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Abstract

Ratio-based biomarkers – such as the proportion of necrotic tissue within a tumor –1

are widely used in clinical practice to support diagnosis and treatment planning.2

In automated clinical workflows, these biomarkers are typically estimated from3

segmentation outputs by computing region-wise ratios. However, the pointwise4

estimate captures no uncertainty measurement. To address this, we propose CARE,5

a confidence-aware ratio estimation framework considering the error propagation6

in the segmentation-to-biomarker pipeline. Specifically, we leverage tunable pa-7

rameters to control the confidence level of the derived bounds. Experiments show8

that our method produces statistically sound confidence intervals, with tunable9

confidence levels, enabling more trustworthy application of predictive biomarkers10

in clinical workflows.11

1 Introduction12

Ratio-based biomarkers are widely utilized across various organs and imaging modalities as shown in13

Fig. 1a. For example, the necrosis-to-tumor ratio (NTR) [Henker et al., 2019, 2017] quantifies the14

proportion of necrotic (non-viable) tissue within a tumor. A straightforward method for computing15

these ratios involves using segmentation models to identify the subregion and the whole foreground16

region, and then calculating the ratio based on averaged softmax confidence scores over these17

regions. However, the interpretation of this point estimate can change once the confidence interval18

is considered, as illustrated in Fig. 1b. With a clinical threshold of 0.25 for initiating aggressive19

treatment, point estimates (case 1) alone suggest that Patient A would receive aggressive treatment20

(high ratio), whereas Patient B would receive mild treatment (low ratio). However, if the associated21

confidence interval spans the decision threshold (case 2), the estimation is flagged for mandatory22

expert review to mitigate potential misdiagnosis risk. Such double-check procedures are essential in23

clinical practice, as they provide an additional safeguard for patients and enhance the robustness of24

downstream decision-making.25

To provide confidence measures for double-check, we propose CARE, the first confidence-aware26

estimation framework specifically for ratio-based biomarkers. CARE have several key advantages:27

i) guaranteed coverage, i.e., the actual coverage probability of containing the true ratio is greater28

than the stated nominal confidence level; ii) instance-wise adaptiveness, i.e., providing dynamic29

intervals that capture varying uncertainty degrees; iii) tunable confidence level with user-controlled30

tightness; iv) applicable as a plug-in module to any pretrained NN requiring neither architectural31

modifications nor training from scratch; v) computationally efficient, avoiding multiple sampling or32

repeated forward passes.33
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Figure 1: Medical background of ratio estimation and its role in clinical support. (a): Ratio-based
biomarkers exist in many organs and modalities. (b): An illustrative example. CARE calls for human
check when the confidence interval crosses the predefined threshold.

2 CARE: Confidence-aware Ratio Estimation34

The confidence intervals of CARE are constructed by combining two uncertainty sources by Boole’s35

inequality [Boole, 1854, Dohmen, 2003]: i) an estimation-based confidence interval for the ratio36

estimator using Markov inequality [Resnick, 2003]; ii) a calibration-based interval to measure the37

prediction error from networks using conformal prediction [Shafer and Vovk, 2008].38

Proposition 2.1 (Estimation-based Confidence Interval). Given an estimator r̂ = ȳ
x̄ of the fraction39

r = E[y]
E[x] with random variables x and y, it holds with at least 1− α probability that40

r ∈ [r̂ − βr,α, r̂ + βr,α] , (1)

where βr,α :=
√
SEr̂√
α

as the bound’s half-width, and SEr̂ := E
[
(r̂ − r)

2
]

as expected squared error.41

Proposition 2.2 (Calibration-based Confidence Interval). Consider a segmentation model g(z) =42

(gA(z), gB(z)) with the random variable z representing pixel inputs of instance I , and targets yA43

and yB . On a validation (calibration) set Dcal, define qA,δ/2 and qB,δ/2 as the 1− δ/2 quantile of44

the instance-wise volume bias or calibration errors of gA and gB . Then, it holds with at least 1− δ45

probability that46

E [yA | I]
E [yB | I]

∈
[
E [gA(z) | I]
E [gB(z) | I]

− ϵl,δ,
E [gA(z) | I]
E [gB(z) | I]

+ ϵu,δ

]
, (2)

where ϵl,δ := E[gA(z)]
E[gB(z)] −

E[gA(z)]−qA,δ/2

E[gB(z)]+qB,δ/2
, ϵu,δ :=

E[gA(z)]+qA,δ/2

E[gB(z)]−qB,δ/2
− E[gA(z)]

E[gB(z)] are the widths of the47

lower and upper calibration bounds, respectively.48

Inspired by [Popordanoska et al., 2021], we offer two variants that allow clinicians to select either49

conservative or informative intervals. Specifically, informative CARE (V-Bias) takes the quantile of50

volume bias (|V-Bias|), and conservative CARE (ECE) considers ECE [Guo et al., 2017] quantiles. To51

combine both intervals, we make the following statement, which is analogous to multiple testing.52

Proposition 2.3 (Overall Confidence Interval). Assume we have a ratio estimator r̂ =
∑

i gA(zi,I)∑
i gB(zi,I)

53

for pixel measurements {zi,I}ni=1 of an instance I based on neural network outputs g(zi,I) =54

(gA(zi,I), gB(zi,I)). Let yA and yB be the instance-wise target random variables. Then, it holds55

with at least 1− α− δ probability that56

E [yA | I]
E [yB | I]

∈
[∑

i gA (zi,I)∑
i gB (zi,I)

− ϵl,δ − βr,α,

∑
i gA (zi,I)∑
i gB (zi,I)

+ ϵu,δ + βr,α

]
, (3)

where βr,α is defined as in Prop. 2.1 and ϵl,δ, ϵu,δ as in Prop. 2.2.57

The interval width w = Bu − Bl measures the uncertainty level, as a result, a wide interval over58

thresholds alarms for manual examination. In experiments, we alternate through various α and δ for59

a fixed α+ δ with grid search to observe the impact on the interval width. This way, we can choose60

the smallest interval under a desired coverage rate.61
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3 Experiments62

Setup. We evaluate CARE and Conformal Prediction on MSD-Task01 [Antonelli et al., 2022] with 463

segmentation models: nnUNet2d, 3d [Isensee et al., 2021], nnFormer [Zhou et al., 2021] and UNETR++64

[Zhou et al., 2021]. The nested five-fold cross-validation is implemented: four folds for training65

(90%) and validation (10%), and the remaining one fold for testing.66

Table 1: Comparison of the coverage guarantee on C = 0.68.
Coverage (%) nnUNet2d nnUNet3d nnFormer UNETR++

Conformal Prediction 71.34±2.00 67.01±3.57 67.39±1.66 65.75±2.16

CARE (V-Bias) 93.61±1.14 86.60±1.49 81.92±1.31 76.43±2.21

CARE (ECE) 94.22±0.99 93.61±0.71 87.94±0.97 89.58±1.02

Figure 2: Coverage comparison
across confidence levels.

Coverage guarantee. We report coverage rate (%) at 0.68 confi-67

dence level in Table 1, which measures the proportion of samples68

whose true values fall within the confidence intervals. Empir-69

ically, our intervals show higher likelihoods of satisfying the70

prescribed confidence level of 0.68. We show more confidence71

thresholds on nnUNet3d in Fig. 2. Our method is flexibly tun-72

able and consistently achieves coverage rates above the desired73

confidence levels.74

Adaptivity. The confidence interval should be sample-adaptive75

to identify unreliable predictions effectively. We demonstrate this76

capability by examining the "dataset-level" interval distribution77

in Fig. 3. As observed, the results from Conformal Prediction lie78

within a narrow range and thus fail to effectively indicate which79

samples are unreliable. In contrast, CARE produces intervals that80

vary significantly in width. Given an interval width threshold, our method can effectively trigger81

alarms for cases with wide intervals (indicating high uncertainty), instead of giving uniformly narrow82

confidence ranges.83
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Figure 3: Comparison of interval distribution on C = 0.68. We report the frequency histogram of
NTR intervals, where CARE triggers a human-check alarm for wide intervals.

4 Conclusion84

We propose CARE, a confidence-aware framework for estimating ratio-based biomarkers from85

segmentation network outputs. Our method addresses a common limitation of prior works that86

focus solely on point estimates without confidence guarantees. We disentangle two key sources87

of uncertainty, i.e. network prediction error and statistical bias. Our framework offers several88

practical advantages: it operates as a model-agnostic plugin module, provides sample-level adaptive89

uncertainty estimates in a single forward pass without requiring multiple sampling, and allows users90

to flexibly adjust confidence levels. In summary, this work represents an important step toward91

trustworthy deployment of deep learning in clinical settings by providing practitioners with both92

accurate biomarker estimates and reliable confidence bounds.93
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5 Limitations and Acknowledgements94

Despite the practical advantages, our work assumes that the validation and test sets are drawn from95

the same distribution. Although it is standard in supervised learning settings, but may not hold under96

domain shifts due to differences in scanners, acquisition protocols, or patient populations. As a97

result, our confidence interval may not remain valid in these scenarios. Addressing this challenge98

with label-free calibration error estimators (e.g. Wang et al. [2020], Popordanoska et al. [2024]) is a99

promising direction for future work.100
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