the
control group. Consider a time series outcome XA(t) as in Equation 1, where A is a RL agent in a
simulated deterministic environmentM. Let XA(t < T ) be the performance before time T. Then,

E[XA(t < T )|G = 1] = E[XA(t < T )|G = 0] (2)

Let XA
U=u(t) be the performance measurement as above with the counterfactual intervention U = u.

We define U = 1 and U = 0 as being exposed to an intervention (e.g., distribution shift) and not
exposed, respectively. Then, on average, the performance of the control group is the counterfactual
performance of the treatment group as if it had not been exposed to the intervention:

E[XA(t)|G = 0] = E[XA
U=0(t)|G = 1] (3)

This assumption basically says that if we have a fixed set of random seeds3 in a deterministic
environment, then, on average, the expected returns of the control group is the same as the expected
returns of the treatment group if no out-of-distribution intervention ever occurred. This makes
intuitive sense because both groups have the same random seeds, which implies they will exhibit
identical behavior in deterministic environments if no outside influence is introduced. This will be
helpful when justifying causal inference in the next section.

2We use expected performance just as a simple default. For example, in accordance with Agarwal et al.
[2021], one could replace expected performance with the interquartile mean.

3Reproducibility can be difficult to achieve when running on a GPU. We discuss this further and how to
control for it in the appendix.
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4 Recommendations for Time Series Evaluation

4.1 Methods

4.1.1 Comparison of Simple Time Series Forecasting Trends

To compare RL algorithms at test time, we compare the performance forecasts of each RL agent. This
recommendation is inspired by the use of time complexity or running time to measure the efficiency
of an algorithm [Cormen et al., 2022]. As illustrated in Figure 1, looking at performance trends of
RL agents is an informative way to observe overfitting during test time. Here, we use simple time
series forecasts over more complex time series models that might better predict the performance
trend. The reason is that one cannot make too many strong, general assumptions (e.g., seasonality,
how many past values to use for autoregression) on the time series trend of agent performance in
all environments. For test-time distribution shift, we only assume the trend will be pessimistic and
not increase. This is reasonable if we assume the ideal case is when performance never decreases
(like Agent 1 in Figure 1). We default to using Holt’s linear damped trend method [Gardner Jr and
McKenzie, 1985, Holt, 2004, Hyndman and Athanasopoulos, 2018] to model the (likely pessimistic)
trend of agent performance when in the presence of distribution shift. Researchers evaluating their
own experiments, however, may find that more complex models would be more appropriate for their
own studies if they see performance trends that warrant such assumptions.

4.1.2 Prediction Intervals over Future Performance

Along with time series forecasts, we recommend prediction intervals over future average returns
[Hyndman and Athanasopoulos, 2018]. The combination of simple time series forecasts and predic-
tion intervals map out the range of average returns over time. As stated previously, point estimates
with confidence intervals are not enough to capture the range of returns over time. Prediction intervals
act as a compliment to the time series forecasting by visualizing the uncertainty of the possible future
average returns. When applying both of these methods, we can specify the most robust RL algorithm
as the trend with the most optimistic forecast on performance and the smallest prediction interval.
Here, we assume there exists distribution shifts but do not necessarily know when or where. Since
we will be using Holt’s linear damped trend method, 95% prediction intervals might be too narrow
[Hyndman, 2014]. Hence, we will default to 99% prediction intervals.

4.1.3 Difference-in-differences Analysis for RL Performance

Difference-in-differences (DiD) measures the causal effect between a treatment and control group,
where the treatment group is exposed to an intervention at a certain point in time [Cunningham, 2021,
Huntington-Klein, 2021]. Intuitively, it represents how much more the treatment group was affected
by the intervention at some time t compared to the change of the unaffected control group at the same
time t. Since we are dealing with time series, we will adhere to the DiD formulation in Moraffah
et al. [2021]:
Definition 2. If t < T and t > T denote the pre- and post- treatment periods, respectively, then we
can calculate the DiD measure using the average treatment effect metric over a time series X(t) as
follows:
DiD = {E[X(t > T )|G = 1]−E[X(t < T )|G = 1]}−{E[X(t > T )|G = 0]−E[X(t < T )|G = 0]}

(4)
where G indicates the treatment group (G = 1) and the control group (G = 0).

Any methodology that relies on DiD must satisfy the parallel trends assumption, which says that if
no treatment had occurred, the difference between the treated group and the untreated group would
have stayed the same in the post-treatment period as it was in the pre-treatment period [Huntington-
Klein, 2021]. RL agents in deterministic environments with fixed seeds trivially satisfy this because
the agent will take the same action at each state and receive the same reward regardless of how many
times the evaluation is repeated.

From Equation 2 of the RL fixed seed assumption, DiD simplifies to the equation below when
evaluating RL performance:

DiD = E[XA(t > T )|G = 1]− E[XA(t > T )|G = 0] (5)
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where A is the RL agent being evaluated. This follows from the pre-treatment averages canceling
each other out. Hence, we only need to measure the post-treatment effect of RL performance. Using
Equation 3 of the RL fixed seed assumption, DiD becomes the following:

DiD = E[XA(t > T )|G = 1]− E[XA
U=0(t > T )|G = 1] (6)

Equations 5 and 6 say the following: Measuring the DiD effect is equivalent to measuring the average
time series post-treatment effect of agent A between the treatment and control group. If the agents
in both the treatment and control groups have the same fixed random seeds, we can interpret the
performance measurements of the control group as the counterfactual of the treatment group as if the
treatment group was never exposed to the distribution shift intervention. Hence, we have shown that
the RL fixed seed assumption justifies causal inference in our time series analysis.

4.2 Recommended Procedure

4.2.1 If you can control when the distribution shift occurs, measure the causal impact

Similar to car crash tests in controlled settings, we propose an evaluation method where the experi-
menter can control when a RL agent experiences a shift in distribution. First, take a trained RL agent
and have it interact in its environment until some time (or episode) T , which will be the pre-treatment
period. At time T , the post-treatment period starts with the experimenter applies a shift in distribution.
Such distribution shifts include adversarial examples [Goodfellow et al., 2014]. In the multi-agent
cooperative tasks, sudden replacement of agents can also cause shifts in distribution [Mirsky et al.,
2022]. The experimenter logs the performance scores at each point in time. When the agent reaches
the end of the experiment (or some time threshold), evaluate the causal impact from the counterfactual
model (the RL agent control group) and the treatment group’s post-treatment performance using
DiD. The results will show how much the distribution shift impacted the performance of the agent
assuming a counterfactual model that represents the agent’s performance if the distribution shift never
happened.

To show the impact of the distribution shift, we use the template of time-series impact plots from
Brodersen et al. [2015]. This template consists of three panels: an original plot, a pointwise plot, and
a cumulative plot. In the original plot, the raw performance is shown. The pointwise plot shows the
difference between the observed data and the counterfactual predictions, which is the inferred causal
impact of intervention. The cumulative plot shows the cumulative impact of the intervention over
time. Unlike in Brodersen et al. [2015], instead of Bayesian structural time-series models, we use
DiD because we are measuring only one variable (returns) and our assumptions justify its application.

4.2.2 Otherwise, compare agents using simple time series trends with prediction intervals

Here, we assume the experimenter has no control over when the distribution shift will occur. It is
also possible that multiple instances of distribution shift can occur at different times. Such scenarios
are intended to be a closer representation of real-world RL agent deployment. This implies, without
further assumptions, an observational study is the best we can do. We propose comparison of RL
performance using time series trends, like Holt’s Linear Damped Trend Method, with prediction
intervals. An example is provided in Figure 2. Here, we can compare the performance of agents
trained on different RL algorithms. The idea is similar to the comparison of agents in Figure 1.
The main difference is that we are not just focusing on the agents’ measured performance, but
also on the forecast of future performance with prediction intervals. Here, robust performance can
be interpreted as the the forecast of future performance and the prediction intervals visualize its
uncertainty over time. Ideally, the agent that performs the best would have the highest trend line and
the smallest prediction interval. Using time series forecasts with prediction intervals are meant to
be an improvement over point estimates with confidence intervals to better show the uncertainty of
measured RL performance over time. Like in section 3, we interpret each time point as an episode,
and XA(t) represents the RL agent’s performance during that episode.
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Figure 2: The idea behind these graphs is the same as in Figure 1. The main differences are that we
use time series forecasts and prediction intervals to show the predicted performance trend of each
agent. Here, the performances between episodes 0-50 are the measured performances of the agents
in the environment. The plots at episodes 50-100 are not measured performance, but prediction
trends of future performance with prediction intervals. Left: The differences in performance are clear
because the prediction intervals do not overlap at the end of the plot. Hence, Agent 1 has the best
performance because the forecast is not decreasing and the prediction interval is small. The fact that
Agent 2’s interval does not overlap with Agent 3’s prediction interval shows that Agent 1 and Agent
2 have significantly better performance forecasts. Right: Here, all agents have noisier performance.
Even though Agent 3 still has a downward trend, its much noisier performance briefly spikes up to
match Agent 1’s performance. Hence, we want prediction intervals that anticipate this uncertainty
by showing interval overlap between agent performance over time. There is no longer a significant
difference between Agents 2 and 3 because their prediction intervals overlap at every time step.

5 Examples of RL Time-series Analysis

In our time series evaluation, we model the scenario as deploying the agent(s) out in the intended
environment. In this scenario, we have the pretrained agents run over a number of episodes. As
mentioned previously, the causal impact procedure can be interpreted as the RL version of car crash
tests, where RL agent(s) are deployed in a controlled environment and undergo repeated performance
testing. When evaluating the causal impact of the distribution shift, we introduce the shift at some
halfway point. We measure the performance of the treatment and control groups, then measure the
difference and cumulative impact of the shift. This can be interpreted as the human maintainers
measuring robust agent performance and quantifying the losses that can accrue when the agent is
deliberately exposed to a distribution shift. In the observational case, we can interpret having the
agents run over a number of episodes as deploying the agent into the environment each day while
recording its performance. The distribution shifts in the observational evaluations happen randomly,
so the human maintainers have no control over how the shifts are introduced.

In the single-agent case, we measure the performance of RL agents trained on Atari games [Bellemare
et al., 2013] in the presence of adversarial attacks. Here, in Figure 3, we use pretrained A2C and
PPO agents implemented in Stable-Baselines3 [Raffin et al., 2021]. For adversarial attacks on the
Atari game images, we use the Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2014]. In the
multi-agent case (Figure 4), we measure the performance of a cooperative group of decentralized
PPO agents in the presence of ad hoc agent switching. The multi-agent environment we use is a
framework for power-systems-focused simulations called PowerGridworld [Biagioni et al., 2022]. In
both cases, we use the causal impact plot template from Brodersen et al. [2015].

For the observational evaluations, the single-agent and multi-agent cases use different approaches to
randomly introducing distribution shift. In the single-agent case, we define a probability threshold
for adversarial attacks. If the random number generator (like random.random() in Python) gives
a number above the threshold, the Atari game image is attacked. In the multi-agent case, we use a
strategy similar to Rahman et al. [2021], where the number of steps an agent is switched out is drawn
from a uniform distribution. Figure 5 provides some Atari game examples of observational studies.
We use 10 random seeds for both causal and observational time-series evaluation. More information
on the plots is provided in the appendix.
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Figure 3: The causal impact plots shown here illustrate the impact of FGSM adversarial attacks on
RL agents trained on the Breakout and Pong Atari games. Each row represents an Atari game. Each
column represents a RL algorithm (A2C or PPO). The original plots here show the rolling mean of the
rewards over time. The pointwise plots show the difference between the counterfactual performance
and the performance when the agent is attacked. The cumulative performance is the summation of
the rewards gained or lost over time. As expected, the performance tends to drop as ε increases.
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Figure 4: The plots here show the impact of the ad hoc switching of agents in a group of 5 in the
PowerGridworld environment. Left Column: We replace 1, 2, or 3 agents out of the group of 5
with agents that trained with a different group. While there is little change when only replacing 1
or 2 agents, we see that performance dramatically decreases when 3 agents have been switched out.
Right Column: We see that just switching out 1 agent in the group with 1 untrained agent causes a
significantly large decrease in group performance.
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Figure 5: These plots take the rolling mean (window=25) of the observational performance up to
a certain time point with some probability of being in the presence of adversarial attacks. After
that time point, it shows the time series forecast with 99% prediction intervals. Top Row: In the
PongNoFrameskip-v4 plots, PPO performs significantly better and has smaller prediction intervals.
The plot on the right, however, uses attacks with higher ε, where both agents have larger prediction
intervals. Bottom Row: In the BreakoutNoFrameskip-v4 plots, the prediction intervals overlap. One
noticeable difference is that the stronger attacks cause the PPO interval to shrink in size while the
mean rewards are slightly less. This decrease in variability accounts for the decrease in the maximum
rewards achieved.

6 Conclusion

In this work, we show that relying on point estimates, even alternatives that are more reliable and less
biased than what is typically used in practice, are limited in their ability to evaluate RL performance
in the presence of distribution shifts. In particular, we argue that the methodology proposed here
provides a necessary emphasis on test-time evaluation, and is general enough to assess both single
and multi-agent performance. If, or when, we choose to deploy RL agents into the real world, how
such agents perform after training will matter more than during training. The decline in performance
during ad hoc agent switching in the PowerGridworld shows what could happen if we need to start
replacing intelligent agents to ensure energy usage is minimized. Such experiments reveal a workflow
that will likely be closer to representing real-world safety checks and maintenance of AI systems.

There is still work to accomplish in ensuring RL research is reproducible, like protocols for non-
deterministic environments and developing new evaluation protocols at test time. Investigating if
more complex time series models would be more appropriate in certain scenarios would be an obvious
next step. Time series clustering and motifs [Mueen et al., 2009, Imani et al., 2021] can be used to
better understand how different types of distribution shift can affect RL performance. One could also
investigate if time series ensemble models [Wichard and Ogorzalek, 2004] provide better forecasts
than simpler models.

Nations, like the United States [White House, 2022], have signed legislation to invest in modern-
ization of infrastructure and communities to meet the growing challenges of the 21st century (e.g.,
cybersecurity and climate change). RL is advancing the automation of complex decision making
in real-world infrastructure systems (e.g., energy and transportation). Like other areas in AI, the
role of RL in critical infrastructure and other high-consequence applications requires robust, reliable,
repeatable, and standardized evaluation protocols [European Union, 2021, Biden Jr, 2023]. The
methodology we propose here, inspired by the NHTSA ratings standards, is a start toward a general,
standardized protocol for evaluating pretrained RL performance over time.
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Appendix

A Further Notes on the RL Fixed Seed Assumption

Reproducibility can be difficult to achieve when running on a GPU. As described in PyTorch’s
webpage on reproducibility, even identical seeds might not provide reproducible results. Some
reasons include nondeterministic algorithms that improve performance and the use of different
hardware can affect the selection of such algorithms. To control these sources of randomness in our
experiments, we adhere to the reproducibility suggestions provided on the webpage.

B Further Notes on Environments Used in Evaluations

All plots use 10 random seeds. In multi-agent settings, each agent shares the same seed during an
evaluation run. For example, if our seed numbers are 1 and 42, then the first evaluation run sets

B.1 Atari Games

The games of focus are a subset of Atari games AsteroidsNoFrameskip-v4, BeamRiderNoFrameskip-
v4, BreakoutNoFrameskip-v4, MsPacmanNoFrameskip-v4, PongNoFrameskip-v4,
QbertNoFrameskip-v4, RoadRunnerNoFrameskip-v4, SeaquestNoFrameskip-v4, and
SpaceInvadersNoFrameskip-v4. The agents we evaluate are pretrained agents from RL
Baselines3 Zoo [Raffin, 2020] that are available on SB3’s Huggingface repository of models. The
adversarial attacks (FGSM) were implemented in torchattacks [Kim, 2020].

B.2 PowerGridworld

PowerGridworld is a modular, customizable framework for building power systems environments
to train RL agents. Because of this, we use an environment provided in one of the example scripts.
The class name is called CoordinatedMultiBuildingControlEnv, which is a multi-agent coor-
dination environment. In addition to the original agent-level reward, grid-level reward/penalty and
system-level constraint(s) are considered. In particular, we consider the voltage constraints: agents
need to coordinate so the common bus voltage is within the ANSI C.84.1 limit. If the constraints are
not satisfied, the voltage violation penalty will be shared by all agents. The agents in this scenario are
minimal implementations [Barhate, 2021] of PPO.

B.3 Time Series Tools

Trends and prediction intervals were implemented in the Python package sktime [Löning et al., 2022].
Other Python visualization tools include Matplotlib [Hunter, 2007] and Seaborn [Waskom, 2021].
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C More Plots

C.1 Atari Game Causal Impact Plots
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C.2 Observational Plots

All observational plots show forecasts with prediction intervals 100 episodes after the last measure-
ment.

C.2.1 PowerGridworld
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Figure 6: PowerGridworld observational plots. Left: Comparing random switching with pretrained
agents at each episode. Right: Comparing random switching with untrained agented at each episode.

C.2.2 Atari Games
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