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ABSTRACT

We introduce a video compression algorithm based on instance-adaptive learning.
On each video sequence to be transmitted, we finetune a pretrained compression
model. The optimal parameters are transmitted to the receiver along with the
latent code. By entropy-coding the parameter updates under a suitable mixture
model prior, we ensure that the network parameters can be encoded efficiently.
This instance-adaptive compression algorithm is agnostic about the choice of base
model and has the potential to improve any neural video codec. On UVG, HEVC,
and Xiph datasets, our codec improves the performance of a low-latency scale-
space flow model by between 21 % and 26 % BD-rate savings, and that of a state-
of-the-art B-frame model by 17 to 20 % BD-rate savings. We also demonstrate
that instance-adaptive finetuning improves the robustness to domain shift. Finally,
our approach reduces the capacity requirements on compression models. We show
that it enables a competitive performance even after reducing the network size by
72 %.

1 INTRODUCTION

Neural compression methods have enormous potential to improve the efficiency of video coding.
With video constituting the large majority of internet traffic, this has significant implications for the
internet at large (Sandvine, 2019). State-of-the-art algorithms model each frame by warping the
previous one with a neural estimate of the optical flow (Lu et al., 2019) or scale-space flow (Agusts-
son et al., 2020) and adding residuals modeled by another network. Both the optical flow and the
residuals are compressed with variational autoencoders. Such neural codecs have recently achieved
results on par with popular classical codecs (Agustsson et al., 2020; Rippel et al., 2021; Pourreza &
Cohen, 2021) such as H.264 / AVC (Wiegand et al., 2003) and H.265 / HEVC (Sullivan et al., 2012).
However, relatively little research has focused on their computational complexity, and matching the
rate-distortion performance of H.266 / VVC (Bross et al., 2018) is still an open problem.

Neural video codecs depend critically on generalization: they are developed assuming that a good
performance on training and validation datasets translates to a good performance at test time. How-
ever, this assumption does not always hold in practice, for instance because of limited training data
or imperfect optimization. Domain shift is a particularly challenging problem given the variety in
video content and styles; for instance, neural video codecs trained on natural scene video data often
perform poorly on animated sequences (Agustsson et al., 2020).

Here we address this problem by optimizing the autoencoder — finetuning its weights — for each
single video to be compressed at test time. After training on the test set in this way, the finetuned
network parameters need to be made available on the receiver side: they are compressed, quantized,
and entropy-coded under a suitable prior to the bitstream along with the latent code. Optimizing
the compression network for every video in this way relaxes the requirement of training data that
closely matches the test distribution as well as the necessary model capacity. It also allows trading
off encoding compute for better compression efficiency.

The essential idea of instance-adaptive finetuning was recently proposed by van Rozendaal et al.
(2021). The authors demonstrated the idea on I-frame compression, i. e. compressing a set of sim-
ilar images, but did not apply it to video sequences yet. In this work we extend the idea to the
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compression of full videos, in which only periodic key frames are compressed as images and most
frames are encoded relative to one or two reference frames. Our method is general and can be
applied to various settings and base models. We first demonstrate it in a low-latency setting with
I-frames and P-frames using a scale-space flow architecture (Agustsson et al., 2020) as base model.
Next we show its performance in a B-frame setting, using the base model proposed by Pourreza &
Cohen (2021).

On the UVG-1k, HEVC class-B, and Xiph-5N datasets, our new instance-adaptive video compres-
sion codec yields BD-rate savings of 17 to 26 % over the respective base models and 5 to 44 % over
the popular ffmpeg (x265) implementation of the H.265 codec (FFmpeg; VideoLAN, b). In addi-
tion, instance-adaptive finetuning lends itself to a possible reduction in model size, because a smaller
network may suffice to model a single instance. We show that in this framework smaller models can
still outperform most neural codecs while reducing the computational complexity of the decoder
by 72%. Overall, we demonstrate that unlike other neural video codecs, our method can trade off
encoding compute against compression performance, and that this trade-off is more effective than
for classical codecs.

2 RELATED WORK

Neural video compression The standard framework used by most neural compression codecs
(either implicitly or explicitly) is that of the variational (Kingma & Welling, 2014) or compres-
sive (Theis et al., 2017) autoencoder. An encoder (or approximate posterior) qφ(z|x) maps a data
point x to a latent representation z. This latent is transmitted to the decoding party by means of
entropy coding under a latent prior pθ(z). The receiver can then reconstruct the sample with a de-
coder (or likelihood) pθ(x|z). The encoder, prior, and decoder are neural networks, parameterized
by weights φ, θ as indicated by the subscripts.

These models are trained by minimizing the rate-distortion loss

LRD(φ, θ) = Ex∼p(x)

[
β Ez∼qφ(z|x) [− log pθ(z)]︸ ︷︷ ︸

Rz

+Ez∼qφ(z|x) [− log pθ(x|z)]︸ ︷︷ ︸
D

]
, (1)

which combines a distortion metric D and a rate term Rz that approximates the bitrate necessary
to transmit the latent code z. Up to a constant entropy term H[qφ], this loss equals the β-weighted
VAE loss (Habibian et al., 2019; Higgins et al., 2017).

Much research has focused on the design of efficient network architectures for neural video codecs,
in particular with respect to the temporal structure. While some earlier works were based on 3D
convolutions (Habibian et al., 2019; Pessoa et al., 2020), recent models use optical flow and residual
modeling to exploit similarities between frames. The latter class of approaches can be divided into
predictive or P-frame temporal modeling, where the model for each frame xt is conditional on the
previous frame(s) (Agustsson et al., 2020; Chen et al., 2019; Liu et al., 2020; Lombardo et al.,
2019; Lu et al., 2019; Rippel et al., 2019; Golinski et al., 2020; Rippel et al., 2021; Hu et al., 2020;
Yang et al., 2020b), and bidirectional or B-frame modeling, where each frame is conditioned on
past as well as future reference frames (Cheng et al., 2019; Choi & Bajić, 2019; Djelouah et al.,
2019; Wu et al., 2018; Park & Kim, 2021; Pourreza & Cohen, 2021; Yang et al., 2020a). Agustsson
et al. (2020) generalize optical flow to scale-space flow by adding dynamic blurring to the warping
operation, improving the modeling of uncertainty and leading to state-of-the-art results.

Instance-adaptive compression Rate-distortion autoencoders are trained by minimizing the RD
loss in Eq. (1) over a training dataset D. This approach relies on the assumptions that the model is
not only able to fit the training data well, but also generalizes to unseen datapoints at inference time.
In practice, however, finite training data, limited model capacity, optimization imperfections, and
domain shift — differences between train and test distributions — can degrade the performance.

This problem can be solved by adapting video codecs to each sequence at test time. Several such
methods have been proposed, see Appendix A for an in-depth overview that also covers image com-
pression. These works can be roughly categorized into encoder-only finetuning, limited decoder
finetuning, and hybrid classical-neural codecs. Works in the first category (e. g. Lu et al. (2020))
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optimize the encoder parameters φ for each data point. Such an update does not have to be commu-
nicated to the receiver side. This approach alleviates the generalization problem for the encoder, but
does not solve it for the decoder and prior. We will demonstrate later that encoder-only finetuning
leads to a limited improvement in the compression performance.

The second category of works also adapt parts of the prior and decoder for each video instance.
Since these modules need to be known on the receiver side, such an update needs to be signalled in
the bitstream. Depending on the implementation, this may increase the bitrate substantially. Aytekin
et al. (2018); Zou et al. (2020); Wang et al. (2021) address this by only allowing limited changes
to the decoder-side models, for instance choosing one out of a number of fixed decoder networks,
thus limiting the potentialRD gains of these methods. Finally, the third category of works propose a
hybrid approach, where a video is first compressed by a classical codec and a finetuned enhancement
network is added to the bitstream (He et al., 2020; 2021; Klopp et al., 2020; 2021; Liu et al., 2021).
Although these methods have shown great performance at low bitrates, they tend to perform less
well at higher bitrates, and do not benefit from developments in end-to-end neural compression.

van Rozendaal et al. (2021) suggest a method to adapt the full model to a single datapoint. The key
idea is that the parameter updates δ = θ − θD, where θD are the global model parameters resulting
from training onD, can be be transmitted very efficiently. After discretization, the quantized updates
δ̄ are entropy-coded under a parameter update prior p[δ̄] that assigns high probability mass (and thus
low transmission cost) to zero-updates δ̄ = 0. This procedure enables a neural codec in which
the full model — encoder, decoder, and prior — is finetuned on each data sample at test time by
minimizing the loss

LInstA(φ, δ) = LRD(φ, θD + δ̄) + β (− log p(δ))︸ ︷︷ ︸
Rθ

. (2)

The Rθ term reflects the increased bitstream length from coding the parameter updates δ̄. In van
Rozendaal et al. (2021), this approach was successfully demonstrated on I-frame compression, es-
sentially compressing a set of images with similar content. In this work we adapt it to the compres-
sion of full video sequences, as we will describe in the following section.

3 INSTANCE-ADAPTIVE VIDEO COMPRESSION

We now introduce our instance-adaptive compression codec for full video sequences, or InstA for
short. The key idea is to optimize the parameters of a rate-distortion VAE for each video sequence
to be transmitted, and to send the relevant network parameters in a rate-efficient way to the de-
coder. This approach can be beneficial whenever a standard rate-distortion autoencoder would not
generalize well, for instance because of limited training data or domain shift. In addition, instance
adaptation allows us to use smaller models while maintaining most of the compression performance.
While encoding the network parameters to the bitstream increases the length of the code, we describe
a compression scheme in which this cost is negligible, especially when amortized over many frames
of a video sequence.

Our approach is agnostic about the base model and we demonstrate it on two different architectures:
a scale-space flow model in the low-latency setting and the B-EPIC model in the B-frame setting.
In the following, we first describe the base models, before describing how InstA compresses and
decompresses video sequences.

Low-latency base model: Scale-space flow (SSF) We first focus on the low-latency setting,
which we define as having only access to current or previous frames when decoding a frame. As a
base model for this setting, we use the scale-space-flow architecture introduced by Agustsson et al.
(2020). Any video sequence is first split into groups of pictures (GoP). The first frame in each GoP
is modeled as an image without any dependency on previous frames, i. e. as an I-frame. All other
frames are P-frames, modeled as

xi = Scale-Space-Warp(xi−1, gi) + ri , (3)

where xi−1 is the reconstructed previous frame, gi is the estimated scale-space flow field, ri is
the estimated residual, and the scale-space warping operation performs optical-flow warping of the
previous frame with a dynamic, position-dependent amount of Gaussian blur. The I-frame images,
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Table 1: Parameter counts and decoding complexity for our various global scale-space-flow models.

Model SSF18 SSF8 SSF5 SSF3

Total parameters [106] 28.9 13.8 8.1 4.9
Decoder-side params. [106] 18.0 8.4 5.0 3.1
Decoder-side kMACs / pixel 313.4 180.0 88.6 50.8
Decoder kMACs reduction 0 % 43 % 72 % 84 %

P-frame scale-space flow gi, and P-frame residuals ri are compressed with separate hyperprior
models (Ballé et al., 2018), a hierarchical variational autoencoder architecture.

We largely follow the architecture choices of Agustsson et al. (2020) and refer to this model as
SSF18 after its number of decoder-side parameters (in millions). In Appendix C we describe the
architecture in detail and highlight the differences to Agustsson et al. (2020).

Smaller low-latency base models As our instance-adaptive approach is based on finetuning the
compression model on a low-entropy “dataset” (a single video sequence), we hypothesize that it
does not require the full expressivity of the computationally complex SSF18 model. We propose
three alternative scale-space flow architectures with a reduced computational complexity. In Tbl. 1
we list the parameter counts and the number of multiply-accumulate (MAC) operations required
for decoding a sequence, which are reduced by 43–84% compared to the SSF18 baseline. The
architectures of the four SSF models are described in detail in Appendix C.

B-frame base model: B-EPIC We also consider a less constrained setting, in which frames can
be compressed as B-frames as well, i. e. using both a previous frame and a future frame as reference
points. This flexibility allows for even more efficient compression and is used for instance for on-
demand video streaming. As a base model we choose the B-EPIC architecture (Pourreza & Cohen,
2021). Again, the video is split into GoPs. The very first frame of a video is modeled as an I-
frame, while the last frame in each GoP is a P-frame, using the last frame of the preceeding GoP as
reference; both I-frame and P-frames are compressed as in the SSF model.

Any other frame xi is modeled as a B-frame: it is assigned a past reference frame xj (j < i) and
a future reference frame xk (k > i); an off-the-shelf Super-SloMo frame interpolator (Jiang et al.,
2018) is used to interpolate between these two reference frames. The interpolated frame is then used
as a basis for scale-space flow warping:

xi = Scale-Space-Warp(Super-SloMo(xj , xk), gi) + ri . (4)

The interpolated frame provides a more useful starting point for optical-flow warping than the previ-
ous frame, e. g. because the combination of past and future knowledge may avoid occlusion effects.

Again, I-frames, optical flow, and residuals are modeled with three separate hyperprior models and
the model is trained on the RD loss in Eq. (1). We only consider a single configuration and use
hyperparameters and checkpoints from Pourreza & Cohen (2021). This model has 38.5 million
parameters, 23.2 million of which are on the decoder side.

Encoding a video sequence Our procedure conceptually follows van Rozendaal et al. (2021). For
completeness we shall describe the full method here. A video sequence x is compressed by:

1. Finetuning the model parameters (θ, φ) of the base model on the sequence x using Eq. (2),
2. computing the latent codes z ∼ qφ(z|x),
3. parameterizing the finetuned decoder and prior parameters as updates δ = θ − θD,
4. quantizing latent codes z and network updates δ, and
5. compressing the quantized latents z̄ and updates δ̄ with entropy coding to the bitstream.

To finetune a pretrained base compression model, we start with the global model with parameters
(θD, φD) and minimize the rate-distortion loss given in Eq. (2) — but only over the single video
sequence x. This modified rate-distortion loss explicitly includes the bitrate required to send model
updates δ under an update prior p(δ). We compute the regularizing Rθ loss with the unquantized
updates δ, but use the quantized parameter updates θD + δ̄ to calculate the D and Rz loss terms,
using a straight-trough estimator (Bengio et al., 2013) in the backward pass.
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Sending the updated network parameters of course adds to the length of the bitstream. This is even
the case when finetuning does not lead to changed parameters (δ̄ = 0). Given the large size of
the neural model we consider, it is therefore essential to choose an update prior that assigns a large
probability mass to zero-updates δ̄ = 0. This allows the network to transmit trivial updates at a
negligible rate cost, while giving it the freedom to invest bit cost in non-trivial parameter updates
that improve the performance substantially. We use a spike-and-slab prior (Johnstone & Titterington,
2009; van Rozendaal et al., 2021), a mixture model of a narrow and a wide Gaussian distribution
given by

p(δ) =
N (δ|0, σ21) + αN

(
δ
∣∣0, s21

)
1 + α

, (5)

where the “slab” component with variance σ2 keeps the bitrate cost for sizable updates down, and
the “spike” component with the narrow standard deviation s � σ ensures cheap zero-updates. The
mixing weight α is a tunable hyperparameter.

At the beginning of the finetuning procedure, our neural model is equal to the global model. Because
of the spike-slab update prior, the rate cost is only marginally increased and the compression per-
formance essentially equal to the global model. During finetuning, the rate-distortion performance
gradually improves, giving us an anytime algorithm that we can stop prematurely to get the best
compression performance within a given encoder compute budget.

After the model has converged or a compute budget has been exhausted, we use the finetuned en-
coder qφ to find the latent code z corresponding to the video sequence x. Both z and the updates
to prior and decoder δ, which will be necessary to decode the video sequence, are quantized. To
discretize the updates δ, we use a fixed grid of n equal-sized bins of width t centered around δ = 0.
We choose n such that p(−n/t < δ < n/t) ≈ 1− ε and clip values at the tails. The quantization of
z is analogous, except that we use a bin width of t = 1 and do not clip the values at the tails (in line
with Ballé et al. (2018)).

Finally, we write the quantized updates δ̄ and quantized codes z̄ to the bitstream. We use entropy
coding under the quantized update prior p(δ̄) and finetuned prior pθD+δ̄(z̄), respectively. For latent
codes in the tail region we use Exp-Golomb coding (Wiegand et al., 2003).

Decoding a video sequence The receiver first decodes the prior and decoder updates δ̄ from the
bitstream. Once θ̄ = θD + δ̄ is known on the decoder side, the latents z are decoded with the prior
pθ̄(z) and the video sequence is reconstructed with the decoder pθ̄(x|z) following standard VAE
protocol. The only overhead on the decoder side is therefore the initial decoding of δ̄. While this
results in a small delay before the first frame can be decoded, in practice this delay is very short
(below 0.2 seconds in our experiments).

4 EXPERIMENTAL SETUP

Datasets In our experiments we use sequences from five different datasets. The global models are
trained on Vimeo90k (Xue et al., 2019). We evaluate on the HEVC class-B test sequences (HEVC,
2013), on the UVG-1k (Mercat et al., 2020) dataset, and on Xiph-5N (van Rozendaal et al., 2021),
which entails five Xiph.org test sequences. The performance on out-of-distribution data is tested
on two sequences from the animated short film Big Buck Bunny, also part of the Xiph.org col-
lection (Xiph.org). We choose an “easy” (BBB-E) and a “hard” (BBB-H) clip of 10s each, see
Appendix B for details. All of these datasets consist of videos in Full-HD resolution (1920 × 1080
pixels). In addition, we evaluate on HEVC class C with a lower resolution of 832× 480 pixels.

Global models The scale-space flow models described in Sec. 3 are trained with the MSE training
setup described in Agustsson et al. (2020), except that we use the publicly available Vimeo-90k
dataset. For the B-EPIC model, we use the model trained by Pourreza & Cohen (2021) on Vimeo-
90k. We describe the training schemes in detail in Appendix D.

Instance-adaptive finetuning On each instance, we finetune the models with the InstA objective
in Eq. 3, using the same weight β as used to train the corresponding global model. We finetune for
up to two weeks, corresponding to an average of 300 000 steps. Our training scheme is described in
detail in Appendix D.
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Baselines As our instance-adaptive video compression method can be applied to any compres-
sion architecture, we focus on comparing to the respective base models: we compare InstA-SSF to
our reimplementation of the SSF model (Agustsson et al., 2020) and InstA-B-EPIC to the B-EPIC
model (Pourreza & Cohen, 2021). To better understand where the benefits of instance-adaptive fine-
tuning come from, we consider an additional SSF18 baseline in which only the encoder is finetuned
on each instance. Unlike our InstA method, encoder-only finetuning does not require sending any
model updates in the bitstream. In addition, we show the strongest or most closely related neural
baselines, with further baselines in Appendix F.

We also run the popular classical codecs H.264 (AVC) (Wiegand et al., 2003) and H.265
(HEVC) (Sullivan et al., 2012) in the ffmpeg (x264 / x265) implementation (FFmpeg; VideoLAN,
a;b) as well as the (slower but more effective) HM reference implementation (HEVC) of H.265.
To ensure a fair comparison, in the low-latency experiments we restrict all codecs to I-frames and
P-frames and fix the GoP size to 12. In the B-frame experiments, we use default settings, allowing
the codecs to freely determine frame types and GoP size. For ffmpeg, we compare several different
encoder presets to study the trade-off between encoding time and RD performance. In Appendix E
we provide the exact commands used to generate these baseline results.

Metrics We evaluate the fidelity of the reconstructions through the peak signal-to-noise ratio
(PSNR) in RGB space. To summarize the rate-distortion performance in a single number, we
compute the Bjøntegaard Delta bitrate (BD-rate) (Bjøntegaard, 2001), the relative rate difference
between two codecs averaged over a distortion range. We evaluate the BD-rate savings of all meth-
ods relative to the HM reference implementation of HEVC, using PSNR as distortion metric, the
intersection of the support of all RD curves as the distortion range, and cubic spline interpolation.

5 RESULTS

Compression performance Figure 1 shows the rate-distortion curves of our instance-adaptive
video codec (InstA) as well as neural and traditional baselines. We compare to more baselines
in Appendix F. Both for SSF in the low-latency and B-EPIC in the B-frame setting, the instance-
adaptive models clearly outperform the corresponding base models. Finetuning only the encoder —
which does not require sending model updates in the bitstream — leads to a much more modest
improvement over the base models.

In the low-latency setting, InstA-SSF outperforms all other neural models as well as the ffmpeg
implementations of H.264 and H.265 at all studied bitrates, except for OTU and ELF-VC, which
hold an edge in the low-bitrate region, and M-LVC, which is competitive at medium bitrates. Within
the restrictions of the low-latency setting and at medium to high bitrates, it is even competitive with
the HM reference codec. In the B-frame configuration, InstA-B-EPIC outperforms all baselines
from around 0.1 bits per pixel except HM.

Robustness to model-size reduction While the full-size InstA-SSF18 model leads to the best RD
performance in the low-latency setting, the smaller InstA-SSF5 models hold their own. Despite
the 72% reduction in decoder complexity, Insta-SSF5 outperforms most neural baselines and the
ffmpeg codecs, and achieves a performance close to that of InstA-SSF18. In comparison, the gap
between the SSF5 and SSF18 baselines is larger. This provides evidence for the hypothesis that
instance-adaptive finetuning reduces the capacity requirements on neural compression models.

To further investigate how the performance of our method depends on decoder complexity, we train
two additional models, SSF3 and SSF8, as summarized in Tbl. 1. The results are in line with the
trends already shown. While the performance of the global models degrades quickly when reducing
the model size, instance-adaptive finetuning can compensate for the reduced capacity and offers
more “bang for the buck” in terms of (decoding-side) model complexity. For detailed results we
refer the readers to Appendix H.

Robustness to dataset variation Globally trained neural codecs rely on the similarity of the test
instances to the training data. In comparison, we expect our finetuned models to be more robust
under domain shift and to perform well across different test sets. To put this to the test, we evaluate
the InstA-SSF models and low-latency baselines on different sequences, including two animated
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Figure 1: Rate-distortion performance of our InstA video codecs. InstA (red) leads to BD-rate
savings of between 17 % and 26 % over the corresponding base models (orange) and between 5 %
and 44 % over H.265 (ffmpeg).

scenes from the Big Buck Bunny video. In Tbl. 2 we report the compression performance as BD-
rate savings relative to the HM reference codec, the corresponding RD curves can be found in
Appendix F. We find that InstA performs strongly on all datasets. On the animated sequences,
the global SSF18 baseline performs poorly relative to ffmpeg H.265, showing its susceptibility to
domain shift. Our instance-adaptive models are much more robust to this shift and close the gap with
classical codecs. We illustrate this performance improvement on example frames from the Big Buck
Bunny video in Appendix G and provide reconstructed video data in the supplementary material.

Instance-adaptive compression is particularly powerful for high-resolution data, where the model-
rate overhead is amortized over more pixels. We test whether InstA still works at a lower resolution
by evaluating on the HEVC class C test sequences, which have 81 % less pixels per frame than the
Full-HD sequences. As shown in Appendix F, InstA indeed performs worse relative to the baselines
than on the higher-resolution data. Nevertheless, InstA-SSF18 still is among the best neural codecs.

To further quantify our robustness to test data characteristics, we investigate the effect of the video
framerate on the model performance. In Appendix H we study the performance of global and
instance-adaptive SSF models on temporally subsampled videos and again find that the instance-
adaptive model is more robust to variations than the global SSF model. While these ablations do not
cover all realistic variations, they serve as examples of dataset characteristics that a global neural
codec is likely sensitive to.
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Table 2: Rate-distortion performance of InstA and baselines on several datasets. We summarize the
rate-distortion performance as BD-rate relative to the HM reference implementation of H.265 in the
respective setting (lower is better).

Setting Method BD-rate relative to H.265 (HM) [↓]
UVG-1k HEVC-B HEVC-C Xiph-5N BBB-E BBB-H

Low latency InstA-SSF18 (ours) −10.6% 5.0% 65.0% −10.4% 13.4% 28.3%
InstA-SSF5 (ours) −5.3% 14.1% 89.3% −7.5% 31.9% 43.2%
Encoder-finetuned SSF18 13.6% 21.5% 80.3%
SSF18 22.5% 37.4% 107.5% 17.5% 32.7% 54.9%
SSF5 43.8% 52.0% 172.4% 41.5% 84.5% 99.3%
H.265 (ffmpeg) 58.8% 47.1% 42.2% 29.5% 25.9% 18.7%
H.264 (ffmpeg) 113.8% 92.9% 73.4% 69.3% 108.4% 46.9%

B-frames InstA-B-EPIC (ours) 26.9% 45.0%
Encoder-finetuned B-EPIC 36.7% 76.2%
B-EPIC 58.2% 75.2%
H.265 (ffmpeg) 61.2% 53.2%
H.264 (ffmpeg) 119.0% 107.3%

Rate composition It is remarkable that InstA consistently improves the rate-distortion perfor-
mance of neural models despite having to send updates for millions of neural network parameters.
We investigate this low rate overhead in Appendix H. We find that the spike-and-slab prior is crucial:
compared to Gaussian coding, it allows us to save around 7.5 bits per parameter.

InstA learns to distribute bits on model updates and latents. The optimal trade-off generally depends
on the bitrate, the size of the model and latent code, and on the test data: we expect that for strongly
out-of-distribution data, more bits will be spent on model updates. Indeed we find that in almost all
cases, less than 1% of the total rate is spent on model updates, while for the animated sequences from
the Big Buck Bunny video between 1% and 3% of the total bitrate are invested in model updates.
We provide more details in Appendix H.

Computational complexity The improved compression performance of our instance-adaptive
video codec comes at the price of increased encoding time. In Fig. 2 we illustrate this trade-off for
the low-latency setting. We summarize the rate-distortion performance as BD-rate savings relative
to HM and compare to the encoding time1. For our instance-adaptive methods, this time includes the
finetuning in addition to the forward pass of the encoder, the quantization, and the entropy coding
(for both the latents and the parameters). By choosing how long to run the finetuning, we can trade
off RD performance against the encoding time. Out of the studied codecs, ours can best exploit this
trade-off: encoding time and compression performance are fixed in other neural methods, while the
existing handles in traditional codecs have a limited effect on performance.

We find that instance-adaptive finetuning leads to state-of-the-art RD performance even when fine-
tuning only for a few steps. The performance gradually improves over the course of training and
eventually flattens out. Care has to be taken in interpreting these results as the different codecs were
designed for different hardware and our algorithms have not been optimized for performance.

Instance-adaptive video compression also adds some overhead on the decoder side, as the model
parameters need to be decoded before any frame can be reconstructed. For the full-size InstA-SSF18
model and without optimizing the code for performance, this initial delay is below 0.2 seconds. The
neural network forward pass alone is timed with a speed of around 0.01 seconds per frame on a
TeslaV100 GPU without any optimization. Both the overhead and the network forward pass are
thus negligible compared to the time it takes to entropy-decode the latents z: in our (not optimized)
implementation, this takes around 1 second per frame, both for the global SSF models and InstA-
SSF. Compared to the neural baselines, InstA-SSF thus yields a better performance at comparable
complexity. Compared to traditional codecs, there is still a gap to bridge, and none of the neural
codecs can decode at the framerate of the videos yet.

1We report the walltime on machines with 40-core Intel Xeon Gold 6230 CPUs with 256 GB RAM and
NVIDIA Tesla V100-SXM2 GPUs with 32 GB VRAM. We only use a single GPU.
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Figure 2: Trade-off between RD performance and encoder-side compute in the low-latency setting.
We summarize the RD performance as BD-rate difference relative to the HM implementation of
H.265 (lower is better). InstA-SSF (red) is compared to SSF (orange) and traditional (grey) base-
lines. Some fluctuations in the measured walltime are due to varying load on our computational
cluster. Since we can stop the instance finetuning at any time, InstA-SSF allows us to continuously
trade off encoder compute for compression performance.

At the same time, instance-adaptive finetuning allows us to use smaller architectures while main-
taining a strong performance, as shown above. This potential to reduce the decoder-side compute
may outweigh the small overhead from the initial update decoding.

6 CONCLUSIONS

We introduced InstA, a method for video compression that finetunes a pretrained neural compression
model on each video sequence to be transmitted. The finetuned network parameters are compressed
and transmitted along with the latent code. The method is general and can be applied to many
different settings and architectures, we demonstrated it on scale-space flow models in the low-latency
setting as well as a state-of-the-art B-frame architecture.

Instance-adaptive video compression relaxes the requirement of a single global model that needs
to be able to generalize to any unseen test sequence. This can be beneficial when the training data
is limited, when there is domain shift between training and test distributions, or when the model
class is not expressive enough. While it comes at the cost of some overhead to the bitstream, we
demonstrated that with a suitable compression scheme this overhead can be kept small, especially
since it is amortized over the many pixels of a video sequence.

Our InstA models clearly outperform the base models in all considered settings, in several cases
achieving a state-of-the-art rate-distortion performance. They outperform their corresponding global
base models with BD-rate savings of between 17 % and 26 % on the UVG-1k, HEVC class-B, and
Xiph-5N datasets, and the popular ffmpeg implementation of H.265 with BD-rate savings between
5 % and 44 %. By evaluating models that were trained on natural scene data on animated sequences,
we demonstrate that instance-adaptive finetuning improves the robustness of neural video codecs
under domain shift. Finally, instance-adaptive compression reduces the required model expressivity:
even after reducing the model size by 72 %, InstA-SSF maintains a competitive performance.

The ability to trade off encoder-side compute for compression performance is a natural match for
one-to-many transmission scenarios, in which a sequence is compressed once but transmitted and
decoded often. We demonstrated that even just finetuning for seconds per frame can lead to a sub-
stantial improvement in compression performance, so instance-adaptive compression may ultimately
even be beneficial in real-time applications.
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Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. In International Conference on Learning Represen-
tations (ICLR), 2018.
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A SUMMARY OF INSTANCE-ADAPTIVE COMPRESSION METHODS

Table 3: Overview of neural instance-adaptive data compression methods. We categorize these
works by the data modality and by the adaptation of receiver-side components. The number of
adapted network parameters on the decoder side is a proxy for adaptation flexibility, although flex-
ibility is also affected by other measures such as the frequency of adaptation, or the quantization of
updates.
*Ballpark estimate based on the reported network architecture.

Type Work Modality Decoder-side adaptation

Method Parameters

Encoder-only Campos et al. (2019) image – –
Guo et al. (2020) image – –
Lu et al. (2020) video – –
Yang et al. (2020c) image – –

Hybrid Lam et al. (2019) image Overfit restoration network 0.3 M*
He et al. (2020) video Overfit restoration network 0.2 M*
Klopp et al. (2020) video Overfit restoration network <0.1 M*
He et al. (2021) video Overfit restoration network 0.2 M*
Klopp et al. (2021) video Overfit super-resolution network <0.1 M*
Liu et al. (2021) video Overfit super-resolution network <0.1 M*

Limited
decoder-side
adaptation

Aytekin et al. (2018) image Choose from 4 decoders 9.6 M*
Zou et al. (2020) image Choose from 255 bias clusters <0.1 M*
Wang et al. (2021) image Choose from 8 decoders 0.9 M

Full-model
adaptation

van Rozendaal et al. (2021) I-frames Overfit full decoder network 4.2M
Mikami et al. (2021) images Overfit full decoder network 0.2 M*
This work video Overfit full decoder network 18.0 M

In Tbl. 3 we categorize existing methods for neural instance-adaptive data compression. The cate-
gories are based on the extent of adaptation and we shall describe them one-by-one in the following
paragraphs.

Encoder-only instance-adaptive methods only optimize the encoder qφ (Yang et al., 2020c; Lu et al.,
2020) or directly optimize the latents z (Campos et al., 2019; Guo et al., 2020) at inference time.
These methods can decrease the amortization gap (the problem that the encoder is not a good fit for
the given decoder) (Cremer et al., 2018). However, as they cannot change any components required
on the receiver side, their adaptation potential is fundamentally limited.

The next group of methods are the hybrid instance-adaptive compression methods. These consist of
a traditional codec which is ran at a low quality setting (Lam et al., 2019; He et al., 2020; Klopp et al.,
2020; He et al., 2021) or a low resolution (Klopp et al., 2021; Liu et al., 2021), followed by a neural
enhancement network which is overfitted to the test instance (and signalled in the bitstream). The
advantage of this approach is that it can build on established, high-performing traditional codecs
such as the HM reference implementation of H.265. As such, the rate-distortion performance of
these methods can be very good, especially at lower bitrates, where neural codecs tend to perform
more poorly (see Fig. 4). The size and computational complexity of these enhancement networks
is typically very low. However, it should be noted that decoding the video still requires running
the expensive base codec first. In contrast, we present a smaller neural codec InstA-SSF5 which
does not require any compute besides running the neural decoder. Another downside of the hybrid
approaches is that end-to-end neural video codecs are continuously improving. While our instance-
adaptive method can be applied to any neural base model, it is not clear how hybrid approaches can
benefit from the developments in this field.

The next group we consider consists of fully neural codecs that adapt the decoder and prior networks
to each instance, albeit to a limited extent. The works we consider (Aytekin et al., 2018; Zou et al.,
2020; Wang et al., 2021) all show results on image compression, with autoencoders that operate on
patches or blocks of the image. At training time, these methods train an ensemble of different de-
coders, which are then frozen as a part of the codec. At test time, the optimal decoder is selected for
every patch and communicated to the receiver. This is often combined with encoder-side finetuning
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for increased rate-distortion performance. Although this approach allows changing of all decoder-
side parameters, the actual degrees of freedom are very limited (up to 255 different possibilities in
Zou et al. (2020)). Furthermore, since the different possible decoders are determined during training
these approaches is not able to solve the domain gap problem fully.

Finally we turn to the full-model instance-adaptive methods, in which all components of a neural
codec (encoder, decoder, and prior) are overfitted at test time, and the changes to the decoder are sig-
nalled in the bitstream. Due to the large size of neural codecs, one has to make sure that the overhead
for signalling model updates will not dominate the bitrate. This can be achieved by choosing a very
small base model (Mikami et al., 2021) such that the rate overhead is minimized, but this does not
scale to the architectures required for SOTA performance. Instead van Rozendaal et al. (2021) pro-
pose adapting the codec with a model-rate aware loss function, which includes a sparsity-inducing
prior. The authors only reported results on an I-frame compression task on a single dataset. We are
the first to show that this type of full-model adaptation is highly efficient for the compression of full
video sequences with P-frames or B-frames.

B DATASETS

UVG-1k Following Refs. (Wu et al., 2018; Lu et al., 2019; Golinski et al., 2020; Agustsson et al.,
2020), we report results on the UVG-1k dataset, which consists of seven test video sequences to-
talling 3900 frames captured at 120 fps and natively available in 1080p resolution. Note that these
sequences are only a subset of the full UVG dataset (Mercat et al., 2020).

Xiph-5N We use the Xiph-5N dataset introduced in van Rozendaal et al. (2021). It consists of
the following five sequences from the Xiph.org collection: “in to tree”, “aspen”, “controlled burn”,
“sunflower”, and “pedestrian area”.

Big Buck Bunny (BBB-E and BBB-H) From the Big Buck Bunny video, which is also part of
the Xiph.org media collection, we extract two subsequences of 10 s length. They are chosen based
on the frame-wise RD loss achieved by a global SSF18 model (with β = 0.0016). We select the 10 s
window with the lowest RD loss and the 10 s window with the highest RD loss, excluding the intro
and outro of the video. These signify the “easiest” and “hardest” parts of the video to compress and
we refer to them as “BBB-E” and “BBB-H”, respectively. In Fig. 3 we show the frame-wise RD
loss and the selected sequences.

0 2000 4000 6000 8000 10000 12000 14000
Big Buck Bunny frame

0.0000

0.0005

0.0010

0.0015

RD
 lo

ss

Intro BBB-E BBB-H Outro

Loss per GoP
10s rolling average

Figure 3: Temporal distribution of the RD loss of the global SSF18 model for the Big Buck Bunny
video. We use the 10 s windows with the lowest and highest loss as benchmarks, excluding the intro
and outro of Big Bunny. These subsequences, which we call “BBB-E” and “BBB-H” for “easy to
compress” and “hard to compress”, are marked in orange and red.
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Table 4: Architecture differences between the original SSF model published by Agustsson et al.
(2020) and our SSF18 re-implementation. Convolutional layers are indicated as “conv [kernel size]
[layer type][stride] [output channels]”. ↓ is used for convolutional layers, while ↑ is used for trans-
posed convolutions. The hyperdecoder is modeled as a Gaussian p(z2|z1) = N (z2|µ(z1), σ(z1)),
where the mean and standard deviation are modeled by two separate neural networks µ(z1) and
σ(z1) with largely identical architectures. These network differ in their activation functions, acti-
vations that are only used in one of the two networks are indicated in the table by their respective
symbol. Note that we always clamp σ(z1) to the range [0.11,∞).

Agustsson et al. (Agustsson et al., 2020) Our reimplementation

Hyperencoder q(z1|z2)
conv 5x5 ↓2 192 conv 3x3 ↓1 192
ReLU ReLU
conv 5x5 ↓2 192 conv 5x5 ↓2 192
ReLU ReLU
conv 5x5 ↓2 192 conv 5x5 ↓2 192

Hyperdecoder p(z2|z1)
conv 5x5 ↑2 192 conv 5x5 ↑2 192
µ: ReLU, σ: QReLU ReLu
conv 5x5 ↑2 192 conv 5x5 ↑2 192
µ: ReLU, σ: QReLU ReLu
conv 5x5 ↑2 192 conv 3x3 ↑1 192
σ: QReLU σ: ReLU

C MODEL ARCHITECTURES

Full-size SSF model We first apply instance-adaptive video compression to the scale-space flow
(SSF) architecture proposed by Agustsson et al. (Agustsson et al., 2020), using our own re-
implementation of the model. We mostly follow the setup described in Agustsson et al. (2020),
but there are some minor differences. In the hyperencoder and hyperdecoder networks we use a
slightly different architecture. We list the architectures in Tbl. 4. In addition, our implementation of
the blur stack and of the scale-space-flow warping operation differ from the one used by Ref. 4, but
we have verified in experiments that this has a negligible effect.

We empirically validated our SSF re-implementation by comparing its performance to the original
SSF (using entropy-coding). On the UVG-1k dataset, our SSF18 model performed slightly better
than the results published by Agustsson et al. (2020).

Smaller SSF models In addition to the full-size SSF18 model, we consider three smaller scale-
space flow architectures. They follow the same structure as SSF18 in Tbl. 4 but differ in the number
of latent variables and convolutional channels, as shown in Tbl. 5. We refer to them as SSF8, SSF5,
and SSF3 after the number of decoder-side network parameters (in millions).

B-EPIC model As a second base model we use the B-frame codec developed by Pourreza &
Cohen (2021) (B-EPIC). We follow the hierarchical IBP configuration presented in that paper and
use the model trained by the authors. During training, a GoP consists of 4 frames arranged in an
IBBP pattern. At test time, we use a GoP size of 12 frames and the following reference structure
(where frame 0 refers to the last frame of the previous GoP):

• Frame 12: P-frame referring to frame 0

• Frame 6: B-frame referring to frames 0 and 12

• Frame 3: B-frame referring to frames 0 and 6

• Frame 9: B-frame referring to frames 6 and 12

• Frame 1: B-frame referring to frames 0 and 3

• Frame 2: B-frame referring to frames 1 and 3
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Table 5: Architecture details for our scale-space-flow models. In the top, we show the number of
channels for the latent and hyperlatent variables, z, which are the basis for the compressed code; in
the bottom, we show the number of channels in the codec and hypercodec networks in the encoder
and decoder. We use the same model architecture and size for I-frame, scale-space-flow and residual
networks.

Model SSF18 SSF8 SSF5 SSF3

latent channels 192 192 192 128
hyperlatent channels 192 192 192 192

codec channels 128 96 64 48
hypercodec channels 192 96 64 48

and so on for the remaining frames. The very first frame in a video is encoded as an I-frame.
Encoding and decoding in this order ensures that the reference frames will always be encoded or
decoded before the frames for which they are needed.

Quantization settings Ablation studies showed insensitivity to network prior settings in the
ranges of 10 ≤ α ≤ 1000, 0.0005 ≤ t ≤ 0.005, and 0.01 ≤ σ ≤ 0.05. For the experiments
in this paper we use a bin width t = 0.001, σ = 0.05, s = t/6, a spike-slab ratio α = 100, and
ε = 2−8.

Entropy coding We implement an entropy coder for the latents and model updates in the SSF and
InstA-SSF models. We verified that this achieves bitrates in agreement with the probability mass
functions of p(z) and p(δ). For the B-EPIC and InstA-B-EPIC models, we report bitrates based on
probability mass functions without actually implementing an entropy coder.

D TRAINING SCHEME

Global models The scale-space flow models described in Sec. 3 are trained with the MSE training
setup described in Agustsson et al. (2020), except that we use the publicly available Vimeo-90k
dataset. The D loss is computed with (integer) quantized latents z̄, while for the Rz loss term we
use noisy samples from U(z − 1

2 , z + 1
2 ). Following Agustsson et al. (2020), we first train for 1

million steps on 256× 256 crops with a learning rate of 10−4. We then conduct the MSE “finetune”
stage of the training procedure from Agustsson et al. (2020) (not to be confused with instance-
adaptive finetuning) for the SSF18 model, where we train on crops of size h×w = 256×384 with a
learning rate of 10−5. The models are trained with a GoP size of 3 frames, which means that we split
the training video into chunks of 3 frames and randomly sample chunks during training. We finally
evaluate the models with a GoP size of 12. This gives similar results to using infinite unrolling at
test time, as we demonstrate in Appendix C.

For the B-EPIC model, we use the model trained by Pourreza & Cohen (2021) on Vimeo-90k. The
setup is similar to that for the SSF models except that B-EPICs more complicated GoP structure
requires training with a GoP size of 4 frames. At test time we use a GoP size of 12, the frame
configurations are described in Appendix C.

Instance-adaptive finetuning In the low-latency scenario we use a GoP size of 3 and finetune on
full-resolution frames (1920×1080 pixels) with a batch size of 1 and a learning rate of 10−5. After
finetuning, we transmit sequences with a GoP size of 12. The prior and decoder updates δ = θ− θD
are quantized and coded under the spike-and-slab network prior described in Sec. 3.

While the SSF model follows a stationary distribution over frames, the B-EPIC model has a more
complex frame structure: the distance between a frame and its reference points can vary between 1
to 6 frames. For this reason, we found it beneficial to use a GoP of 12 for InstA finetuning of the
B-EPIC model. Due to memory limitations, we finetune on horizontal crops of size 256×1080 pixels
instead of full-resolution frames. For the low-bitrate working points use a learning rate of 10−5, in
line with Pourreza & Cohen (2021). For the high-bitrate region (β ≤ 0.0008), we found that we can
get faster convergence by using a learning rate of 5 · 10−5.
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E CLASSICAL CODECS

We generate H.265 and H.264 results using version v3.4.8 of ffmpeg (FFmpeg). When comparing
to neural codecs in the low-latency setting, we also choose a low-latency setting that only allows I-
frames and P-frames and fix the GoP size to 12. We use various encoder presets. Example commands
are

ffmpeg -pix_fmt yuv420p -s 1920x1080 \
-r 120 -i raw_video.yuv \
-c:v libx264 -preset medium \
-crf 23 -tune zerolatency \
-x264-params \
"keyint=12:min-keyint=12:verbose=1" \
output.mkv

for H.264 and

ffmpeg -pix_fmt yuv420p -s 1920x1080 \
-r 120 -i raw_video.yuv \
-c:v libx265 -preset medium \
-crf 23 -tune zerolatency \
-x265-params \
"keyint=12:min-keyint=12:verbose=1" \
output.mkv

for H.265. We also compress the test sequences with the HM reference implementation of HEVC,
using the “lowlatencyP” setting with a fixed GoP size of 12.

As baselines for the neural B-frame codecs, we also relax the GoP and frame-type restrictions for
the classical codecs, using the default random-access settings with B-frames and variable GoP size.

F ADDITIONAL RATE-DISTORTION RESULTS

In Fig. 4, we show the rate-performance performance of our models relative to the HM baseline.
In addition to the classical codecs and our base models, we compare to several additional neural
baselines: Lu et al. (2019; 2020); Rippel et al. (2021); Lin et al. (2020); Klopp et al. (2020); Yang
et al. (2020a;c); Hu et al. (2021), and Hu et al. (2020). Relative to classical codecs, almost all
neural codecs perform better at higher bitrate. The exception is Klopp et al. (2020), which consists
of a classical codec followed by neural enhancement. With the exception of this method and in
some bitrate regions ELF-VC (Rippel et al., 2019) and M-LVC (Lin et al., 2020), our InstA method
achieves a state-of-the-art neural compression performance.

Figures 5 and 6 show rate-distortion curves on the HEVC class C, Xiph-5N, and Big Buck Bunny
datasets. The test sequences of HEVC class C have a lower resolution of only 832 × 480. This is
a challenging scenario for InstA, as the model rate overhead is amortized over less pixels than in
higher-resolution videos. Indeed, we find that our method does not perform as strongly relative to
classical and some neural baselines as on the higher-resolution datasets. Nevertheless, it still leads
to a sizable improvement over the SSF18 base model.

Finally, in Tbl. 6 we show the BD-rate savings of the InstA-SSF18, InstA-SSF5, and SSF18 models
relative to two different H.265 implementations and relative to the SSF18 model.
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Figure 4: Bitrate our instance-adaptive SSF models (InstA-SSF, red) relative to the HM reference
implementation of H.265 as a function of the quality in dB PSNR. We also show several neural
(orange, blue, green) and traditional (grey) baselines.
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Figure 5: Rate-distortion performance of our instance-adaptive SSF models (InstA-SSF, red) com-
pared to neural (orange) and traditional (grey) baselines on class C of the HEVC test sequences (left)
and five Xiph.org test sequences (right).
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Table 6: BD-rate of several codecs (rows) compared to different reference codecs (columns) in the
low-latency setting. Lower numbers are better, the best results on each dataset are shown in bold.

Dataset Method BD-rate relative to. . .

H.265 (HM) H.265 (ffmpeg) H.264 (ffmpeg) SSF18

UVG InstA-SSF18 (ours) −10.6% −43.7% −58.2% −27.1%
InstA-SSF5 (ours) −5.3% −40.3% −55.7% −22.7%
SSF18 22.5% −22.8% −42.7%
Encoder-finetuned SSF18 13.6% −28.4% −46.8% −7.2%

HEVC-B InstA-SSF18 (ours) 5.0% −28.6% −45.5% −23.6%
InstA-SSF5 (ours) 14.1% −22.4% −40.8% −17.0%
SSF18 37.4% −6.6% −28.7%
Encoder-finetuned SSF18 21.5% −17.4% −37.0% −11.6%

HEVC-C InstA-SSF18 (ours) 65.0% 16.0% −4.8% −20.5%
InstA-SSF5 (ours) 89.3% 33.1% 9.2% −8.8%
SSF18 107.5% 45.9% 19.7%
Encoder-finetuned SSF18 80.3% 26.8% 4.0% −13.1%

xiph5N InstA-SSF18 (ours) −10.4% −30.8% −47.1% −23.8%
InstA-SSF5 (ours) −7.5% −28.6% −45.4% −21.3%
SSF18 17.5% −9.2% −30.6%

BBB-E InstA-SSF18 (ours) 13.4% −9.9% −45.6% −14.5%
InstA-SSF5 (ours) 31.9% 4.8% −36.7% −0.7%
SSF18 32.7% 5.4% −36.3%

BBB-H InstA-SSF18 (ours) 28.3% 8.1% −12.6% −17.1%
InstA-SSF5 (ours) 43.2% 20.6% −2.5% −7.5%
SSF18 54.9% 30.5% 5.4%

Table 7: BD-rate of several codecs (rows) compared to different reference codecs (columns) in the
B-frame setting. Lower numbers are better, the best results on each dataset are shown in bold.

Dataset Method BD-rate relative to. . .

H.265 (HM) H.265 (ffmpeg) H.264 (ffmpeg) B-EPIC

UVG-1k InstA-B-EPIC (ours) 26.9% −21.3% −42.0% −19.8%
B-EPIC 58.2% −1.9% −27.8%
Encoder-finetuned B-EPIC 36.7% −15.2% −37.6% −13.6%

HEVC-B InstA-B-EPIC (ours) 45.0% −5.4% −30.0% −17.2%
B-EPIC 75.2% 14.3% −15.5%
Encoder-finetuned B-EPIC 76.2% 15.0% −15.0% 0.6%
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Figure 6: Rate-distortion performance of our instance-adaptive SSF models (InstA-SSF, red) com-
pared to neural (orange) and traditional (grey) baselines on the “easy” (left) and “hard” (right) se-
quences from the Big Buck Bunny video.

BD-rate savings are computed over a certain distortion range. We choose the largest possible range
for which we have results for our methods as well as the main baselines. These are:

• UVG-1k: 33.5 dB ≤ PSNR ≤ 40.4 dB

• HEVC class B: 30.3 dB ≤ PSNR ≤ 37.4 dB

• HEVC class C: 27.2 dB ≤ PSNR ≤ 35.4 dB

• Xiph-5N: 31.4 dB ≤ PSNR ≤ 39.5 dB

• BBB-E: 29.3 dB ≤ PSNR ≤ 37.0 dB

• BBB-H: 31.4 dB ≤ PSNR ≤ 39.5 dB

G PERCEPTUAL QUALITY

We illustrate the performance on out-of-distribution data in Fig. 7, where we show original and
compressed versions of two frames from the Big Buck Bunny video. Both traditional codecs and
the SSF18 baseline lose details and introduce artifacts at the chosen low-bitrate setting. While the
InstA-SSF18 compressions still suffer from some blurriness, artifacts are less pronounced than in
the global model.

In the supplementary materials, we attach the corresponding reconstructed video sequences. To
highlight the differences between the codecs, we again use a very low bitrate for all codecs (even
though our InstA method is strongest at higher bitrates).

H ABLATION STUDIES

Model size ablation In the left panel of Fig. 8 we compare the compression performance of glob-
ally trained SSF18, SSF8, SSF5, and SSF3 models, as well as instance-adaptive versions InstA-
SSF18, InstA-SSF8, InstA-SSF5, and InstA-SSF3. Due to the training time requirement we limit
this ablation to a single video, the “in to tree” sequence from the Xiph.org collection. We find that
the larger models lead to a better compression performance, with more pronounced difference in the
high-bitrate region. SSF3 and InstA-SSF3 models perform poorly at high bitrates. We attribute this
partially to the small size of the latent space compared to all other models. In general, we observe
that instance-adaptive training improves the performance of models of any complexity. Instance
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0.031 bpp

H.265 (ffmpeg)
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SSF18 (Agustsson et al.)
0.030 bpp

InstA-SSF18 (ours)
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Figure 7: Original and compressed details in frames 7395 (left) and 7276 (right) of the Big Buck
Bunny video (Xiph.org). From top to bottom, we compare the original, compressed frames with
the H.264 and H.265 codecs in the ffmpeg (x264 / x265) implementation, the SSF18 baseline, and
our proposed InstA-SSF18 method. We use settings with comparable, low bitrates; the achieved
bitrates (over the 10s sequence) are given in the left panels. All codecs lose textural details, but our
InstA-SSF18 codec reduces the artifacts visible in the SSF18 reconstructions.

adaption reduces the gap between smaller models and the full-size model, confirming that less ex-
pressivity is necessary for good performance on a single instance compared to on the entire data
distribution.

GoP size considerations Throughout this work, we use a GoP size of 12 at test time. To test the
robustness of this choice, in the right panel of Fig. 8 we compare to an infinite GoP size (for the
SSF model). In other words, we compress the first frame as I-frame and all remaining frames as
P-frames. The overall difference is slim, though the gap is larger for some videos than others.

Sensitivity to framerate variations To further quantify our robustness to test data characteristics,
we investigate the effect of the video framerate on the model performance. We study the performance
of global and instance-adaptive SSF models on temporally subsampled videos, i. e. keeping one
out of every four frames. To save computational resources, this ablation is only performed on the
“Bosphorus” sequence from the UVG-1k dataset. The left panel of Fig. 9 shows our results. While
the SSF18 performance varies greatly between the original and the subsampled video, the difference
in performance is much smaller for InstA-SSF18. In addition, both models perform better in the
120 fps scenario due to the higher redundancy across frames.

Bitrate allocation Figure 10 disentangles the various contributions to the total bitrate. We find that
the overhead from model updates is generally small (typically well below 1 %), except on videos that
differ substantially from the training data: on the animated Big Buck Bunny sequences, InstA learns
to adapt more strongly and up to 3 % of the total rate are spent on model updates.

We further break down the model rate in Fig. 11, where we show how the model rate is distributed
over the various auto-encoders and submodules of our InstA-SSF18 and InstA-SSF5 model. It can
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Figure 8: Left: Model size ablation study. We compare several global and instance-finetuned scale-
space-flow models, showing the performance on the in to tree sequence (Xiph.org). Right: Effect
of the GoP size at test time. We show rate-distortion curves of instance-adaptive and global SSF18
models on the HEVC Xiph-5N dataset, comparing a fixed GoP size of 12 (solid lines) to an infinite
GoP size (dotted lines).
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Figure 9: Left: Framerate ablation study. We compare the SSF18 baseline (orange) and InstA-
SSF18 (red) on the original video at 120 fps (solid) and on the temporally subsampled video at
30 fps (dot-dashed). Instance-adaptive compression increases robustness to variation in framerate.
Right: Full-video finetuning ablation study. We compare the performance of an SSF model finetuned
on the full Big Buck Bunny video (10 minutes) to a SSF model finetuned only on the BBB-H scene
(10 seconds) when evaluated on the BBB-H scene.

be seen that the InstA-SSF5 model has a lot fewer parameters per module by design, but it is making
up for its smaller capacity by spending a lot more bits/per parameter on model updates compared
to InstA-SSF18 (often more than double). This explains why the rate-distortion performance of
InstA-SSF5 is close to that of InstA-SSF18. Even though the InstA-SSF5 model needs more bit per
parameter to adapt to the data instances, the total bitrate spend on model updates is still smaller than
that of InstA-SSF18.

Focusing on the distribution of the model bitrate across auto-encoders, we see that more than half
of this rate is allocated to the I-frame model. The flow autoencoder is the next biggest consumer
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Figure 10: Bitrate allocation for our InstA-SSF18 model. We show the relative contribution to the
overall bitrate from quantized latents for the I-frames, P-frame flow, and P-frame residuals (different
shades of blue). In red we show the relative contribution from the quantized model updates. Left:
on the UVG-1k dataset, which has a similar content to the training data. Right: on the two Big Buck
Bunny scenes, which differ substantially from the training data. We find that InstA learns to spend
more bits on model updates in this case.

of model rate, while only few bits are spent to communicate updates to the residual autoencoder.
In terms of submodules, it turns out that even though the hyper-decoder has a lot more parameters
than the decoder, the decider receives substantially larger update bits per parameter. Together, these
findings suggest that instance adaptation is most important for network components that are closer
to the data space in the computational graph.

Update sparsity analysis The key design for achieving low model rate is in update sparsity. We
achieve this by using a spike-and-slab prior around global model parameter values. Training with
the spike-and-slab prior is sparsity enforcing (on average around 10 % of all quantized parameters
receive a zero update). To quantify savings of our chosen spike-and-slab prior, we compute the
cross-entropy of our prior with the resulting model δ after training. This is the number of bits
we need to transmit the model update. On the other hand, assume we had a Gaussian prior with
same variance as our “slab” component, and assuming the resulting δ follows the same distribution,
the entropy of this Gaussian prior gives the expected number of bits to transmit non-sparse model
update. We estimate the difference of the two scenarios to be around 7.5 bits per parameter.

Finetuning strategy for longer videos For longer videos with multiple scenes, one can consider
several different strategies for instance-adaptive finetuning. The simplest approach is finetuning a
single model on the full video. It may be beneficial to instead finetune the model independently on
each scene. Even a hierarchical approach in which a model finetuned on the full video is further
finetuned on each scene is an option.

The optimal strategy will in general depend on the particular video content and the similarity of the
scenes as well as on the bitrate setting. We perform a simple first test by finetuning a single model
on the entire Big Buck Bunny video, a 10 min video (14315 frames) with multiple scenes united by
a common style. The results in the right panel of Fig. 9 show that such a single finetuned model
leads to clear RD improvements over the global SSF model. However, in the large-bitrate region
these improvements are smaller than the gains we achieve by finetuning on the BBB-E and BBB-H
scenes individually.
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Figure 11: Model bitrate allocation for our InstA-SSF18 (left) and InstA-SSF5 (right) model. We
show how the model rate is distributed across each autoencoder (columns) and submodule (rows).
All plots use a grid of the same size, where width corresponds to the number of parameters in that
module, height corresponds to the average bits/parameter used for updating that module, and area
corresponds to total number of bits allocated for that module (each block in the grid has an area of
12.5 kB). Results are averaged over all values of β and all datapoints in the UVG-1k and HEVC
class B dataset.

I ETHICS STATEMENT

Video compression affects the life of millions of people and any algorithm and model should be
carefully analyzed for potential ethical issues before deployment. In particular, it is important to
check for harmful biases, which may be due to imbalanced training data, but can also be caused
or exacerbated by algorithmic choices. To some extent, the instance-adaptive video compression
method we are proposing may be helpful in combating such biases, as it can improve the compres-
sion performance on data that is different from typical samples in the training set. However, it cannot
solve the problem entirely, as more pronounced instance adaptation will increase the bitrate.

The environmental impact of our research is also relevant. The energy cost of our experiments
directly contributes to the climate catastrophe. In the long term, our work may also have a beneficial
aspect, as it allows us to lower the bitrate and thus the energy cost of video streaming, which already
now make up the majority of internet traffic.

J REPRODUCIBILITY STATEMENT

Our instance-adaptive video compression algorithm is described in detail in Sec. 3. The most com-
plex components are the base compression models, which are described in more detail in the ref-
erences we cite as well as in appendix C. With the details we provide, instance-adaptive video
compression can be implemented and used for any base model with relatively little effort. Finally,
in the supplementary material we provide the performance of the various methods on each video
sequence as a CSV file to aid comparisons.
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