Published as a conference paper at ICLR 2025

MELODI: EXPLORING MEMORY COMPRESSION FOR
LONG CONTEXTS

Yinpeng Chen DeLesley Hutchins Aren Jansen
Andrey Zhmoginov David Racz Jesper Andersen
Google DeepMind

{vinpengc,delesley,arenjansen, azhmogin, dracz, jespera}l@google.com

ABSTRACT

We present MELODI, a novel memory architecture designed to efficiently process
long documents using short context windows. The key principle behind MELODI
is to represent short-term and long-term memory as a hierarchical compression
scheme across both transformer layers and context windows. Specifically, the
short-term memory is achieved through recurrent compression of context windows
across multiple layers, ensuring smooth transitions between windows. In con-
trast, the long-term memory performs further compression within a single middle
layer and aggregates information across context windows, effectively consolidat-
ing crucial information from the entire history. Compared to a strong baseline
- the Memorizing Transformer employing dense attention over a large long-term
memory (64K key-value pairs) - our method demonstrates superior performance
on various long-context datasets while remarkably reducing the memory footprint
by a factor of 8.

1 INTRODUCTION

output ziv output szH

E0000A E0000E

X(N-M-1) X(N-M-T)
D [:]—P Short-term Layer —>l '—> Short-term Layer —Vl .—>

. Long-term Layer
ne

i,

Zg-1
D [:]—» Short-term Layer M —>l '—> Short-term Layer N —». '-»

short-term [:] D D D D D short-term D D D D D D short-term
memory memory memory

window k g window k+1 T, 1

Figure 1: Overview of MELODI. MELODI employs a hierarchical memory representation, incorpo-
rating both short-term and long-term compression mechanisms, integrated with a transformer-based
language model. It utilizes a stack of short-term layers to recurrently compress each context win-
dow z{ into short-term memory tokens {z,{c}, and inserts a long-term layer to store compressed
key-value pairs within a long-term memory m;.;. Both short-term and long-term layers leverage
modified transformer blocks. In this illustration, we assume a total of N layers, with M short-term
layers preceding 1 long-term layer and N — M — 1 short-term layers following it.

Long-context language models, exemplified by Gemini (Gemini-Team|, 2024) and GPT (OpenAl,
@[), showcase remarkable capabilities across diverse modalities (e.g., text, images, audio, code,

video) and seamlessly integrate various machine learning techniques, including many-shot in-
context learning (Agarwal et al 2024), chain-of-thought prompting (Wei et al., 2022b)), and the
incorporation of explicit instructions (Chung et al.} 2024} [Wei et al.},[2022a)). However, the quadratic

complexity of attention mechanisms within transformer models necessitates significant computa-
tional resources to handle long contexts effectively. This has spurred the development of efficient
solutions (Dai et al.}[2019; Wu et al.,[2022; [Bulatov et al}[2022) that process long contexts via short
context windows, much like how humans process information by reading a book chapter by chapter.

Published as a conference paper at ICLR 2025

A central question underlying these solutions is: how can we effectively model and manage memory
to bridge the gaps between these short context windows over long context?

Memory fundamentally revolves around compressing and storing information for future utilization,
all within the constraints of limited capacity. The Long Short-Term Memory (LSTM) architecture
(Hochreiter & Schmidhuber, |1997) tackles this by recurrently compressing historical information
into hidden states after processing each token. With the rise of Transformer models (Vaswani et al.,
2017) dominating the language modeling landscape, recent memory designs have shifted towards
utilizing Transformers to process a context window, thereby moving the focus of memory manage-
ment from the token level to the context window level.

Transformer-XL (Dai et al., [2019) employs a caching mechanism to store multi-layer key-value
(KV) pairs from the preceding window as memory. Memorizing Transformer (Wu et al.| 2022)
builds upon this foundation by incorporating a dedicated layer to memorize all KV pairs from that
layer across all prior windows. Meanwhile, Block Recurrent Transformer (Hutchins et al.| [2022)
and Recurrent Memory Transformer (Bulatov et al., |2022) introduce distinct recurrent compression
mechanisms, implemented in a middle layer and at the output, respectively.

In this paper, we introduce MELODI (short for “MEmory with LOw DImension”), an efficient mem-
ory architecture designed to handle long contexts despite operating on short context windows (e.g.,
512 tokens per window). MELODI integrates both short-term and long-term memory through a
compression-based approach. The short-term memory, recurrent in nature and possessing low ca-
pacity, spans multiple transformer layers, progressively compressing context tokens and prior mem-
ory at each layer. In contrast, the long-term memory, incremental and high-capacity, resides within
a single transformer layer. It maintains a record of the entire history by further compressing each
context window and concatenating them. Both short-term and long-term memory are seamlessly
incorporated into a multi-layer transformer model using a “sandwich” structure (see Figure[I)), in-
curring negligible additional parameters.

MELODI demonstrates strong performance on various long-context datasets. For instance, utilizing
a 13-layer transformer network with 1024 embedding dimensions and 512-token context windows,
MELODI achieves perplexity scores of 10.44 and 2.11 on PG-19 (TS5 vocabulary) and arXiv Math
(Meena vocabulary), respectively. This represents a clear improvement over the Memorizing Trans-
former (10.62 on PG-19, 2.14 on arXiv) with dense attention (as opposed to top-k attention), while
significantly reducing memory usage by a factor of 8. Furthermore, ablation studies confirm the
complementary nature of short-term and long-term memory in MELODI, highlighting their syner-
gistic contribution to an efficient and effective memory architecture.

2 RELATED WORK

Memory in language models: Long Short-Term Memory (LSTMs) (Hochreiter & Schmidhuber,
1997) use token-level recurrence to compress prior context into a state vector, which is a limited
form of memory. With the advent of Transformers (Vaswani et al., 2017), the focus has shifted to
memory mechanisms operating at the level of the context window; this shift allows blocks of tokens
(i.e. all tokens within the window) to be processed in parallel. The Block Recurrent Transformer
(Hutchins et al.|[2022) and Recurrent Memory Transformer (Bulatov et al.} 2022) integrate recurrent
mechanisms inspired by LSTMs into the Transformer architecture, but the recurrence is over blocks,
rather than individual tokens. Transformer-XL (Dai et al., [2019) introduces a caching mechanism
to store key-value (KV) pairs from the preceding context window as a form of short-term memory.
Memorizing Transformer (Wu et al.,|2022) uses a large cache to store KV pairs for long-term mem-
ory, but only in one layer. MemoryLLM (Wang et al.,[2024)) incorporates long-term memory in every
layer, incurring a substantial memory overhead. Infini-Transformer (Munkhdalai et al., [2024) ex-
plore the use of additional memory like Hopfield Networks (Hopfield, |1982; Ramsauer et al.l[2021).
LONGMEM (Wang et al., [2023) improves over Memorizing Transformer by introducing a SideNet
for memory retrieval and fusion. You Only Cache Once (Sun et al., [2024) shows that long-term
KV cache is reuable for the latter half of the network, significantly improving pre-filling efficiency
by enabling early exit. MELODI, in contrast, integrates integrates both short-term and long-term
memory into a transformer model via compression.

Compression: Recent work has explored using summary tokens for compression in Transformers
(Rae et al., 2019; Bulatov et al., 2022; |Chevalier et al., 2023} |Ge et al., [2024). Recurrent Memory

Published as a conference paper at ICLR 2025

Transformer (Bulatov et al., [2022) utilizes the output of summary tokens recurrently as short-term
memory. AutoCompressor (Chevalier et al., [2023)) aggregates summary tokens across segments to
generate a summary representation for long documents used in retrieval tasks. Gisting (Mu et al.,
2024) applies this technique to compress long prompts. The In-context Autoencoder (Ge et al.,[2024)
further incorporates LoRA fine-tuning (Hu et al., 2021) for context compression, while Transformer-
FAM (Hwang et al., 2024) introduces feedback attention to enhance performance. Unlike these
methods that compress input tokens, MELODI compresses network activations over multiple layers.

Extending context length: Recent research has demonstrated promising progress in scaling the
context length of language models. To mitigate the cost of attention mechanisms over long contexts,
LongLoRA (Chen et al.| 2024), PCW (Ratner et al., 2023)), and Landmark-Attention (Mohtashami
& Jaggi, |2023)) employ sparse local attention for efficient fine-tuning. Position-Interpolation (Chen
et al.,[2023) and YaRN (Peng et al.| [2023) extend context size by modifying the RoPE embedding
scheme (Su et al., [2023). Xiong et al, (2023) provide a practical recipe for extending LLAMA?2
(Touvron et al., [2023) to handle up to 32,768 tokens, while [Fu et al.| (2024) further explore data-
centric approaches for extending context length through lightweight continual pretraining.

3 OUR METHOD: MELODI

MELODI focuses on efficiently comprehending long contexts while still using short context win-
dows, thus circumventing the quadratic complexity associated with attention mechanisms over long
sequences. This approach necessitates a memory design that not only ensures smooth transitions
between windows but also preserves crucial information from all preceding windows.

3.1 ARCHITECTURE OVERVIEW

Design principle: The core principle of MELODI is to represent short-term and long-term memory
through a hierarchical compression scheme. Specifically, the short-term memory recurrently com-
presses context across multiple transformer layers (e.g., condensing a 512-token context window into
128 memory tokens). This process not only facilitates seamless transitions between context windows
but also aggregates information across them, effectively functioning as a fixed-size multi-layer long
short-term memory (LSTM) mechanism (Hochreiter & Schmidhuber, [1997)). Furthermore, each
context window undergoes additional compression within a middle layer and is then concatenated
into a long-term memory. This long-term memory retains essential information from the entire his-
tory, thus compensating for any potential forgetting in the short-term memory. Both short-term and
long-term memory are seamlessly integrated into a transformer-based language model, enabling the
comprehension of long contexts even under the constraint of short context windows.

Sandwich architecture: MELODI’s network architecture (Figure[I]) features a “sandwich” structure,
with a long-term compression layer inserted between multiple recurrent short-term compression lay-
ers. Both layer types utilize a standard transformer block (attention and feed-forward network) with
tailored compression modifications. The short-term layers recurrently compress the current context
window and update short-term memory, while the long-term layer further compresses information
and appends it to long-term memory.

Terminology: In the remainder of this paper, we adopt the following notation. We use k to index
context windows and [to index transformer layers. Within the /! layer of the k** context window,
the input context tokens are represented by x%‘l. The output context tokens, denoted as :172,, serve
as input for the subsequent layer. The input and output of the short-term memory are z,lFl and z,lc,
respectively. The long-term memory preceding window k is denoted as mj.;—1. Note that we omit
the subscript [for the long-term memory since it resides within a single long-term layer. Next, we
will discuss both short-term and long-term layers in detail.

3.2 SHORT-TERM MEMORY: MULTI-LAYER RECURRENT COMPRESSION

The short-term memory is distributed across multiple short-term layers (see Figure|I)). This subsec-
tion delves into the specifics of the short-term layer, using the [*" layer as an illustrative example for
processing the k*" context window. The short-term layer serves a dual purpose: (a) transforming

context tokens a:f;l via a transformer block (yielding output :cfc), and (b) recurrently compressing

Published as a conference paper at ICLR 2025

the current context window into the short-term
memory z,lg It accomplishes this by updating both
context tokens and short-term memory through
a shared transformer block, albeit along separate l :
pathways. As visualized in Figure 2| context to- T o
kens traverse vertically across layers (from xﬁ;l sEsaanng
to a:fc), whereas short-term memory flows horizon- !
tally across context windows (from 2!, to z}). To i
enable inter-layer communication within the short- !

I

1

1

2o T u = hiz} 2t)
108 0 0 B

to next layer I+1

T =

term memory, we introduce summary tokens uﬁc

that propagate through the layers. We elaborate on

FFN \

the key components below. \j _______ Attention || X

Short-term memory zfc: The short-term mem- DID e D,[l] e Dl ID ll.—’

ory (illustrated in Figure [2) is implemented as P T k3 e
window k+1

a sequence of length S of vectors, each having

context summary

the same dimensionality as context tokens (e.g.,
1024 channels). Notably, the number of short-
term memory vectors is substantially smaller than
the length of the context window (e.g., 128 mem-
ory tokens per window of 512 context tokens).
Within each context window, the short-term mem-
ory serves initially as a previous context for auto-
regressive prediction of subsequent context tokens
(except for the first window in which the short-
term memory is empty). It is then updated by

from previous layer -1

Figure 2: Short-term layer. The figure illus-
trates the processing of the k" context window
at the [*" short-term layer. It takes the mem-
ory from the previous window 22_1 and the
current context/summary (:L'if_l, ué;l) from the
previous layer as input. The short-term layer
adds two linear token mixers (Tolstikhin et al.,
2021)) on top of a standard transformer layer

(including attention and FFN) to separate the
summary for the next layer u}, and the memory
for the next window 2. . Best viewed in color.

compressing and incorporating information from
the context tokens within the current window.

Transforming context tokens: The context to-

kens a:§C are generated through causal attention to both (a) the preceding short-term memory z,ﬁfl
and (b) preceding tokens within the current context window. This attention mechanism is followed
by the application of a feed-forward network (FFN). Relative position embeddings are employed for
both the context tokens xfl and the preceding short-term memory z,lc_l. Mathematically, this can

be represented as:

(D

l -1 1
zy, =T (2 |z-1),
where T (z|z) indicates applying a transformer block on z for a given preceding context z.

Recurrent compression: Beyond transforming context tokens, the short-term layer also recurrently
compresses the current context window into short-term memory. Similar to the approach in RMT
(Bulatov et al., [2022) and AutoCompressors (Chevalier et al., [2023), this compression is achieved
by appending summary tokens u after context tokens x and passing the combined sequence through
the transformer block. Consequently, the resulting summary tokens compresses both the preceding
short-term memory and the current context window via attentional pooling (Lee et al., 2019), ex-
pressed as: 4} = T(ui;”zfg_l? xé;l), where the input summary tokens ué;l originate from the
previous layer (refer to Figure . We use 4}, (instead of u}) to denote an intermediate result that is
further processed in the subsequent summary branching step. Both context and summary tokens can
be updated simultaneously within a single transformer operation: xﬁc, ﬁéc = T(:z:fc_l, ui@‘l\zfﬁfl).
Relative position embeddings are applied on the short-term memory lec—l’ context a?ﬁ;l, and sum-

mary ufl, while a causal mask is applied on the combined sequence of xf;l and ufl.

Summary tokens (containing U tokens) are initialized from learnable embeddings (prior to the first
layer) and set to the same length as the short-term memory (U = S). Propagating through all
layers, they facilitate inter-layer communication within the short-term memory. Moreover, branch-
ing summary tokens both upwards to the next layer and rightwards to the next window improves
performance, a strategy we will discuss in more detail subsequently.

Summary branching: We employ distinct linear token mixers (Tolstikhin et al.,|2021) on the con-
text and summary tokens to generate separate summary tokens for the subsequent layer and short-

Published as a conference paper at ICLR 2025

to next layer [+1 Difference to short-term layer
* * o Cross attention to long-term memory.
e Gate over self and cross attention.

! 1
T Uy,
D D D D D . . e Appending to long-term memory.

|{ linear mixing \,
X I - 1
, 000000E—-o
! | FEN | long-term layer !
1
E g gateé i
1
X |
fr;)/r;é)(gfvv;\(?tlls :\ | Self-Attention | m Cross-Attention | E 0
_________________________________ 4 ———1
oy —D00000000 | OROORER (CEER BO-—
2 1 w1 1 w ! T ,
k-1 k k k k Mkl M 2
D D D D J long-term short-term
mik-1 memory memory
long-term context summary to next window k+1
memory from previous layer [-1

Figure 3: Long-term layer. The long-term layer adds three components on top of the short-term
layer (see Figure |Z|) Firstly, it introduces a long-term memory m1.;—1 by caching the compressed
key-value pairs and allows the current context/summary (:1:2_1, ufg_l) to cross attend to them. Sec-
ondly, the self-attention and cross-attention are integrated via gating. Finally, the linear token mixing
output additional compressed tokens and appends their key-value pairs my, into the long-term mem-
ory (as mq.;) for the next window. Best viewed in color.

term memory tokens for the next window. Unlike channel mixing, a linear token mixer linearly
combines the M; input tokens across each channel to produce M, output tokens with the same di-
mensionality by using an M; x M, matrix. The resulting summary and memory tokens exhibit
distinct linear combination of context xff and summary tokens ﬁi, implying divergent compression
flows across layers and windows. Since the summary and short-term memory share the same num-
ber of tokens (.5), each mixer comprises (W + S) x S parameters, where W represent the number
of context tokens per window. This parameter count is negligible for short context windows. For
instance, with a context window of 512 tokens and 128 summary tokens, the two mixers collectively
require (512+128)x 128 x2=164K parameters, constituting a mere 1.3% of a transformer block with
1024 dimensions.

Summary: The short-term memory layer can be succinctly represented as a function 2}, 2}, u! =

h(zL_,, xfl, ufl). This function transforms context tokens xﬁ;l and summary tokens ull,;l up-
ward to the next layer (from [— 1 to [) while simultaneously propagating short-term memory z,l{_l
rightward to the next window (from k£ — 1 to k). Built upon a standard transformer block, this layer

introduces negligible additional parameters through the summary branching mechanism.

Relation to Block Recurrent Transformer (BRT) (Hutchins et al., [2022): Like MELODI, BRT
also combines a block-wise recurrence mechanism with a Transformer-XL style KV-cache. How-
ever, BRT only uses recurrence in a single “memory” layer, while MELODI adds recurrence to all
layers. The MELODI recurrence mechanism relies on summary tokens, which do not require any
new parameters, while BRT uses a separate “horizontal” transformer block for recurrence instead,
which does introduce new parameters. Finally, MELODI builds summaries incrementally over mul-
tiple layers (by passing summary tokens), while BRT recurrent state is visible only to a single layer.

3.3 LONG-TERM MEMORY: SINGLE-LAYER MEMORIZING COMPRESSED KEY-VALUE PAIRS

While short-term memory facilitates smooth transitions between context windows, the inherent lim-
itation of its capacity can lead to the inevitable loss of information, particularly for contexts located
further back in the sequence. In this subsection, we utilize long-term memory to retain information
from all previous windows, thereby alleviating the forgetting inherent in short-term memory. The
key idea involves further compressing the context window and storing the compressed representa-
tions across the entire history.

Published as a conference paper at ICLR 2025

Table 1: Long-term vs. short-term memory.
In our notation, L and S represent the num-
ber of long-term and short-term tokens per net-
work layer, respectively. Note that long-term
has fewer tokens (L < S). Qyq. denotes the
maximum number of windows encompassed
by the long-term memory queue. N signifies

Table 2: Baseline implementations. Our re-
implementations utilize a cosine decay learning
rate schedule (replacing inverse square root de-
cay) and dense cross-attention for the Memorizing
Transformer (replacing top-k attention). This re-
sults in improved performance compared to prior
reported results.

the total number of network layers.

Baseline ‘ PG-19 (T5) |arXiv (Meena)

PROPERTY LONG SHORT Method prior our |prior our
Number of layers single multiple Transformer XL |11.96 11.54|2.67 2.61
Update per window incremental recurrent Block Recurrent |11.55 10.98(/2.36 2.26
Capacity L X Qumaz S XN Memorizing Trans.|11.62 10.74|2.31 2.15

Further compression: In contrast to the short-term memory, which compresses information across
multiple layers, the long-term memory achieves a higher compression rate within a single layer.
Specifically, it compresses a context window into L long-term tokens at a designated middle layer
(refer to Figure|l), where L is less than the number of short-term tokens per layer (L < S). Illustra-
tively, we might compress a context window of 512 tokens into S = 128 short-term tokens at each
layer, but further condense it into L = 64 long-term tokens at a single layer.

Storing long-term memory: The key-value (KV) pairs of long-term tokens are sequentially stored
in a first-in-first-out (FIFO) queue with a maximum capacity of Q4. windows. Consequently, the
long-term memory can hold up to L X @4, KV pairs. For contexts shorter than Q. windows, a
compressed representation of the entire prior history is preserved. For longer documents exceeding
Qmaz Windows, a substantial portion of the recent history (@4, Windows) is still retained. We
opt to store KV pairs (rather than the tokens themselves) because they are repeatedly utilized in
cross-attention mechanisms for subsequent context windows, a point we will elaborate on later.

Long-term layer: Figure [3]illustrates a long-term layer, which builds upon a short-term layer but
incorporates three key additions. First, it introduces a long-term memory (denoted as mq.,—1 prior
to the k' context window) and enables the current context tokens zj, and summary tokens uy to
cross-attend to it. Second, the cross-attention shares parameters with the self-attention, and their
results (cross attention: A, self-attention: .4;) are combined through a gating mechanism using a
learnable scalar « per attention head, formulated as awA, + (1 — «).A;. Finally, an additional linear
token mixer is introduced to generate long-term tokens for the current window, and their key-value
(KV) pairs my, are appended to the long-term memory. This token mixer comprises (W + U) x L
parameters, where W, U and L represent the number of context, summary and long-term memory
tokens, respectively. It is notably smaller than the mixers in the short-term layer because: (a) L is
less than S (the number of short-term memory tokens), and (b) it is present in only one layer.

Long-term vs short-term memory: Table [I] provides a comparative overview of the long-term
and short-term memory mechanisms. While short-term memory operates recurrently across N
layers with S tokens per layer, long-term memory functions incrementally in one layer, spanning
Qmaz Windows with L tokens per window. To illustrate, consider a 13-layer transformer model
processing context windows of 512 tokens each, with embedding dimension 1024. If we employ
S = 128 short-term tokens per layer and L = 64 long-term tokens per window, with a max-
imum capacity of Qe = 128 windows for the long-term memory, the short-term and long-
term memory caches would have capacities of 1.7M (128%°F¢"5 x 1024 4™ x 13 l@yers) and 16.8M
(64Pairs y ptokens/pair y] (pgdim y [pgwindows) floats, respectively. It’s worth noting that, for com-
putational efficiency, we store key-value (KV) pairs in the long-term memory, whereas tokens are
stored directly in the short-term memory.

Relation to Memorizing Transformer (MT) (Wu et al., 2022): Similar to Memorizing Trans-
former, MELODI incorporates key-value pairs from a middle layer into its long-term memory. Ex-
periments corroborate the finding in MT that employing additional long-term layers yields only
incremental gains. However, a key distinction lies in the fact that MELODI stores compressed KV
pairs, rather than the KV pairs of context tokens directly, as in MT. This modification substantially
reduces the size of the long-term memory. For instance, when compressing a context window of 512
tokens into 64 long-term tokens, MELODI achieves an 8-fold reduction in long-term memory size.

Published as a conference paper at ICLR 2025

Table 3: Comparisons with baselines on three datasets. The table reports average token-level
perplexities for various models on three datasets. All models were trained under the same settings
(e.g. segment length 4096, context window 512, 500k training steps). Three MELODI configurations
were used: S1g9o + L3s, S128 + Lea, and S199 + Lgg. For instance, S19o + L3o indicates S = 192
short-term and L = 32 long-term tokens per context window. All MELODI models utilized a long-
term memory spanning 128 context windows. MELODI S92 + L3o outperformed Transformer XL
and Block Recurrent Transformer while consuming less memory. Notably, MELODI S192 + Lgg
clearly surpassed Memorizing Transformer, using only a fifth of its memory.

MODEL MEMORY PG19 arXiv C4(4K+)
All Short Long|Meena TS5 Custom|Meena Custom| Custom

Transformer XL 13.6M 13.6M om| 865 11.41 1242 | 2.60 3.22 18.22
Block Recurrent 13.1IM 13.1Mm om| 830 10.98 1190 | 2.26 2.70 17.82
MELODI Sigo+L3o| 11.0M 26m s4am| 8.08 10.51 11.47 | 2.12 2.54 17.55

Memorizing Trans. |147.8M 136M 1342m| 8.07 10.62 11.53 | 2.14 2.56 17.37
MELODI Sios+Lgs| 185M 1M 168m| 8.06 1044 11.42 | 2.11 2.52 17.53
MELODI Siga+Lgg | 27.8M 26m 252m| 791 10.29 11.27 | 2.09 249 17.25

4 EXPERIMENTAL RESULTS

We evaluate MELODI on three long-context datasets: PG19 (Rae et al.l 2019), arXiv Math (Wu
et al, 2022), and C4 (Raffel et al., 2020a), using the standard auto-regressive language modeling
task, where the objective is to predict the next token in a sequence. All models are trained from
scratch, and we report the average perplexity on the respective test sets as our evaluation metric.

4.1 DATASETS

PG19: The PG19 dataset (Rae et al., 2019) consists of 28,752 English books published before 1919,
averaging around 68,972 tokens per book. We utilize three 32k vocabularies: (a) Meena (Thoppilan
et al} [2022), (b) TS (Raffel et al., 2020b) and (c) a custom SentencePiece vocabulary (Kudo &
Richardson, 2018) trained specifically on PG19.

arXiv Math: The arXiv dataset (Wu et al.}2022)) comprises technical math papers from arXiv, with
token counts comparable to PG19 due to LaTeX’s use of special characters, resulting in smaller
subwords. We use a 32k Meena vocabulary (Thoppilan et al.,|2022) and a 32k custom vocabulary.

C4(4K+): The C4 dataset (Raffel et al.|, [2020a) is a large collection of internet documents. To
emphasize long documents where memory is crucial, we filter out those with fewer than 4,096
tokens and utilize a 32k custom vocabulary.

4.2 SETUP

We utilized a decoder-only transformer architecture (with 12 or 13 layers), incorporating both short-
term and long-term memory caches. The model had an embedding size of 1024, 8§ attention heads
with a dimensionality of 128 each, and an FFN hidden layer of size 4096. All models were imple-
mented in JAX and Flax and trained from scratch for 500k steps on 32 TPU cores. Further training
details are provided in the Appendix[C.3]

During training, each long document was segmented into 4096-token chunks to facilitate batch pro-
cessing. These chunks were then organized into training batches, each comprising 8 context win-
dows of 512 tokens. In our ablation study, MELODI’s default configuration compressed each context
window into S=128 short-term memory tokens per layer and =64 long-term memory tokens.

4.3 COMPARISON WITH BASELINES

Baselines: We benchmark MELODI against three well-established prior works: Transformer XL
(Dai et al.l 2019), Block Recurrent Transformer (Hutchins et al., [2022), and Memorizing Trans-
former (Wu et al.l [2022). To ensure a fair comparison, we re-implement these baselines within our
framework and evaluate them under identical settings. Our re-implementations of the baseline mod-

Published as a conference paper at ICLR 2025

0
12.0 Transformer Lo Ls L16 L32 Lé4
XL 0.0M 2.1M 4.2M 8.4M 16.8M
11.8 E~s
o8 X Ss 11.81 11.59 | 11.42 | 11.34 | 11.15
) o Block|Recurrent 0.1™
L 11.6 Sa Transformer
g SRS ?. o S16 | 4175 1.47 | 11.35 | 11.24 | 11.10
£ Sea N) 0.2M
2114 I N
2 128 N A g * Memorizing Osf,j 11.60 11.40 | 11.25 | 1111 | 11.07
= S192* A + Transformer "
T 11.21 26 0 A
- . \
z -@- Lgg: 96 tokens x 128 windows &‘ { " ;Eﬁe OS:’: 11.52 11.36 | 11.23 | 11.08 | 10.98
Kl 110 -e- Lgs: 64 tokens x 128 windows *A | 953 :
(=] 1 1
] an . ; | & 95w
4~ Ls;: 32 tokens x 128 w!ndows Ay eSus S128 | 4439 11.27 | 11.08 | 10.95 | 10.90
-4- Li6: 16 tokens x 128 windows & S50 1.7
10.8 Lg: 8 tokens x 128 windows 5256 s
192 | 4128 1114 | 11.02 | 10.89 | 10.83
-- Lo: Short-term alone 2.6M
10.6 . . , ;
5 6 7 8
10 10 10 10 S256 | 4426 1141 | 10.93 | 10.83 | 10.77
Memory Size (Long-term + Short-term) 3.4M

Figure 4: Ablation of memory size on PG-19. The token perplexity is reported for various combi-
nations of short-term and long-term memory sizes. Each curve represents a fixed size of long-term
memory, with points along the curve indicating different short-term memory sizes. For example, the
blue curve (Lgg), uses 96 long-term tokens per window over 128 windows, totaling 12,288 tokens.
Each point on this curve represents a different short-term memory size (e.g. Sg denotes 8 short-term
tokens per context window). Memory size is measured by the number of floating-point numbers
(floats). For instance, Lgg stores 12,288 long-term key-value (KV) pairs, each with 1024 dimen-
sions, resulting in a total of 12,288 1024 x2=25.2 million floats. The table on the right provides the
perplexity results for each point on the left plot, using matching colors. These results highlight that
long-term and short-term memories play complementary roles, and increasing either type’s capacity
improves performance. Notably, MELODI achieves superior performance compared to baselines like
Transformer XL, Block Recurrrent Transformer and Memorizing Transformer while utilizing fewer
memory resources. Best viewed in color.

els achieve superior performance compared to the results reported in their original papers (see Table
[2). This improvement can be primarily attributed to two key factors: (a) using cosine decay learn-
ing rate schedule (Hoffmann et al., |2022) instead of the inverse square root decay, (b) using dense
cross-attention instead of top-k attention for the Memorizing Transformer. Our re-implementations
provide stronger baselines against which to evaluate MELODI’s effectiveness.

Comparisons: Table [3] presents a comparison of MELODI against three baseline models (Trans-
former XL, Block Recurrent Transformer, and Memorizing Transformer) across three datasets. We
evaluate three MELODI configurations: Syg2 + L3a, S128 + L4, and S1g92 + Lgg, where S and L
denote the number of short-term and long-term tokens per context window, respectively. All mod-
els (MELODI and baselines) utilize a 13-layer transformer architecture, except for Block Recurrent
Transformer, which inserts a block recurrent layer into a 12-layer transformer, ensuring a similar
parameter count for all models. Results demonstrate both the impact on LLM performance and
efficiency of MELODI’s memory mechanisms.

Impact on LLM performance: Compared to Transformer XL, a transformer-based language model
with a KV cache of the previous context window, MELODI S1g2+L32 uses about the same amount of
memory but significantly outperforms Transformer XL in terms of perplexity. For instance, on the
PG-19 dataset with the T5 vocabulary, MELODI S92+ L35 achieves a perplexity of 10.51, compared
to 11.41 for Transformer XL and 10.98 for Block Recurrent Transformer (enhanced Transformer
XL with recurrent memory), demonstrating a clear improvement. This highlights the effectiveness
of MELODTI’s hierarchical memory mechanism in capturing and utilizing long-range context.

Efficiency: Compared to Memorizing Transformer, MELODI variants (S128 + Lg4 and S192 + Log)
consistently achieves comparable or slightly better perplexity across all datasets, but uses approxi-
mately 8 and 5 times less memory respectively.

These trends remain consistent across different network depths (12-layer and 13-layer), as shown in
Table[3]in Appendix [D.1} These results collectively highlight MELODI's efficacy and efficiency as a
memory architecture for language models.

Published as a conference paper at ICLR 2025

1.1

Token Perplexity in PG-19

-
g
o

0 50 100 150 200
Long-term Memory Coverage (# of Windows)

Figure 5: Long-term memory
coverage. The coverage met-
ric indicates the number of pre-
ceding context windows (512 to-
kens per window) spanned by
the long-term memory. All data
points use L=64 long-term to-
kens per window, but vary in
long-term memory capacity. For
instance, ‘192’ denotes storing
information from previous 192
context windows, with effective
context length 192x512=96k
tokens. Perplexity improves as
the long-term memory coverage
increases, especially from 4 to
32 previous windows.

—4#— MELODI S5 alone -EF- Transformer XL
~¥— MELODI Syy6+L3, Block Recurrent
—A— MELODI S1zs+Lea -£>- Memorizing Trans.
—@— MELODI Syz6+Log <08
E._ e O
o S Transformer|
<
- 5 07 Xt
iy @ .
& &
< T 06 MELODI
> o S128 alone
£ o
3 =05
< g
E g Memorizing
c g 0.4 Transformer MELOD
% £ \ 23 dl
= 2 5] mewoni a
8 721 Siagtles | MELODI
g [] S128+Lea
128 256 512 00 0.1 0.2 0.3 0.4

Context Window Size Perplexity increment (512 - 256 tokens/win)

Figure 6: Shorter context windows. (Left): Perplexity with
varying context window sizes (512, 256, 128 tokens). The num-
ber of short-term and long-term memory tokens in MELODI is
proportionally adjusted (x %, x %, respectively) to ensure consis-
tent long-term memory coverage. Even with smaller windows,
MELODI with appropriate memory allocation (e.g. S12s+Les)
consistently outperforms baselines. (Right): Perplexity increase
due to window size reduction. The x and y axes represent the
perplexity increment when reducing the window size from 512 to
256 and 128 tokens, respectively. Models with long-term mem-
ory (i.e. MELODI variants with long-term memory and Memo-
rizing Transformer) exhibit significantly less performance degra-
dation (smaller perplexity increments) compared to those rely-
ing solely on short-term memory (MELODI with only short-term
memory, Transformer XL, and Block Recurrent Transformer).

4.4 ABLATIONS

We conduct an ablation study of MELODI using the default configuration (Sy28+Lgq) With 128
short-term and 64 long-term tokens per context window. The long-term memory spans 128 context
windows, and the transformer architecture consists of 13 layers. All models are trained on the PG-19
dataset with the TS5 vocabulary for 200k steps.

Complementary roles of short-term and long-term memory: Figure [illustrates how the sizes
of both short-term and long-term memory jointly influence perplexity. Each curve represents a fixed
long-term memory size, with varying short-term memory sizes depicted by points along the curve.
With the exception of the black curve, which solely utilizes short-term memory, all other curves
incorporate long-term memory spanning 128 context windows. The figure demonstrates that in-
creasing either short-term or long-term memory capacity leads to improved perplexity, highlighting
their complementary roles in performance. Notably, by judiciously selecting memory sizes (e.g.,
S192 for short-term and L35 for long-term), we can outperform the Memorizing Transformer while
utilizing less memory than Transformer XL and Block Recurrent Transformer.

Impact of long-term memory coverage: In contrast to the previous ablation, we now maintain a
fixed number of short-term (S = 128) and long-term tokens (L = 64) per context window while
varying the number of windows encompassed by the long-term memory. Figure [5]demonstrates that
performance improves as the long-term memory covers a wider range of context windows. Inter-
estingly, incorporating long-term memory for only the preceding 2 or 4 windows yields marginal
perplexity improvements, suggesting that recent context is already effectively captured by the short-
term memory. However, performance gains accelerate as the long-term memory expands to encom-
pass up to 32 windows, after which the improvements level off. This observation indicates that
while the middle and distant history are beneficial for language modeling, they are not adequately
retained in the short-term memory. These findings further underscore the complementary nature of
short-term and long-term memory mechanisms.

Performance with shorter context windows: Figure [6] examines the impact of reducing context
window size on model performance. The plot on the left displays perplexity scores for context
window sizes of 512, 256, and 128 tokens. The number of short-term and long-term memory to-

Published as a conference paper at ICLR 2025

Table 4: Summary branch-

. . 11.8 —@— Without Long-term Memory o 11.4 . L
lng' Summary branChlng 2- —#- With Long-term Memory by 11.3 il LBZ: 32 Longjtertn tokens
. . . g 116 2 . —— Lgs: 64 Long-term tokens
pr0v1des a consistent gain e £112
of approximately 0.3 in per- glm £
. . K} o)
plexity, both with (column ¢ R
. o 11.
ST+LT) and without (col- ¢'? 100
< @ 10.
umn ST) long-term memory. R 11,0 2 o8
2 4 6 8 10 12 0 1 2 3 4 5 6
Number of Short-term Layers Number of Long-term Layers

Branchlng\ ST ST+LT Figure 7: Number of short- Figure 8: Number of long-

term layers. Perplexity im- term layers. A single layer
proves as the number of short- with sufficient long-term tokens
term layers increases. is adequate.

No 11.68 11.24
Yes 11.39 10.95

kens in MELODI is proportionally adjusted (x %, X i, respectively) to ensure consistent long-term
memory coverage across different window sizes. Even with shorter context windows, MELODI with
appropriate memory allocation (e.g., S12s8 + Lg4) consistently outperforms the baseline models.

The plot on the right illustrates the increase in perplexity resulting from reducing the context window
size. Notably, models incorporating long-term memory (MELODI variants with long-term memory
and Memorizing Transformer) exhibit significantly less performance degradation (smaller perplexity
increments) compared to models relying solely on short-term memory (MELODI variant with only
short-term memory, Transformer XL, and Block Recurrent Transformer). This highlights the greater
robustness of long-term memory mechanisms to reductions in context window size.

Number of short-term layers: We investigate the effect of varying the number of short-term layers
on model performance. For a given layer count (e.g., 4 layers), the short-term layers are uniformly
distributed throughout the network (e.g., layers 1, 5, 9, and 13). To disable short-term memory
within a layer, we remove (a) the attention mechanism to the preceding short-term memory and
(b) the linear token mixer responsible for updating the short-term memory. Figure [7| shows that
perplexity improves rapidly as the number of short-term layers increases from 1 to 4, after which the
gains diminish. This observation supports our utilization of multiple layers for effective short-term
memory modeling. However, it also suggests that disabling short-term memory in half of the layers
offers a more efficient approach with negligible performance degradation.

Number of long-term layers: Figure [8] shows the impact of the number of long-term layers on
perplexity for two configurations: Lg4 and L32, which compress each window into 64 and 32 tokens,
respectively. Fewer tokens (L32) require more long-term layers for stable perplexity: L3o needs 4
layers to reach a plateau, while Lgy only needs 3. Notably, with additional tokens (Lgy), the first
long-term layer contributes most significantly to performance improvement. It provides 73% of the
total gain achieved with 6 layers. This suggests that a single long-term layer with sufficient tokens
offers a good balance between performance and efficiency, as adding more layers increase memory
and computational costs with diminishing returns.

Summary branching: Table 4 examines the effect of summary branching on perplexity, both with
(ST+LT) and without (ST) long-term memory. Summary branching consistently yields a perplexity
improvement of approximately 0.3, indicating distinct summary information flow across network
layers and context windows.

5 CONCLUSION

In this work, we have introduced MELODI, a novel memory architecture designed to address the
challenges of long document processing within the constraints of short context windows. The core
innovation of MELODI lies in its hierarchical compression approach, wherein short-term memory fa-
cilitates smooth transitions between context windows through recurrent compression across multiple
layers, and long-term memory preserves crucial information from the entire history by performing
further compression and aggregation within a single middle layer. Our empirical evaluations on
multiple long-context datasets have validated MELODI as an efficient and effective solution. The
success of MELODI underscores the potential of hierarchical memory compression for tackling the
complexities of long document processing. We anticipate that further research in this direction will
enhance long context understanding and generation over multiple modalities.

10

Published as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao
Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal Be-
hbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning, 2024. URL
https://arxiv.org/abs/2404.11018.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. = Recurrent memory transformer. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 11079-11091. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
f1ile/47e288629a6996al7ce50b90al056alel-Paper—-Conference.pdf.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation, 2023. URL https://arxiv.org/
abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2024. URL https://arxiv.
org/abs/2309.12307.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 3829-3846, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
232. URL https://aclanthology.org/2023.emnlp-main.232.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-
finetuned language models. Journal of Machine Learning Research, 25(70):1-53, 2024. URL
http://Jmlr.org/papers/v25/23-0870.htmll

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdi-
nov. Transformer-XL: Attentive language models beyond a fixed-length context. In Anna
Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pp. 2978-2988, Florence, Italy, July 2019.
Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https://
aclanthology.org/P19-1285.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, year =.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling?,
2024. URL https://arxiv.org/abs/2410.23771l

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context, 2024. URL https://arxiv.
org/abs/2402.10171.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model, 2024. URL https://arxiv.org/abs/
2307.06945.

Gemini-Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text, 2024. URL https://arxiv.org/abs/2403.05530.

11

https://arxiv.org/abs/2404.11018
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://aclanthology.org/2023.emnlp-main.232
http://jmlr.org/papers/v25/23-0870.html
https://aclanthology.org/P19-1285
https://aclanthology.org/P19-1285
https://arxiv.org/abs/2410.23771
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2403.05530

Published as a conference paper at ICLR 2025

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.155506.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abil-
ities. Proceedings of the National Academy of Sciences of the United States of America, 79(8):
2554-2558, April 1982.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.orqg/abs/2106.09685.

Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect
large language model’s ability in long text understanding?, 2024. URL https://arxiv.
org/abs/2405.06105.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur.

Block-recurrent transformers. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 33248-33261. Curran Associates, Inc., 2022. URL

https://proceedings.neurips.cc/paper_files/paper/2022/file/
doe0bbb9fc3f4cl10950052ec2359355c-Paper-Conference.pdfl

Dongseong Hwang, Weiran Wang, Zhuoyuan Huo, Khe Chai Sim, and Pedro Moreno Mengibar.
Transformerfam: Feedback attention is working memory, 2024. URL https://arxiv.org/
abs/2404.09173.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 6671, Brussels, Belgium, November 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/D18-2012. URL https://aclanthology.org/
D18-2012.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In Proceedings
of the 36th International Conference on Machine Learning, pp. 3744-3753, 2019.

Amirkeivan Mohtashami and Martin Jaggi. Random-access infinite context length for transformers.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 54567-54585. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/ab05dc8bf36a9f66edbff6992ec86f56-Paper—Conference.pdf.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens, 2024.
URLhttps://arxiv.org/abs/2304.08467.

Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine, Nir Ratner, Yonatan Belinkov, Omri Abend,
Kevin Leyton-Brown, Amnon Shashua, and Yoav Shoham. Generating benchmarks for factuality
evaluation of language models. In Yvette Graham and Matthew Purver (eds.), Proceedings of
the 18th Conference of the European Chapter of the Association for Computational Linguistics,
2024.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024. URL https://arxiv.org/abs/
2404 .07143.

12

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2405.06105
https://arxiv.org/abs/2405.06105
https://proceedings.neurips.cc/paper_files/paper/2022/file/d6e0bbb9fc3f4c10950052ec2359355c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d6e0bbb9fc3f4c10950052ec2359355c-Paper-Conference.pdf
https://arxiv.org/abs/2404.09173
https://arxiv.org/abs/2404.09173
https://aclanthology.org/D18-2012
https://aclanthology.org/D18-2012
https://proceedings.neurips.cc/paper_files/paper/2023/file/ab05dc8bf36a9f66edbff6992ec86f56-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ab05dc8bf36a9f66edbff6992ec86f56-Paper-Conference.pdf
https://arxiv.org/abs/2304.08467
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143

Published as a conference paper at ICLR 2025

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774l

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models, 2023. URL https://arxiv.org/abs/2309.00071|

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020a. URL http:
//jmlr.org/papers/v21/20-074.html.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020b. URL http:
//Jjmlr.org/papers/v21/20-074.html.

Hubert Ramsauer, Bernhard Schifl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlovi¢, Geir Kjetil Sandve, Victor Greiff,
David Kreil, Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.
Hopfield networks is all you need, 2021. URL https://arxiv.org/abs/2008.02217.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas,
Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows for large
language models, 2023.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive Learning Rates with Sublinear Memory
Cost. In Proceedings of the 35th International Conference on Machine Learning, pp. 4603—4611.
PMLR, 2018.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models,
2024. URL https://arxiv.org/abs/2405.05254.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, and et al. Lamda: Language models for
dialog applications, 2022. URL https://arxiv.org/abs/2201.08239.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/1911.05507
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2008.02217
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2405.05254
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2307.09288

Published as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Aug-
menting language models with long-term memory. arXiv preprint arXiv:2306.07174, 2023.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
Li, Xian Li, Bing Yin, Jingbo Shang, and Julian McAuley. Memoryllm: Towards self-updatable
large language models, 2024. URL https://arxiv.org/abs/2402.04624.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022a. URL https://openreview.
net/forum?id=gEZrGCozdgR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
f1ile/9d5609613524ecfd4flbaf0f7b3labcad—Paper—-Conference.pdf.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing
transformers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=Tr jbxzRcnf-.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar
Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis,
Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models, 2023. URL
https://arxiv.org/abs/2309.16039.

14

https://arxiv.org/abs/2402.04624
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://arxiv.org/abs/2309.16039

Published as a conference paper at ICLR 2025

A LIMITATIONS AND FUTURE WORK

A.1 LIMITATIONS

A primary limitation of our current study is the focus on training models from scratch. We acknowl-
edge the importance of evaluating MELODI on downstream tasks and with pre-trained language
models, which often have fixed context window sizes. However, adapting MELODI to such settings
requires larger models and more extensive pre-training.

Furthermore, our evaluation primarily relies on perplexity as a performance metric. While perplexity
provides a useful measure of language modeling capability, it may not fully capture real-world
performance (Hu et al.|2024; Fang et al.|[2024), the gap is somewhat emphasized for smaller models
(Muhlgay et al., [2024]).

While MELODI does not introduce additional parameters, the summary tokens within its short-
term and long-term layers, along with the cross-attention mechanism in the long-term memory, do
increase FLOPs (see Appendix [E3). Consequently, training time is extended when compared to
Transformer XL (Dai et al.,[2019). However, it only slightly increases test time (see Appendix [E.4).

A.2 FUTURE WORK

In future work, we plan to address these limitations by:

Integrating MELODI with pre-trained models: We will explore techniques like LoORA (Low-Rank
Adaptation) to efficiently integrate MELODI’s short-term and long-term memory mechanisms into
pre-trained language models. This will enable us to leverage the benefits of pre-training and evaluate
MELODT’s effectiveness on downstream tasks like summarization and question answering.

Evaluating on downstream tasks: By adapting MELODI to pre-trained models, we can conduct a
comprehensive evaluation of its effectiveness on a broader range of long-context benchmarks and
downstream tasks. This will facilitate direct comparisons with state-of-the-art baselines and provide
a more complete picture of MELODI’s capabilities.

By addressing these limitations, we aim to provide a more comprehensive evaluation of MELODI
and its potential for advancing long-context language modeling.

B CONNECTIONS TO RECENT WORK ON LONG-TERM AND SHORT-TERM
MEMORY

This section compares MELODI with two recent works that explore different strategies for long-term
and short-term memory in language models: LONGMEM (Wang et al.,|2023) and YOCO (Sun et al.,
2024).

Comparison with LONGMEM (Wang et al.,|2023): Both LONGMEM and MELODI improve upon
the Memorizing Transformer (Wu et al.l 2022)) but with distinct focuses and methodologies:

o LONGMEM: LONGMEM focuses on improving prediction accuracy in a fine-tuning set-
ting by introducing a SideNet for memory retrieval and fusion. It is compared against the
Memorizing Transformer variant that uses fop-k KV pairs from memory.

e MELODI: MELODI prioritizes efficiency in a train-from-scratch setting by compressing
both long-term and short-term memory. It introduces a negligible number of extra parame-
ters and is compared against the Memorizing Transformer variant that uses all KV pairs in
memory.

A direct experimental comparison with LONGMEM in the fine-tuning setting is beyond the scope of
this paper, as our primary focus is on evaluating MELODI’s performance when training from scratch.
However, we plan to explore extending MELODI to the fine-tuning of LLMs in future work, which
will allow for a comprehensive comparison with LONGMEM and other relevant baselines.

Comparison with YOCO (Sun et al., 2024): Both YOCO and MELODI utilize a long-short mem-
ory strategy, with short-term memory components spanning multiple layers and long-term informa-

15

Published as a conference paper at ICLR 2025

tion cached in a middle layer. However, their core strategies differ, as detailed below. Furthermore,
they exhibit distinct properties (reusability vs. compressibility) in their long-term key-value (KV)
memory:

e YOCO: YOCO employs sliding-window attention across multiple self-decoder layers for
short-term memory and a KV cache in the middle layer for long-term memory. Importantly,
YOCO demonstrates that this long-term KV cache is reusable for the latter half of the
network, significantly improving pre-filling efficiency by enabling early exit.

e MELODI: MELODI implements a different long-short strategy based on compression.
Short-term memory is achieved through recurrent compression of context windows across
multiple layers, while long-term memory leverages further compression within a single
middle layer. MELODI demonstrates that long-term KV memory is compressible, signifi-
cantly reducing its size.

YOCO and MELODI enrich the design space for long-short memory models and offer complemen-
tary approaches. Combining their strengths could lead to even more effective models. For instance,
exploring whether long-term memory can be both reusable (as in YOCO) and compressible (as in
MELODI) is a promising avenue for future research. This could enable efficient caching with a
compact KV memory footprint.

C IMPLEMENTATION DETAILS

C.1 EFFICIENT PARALLEL TRAINING

To enable efficient parallel training despite recurrent dependencies in short-term and long-term
memory, MELODI employs a combined layer-wise and chunk-wise processing strategy. This ap-
proach allows for parallel computation within each layer while maintaining the sequential process-
ing required for recurrent memory updates.

Layer-wise processing and window unrolling: MELODI utilizes a standard Transformer archi-
tecture with multiple layers processed sequentially. Both short-term and long-term memory op-
erations are confined within their respective layers. Within each layer, a training batch covers 8
context windows (512 tokens per window), totaling 4096 tokens. This allows for backpropagation
through time (BPTT) across multiple windows. While the windows are processed sequentially due
to window-level recurrence, self-attention within each window can be parallelized, ensuring good
device utilization with sufficiently large window sizes.

Parallel and sequential operations: Within each layer, the computation of query, key, and value
matrices for attention is parallelized across all chunks, as these computations are independent
of recurrent memory updates. Each layer thus involves two steps: (a) parallel computation of
query/key/value matrices, and (b) sequential computation of self-attention, feed-forward networks,
and token mixing for memory updates.

This approach contrasts with a chunk-wise then layer-wise strategy, where each chunk must be fully
processed by the entire network before the next chunk can begin processing.

C.2 WINDOW-WISE PROCESSING IN GENERATION
MELODI employs a two-step window-wise (or chunk-wise) processing strategy during generation:

o Token-wise generation: Within each context window, MELODI generates tokens sequen-
tially, similar to GPT-like LLMs, utilizing both short-term and long-term memory. This
ensures that token generation within a window (or chunk) remains unaffected by window
boundaries, preserving the key mechanisms of autoregressive language models.

o Summary generation: Upon completing a window (or chunk), MELODI generates all sum-
mary tokens in parallel and updates both short-term and long-term memory accordingly.

This approach effectively balances the sequential nature of token generation with the parallel pro-
cessing of summary information, optimizing generation efficiency.

16

Published as a conference paper at ICLR 2025

Table 5: Comparisons with baselines on three datasets. The table reports average token-level
perplexities for various models on three datasets. All models were trained under the same settings
(e.g. segment length 4096, context window 512, 500k training steps). Three MELODI configurations
were used: S1g9o + L3s, S128 + Lea, and S199 + Lgg. For instance, S19o + L3o indicates S = 192
short-term and L = 32 long-term tokens per context window. All MELODI models utilized a long-
term memory spanning 128 context windows. MELODI S92 + L3o outperformed Transformer XL
and Block Recurrent Transformer while consuming less memory. Notably, MELODI S192 + Lgg
clearly surpassed Memorizing Transformer, using only a fifth of its memory.

MODEL MEMORY PG19 arXiv C4(4K+)
All Short Long|Meena TS5 Custom|Meena Custom| Custom

12 LAYERS

Transformer XL 12.6M 126M om| 876 11.54 12.63 | 2.61 3.23 18.61
Block Recurrent 12.1IM 121M oM| 847 11.12 12.11 | 2.27 2.73 18.27
MELODI Sigo+L3o| 10.8M 24m s4am| 8.22 10.66 11.66 | 2.13 2.55 18.03

Memorizing Trans. |146.8M 126Mm 1342m| 8.15 10.74 11.68 | 2.15 2.57 17.88
MELODI Sios+Lgs | 184M 16Mm 168M| 8.16 10.61 11.66 | 2.13 2.55 18.01
MELODI S1ga+Lgg | 27.6M 24m 252m| 8.08 1048 1147 | 211 2.51 17.75

13 LAYERS

Transformer XL 13.6M 13.6M oM| 8.65 11.41 1242 | 2.60 3.22 18.22
Block Recurrent 13.1M 13.1Mm om| 830 10.98 1190 | 2.26 2.70 17.82
MELODI Sqgo+L3o| 11.0M 26m s4m| 8.08 10.51 11.47 | 2.12 2.54 17.55

Memorizing Trans. |147.8M 136M 1342M| 8.07 10.62 11.53 | 2.14 2.56 17.37
MELODI Sio8+Lgs | 185M 17m 168M| 8.06 1044 1142 | 2.11 2.52 17.53
MELODI S1g2+Lgs | 27.8M 26M 252M| 7.91 1029 11.27 | 2.09 249 17.25

C.3 TRAINING SETUP

We use Adafactor optimizer (Shazeer & Sternl 2018) with a learning rate schedule that employs
a linear warmup for the first 1000 steps, followed by cosine decay. The maximum and minimum
learning rates are set to 0.01 and 0.001, respectively, as recommended in [Hoffmann et al| (2022).
A dropout rate of 0.05 is applied. All models are trained for S00k steps (200k for ablations) on 32
TPU cores with a batch size of 32 (1 per core).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MORE COMPARISON WITH BASELINES OVER 3 DATASETS

Table [5] presents a comparison of MELODI against three baseline models (Transformer XL, Block
Recurrent Transformer, and Memorizing Transformer) across three datasets, using a consistent seg-
ment length of 4096 tokens and a context window size of 512. The evaluation includes both 12-layer
and 13-layer transformer architectures to assess the impact of model depth on performance.

Notably, even with fewer layers, MELODI S192+L32 consistently outperforms both Transformer XL
and Block Recurrent Transformer across all datasets while consuming less memory. For instance,
the 12-layer variant of MELODI Siga+L3o achieves a perplexity of 10.66 on PG-19 (T5 vocabu-
lary), surpassing the 13-layer variants of Transformer XL (11.41) and Block Recurrent Transformer
(10.98).

In comparison to the Memorizing Transformer, MELODI S12g + Lg4 exhibits slightly improved per-
formance while dramatically reducing memory consumption by a factor of 8. Furthermore, MELODI
S192 + Lgg achieves even better perplexity scores across all datasets with a substantial reduction in
memory usage exceeding a factor of 5. The improvement is consistent for using both 12-layer and
13-layer transformer architectures. These results collectively highlight MELODI’s efficacy and effi-
ciency as a memory architecture for language models.

17

Published as a conference paper at ICLR 2025

Table 6: Comparison of models with larger sizes evaluated on the PG-19 dataset using the TS
vocabulary. Models are evaluated based on perplexity (lower is better) and memory size. The batch
sequence length is 4096, comprising 8 context windows of 512 tokens.

Embedding Model | Memory

MODEL #Layers Dim Size Size Perplexity |
Transformer XL 12 1024 151IM 12.6M 11.54
Memorizing Transformer 12 1024 15IM 146.8M 10.74
MELODI S128 + Lg4 12 1024 153M 18.4M 10.61
MELODI S192 + Lgg 12 1024 153M 27.6M 10.48
Transformer XL 24 1024 302M 25.2M 10.15
Memorizing Transformer 24 1024 302M 159.4M 9.45
MELODI S158 + Lgy 24 1024 306M 20.0M 9.30
MELODI S192 + Lgg 24 1024 309M 30.0M 9.16
Transformer XL 36 1024 453M 37.8M 9.61
Memorizing Transformer 36 1024 453M 172.0M 8.92
MELODI S128 + Les 36 1024 459M 21.6M 8.81
MELODI S192 + Log 36 1024 463M 32.4M 8.70
Transformer XL 16 1536 453M 25.2M 9.69
Memorizing Transformer 16 1536 453M 226.5M 9.01
MELODI S128 + Lgg 16 1536 456M 28.3M 8.89
MELODI S192 + Lgg 16 1536 459M 42.5M 8.79

D.2 ScALING Up MODEL SI1ZE

Table [6] presents the results of scaling up MELODI and comparing its performance with baselines on
the PG-19 dataset (using the TS5 vocabulary). We explored two scaling approaches:

o [ncreased depth: We trained models with 24 and 36 layers, effectively scaling the number
of parameters by 2 and 3 times, respectively, compared to the 12-layer base model.

o [ncreased width and depth: We trained a model with 16 layers and an embedding dimension
of 1536, which also scales the parameter count by 3 times.

The table shows that MELODI’s advantages hold even with larger models, achieving consistently
lower perplexity than the Memorizing Transformer while using significantly less memory (approxi-
mately 8 and 5 times less). This demonstrates MELODI’s effectiveness in scaling to larger architec-
tures while maintaining memory efficiency.

D.3 ScALING Up CONTEXT LENGTH

To investigate the performance of MELODI with larger context windows, we conducted experiments
with batch sequence lengths of 4096 and 8192 tokens and window lengths of 512, 1024, and 2048
tokens. Increasing the context window allows the model to capture longer-range dependencies in
the input sequence, which can be crucial for understanding complex language structures and tasks.
All models were trained on PG-19 (T5 vocabulary) with 12-layer architectures.

Table shows that MELODI continues to outperform the Memorizing Transformer with signifi-
cantly less memory (approximately 8 and 5 times less), even with larger context windows.

Due to limited computational resources, we were unable to train MELODI with context windows
exceeding 2048 tokens. Scaling MELODI to even larger context windows presents two primary
challenges:

e Memory capacity: The memory requirements of MELODI grow with both the context win-

dow size and the batch sequence length. With our current hardware and codebase, we are
unable to train MELODI with context windows exceeding 2048 tokens. However, this can

18

Published as a conference paper at ICLR 2025

Table 7: Impact of sequence and window length. This table compares the perplexity and mem-
ory usage of Transformer XL, Memorizing Transformer, and MELODI with varying sequence and
window lengths on the PG-19 dataset using the TS5 vocabulary. All models have 12 layers.

Sequence Window Memory .
MODEL Length Length Size Perplexity |

Transformer XL 4096 512 12.6M 11.54
Memorizing Transformer 4096 512 146.8M 10.74
MELODI S198 + Lea 4096 512 18.4M 10.61
MELODI S192 + Log 4096 512 27.6M 10.48
Transformer XL 4096 1024 25.2M 11.26
Memorizing Transformer 4096 1024 159.4M 10.64
MELODI Sa56 + L2 4096 1024 20.0M 10.47
MELODI S3g4 + L1g2 4096 1024 30.0M 10.36
Transformer XL 8192 1024 25.2M 11.18
Memorizing Transformer 8192 1024 159.4M 10.42
MELODI So56 + L12s 8192 1024 20.0M 10.27
MELODI S3g4 + L1g2 8192 1024 30.0M 10.19
Transformer XL 8192 2048 50.3M 10.94
Memorizing Transformer 8192 2048 184.5M 10.38
MELODI S512 + Lasg 8192 2048 23.1M 10.20
MELODI S7gs + L3ga 8192 2048 34.6M 10.10

Table 8: Comparison of MELODI with Transformer XL using varying context window lengths.
The perplexity on the PG-19 dataset using the TS5 vocabulary is reported. The batch sequence length
is 8192 for all models. Transformer XL is evaluated with context window lengths of 512, 1024,
2048, and 4096, while MELODI uses a context window length of 512.

MODEL Sequence Length ~ Context Window Length | Perplexity |
Transformer XL 8192 512 11.40
Transformer XL 8192 1024 11.18
Transformer XL 8192 2048 10.94
Transformer XL 8192 4096 10.65
MELODI Sq98 + Lga 8192 512 10.34
MELODI S92 + Log 8192 512 10.22

be addressed by using TPUs with more memory and improving model parallelism, which
we plan to investigate in future work.

e Backpropagation through time (BPTT): MELODT s recurrent connections necessitate BPTT,
which involves unrolling the network over multiple time steps and further increases mem-
ory consumption. Each batch spans 8 context windows by default, allowing for BPTT
across multiple windows. While crucial for the recurrent short-term memory, BPTT con-
tributes significantly to memory usage. As shown in Table [D.2] using longer batch se-
quences (8K tokens) with 1K token windows yields better performance than shorter se-
quences (4K tokens) due to the increased BPTT depth.

D.4 COMPARISON WITH TRANSFORMER MODELS WITH EXTENDED CONTEXT

To further explore the impact of context window length, we compare MELODI (with a context win-
dow of 512 tokens) to a conventional Transformer XL architecture with extended context windows
ranging from 512 to 4096 tokens. This comparison allows us to assess the efficiency of MELODI’s
long-term memory mechanism against a baseline model that relies solely on increasing the context

19

Published as a conference paper at ICLR 2025

window within each layer. All models are trained on the PG-19 dataset with the TS vocabulary for
500k steps, with each batch including 8K tokens to allow backpropagation through time (BPTT)
across multiple windows.

Table [8] shows that Transformer XL’s performance improves with increasing context length, as ex-
pected. Notably, MELODI (512 tokens) outperforms Transformer XL even with an 8 times longer
context window (4096 tokens), demonstrating the effectiveness of MELODI’s approach in capturing
long-range dependencies.

D.5 NEW TASK: MASKED NEXT TOKEN PREDICTION

We introduce a novel task designed to further evaluate MELODI’s capacity for handling long-range
dependencies. Similar to our primary evaluation, we use next token prediction and measure per-
formance with perplexity. However, we introduce a key challenge: masking out a portion of the
input tokens. Unlike BERT’s (Devlin et al.) bidirectional masking approach, this new task employs
a unidirectional, left-to-right prediction scheme.

Why evaluate on this task? This masking strategy presents a unique challenge to the model. By
disrupting the local context with masked tokens, we force the model to rely on information from
more distant, unmasked tokens to accurately predict the next word. This effectively evaluates the
model’s ability to capture and utilize longer range dependencies. A model with strong long-range
capabilities will demonstrate lower perplexity on this task, indicating its proficiency in integrating
information across extended sequences.

Experimental results: To evaluate MELODI’s performance on this new task, we conducted exper-
iments using the PG-19 dataset (with the TS vocabulary) and two different architectures: 12-layer
and 36-layer. We applied random masking with three masking ratios (0.125, 0.25, and 0.5) to sys-
tematically vary the degree of contextual disruption. The batch sequence length is 4096, comprising
8 context windows of 512 tokens.

As expected, perplexity increased across all models as the masking ratio increased, indicating the
growing difficulty of the task. However, MELODI consistently outperformed both Transformer XL
and the Memorizing Transformer across all masking ratios and architectural configurations. These
results, presented in Table [D.5] strongly suggest that MELODI exhibits superior capabilities in cap-
turing and utilizing long-range dependencies compared to these baseline models.

Interestingly, even with a high masking ratio of 0.5, the 12-layer MELODI variant (S192 + Log)
achieves a perplexity of 52.59, which is remarkably close to the 36-layer Transformer XL’s perplex-
ity of 51.23. This suggests that MELODI can achieve comparable performance with significantly
fewer parameters.

Slower perplexity increase for MELODI with increasing mask ratio: We further examined the
change in perplexity as the masking ratio increases: 0—0.125, 0.125—0.25, and 0.25—0.5. As
shown in Table [D.5|(see numbers in the bracket), the perplexity increase for MELODI is consistently
smaller than that observed for the baseline models. This indicates that MELODI is less affected
by the increasing disruption of local context, further highlighting its superior ability to capture and
leverage long-range dependencies.

D.6 MORE ABLATIONS

In this section, we present additional ablation studies.

Directly copying short-term memory to long-term memory: This ablation experiment, conducted
at the long-term layer, explores directly copying short-term memory tokens as long-term tokens.
Instead of generating long-term tokens using the linear token mixer, this approach utilizes the short-
term tokens present at the long-term layer and stores them directly in the long-term memory. Here,
we force the short-term and long-term to share the same number of tokens (S = L). The results in
Table[I0]indicate that this direct copying method leads to a performance degradation.

Effect of long-term layer position: We investigate the impact of varying the position of the long-
term layer (M in Figure|1)) within a 13-layer MELODI model (S128+Lg4). Layers are indexed from

20

Published as a conference paper at ICLR 2025

Table 9: Performance comparison on masked next token prediction with varying mask ratios.
This table presents the perplexity of Transformer XL, Memorizing Transformer, and MELODI on
the PG-19 dataset (T5 vocabulary) across different mask ratios. Each column represents a different
masking level, and each model is evaluated with both 12 and 36 layers. The number in the bracket
indicates the perplexity increase from the previous column due to the increase of mask ratio.

Mask Ratio
MODEL #Layers | ook 0.125 0.25 0.5
Transformer XL 12 11541 16.08(4454y | 22.50(16.42) | 65.51(1a3.01)
Memorizing Transformer 12 10.74 14.9114.17) | 20.76(45.85) | 56.28(135.52)
MELODI S125 + Les 12 10.61 | 14.58(1397) | 20.09(1551) | 53.63(433.50)
MELODI Sig + Lgg 12 1048 | 14.39(;3.01) | 20.00 (1561) | 52.59(139.50)
Transformer XL 36 9.61 13.10(43.49) | 18.18(45.08) | 51.23(433.05)
Memorizing Transformer 36 8.92 12.15(43.23) | 16.64(14.49) | 46.80(+30.16)
MELODI S5 + Lo 36| 881 | 11970510 | 1621(1400) | 45.57(120.30)
MELODI Sigs + Lgg 36 870 | 1L.74(45.00) | 1598(4429) | 44.05(125.07)

Table 10: Directly copying short-term to-
kens to long-term memory: Here, we force
the short-term and long-term to share the
same number of tokens (e.g. Sgs+Lgs), and
examine the impact of directly using short-
term tokens as long-term tokens, bypassing
the linear token mixer. This approach results
in performance degradation compared to gen-

Table 11: Position of long-term layer. Here, we
use a 13-layer MELODI model, where layers are
indexed from O to 12. The model uses 128 short-
term and 64 long-term tokens per context window.
While the default position of the long-term layer is
at layer 8, placing it at different layers between 5
and 11 yields consistent perplexity scores.

erating distinct long-term tokens. Layer 5 6 7 8*
Copying | Sog+LosSea+Les Sso+Lss Perplexity | 11.00 11.01 11.03 10.95
Yes 11.00 11.36 11.42 Layer 9 10 11
No 10.92 11.08 11.25
Perplexity | 10.96 10.95 10.94

0 to 12, with the default long-term layer position at layer 8. Results in Table [l 1| reveal consistent
perplexity scores when the long-term layer is positioned between layers 5 and 11.

E ANALYSIS OF MEMORY USAGE AND COMPUTATIONAL COMPLEXITY

This section analyzes the memory usage and computational complexity of MELODI, including em-
pirical measurements of its training and test times compared to the baselines.

E.1 NOTATIONS

To facilitate our analysis, we first define the following notations:

e N: Number of layers in the model.
o TV: Number of context tokens per window.
e D: Dimension of the token embeddings.

e S: Number of short-term memory tokens per window.

(: Number of windows covered by long-term memory in the Memorizing Transformer.

R: MELODTI’s long-term memory reduction rate compared to the Memorizing Transformer.

21

Published as a conference paper at ICLR 2025

Table 12: Comparison of memory usage between MELODI and the baseline models. Notations
are introduced in Appendix

MODEL | Short-Term Memory Long-Tem Memory
Transformer XL 2NWD 0
Memorizing Transformer 2NWD 2QWD
MELODI NSD 2D

Table 13: Memory usage and model size for MELODI and baseline models. Memory usage is
measured in number of floats and includes both short-term and long-term memory. Model size is
reported in number of parameters.

Embedding Model | Window Memory | memory Size
MODEL #Layers Dim Size | Length Size Model Size
Transformer XL 12 1024 151M 512 12.6M 0.08
Memorizing Transformer 12 1024 151M 512 146.8M 0.97
MELODI Si28 + Lea 12 1024 153M 512 18.4M 0.12
Transformer XL 16 1536 453M 512 25.2M 0.05
Memorizing Transformer 16 1536 453M 512 226.5M 0.50
MELODI Si98 + Lea 16 1536 456M 512 28.3M 0.06
Transformer XL 32 4096 6.7B 4096 1.07B 0.16
Memorizing Transformer 32 4096 6.7B 4096 5.37B 0.80
MELODI S1g24 + Lsio 32 4096 6.8B 4096 0.67B 0.10

E.2 MEMORY USAGE

Table [E.T|compares the short-term and long-term memory size of MELODI and the baseline models.
For example, the MELODI S8 + Lgy variant uses a quarter of the window length for short-term
memory (S = W/4) and achieves a long-term memory reduction rate of R = 8, resulting in an 8 X
reduction in memory usage compared to the Memorizing Transformer.

To further illustrate the relationship between memory footprint and model size, we compare three
different model configurations in Table[I3] This includes the two smaller Transformer models used
in our experiments and the Llama-2 (Touvron et al.,[2023) 7B model with 32 layers, an embedding
dimension of 4096, and a context window of 4096. For this comparison, we set the long-term mem-
ory to cover 128 context windows. The table demonstrates that the memory size for the Memorizing
Transformer is comparable to the model size itself. In contrast, MELODI’S memory Size remains sig-
nificantly smaller—by an order of magnitude—even for a large model like Llama-2. This highlights
the memory efficiency of MELODI’s approach, especially for large-scale language models.

E.3 COMPUTATIONAL COMPLEXITY

As shown in Table the Memorizing Transformer introduces additional complexity compared
to Transformer XL due to the cross-attention computation over the long-term memory in its middle
layer. MELODI reduces this cross-attention complexity by a factor of R compared to the Memorizing
Transformer. However, it introduces additional computations in the query-key-value, feedforward
network, and linear token mixing components. The extent of these additional computations is con-
trolled by the number of short-term memory tokens, S, which is about a quarter of window length
wW.

22

Published as a conference paper at ICLR 2025

Table 14: Component-wise comparison of computational complexity between MELODI and the
baseline models. Notations are introduced in Appendix [E.T}

MODEL Query- Self- Cross- Feedforward Linear
Key-Value Attention Attention Network Token Mixing
Trans. XL O(NWD?* O(NW?2D) - O(NW D?) -

Mem Trans. | O(NWD?) O(NW?2D) O(QWD) O(NWD?) -
MELODI |O(N(W+S)D?) O(NW?2D) O(2L%2) O(N(W+S)D?) O(N(W+S)SD)

Table 15: Comparison of training and test times for MELODI and baseline models.. We mea-
sured the training and test times of 12-layer networks with an embedding dimension of 1024 on TPU
vbe. Experiments were conducted with sequence lengths of 4K and 8K tokens and window lengths
of 512 and 1K tokens.

MODEL Segment Length Window Length | Training Time Test Time

(num of tokens) (num of tokens) (sec) (sec)
Transformer XL 4096 512 0.052 0.022
Memorizing Trans. 4096 512 0.094 0.033
MELODI Sq28+Lgs 4096 512 0.076 0.023
MELODI S92+ Lgg 4096 512 0.097 0.027
Transformer XL 4096 1024 0.068 0.027
Memorizing Trans. 4096 1024 0.108 0.036
MELODI Sy56+L12g 4096 1024 0.094 0.028
MELODI S384+L192 4096 1024 0.111 0.031
Transformer XL 8192 1024 0.108 0.045
Memorizing Trans. 8192 1024 0.196 0.067
MELODI S256+L12g 8192 1024 0.164 0.047
MELODI S3g4+L190 8192 1024 0.204 0.054

E.4 TRAINING AND TEST TIMES

To evaluate the computational efficiency of MELODI, we measured its training and test time and
compared it against the baselines. All experiments were conducted using 12-layer networks with an
embedding dimension of 1024 on TPU v6e. We evaluated performance with batch sequence lengths
of 4K and 8K tokens and window lengths of 512 and 1K tokens.

As shown in Table MELODI consistently demonstrates faster fest times than the Memorizing
Transformer. Impressively, the MELODI Sq28+ Lg4 variant approaches the test speed of Transformer
XL (e.g., 0.022 vs. 0.023 seconds with a 4K sequence length and 512 window length).

However, when considering training time, both MELODI variants are comparable to the Memoriz-
ing Transformer but slower than Transformer XL. This suggests that the additional computations
introduced by MELODTI’s short-term memory component (in the query-key-value, feedforward net-
work, and linear token mixing) are relatively inexpensive during test (forward pass) but become
more costly during backpropagation.

23

	Introduction
	Related Work
	Our Method: Melodi
	Architecture Overview
	Short-Term Memory: Multi-Layer Recurrent Compression
	Long-Term Memory: Single-Layer Memorizing Compressed Key-Value Pairs

	Experimental Results
	Datasets
	Setup
	Comparison with Baselines
	Ablations

	Conclusion
	Limitations and Future Work
	Limitations
	Future Work

	Connections to Recent Work on Long-term and Short-term Memory
	Implementation Details
	Efficient Parallel Training
	Window-wise Processing in Generation
	Training Setup

	Additional Experimental Results
	More Comparison with Baselines over 3 Datasets
	Scaling Up Model Size
	Scaling Up Context Length
	Comparison with Transformer Models with Extended Context
	New Task: Masked Next Token Prediction
	More Ablations

	Analysis of Memory Usage and Computational Complexity
	Notations
	Memory Usage
	Computational Complexity
	Training and Test Times

