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Abstract

Real-time simulations of large-scale farming operations
would provide farmers with data-driven and physics-
consistent decision support. These real-time farming simu-
lations could be accomplished using predictive digital twins.
Predictive digital twins of biological entities allow for a vir-
tual simulation of real-life processes for various environmen-
tal conditions, thus paving the way for a comprehensive un-
derstanding of various biological responses. One of the first
steps in constructing a predictive digital twin is the 3D recon-
struction of plant geometry. While traditional approaches for
the reconstruction of plant geometry exist, they require a very
expensive setup using a LIDAR or destructive imaging of the
plant in a controlled environment. Neural approaches for 3D
scene reconstruction have alleviated the data collection bur-
den associated with traditional 3D reconstruction methods. In
this work, we demonstrate the ability to generate a 3D recon-
struction (mesh) of a maize plant by leveraging a recent work
in 3D computer vision, Neural Radiance Fields (NeRFs),
which uses data collected from a mobile phone camera. Our
approach aims to generate high-resolution geometric models
for several downstream tasks, such as developing a predictive
digital twin.

Introduction
The agricultural industry can gain immensely by inject-
ing more high-quality information into decision-making for
farming, leading to crop production increases. One of the
most effective ways to make such informed decisions is
through a self-contained feedback process accomplished by
creating a digital twin of the field. A digital twin of farmland
would enable a farmer to digitally simulate the impacts of
an action (such as applying pesticides, nitrogen, herbicides,
etc.) on the final yield and soil compositions. In working to-
wards this goal of a robust digital twin of large-scale farming
operations, there are a few key roadblocks, one of which is
the digital representation of crops. Accurate geometry repre-
sentation is a challenging problem. This issue is exacerbated
for real-world data owing to disparate sources of informa-
tion. Thus, the need for a robust geometry representation
is a top priority. Recent advancements in 3D computer vi-
sion, specifically using implicit neural representations, have

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

made it relatively easy to reconstruct meshes from vari-
ous input data (images, point clouds, distance fields, vox-
els). The ability of implicit functions to be decoupled from
resolution-based constraints allows for rapid processing of
the input data. Additionally, voxels, meshes, and point cloud
representations are not memory efficient, given their depen-
dency on resolution. In this work, we leverage Neural Ra-
diance Fields (NeRF) (Mildenhall et al. 2020a) to represent
a 3D scene using images and generate a 3D reconstruction
of a maize plant. In computer graphics, accurately model-
ing light for viewing tasks has been a well-studied problem.
Traditional radiance fields describe color and density for ev-
ery point and viewing direction in a given scene. We can
leverage this concept to synthesize views for a given set of
images when combined with neural networks, specifically
MLPs (Multi-layer Perceptrons).

We focus on the geometry reconstruction of slender, com-
plex, and flexible structures observed in plants (maize plants
in our case). We adopt the Mip-NeRF 360 framework to gen-
erate a 3D mesh of a maize plant. This framework offers
anti-aliasing attributes, which excel at generating 3D recon-
structions from 2D images taken in a 360-degree manner
around a central point in the scene. This central point in our
work is the maize plant. NeRF methods can generate 3D re-
constructions with relatively small amounts of data, allow-
ing the use of sparsely sampled images. In this case, it is a
video taken from a mobile phone. Our work improves cur-
rent 3D reconstruction methods in two ways. First, we pro-
pose a simpler and cheaper data collection process that an
inexperienced user can perform with a mobile phone capa-
ble of recording video. This dramatically eases the burden
typically associated with in-field data collection compared
to traditional methods relying on LiDAR scanners. Second,
we implement an implicit neural method for surface recon-
struction based on the NeRF scene.

Our key contributions are:
1. We capture and generate pose information for a scene

with a maize plant captured using a mobile phone, reliev-
ing the need for costly point cloud capture equipment.

2. Using captured images, we obtain a Neural Radiance
Field (NeRF), an implicit representation of the scene,
where we can synthesize any novel view.

3. Extract a dense point cloud from predicted depth images.
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Figure 1: Outline of our method. We begin with the data collection process, followed by training using Mip-NeRF 360 archi-
tecture and geometry extraction.

Related Work
Neural counterparts of implicit representations (parameter-
izing the input as a continuous function that maps the do-
main of the input to a quantity of interest), commonly called
Implicit Neural Representations, have gained immense trac-
tion in recent years and have been used for various appli-
cations ranging from solving a boundary value problem for
surface reconstruction (Sitzmann et al. 2020a), shape recon-
struction (Chen and Zhang 2019; Chibane, Alldieck, and
Pons-Moll 2020; Tagliasacchi, Zhang, and Cohen-Or 2009),
and representing 3D scenes (Mildenhall et al. 2020b; Yu
et al. 2021). Voxel carving is a well-developed method for
3D visual hull reconstruction (Kutulakos and Seitz 1999;
Schultze et al. 2012). It has been successfully applied for
the 3D reconstruction of plants, particularly in the context of
plant phenotyping (Tross et al. 2021; Gaillard et al. 2020).
However, multiple cameras are needed to capture images
of the plant from different view angles, which makes the
method data intensive.

3D shape reconstruction is a challenging problem in com-
puter graphics and 3D computer vision. Recent methods
have demonstrated the ability to learn a continuous repre-
sentation that maps xyz coordinates to a signed distance field
(Atzmon and Lipman 2020; Williams et al. 2021; Sitzmann
et al. 2020a) over an unknown 3D geometry represented by a
point cloud. One such approach, called DeepSDF (Park et al.
2019), uses a neural network to approximate the continuous
signed distance function of a 3D geometry. The DeepSDF
network predicts the signed distance of a randomly sampled
3D coordinate and the corresponding nearest point on the
3D geometry’s surface. Once fully trained, the network can
create a mesh of the 3D geometry. Point cloud representa-
tions are tricky to work with owing to their sparse nature,
which can lead to problems using data-hungry neural net-
works. Additionally, when learning the signed distance func-
tion over an unknown 3D geometry, we cannot optimize a

neural network in a supervised manner, i.e., no ground truth
values are available. To circumvent this issue, (Sitzmann
et al. 2020b) proposes to optimize the neural network repre-
senting a continuous signed distance field of the 3D geome-
try solely by observing the derivatives of the neural network
itself. The network is then optimized to solve an Eikonal
boundary value problem where the norm of the spatial gra-
dients must be equal to 1. In practice, the neural network
cannot solve this Eikonal boundary value problem over the
entire domain. Instead, the network is limited to only ap-
proximating a solution to the boundary value problem, re-
ducing the fidelity of the final signed distance function. Ad-
ditionally, there are nontrivial convergence issues with even
arriving at lower fidelity representations of the 3D geome-
try, given the difficulty of approximating this first-order non-
linear wave equation.

View synthesis is a long-studied problem in the graphics
and vision community. The aim is to generate novel pho-
torealistic views given a set of input views. Recent neural
view synthesis approaches have demonstrated the ability to
compress a continuous representation of a volume into the
weights of a neural network (Mildenhall et al. 2020b; Bar-
ron et al. 2022; Yu et al. 2021). Early volumetric approaches
(Kutulakos and Seitz 2000; Seitz and Dyer 1999; Szeliski
and Golland 1998) were based on assigning RGB values
to voxels but were not scalable to higher resolution im-
agery. On the other hand, Neural Radiance Fields (NeRF),
(Mildenhall et al. 2020a), demonstrate the ability to com-
press entire 3D scenes into the weights of a neural network
with only a series of 2D RGB images. The NeRF frame-
work is composed of a single Multilayer Perceptron (MLP)
queried multiple times using a coarse to fine distillation
scheme. First, a ray from each pixel in the 2D image is cast
into the 3D scene and sampled at a coarse set of points on
the ray. At each of the sampled points along the ray, the MLP
conducts a forward pass taking a 5D vector consisting of the



spatial location (x, y, z) and viewing direction (θ, ϕ) as input
and approximating the color (RGB) and volume density (σ).
Points along this ray cast into the 3D scene are resampled ac-
cording to the outputs at the coarsely sampled points. This
resampling allows the MLP to sample higher-density areas
of the 3D scene, thus minimizing the computation on “less
occupied areas” of the scene. The NeRF framework lever-
ages positional encodings to incorporate additional informa-
tion, which exposes the MLP to higher frequency features in
the scene. This amounts to upsampling each cartesian coor-
dinate through an additional non-parameterized function be-
fore being used as input to the MLP. Once a NeRF model is
trained to optimality on a given scene, we can render the 3D
scene by using the MLP to predict novel views of the scene,
essentially continuously interpolating between 2D images of
the scene used during training.

Neural Radiance Fields
In the original NeRF implementation, scenes are sampled
by casting a single ray for each pixel in the image. Be-
cause of this, distant features in the scene may be blurred
during rendering. An immediate solution to this issue is
a supersampling-based approach for the scene where we
cast several rays for each pixel in the image. This solution
would be extremely computationally expensive and, there-
fore, infeasible given the NeRF MLP is queried multiple
times for several points along each ray. Mip-NeRF, (Barron
et al. 2021a), addresses this issue without using the compu-
tationally expensive supersampling solution. In Mip-NeRF,
instead of casting an infinitesimally small ray, as done in
NeRF, they propose to cast a cone from each pixel. In prac-
tice, the Mip-NeRF MLP is then learning a distribution of
values rather than distinct values on a ray. More specifically,
the cone cast from each pixel is sliced several times, per-
pendicular to the direction of the cone cast; the Mip-NeRF
MLP is queried to predict the distribution of values over
the cross-section of the cone (effectively, a frustum) at each
slice along the cone. Instead of the positional encoding used
in NeRF, an integrated positional encoding scheme is used,
which accounts for the volume of the cone being cast at the
sampled slice. This allows the neural network to operate on
additional information about the size and shape of each cone
rather than strictly the centroid as used in the original NeRF
implementation.

Mip-NeRF 360 (Barron et al. 2021b), the method used
in this work, extends the Mip-NeRF framework to excel at
target scenes where the camera rotates 360 degrees about
a central point. First, Mip-NeRF 360 adds a scene and ray
parameterization to address unbounded 3D scenes. If NeRF
or Mip-NeRF is used with an unbounded 3D scene, it tends
to predict blurry and opaque backgrounds due to the spar-
sity in sampling points that are distant from the camera. The
scene and ray parameterization used in Mip-NeRF 360 uses
a contraction operator, which, in practice, is similar to an
Extended Kalman filter. This contraction operator provides
a smooth bound for the projected ray to lie in. The sec-
ond addition in Mip-NeRF 360 uses two different MLPs for
a coarse-to-fine sampling scheme. The coarse network, re-
ferred to as the proposal MLP, predicts the volumetric den-

sity, represented as a vector of weights. These weights are
used to sample high-density intervals for the NeRF MLP to
evaluate. Both networks are randomly initialized and trained
in tandem.

Methods
An outline of our method is shown in Fig. 1. We begin by de-
scribing the high-resolution input image collection process,
followed by the training procedure, and point cloud extrac-
tion from depth images.

Data Collection
The data required to train a NeRF model is multiple scenes,
2D images, of a given 3D scene. In this work, we collect
data to train the NeRF model to obtain a high-fidelity mesh
of a maize plant by taking a video on a mobile phone. The
video is taken using an iPhone 13 Pro with 4k resolution at
30fps, held at a constant height while circling the plant. To
obtain 2D images of the scene from the video data, all that
is required is a simple frame extraction operation. We ob-
tained 173 4K resolution images from the video by extract-
ing every 5th frame. These images were then passed through
the COLMAP library (Schönberger et al. 2016; Schönberger
and Frahm 2016) to get the camera poses for each of the im-
ages of the 3D scene. The COLMAP library is a Structure-
from-Motion library that takes a series of images and defines
the rotation and translation matrix to go from one camera an-
gle to the camera angle in the subsequent 2D image. At this
point, we have a working dataset to train Mip-NeRF 360 on
since we have the spatial locations (x, y, z) and viewing di-
rection (θ, ϕ) of each image, as well as the RGB values for
each pixel from the image itself. The data collection pipeline
to a fully curated dataset took approximately 4 hours. To as-
sess the fidelity of the NeRF-rendered mesh, we also col-
lected LIDAR data of the synthetic maize plant to serve as
a ground truth comparison. We use a Faro Focus 5 Terres-
trial Laser Scanner (TLS) to capture LiDAR data of the syn-
thetic maize plant at 5 points, and each scan with color took
2 minutes 50 seconds at a resolution of 1

4 , and 1x quality.
We imported the scans into the SCENE Software for auto-
matic registration and generated a 3D point cloud. The point
cloud data was then exported into CloudCompare (Cloud-
Compare 2022), a 3D point cloud processing software, to
remove duplicate points using the SOR(Statistical Outlier
Removal) filter with 50-nearest neighbors.

Training
In this work, we utilize Mip-NeRF 360’s (Barron et al. 2022)
codebase. A cone is cast for each pixel, followed by weight
initialization for each interval. These weights are updated by
a course-to-fine distillation process that aids in anti-aliasing.
The training architecture consists of two different MLPs, the
proposal MLP and the NeRF MLP. The former consists of
4 layers and 256 hidden units, and the latter consists of 8
layers with 1024 hidden units. Both utilize ReLU activa-
tion functions and a softplus activation for density prediction
(since density prediction is based on a multi-variate gaussian
distribution). We use 150000 training iterations with a sam-
pling grid resolution of 128× 128.



(a) Ground truth views. (b) Predicted views.

Figure 2: (a) Ground truth views used for training, and (b) predicted novel views (top row) and their corresponding depth maps
(bottom row).

Figure 3: Multiple views of the plant point cloud extracted
from the predicted depth images.

Point Cloud Extraction

The output of every NeRF pipeline is a collection of RGB
and density values for each pixel. These density values are
stored as depth information and can be utilized to obtain a
point cloud of the geometry. Given that we already know the
intrinsic camera parameters and have access to novel views
and their corresponding depth predictions, we interpolate the
depth value for each pixel in the RGB image to obtain the
point cloud.

Results and Discussion
Results for novel scenes, as well as the corresponding
depth maps, interpolated by the fully trained Mip-NeRF 360
model, are shown in Fig. 2b. The original ground truth im-
ages from the dataset are also included to exemplify the
high-fidelity scene reconstruction capability of NeRF.

To quantify our reconstructed point cloud, we import
the ground truth point cloud and the predicted point cloud
into CloudCompare software (CloudCompare 2022). It is an
open-source software for computing point cloud metrics. We
generate the metrics using point cloud-point cloud compare
functionality. The quantitative error metrics are shown in Ta-
ble 1 and a color-based error plot in Fig. 4. We can see that
the average distance for the extracted point cloud is small
and further reaffirms the ability of the Mip-NeRF 360’s ar-
chitecture to generate accurate depth predictions.

Table 1: Quantitative comparison between the extracted
point cloud and the ground truth point cloud of a maize
plant.

Metric Value (mm)
Plant Height 2200.0
Average Distance 17.5
Standard Deviation 12.1
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Figure 4: Color-based error plot of extracted point cloud for
maize plant.

We empirically investigated the minimum number of
views needed to accurately reconstruct the NeRF. We found
that COLMAP fails to converge with less than 90 views. We
address this challenge by shooting a video at 30 frames per
second. All views are taken in a forward-facing manner, i.e.,
the object of interest is always in front of the camera in all
frames. The training time for our scene is ∼18.5 hours, with
an additional hour for rendering the final scene consisting of
RGB values and depth maps. We train on NVIDIA’s A100
GPU with 80 GB VRAM. Generalization to outdoor envi-
ronments has previously been shown to not be problematic,
and we expect it to work with most plant geometries, pro-
vided enough forward-facing views are captured in a 360-
degree manner. We mark mesh extraction from Mip-NeRF
360 as future work.

Conclusion
Predictive digital twins provide us with the ability to simu-
late and predict plant responses to a variety of environmen-
tal conditions. Given the rising threat of climate change, the
need for accessible data-driven farming techniques is greater
than ever. The most effective data-driven techniques would
be real-time simulations by digital twins of entire fields.

The goal of this work is to demonstrate the drastically
improved efficacy of generating high-fidelity digital twins
of plants from easily captured data, i.e., video data from a
mobile phone. This is in stark contrast to the current meth-
ods, such as LiDAR point cloud collection, which is time-
consuming, intensive, and extremely expensive. Neural Ra-
diance Fields, on the other hand, are notably easier to gen-
erate, given the only required data may be captured on any
mobile phone. The economical advantages of using Neural
Radiance Fields for mesh generation are extremely impor-
tant milestones in democratizing data-driven agriculture.
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