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Abstract

Recent work in scientific machine learning (SciML) has focused on incor-
porating partial differential equation (PDE) information into the learning
process. Most of this work has focused on relatively “easy” PDE operators
(e.g., elliptic and parabolic), with less emphasis on relatively “hard” PDE
operators (e.g., hyperbolic). Within numerical PDEs, the latter need to
maintain a type of volume element or conservation constraint for a desired
physical quantity, which is known to be challenging. Delivering on the
promise of SciML requires seamlessly incorporating both types of problems
into the learning process. To address this issue, we propose ProbConserv,
a framework for incorporating constraints into a black-box probabilistic
deep-learning architecture. To do so, ProbConserv combines the integral
form of a conservation law with a Bayesian update. We demonstrate the
effectiveness of ProbConserv via a case study of the Generalized Porous
Medium Equation (GPME), a parameterized family of equations that in-
cludes both easier and harder PDEs. On the challenging Stefan variant
of the GPME, we show that ProbConserv seamlessly enforces physical
conservation constraints, maintains probabilistic uncertainty quantification
(UQ), and deals well with shocks and heteroscedasticity. In addition, it
achieves superior predictive performance on downstream tasks.

1 Introduction

Partial differential equations (PDEs) that model physical phenomena ranging from heat
transfer to flow dynamics are classified into three groups: parabolic, elliptic, and hyperbolic.
While solutions to simple parabolic and elliptic problems are smooth and diffusive (Figure
1(a)), solutions to hyperbolic problems can be sharp (Figure 1(b)) or even discontinuous
(Figure 1(c)) (Evans, 2010).

The Generalized Porous Medium Equation (GPME) is a family of equations that exhibit
both parabolic (easy) and hyperbolic (hard) behaviors. Originally developed to model the
density of fluids through porous media, the GPME has been used in several applications, such
as underground flow transport, non-linear heat transfer, and water desalination (Vázquez,
2007). For a particular non-linear pressure function k(u), the PDE of the density function u
is given as:

ut −∇ · (k(u)∇u) = 0. (1)
Figure 1 illustrates the differences between the solution profiles of the GPME with different
k(u). Figure 1(a) shows the solution for k(u) = 1 with a sine initial condition. Figure 1(b)
shows a solution to the Porous Medium Equation (PME) subclass of the GPME where
k(u) = um. Here, we show m = 3, where a constant zero initial condition develops a sharp
gradient that does not dissipate over time. Lastly, Figure 1(c) illustrates an example of
the hard Stefan problem sub-class of the GPME where k(u) is a nonlinear discontinuous
step-function of the unknown u defined by the unknown value u⋆ = u(t, x⋆(t)) = 0.5 at the
discontinuity x⋆(t), where the solution evolves as a rightward moving shock over time.

∗Work completed during internship at AWS AI Labs.
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Figure 1: Paradigm of easy to hard PDEs as illustrated from the GPME family of equations:
(a) easy parabolic smooth heat equation solutions with constant parameter k = 1; (b)
degenerate parabolic Porous Medium Equation (PME) solutions with nonlinear monomial
coefficient k(u) = u3 with parameter m = 3; (c) hard hyperbolic-like (degenerate parabolic)
sharp Stefan solutions with nonlinear step-function parameter defined by constant u∗ at
various times.

Writing the flux as F (u) = −k(u)∇u, Equation 1 can be written as a conservation law
ut + ∇ · F (u) = 0, which implies conservation of mass. Respecting conservation laws is
critical to obtain a solution to challenging hyperbolic problems. For example, finite volume
methods have been developed for hyperbolic conservation laws (LeVeque, 1990; 2007). In
hard degenerate parabolic problems that can have hyperbolic-like behavior such as Stefan,
it is critical to accurately estimate the shock speed, position, and be volume conservative
(Maddix et al., 2018).

Recently, there have been several works in scientific machine learning (SciML) focused on
studying partial differential equation (PDEs) using deep learning. These works include
Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019), which uses a neural network
to approximate the PDE solution and Neural Operators (NOs) (Li et al., 2021; Gupta et al.,
2021) that aim to learn the underlying continuous function map. These works have mainly
focused on solving smooth and nicely-behaved PDEs, e.g., elliptic and parabolic operators,
for which finite difference and finite element methods are appropriate with less emphasis
on relatively “hard” PDE operators e.g., hyperbolic operators, for which more sophisticated
finite volume methods are necessary. In contrast, these deep learning solutions have no
guarantee that the physical property of volume conservation is satisfied, and can violate the
governing conservation law.

To address the lack of guarantee of satisfying conservation by deep learning models, we
propose ProbConserv, a framework for incorporating physical constraints into a black-box
deep-learning architecture. ProbConserv consists of two steps. In the first step, we choose
the Attentive Neural Process (ANP) (Kim et al., 2019) as our black-box, data-driven model,
and we refer to this instantiation of our framework as ProbConserv-ANP. In particular,
given sparse context points, the ANP outputs a conditional probability distribution on the
remaining target points. In the second step, we treat this distribution as a prio and formulate
conservation of mass as a Bayesian update, leading to a conservative posterior predictive
distribution. We illustrate our method on the Stefan variant of the GPME by enforcing
global conservation of mass, and show reduction of mean squared error (MSE), improved
adherence to the global mass, and better estimation of the shock position compared to the
other baselines.

2 ProbConserv

ProbConserv consists of two steps. First, a data-driven ML model predicts the mean
and covariance of the unknown function at a discrete set of points. Second, this mean and
covariance are updated to respect the conservation law via a Bayesian update. These steps
are summarized in Figure 2, where the Attentive Neural Process (ANP) is used as the Step 1
model.
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Figure 2: Schematic of each component of ProbConserv-ANP.

Step 1: Unconstrained Probability Distribution In Step 1 of ProbConserv, we
use a supervised black-box model to infer the mean and covariance Σ of the unknown
function u from observed data D. For example, D can include values of the function u
observed at a small set of points. Over a set of N input points (t1, x1), . . . , (tN , xN ), the
probability distribution of u := [u(t1, x1), . . . u(tN , xN )] ∈ RN conditioned on data D has
mean µ := E(u|D) and covariance Σ := Cov(u|D) given by the black-box model fθ, i.e.,

µ,Σ = fθ ((t1, x1), . . . , (tN , xN );D) . (2)

This framework is general, and there are possible choices for the model in Equation 2.
Gaussian Processes (Rasmussen & Williams, 2006) are a natural choice, assuming that one
has chosen an appropriate mean and kernel function for the specific problem. The ANP
model (Kim et al., 2019), which uses a transformer architecture to encode the mean and
covariance, is another choice. A third option is to perform repeated runs, e.g., with different
initial seeds, of non-probabilistic black-box NN models to compute empirical estimates of
mean and variance parameters.

Step 2: Enforcing Conservation Constraint In Step 2 of ProbConserv, we incor-
porate knowledge of the total mass in the spatial domain Ω at time t, written b(t). This is
related to the function u via a linear operator Gu:

Gu(t, x) =
∫
Ω

u(t, x)dΩ =

∫
Ω

h(x)dΩ−
∫ t

0

∫
Γ

F (u) · ndΓdt = b(t). (3)

Here, h(x) := u(0, x) is the initial condition, F (u) is the flux, and Γ is the boundary of the
spatial domain Ω. Since G is a linear operator, Equation 3 can be discretized to match the
output of Step 1:

b = Gu+ σGϵ, (4)

where G denotes a matrix approximating the linear operator G, b denotes a vector of observed
constraint values, and ϵ denotes a noise term, where each component has unit variance.
The parameter σG ≥ 0 controls how much the conservation constraint can be violated,
with σG = 0 enforcing exact adherence. Step 2 outputs the following updated mean µ̃ and
covariance Σ̃ that respect conservation, given as:

µ̃ = µ− ΣGT (σ2
GI +GΣGT )−1(Gµ− b), (5a)

Σ̃ = Σ− ΣGT (σ2
GI +GΣGT )−1GΣ, (5b)

where µ and Σ denote the mean and covariance matrix, respectively, from Step 1 (Equation 2).

The update rule given in Equation 5 can be justified from two complementary perspectives.
From a Bayesian probabilistic perspective, Equation 5 is the posterior mean and covariance of
the predictive distribution of u after incorporating the information given by the conservation
constraint via Equation 4. From an optimization perspective, Equation 5 is the solution to a
least-squares problem that places a binding inequality constraint on the conserved quantity
Gu (i.e., ∥Gu− b∥2 ≤ c for some c ∈ (0, ∥Gµ− b∥2)).
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Figure 3: Solution profile and posterior shock position for the Stefan problem.

Table 1: Mean and standard error for CE ×10−2 (should be zero), LL (higher is better), and
MSE ×10−3 (lower is better) for the Stefan problem at time t = 0.05.

CE LL MSE

ANP -1.30 (0.01) 3.53 (0.00) 5.38 (0.01)
SoftC-ANP -1.72 (0.04) 3.57 (0.01) 6.81 (0.15)
HardC-ANP 0 (0.00) 2.33 (0.06) 5.18 (0.02)

ProbConserv-ANP 0 (0.00) 3.56 (0.00) 1.89 (0.01)

3 Experiments: Stefan Problem

We evaluate the performance of ProbConserv-ANP on the Stefan variant of the Generalized
Porous Medium Equation (GPME) in Equation 1 with nonlinear discontinuous coefficient
k(u) = 1u≥u⋆ for indicator function 1 and shown in Figure 1(c). We compare to the
unconstrained ANP, and two additional physics-based models. SoftC-ANP includes
the differential form as a soft constraint as done in PINNs (Raissi et al., 2019). HardC-
ANP projects the solution from the end of Step 1 to the nearest globally-conservative solution
in L2, inspired by Négiar et al. (2023).

We train the ANP from Kim et al. (2019) on N = 10, 000 independent function samples with
u⋆ ∈ [0.55, 0.7]. Each function sample has ND = 100 context points and Ntrain = 100 target
points. After training, ProbConserv-ANP is utilized to set G to conserve global mass.
The global mass is taken from the true solution profile. We set the noise to σ2

G = 0; i.e.
exact conservation is enforced. At test-time, we evaluate our ProbConserv-ANP and the
baselines over ntest = 50 independent context sets, each with ND = 100 points, drawn from
the solution at parameter value u⋆ = 0.6, which is inside the training set. We reconstruct the
solution over a 201× 201 grid of equally-spaced target points in time and space. Compared
to the baseline ANP, ProbConserv-ANP leads to an increase in log-likelihood and a 3×
decrease in MSE.

In addition to MSE and LL, we also explore the impact of enforcing global conservation
on the downstream task of shock point estimation. Define the shock point at time t as the
first spatial point (left-to-right) where the function equals zero: x⋆(t) ≡ infx{u(t, x) = 0}.
To practically compare the estimated shock point on discrete estimates, we replace the
infimum with a minimum over the discrete grid points. We can directly estimate the
posterior distribution of x⋆(t) by drawing samples from the posterior distributions from
ProbConserv-ANPand the baselines.

We show histograms of the posteriors of the shock position for t = 0.05 in Figure 3(b). Even
though the underlying parameter is inside the training range (u⋆ = 0.6), the ANP and other
baselines underestimate the true shock position. After enforcing global conservation of mass,
the ProbConserv-ANP posterior is centered around the true mass value.

4 Conclusion

ProbConserv-ANP harnesses the flexibility of black-box neural processes while maintaining
physical viability. This is accomplished by framing the problem probabilistically, offering a
coherent way to combine information coming from both data and knowledge of underlying
conservation laws.
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