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ABSTRACT

Deep generative models can create remarkably photorealistic fake images while
raising concerns about misinformation and copyright infringement, known as
deepfake threats. Deepfake detection technique is developed to distinguish be-
tween real and fake images, where the existing methods typically learn classifiers
in the image domain or various feature domains. However, the generalizability
of deepfake detection against emerging and more advanced generative models
remains challenging. In this paper, being inspired by the zero-shot advantages
of Vision-Language Models (VLMs), we propose a novel approach called An-
tifakePrompt, using VLMs (e.g., InstructBLIP) and prompt tuning techniques to
improve the deepfake detection accuracy over unseen data. We formulate deep-
fake detection as a visual question answering problem, and tune soft prompts for
InstructBLIP to answer the real/fake information of a query image. We conduct
full-spectrum experiments on datasets from a diversity of 3 held-in and 20 held-out
generative models, covering modern text-to-image generation, image editing and
adversarial image attacks. These testing datasets provide useful benchmarks in the
realm of deepfake detection for further research. Moreover, results demonstrate
that (1) the deepfake detection accuracy can be significantly and consistently im-
proved (from 71.06% to 92.11%, in average accuracy over unseen domains) using
pretrained vision-language models with prompt tuning; (2) our superior perfor-
mance is at less cost of training data and trainable parameters, resulting in an
effective and efficient solution for deepfake detection.

1 INTRODUCTION

In recent years, we have witnessed the magic leap upon the development of deep generative models,
where the cutting-edge models such as Stable Diffusion (Rombach et al., 2022), DALLE-2 (Ramesh
et al., 2022), and DALLE-3 (OpenAI, 2023) have become capable of producing high-quality images,
ranging from beautiful artworks to incredibly realistic images.

However, the progress of such image synthesis technique, which is called “deepfake”, poses real
threats to our society, as some realistic fake images could be produced to deceive people and spread
false information. For example, images of the war in Ukraine could be generated with false or
misleading information and may be used for propaganda1. More concerningly, some of these created
images may be falsely claimed as works of photographers or artists, potentially leading to copyright
infringements and their misuse in commercial contexts. As BBC reported, some fake artworks
generated by text-to-image generation models won first place in an art competition, harming the
fairness of the contest2. To protect against these threats arising from deepfake content, the use of
effective deepfake detection techniques becomes crucial. These techniques help distinguish real
content from manipulated images, serving as a vital defense against deception and safeguarding
intellectual property rights in the digital era.

∗Both authors contribute equally
1https://techcrunch.com/2022/08/12/

a-startup-wants-to-democratize-the-tech-behind-dall-e-2-consequences-be-damned/
2https://www.bbc.com/news/technology-62788725
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One straightforward deepfake detection prototype is to train a classifier to distinguish between real
and fake images (Wang et al., 2020; Guarnera et al., 2023; Yu et al., 2019). However, along with
the rapid development of generative models, this approach often struggles with overfitting, thus
leading to poor performance on unseen data from emerging generators. To overcome this limitation,
researchers are exploring more general features in deepfake images, such as frequency maps of the
images (Zhang et al., 2019b). Additionally, some innovative methods are not only based on visual
features. For example, DE-FAKE (Sha et al., 2022) harnesses the power of large language models
and trains a classifier that conditions on both visual and textual information.

Despite years of development in deepfake detection techniques, challenges persist. First, most pre-
vious works such as (Wang et al., 2020) have concentrated on Generative Adversarial Networks
(GANs), which may not effectively address the latest diffusion-based generative models including
Stable Diffusion (Rombach et al., 2022) (SD), Stable Diffusion-XL (Podell et al., 2023) (SDXL),
DALLE-2 (Ramesh et al., 2022), DeepFloyd IF (StabilityAI, 2023). Second, generalizability re-
mains a significant challenge. Classifiers trained on images generated by one model tend to perform
poorly when being tested on images from different generative models, especially from more emerg-
ing and advanced ones.

To address the aforementioned challenges and to utilize the strong generality of LLMs, we have
harnessed the zero-shot capabilities of pretrained vision-language models (Li et al., 2022; 2023; Zhu
et al., 2023; Liu et al., 2023b; Dai et al., 2023) to capture more general instruction-aware features
from images, enhancing the transferability of our proposed deepfake detector, AntifakePrompt.
We formulate the deepfake detection problem as a Visual Question Answering (VQA) task, asking
the model with the question “Is this photo real?”, to tackle this challenge. However, directly asking
questions for a pretrained VLM may not lead to effective answers, considering either the query
images or questions are unseen during VLM training. We therefore use prompt tuning to boost
the performance. Without loss of generality, we build implementation on the recent state-of-the-
art VLM, InstructBLIP (Dai et al., 2023). Specifically, we insert a “pseudo-word” into the prompt
and optimize the corresponding word embedding in the model for correctly answering “Yes” and
“No” to the question for real and fake images on training data, respectively. AntifakePrompt not
only significantly reduces training costs but also substantially improves performance on both held-
in and held-out testing datasets from a full spectrum of generative models. From the perspective of
instruction tuning, we realized that there are many good answers, all waiting for a good question. In
summary, our paper makes the following key contributions:

1. We pioneer to leverage pretrained vision-language models to solve the deepfake detection
problem. We are the first to formulate the problem as a VQA scenario, asking the model
to distinguish between real and fake images. Additionally, we employ soft prompt tuning
techniques to optimize for the most effective question to the VLMs, and leverage their
zero-shot generalizability on unseen data produced by held-out generative models.

2. We meticulously curate 23 testing datasets, encompassing six frequently encountered deep-
fake scenarios and diverse real images to evaluate the generalizability and effectiveness of
baseline methods and our proposed detector, AntifakePrompt. These datasets can also serve
as benchmarks for future advancements in deepfake detection.

3. Our detector consistently outperforms the recent baseline methods proposed in (Ricker
et al., 2022; He et al., 2016; Liu et al., 2024; Wang et al., 2020; Sha et al., 2022; Wang
et al., 2023b; Wu et al., 2023; Le & Woo, 2023) over held-out datasets generated by a full
spectrum of generator categories. Our superior performance and generalizability benefit
from the nature of pretrained VLMs, and at less cost of training data and trainable parame-
ters.

2 RELATED WORK

2.1 VISUAL GENERATIVE MODELS

The recent advance of deep generative models can be broadly categorized into two main types:
Generative-Adversarial-Networks-based (GAN-based) models and diffusion-based models. Within
the realm of GAN-based model, notable progress has been made. Starting from GAN (Goodfellow
et al., 2014), SA-GAN (Zhang et al., 2019a) and BigGAN (Brock et al., 2018) contributed to the
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enhancement of training stability and the generation of diverse images with higher resolution. Sub-
sequently, StyleGAN (Karras et al., 2019) and its successors (Karras et al., 2020; 2021) have allowed
for finer control over the stylistic attributes of the generated images while maintaining high image
quality. Building upon StyleGAN-3 and ProjectGAN (Sauer et al., 2021), StyleGAN-XL (Sauer
et al., 2022) (SGXL) is able to generate 1024×1024 images with even lower Fréchet Inception Dis-
tance (FID) scores and higher Inception Scores (IS), w.r.t. all its predecessors.

In regard to the diffusion-based models, starting from DDPM (Ho et al., 2020), DDIM (Song et al.,
2020) speeds up the generating process by relaxing the constraint of Markov Chain towards forward
and backward processes. Latent Diffusion (Rombach et al., 2021) and Stable Diffusion (Rombach
et al., 2022) (SD) further shift the diffusion process to latent space, granting user controls over
the models; thus, it flexibly enables the text-to-image generation through diffusion-based models.
Building upon this foundation, several seccessors (e.g., SDXL (Podell et al., 2023), DeepFloyd
IF (StabilityAI, 2023), , DALLE-2 (Ramesh et al., 2022), and DALLE-3 (OpenAI, 2023)) further
refine the text comprehension capabilities of diffusion-based models, enabling them to create images
that better align with input texts.

Apart from text-to-image generation, image editing tasks, such as inpainting and super resolution,
are also widely-used applications of generative models. Notably, (Suvorov et al., 2022; Rombach
et al., 2022) have demonstrated exceptional performances in the domain of image inpainting, while
(Rombach et al., 2022; Chen et al., 2021) are known for their remarkable performances in image
super resolution.

Without the loss of representativeness, we select a diverse set of generative models (namely SD2
, SD3 (Rombach et al., 2022), SDXL, IF, DALLE-2, DALLE-3, SGXL, ControlNet (Zhang &
Agrawala, 2023), LaMa (Suvorov et al., 2022), LIIF (Chen et al., 2021), SD2 inpainting model,
SD2 super resolution model), GLIDE (Nichol et al., 2021), Playground (Li et al., 2024) to cover
the full spectrum of generation tasks, and generate corresponding fake images for conducting our
experiments.

2.2 DEEPFAKE DETECTION METHODS

Recent advances in detection methods have focused on training detectors capable of identifying
artifacts specific to certain types of generative models. For example, (Wang et al., 2020; Nataraj
et al., 2019; Yu et al., 2019; Ricker et al., 2022; Wang et al., 2023b; Wu et al., 2023; Ma et al., 2023;
Lorenz et al., 2023) leverage artifacts from synthesized images generated by GANs or diffusion
models, (Zhang et al., 2019b; Giudice et al., 2021; He et al., 2021) concentrate on artifacts in the
frequency domain, and (Le & Woo, 2023) also study the detection of low-quality or low-resolution
fake images. These methods have reported outstanding performance on images generated by the
seen models, but they often suffer from significant drops in performance when being applied to
unseen datasets. Therefore, we aim to propose a general detector that can demonstrate exceptional
performance on both held-in and held-out datasets.

2.3 VISION-LANGUAGE MODELS AND VISUAL QUESTION ANSWERING

With the impressive success of Large Language Models (LLM), recent studies work on Vision-
Language Models (VLMs) to improve multimodal comprehension and generation through utilizing
the strong generalizability of LLMs. These models takes advantage of cross-modal transfer, allow-
ing knowledge to be shared between language and multimodal domains. BLIP-2 (Li et al., 2023)
employing a Flan-T5 (Chung et al., 2022) with a Q-former to efficiently align the visual features
with language model. InstructBLIP (Dai et al., 2023) also utilizes the pretrained visual encoder
and Q-former from BLIP-2, with Vicuna/Flan-T5 as pretrained LLM, but performs instruction tun-
ing on Q-former using a variety of vision-language tasks and datasets. LLaVA (Liu et al., 2023b)
projects the output of a visual encoder as input to a LLaMA/Vinuca LLM with a linear layer, and
finetunes the LLM on vision-language conversational data generated by GPT-4 (OpenAI, 2023)
and ChatGPT. CogVLM (Wang et al., 2023a) finetunes extra modules added in each layer of the
transformer-based language model (i.e., Vicuna7B (Chiang et al., 2023)), where these extra mod-
ules named “visual expert” are composed of the QKV matrices and MLP layers identical to those
in the original transformer, to enable better alignment of language embeddings with respect to the
visual features extracted by vision transformer.
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Among the vision-language tasks, visual question answering (VQA) problem is one of the most
general and practical tasks because of its flexibility in terms of the questions. For training the
models for VQA problems, lots of datasets have been proposed. VQAv2 (Goyal et al., 2017) and
VizWiz (Gurari et al., 2018) collect images, questions, as well as the corresponding answers for
studying visual understanding. OKVQA (Marino et al., 2019) and A-OKVQA (Schwenk et al.,
2022) propose visual question-answer pairs with external knowledge (e.g., Wikipedia). On top of
that, the aforementioned VLMs can also be potential solutions, as they have strong multimodal
comprehension and generality.

Given the remarkable multimodal capabilities of VLMs, we have harnessed their potential to address
the deepfake detection challenge. Therefore, we formulate the deepfake detection method as a VQA
problem to take advantage of the capabilities of these VLMs.

Furthermore, as (Chen et al., 2023; Zou et al., 2023; Deng et al., 2022; Zhang et al., 2022) concluded,
prompt tuning offers an approach to enabling Langnuage Models (LMs) to better understand user-
provided concepts, and improves the alignments between generated images and the input prompts
when applied to text-to-image generative models (Wen et al., 2023; Gal et al., 2022). Inspired by
these findings, we apply prompt tuning atop InstructBLIP to optimize an instruction that can more
accurately describe the idea of differentiating real and fake images, resulting in better performance.

3 ANTIFAKEPROMPT

3.1 PROBLEM FORMULATION

In order to take advantage of the vision-language model, we formulate the deepfake detection prob-
lem as a visual question answering (VQA) problem. In this framework, the input consists of a query
image I that needs to be classified as real or fake and a question prompt q. The prompt can be either
a preset question (e.g., “Is this photo real?”) or a tunable question that includes the pseudo-word
S∗. The output of this framework corresponds to the answer texts y. While y in principle can be any
texts, we constrain it to two options: “Yes” and “No” during testing, aligning with the answer ground
truth to the original binary classification problem. We choose the option with a higher probability
from the VLM as the answer, where the model capability is evaluated by classification accuracy.

In summary, the deepfake detection task can be formulate as a VQA task, which is defined as:

M(I, q) 7→ y (1)

where M is an VLM and we adopt InstructBLIP for building our method, and the text output y ∈
{“Yes”, “No”} corresponds to the binary results of deepfake detection.

3.2 PROMPT TUNING ON INSTRUCTBLIP

As discussed in (Dai et al., 2023), the prompt plays an essential role in VQA problem, and asking the
preset question leads to ineffective performance on unseen data. Therefore, we employ soft prompt
tuning on InstructBLIPfollowing the procedure below. The reason why we choose InstructBLIP as
our backbone model is described in paragraph 1 of section 4.2.

Within InstructBLIP, two components receive the prompt as input: Q-Former and the Large Lan-
guage Model (LLM). As shown in fig. 1, the prompt first gets tokenized and embedded, and then is
fed into Q-Former and the LLM in parallel. We introduce a pseudo-word S∗ into the prompt, which
serves as the target for soft prompt tuning. Specifically, we adopt the question template, “Is this
photo real?” and append the pseudo-word to the end of the prompt, resulting in the modified prompt
q∗: “Is this photo real S∗?”. As the prompt has been decided, we give the output label ŷ = “Yes”
for real images and ŷ =“No” for fake images in order to perform soft prompt tuning.

We freeze all parts of the model except for the word embedding v of the pseudo-word S∗, which is
randomly initialized. Then we optimize the word embedding v∗ of the pseudo-word over a training
set of triplet {I, q∗, ŷ} with respect to the language modeling loss, expecting the VLM output y to
be the label ŷ. Hence, our optimization goal can be defined as:

S̃∗ = argmin
S∗

E(I,ŷ)L(M(I, “Is this image real S∗”), ŷ) (2)
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Figure 1: Prompt tuning on InstructBLIP (Dai et al., 2023) for deepfake detector training. An
instruction containing a pseudo-word S∗ is first converted into tokens. These tokens are converted to
continuous vector representations (the “embeddings”, v). Then, the embedding vectors are fed into
Q-former and LLM with the image features extracted by the image encoder. Finally, the embedding
vectors v∗1 and v∗2 are optimized using language modeling loss, expecting the output to be “Yes”
for real images and “No” for fake images.

where L is the language modeling loss function. Since we actually optimize the embedding v∗ for
the pseudo-word S∗, with noting the concatenation of embeddings for the original prompt (i.e. “’Is
this photo real”) to be vp, the equation can be rewritten as:

ṽ∗ = argmin
v∗

E(I,ŷ)L(M(I, [vp, v∗]), ŷ) (3)

As fig. 1 shows, it is crucial to highlight that the pseudo-word embedding fed into Q-Former v∗1
differs from that fed into the LLM v∗2, and we optimize these two embeddings independently. The
dimensions of v∗1 and v∗2 are 768 and 4096 respectively, so the number of trainable parameters
is 4864 in total. Compared to 23 million trainable parameters from ResNet-50 (He et al., 2016)
of (Wang et al., 2020) and 11 million trainable parameters from ResNet-18 (He et al., 2016) of
DE-FAKE (Sha et al., 2022), our method demonstrates superior cost-efficiency.

Implementation details. We use the LAVIS library3 for implementation, training, and evaluation.
To avoid the out-of-memory issue on small GPUs, we choose Vicuna-7B (Chiang et al., 2023), a
decoder-only Transformer instruction-tuned from LLaMA (Touvron et al., 2023), as our LLM. Dur-
ing prompt tuning, we initialize the model from instruction-tuned checkpoint provided by LAVIS,
and only finetune the word embedding of the pseudo-word while keeping all the other parts of
the model frozen. All models are prompt-tuned with a maximum of 10 epochs. We use AdamW
(Loshchilov & Hutter, 2017) optimizer with β1 = 0.9 and β2 = 0.999, batch size 6 and a weight
decay 0.05. We initially set the learning rate to 10−8, and apply a cosine decay with a minimum
learning rate of 0. All models are trained utilizing 4 NVIDIA RTX 3090 GPUs and completed within
10 hours. In terms of image preprocessing, all images are initially resized to have a length of 224
pixels on the shorter side while maintaining their original aspect ratio. During the training phase,
random cropping is applied to achieve a final size of 224 × 224 pixels, while images are center
cropped to a final size of 224 × 224 pixels in the testing phase.

4 EXPERIMENTS

To determine the optimal configuration for AntifakePrompt, we begin with a comparative analysis
of pretrained VLMs, such as CogVLM, as a pilot study to select the backbone for AntifakePrompt.

3https://github.com/salesforce/LAVIS
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Table 1: Ablation Studies: Each partition represents different ablation studies, namely “Position of
S∗ in tuned prompt”, “Prompt tuning for Q-former, LLM or both.”, and “Number of training data”
from left to right respectively. Entries are the accuracies of real and fake held-out datasets. The best
performances of each ablation study are in bold.

S* Position Variants Prompt Tuning for Number of Training Data
Replace Prefix Postfix Only Q-former Only LLM Both 90K 120K 150K 180K 15K 1.5K 0.15K

COCO 95.13 95.80 95.37 93.50 95.10 95.37 89.90 94.30 95.37 96.53 92.60 92.83 99.07
Flickr 86.20 89.57 91.00 92.27 85.57 91.00 80.37 89.10 91.00 92.23 92.03 94.10 99.73
SD2 95.80 97.27 97.83 97.93 95.77 97.83 98.33 97.53 97.83 97.37 92.17 75.67 33.17
SDXL 93.60 96.47 97.27 98.17 91.73 97.27 98.20 96.60 97.27 96.67 90.20 68.20 16.73
IF 87.33 88.77 89.73 88.47 85.23 89.73 92.87 89.20 89.73 88.43 75.80 58.17 16.30
DALLE-2 99.17 97.90 99.57 99.53 98.73 99.57 98.90 98.27 99.57 99.63 97.27 79.77 36.93
SGXL 98.37 99.87 99.97 94.80 97.80 99.97 99.93 99.90 99.97 99.93 97.97 90.63 56.73
GLIDE 95.47 99.97 99.17 98.37 97.33 99.17 99.33 99.47 99.17 99.23 97.30 95.57 98.93
ControlNet 99.70 89.43 91.47 89.33 84.90 91.47 94.60 91.03 91.47 90.43 81.27 67.50 26.17
DF 93.03 94.17 97.90 100.00 93.30 97.90 99.27 95.13 97.90 94.63 91.93 67.53 24.20
DFDC 99.97 100.00 100.00 100.00 98.30 100.00 100.00 100.00 100.00 100.00 99.83 95.20 97.47
FF++ 99.33 100.00 97.43 99.27 99.53 97.43 100.00 100.00 97.43 100.00 98.87 92.03 95.13
LaMa 33.40 40.33 39.03 37.67 31.37 39.03 49.80 41.03 39.03 36.87 34.73 30.80 8.90
SD2IP 78.63 84.67 85.20 77.50 77.77 85.20 89.63 85.13 85.20 84.27 73.93 67.57 40.53
LIIF 97.97 100.00 99.97 99.93 99.87 99.97 99.80 99.90 99.97 99.93 99.10 97.37 99.03
SD2SR 99.70 99.87 99.93 99.67 99.40 99.93 99.93 99.87 99.93 99.93 98.43 90.00 63.53
Adver. 90.43 93.53 96.70 97.53 86.03 96.70 98.40 97.87 96.70 94.83 84.07 29.57 3.97
Backdoor 86.00 93.13 93.00 97.97 83.47 93.00 96.40 96.00 93.00 91.50 82.57 25.93 2.40
Data Poisoning 86.63 87.43 91.57 95.23 83.50 91.57 94.97 95.37 91.57 90.57 74.53 11.87 1.43

Average 90.31 92.01 92.74 92.48 88.67 92.74 93.72 92.93 92.74 92.26 87.08 70.02 48.44

Subsequently, we conduct several ablation studies on a subset of testing datasets. Finally, we val-
idate AntifakePrompt with the identified optimal configuration for further comparison with SOTA
methods.

4.1 SETUP

Real datasets. We use Microsoft COCO (COCO) (Lin et al., 2014) dataset and Flickr30k (Young
et al., 2014) dataset. In our work, we selected 90K images, with shorter sides greater than 224, from
COCO dataset for the real images in the training dataset. Moreover, to assess the generalizability of
our method over various real images, we additionally select 3K images from Flickr30k dataset to
form a held-out testing dataset, adhering to the same criterion of image size.

Fake datasets. In order to evaluate the generalizability and robustness of our model to fake images
from emerging and unseen generators, our testing datasets include fake images from 18 different
generative models/datasets and 3 distinct attack scenarios, and each of the testing datasets com-
prises 3K images. We can mainly divide these images into six categories as follows: (1) Text-to-
images generation: SD2, SD3, SDXL, DeepFloyd IF, DALLE-2, DALLE-3, Playground, SGXL,
GLIDE, DiffusionDB (Wang et al., 2022b); (2) Image stylization: ControlNet; (3) Image inpaint-
ing: LaMa, SD2-Inpainting (SD2IP); (4) Super Resolution: LIIF, SD2-SuperResolution (SD2SR)
(5) Face Swap: DeeperForesics (DF) (Jiang et al., 2020), DFDC (Dolhansky et al., 2019), Face-
Forensics++ (FF++) (Rossler et al., 2019) (6) Image attacks: adversarial attack (Kim, 2020), back-
door attack (Li et al., 2021) and data poisoning attack (Geiping et al., 2020) (denoted as Adver.,
Backboor, and Data Poison., respectively). Please refer to appendix for the dataset generation de-
tails.

As for the fake images in the training dataset, it is important to note that we only include 30K
images generated by each of SD3 (SD2 for ablation studies) and SD2IP, forming a total 150K
training dataset. Empirical evidence demonstrates that AntifakePrompt, trained solely on these two
fake datasets and the real images from COCO dataset, exhibits excellent performance on all the
other datasets generated by held-out generative models.

Baselines. We compare our AntifakePrompt to several recent baseline models, i.e.,
Ricker2022 (Ricker et al., 2022), ResNet (He et al., 2016), FatFormer (Liu et al., 2024),
Wang2020 (Wang et al., 2020), DE-FAKE (Sha et al., 2022), DIRE (Wang et al., 2023b),
LASTED (Wu et al., 2023), QAD (Le & Woo, 2023), CogVLM (Wang et al., 2023a), Instruct-
BLIP (Dai et al., 2023), and InstructBLIP with LoRA tuning (Hu et al., 2021). For the detailed
explanation of the checkpoints we use for every baseline model, please refer to the supplementary
materials.
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Table 2: Held-in and held-out deepfake detection accuracies. Experiments are conducted on 2
real and 21 fake datasets, including 3 attacked ones. The accuracies of real and fake held-in datasets
are marked by grey background color , and those without background color are the accuracies of
held-out datasets. The best and the 2nd-best performances are denoted in bold and underlined.
P, F, LoRA, Orig. and +LaMa stand for different variants of each method, i.e., P: pretrained;
F: directly-finetuned on AntifakePrompt’s training dataset; LoRA: LoRA-finetuned on Antifake-
Prompt’s training dataset; Orig.: trained on original training dataset; +LaMa: trained on training
dataset with additional LaMa-generated images.

Ricker2022 ResNet FatFormer Wang2020 DE-FAKE DIRE LASTED QAD CogVLM InstructBLIP AntifakePrompt
Dataset P F P P F P F P F P F P F P P LoRA Orig. +LaMa
COCO 95.60 99.43 97.40 96.87 99.97 85.97 83.30 81.77 99.93 75.47 58.10 59.57 96.83 98.43 98.93 97.63 92.53 90.40
Flickr 95.80 99.23 98.13 96.67 100.00 90.67 84.38 77.53 99.93 76.33 65.58 60.23 98.30 99.63 99.63 97.50 91.57 90.60

SD2 81.10 2.50 16.83 0.17 5.23 97.10 88.07 3.83 30.47 58.69 52.53 51.00 10.67 52.47 40.27 89.57 98.33 97.97
SD3 88.40 99.83 21.50 4.70 8.60 96.50 95.17 0.00 98.53 78.68 79.51 46.53 99.97 2.10 1.47 97.60 96.17 96.10
SDXL 81.10 0.50 30.39 0.17 1.53 90.50 72.17 18.17 19.73 51.33 77.65 41.60 9.87 32.57 23.07 96.47 99.17 99.37
IF 92.65 4.40 27.73 19.17 4.93 99.20 95.20 6.93 63.17 57.99 55.63 59.07 15.17 29.03 20.63 87.90 97.10 95.97
DALLE-2 52.10 12.80 76.03 3.40 0.87 68.97 61.17 2.13 1.50 57.96 81.91 41.70 14.63 60.70 41.77 99.27 97.27 98.00
DALLE-3 95.20 2.10 43.97 18.17 3.20 89.00 71.57 0.10 36.27 51.83 53.00 51.23 9.83 6.03 6.63 67.87 80.80 82.97
playground v2.5 94.40 0.20 29.83 15.73 0.47 96.20 86.77 0.17 17.73 70.95 65.42 38.73 2.47 13.37 6.70 95.43 97.73 98.13
DiffusionDB 81.20 4.69 60.50 9.03 4.50 80.80 78.10 2.53 16.40 86.48 67.42 52.07 12.07 6.05 53.00 85.40 98.47 98.90
SGXL 100.00 1.63 97.73 79.30 2.13 56.90 50.20 45.27 9.50 64.39 65.59 46.40 4.20 60.40 69.53 91.20 99.03 99.37
GLIDE 83.80 49.97 79.80 17.23 5.87 76.50 50.20 4.63 41.77 54.46 68.19 53.63 50.27 59.90 37.97 92.63 98.90 99.70
Stylization 75.50 0.90 85.03 11.40 4.17 63.97 55.17 9.90 6.30 50.70 67.79 51.93 7.93 42.90 33.97 82.80 94.10 95.77
DF 14.20 34.20 5.10 0.30 0.03 86.97 77.17 0.27 3.77 86.38 59.36 97.43 22.73 13.80 13.83 67.43 95.03 98.40
DFDC 46.90 14.20 1.60 0.00 0.00 56.13 48.57 60.13 1.03 70.19 72.42 90.40 28.50 9.00 14.07 85.47 99.83 99.93
FF++ 20.30 37.53 71.30 5.23 0.23 78.90 70.63 25.50 31.93 70.69 56.50 99.47 30.77 35.66 44.20 88.30 95.63 97.97
LaMa 64.30 1.87 67.03 7.53 0.07 13.03 23.00 13.23 19.47 60.53 97.67 42.03 3.80 5.20 10.90 42.73 39.40 55.80
SD2IP 59.10 99.76 85.07 1.27 7.23 16.00 75.57 11.37 86.40 56.96 99.87 42.73 96.30 35.50 44.23 91.13 80.80 89.03
LIIF 58.90 94.43 6.60 8.30 1.07 9.73 53.67 1.10 48.77 56.46 87.34 48.07 95.83 23.47 99.93 84.63 98.50 99.97
SD2SR 73.90 97.79 84.03 1.40 0.13 29.70 96.67 2.77 27.20 59.59 99.73 47.50 8.63 55.06 69.10 99.90 99.43 99.80
Adver. 8.50 99.36 2.53 3.97 0.03 60.40 82.77 1.60 3.93 59.03 63.06 49.23 6.37 7.23 5.50 51.77 87.10 97.83
Backdoor 34.50 92.00 15.70 15.47 0.00 22.23 89.37 1.93 2.77 52.63 77.35 38.37 15.73 2.83 3.17 41.10 86.20 96.83
Data Poison. 6.90 97.53 0.10 0.97 0.40 55.87 74.90 1.00 6.60 52.43 87.01 40.67 18.30 2.17 1.60 39.10 88.63 94.63

Average 65.41 45.52 48.00 18.11 10.90 66.14 72.34 16.17 33.61 63.48 72.11 54.33 33.01 33.98 36.53 81.43 91.81 94.50

4.2 ABLATION STUDIES

Pretrained CogVLM vs. Pretrained InstructBLIP. As our proposed framework ideally is able
to support any VLM, here we first take two representative VLMs (i.e., CogVLM and InstructBLIP,
both pretrained) published recently to perform the pilot study. As shown in the columns marked as
“CogVLM” and “InstructBLIP” with variant “P” in table 3, pretrained InstructBLIP demonstrates
relatively average performance throughout all testing datasets, and reaches higher accuracies in
inpainting and super-resolution datasets than pretrained CogVLM. This indicates that InstructBLIP
relatively average ability to capture both coarse and fine artifacts of fake images, showing greater
potential to detect fake images than CogVLM. Therefore, we select InstructBLIP as the backbone
for our full model of AntifakePrompt in the following experiments.

Position of S∗ in the tuned prompt. We first investigate how the positioning of pseudo-word S∗
in the tuned prompt can influence our detector. Specifically, we compare 3 different positions of
placing pseudo-word: replacing the word “real” in the prompt with pseudo-word, positioning the
pseudo-word in the beginning of the prompt, or placing it at the end of the prompt. For simplicity,
we refer to them as “replace”, “prefix” and “postfix”, respectively. As presented in Column 2 to 4
in table 1, although they all yield overall high accuracies, the “postfix” exhibits a slight advantage
over the other alternatives. This suggests placing the pseudo-word at the end of prompt makes the
best efforts among 3 different positions to enable deepfake detection, although the performance
difference is not sensitive.

Prompt tuning for the Q-former, LLM or both? We then investigate the impact of prompt tuning
by comparing the results of applying prompt tuning exclusively to Q-former, LLM or both modules.
As shown in Column 5 to 7 in table 1, we observe that prompt tuning for both Q-former and LLM
outperforms the other two alternatives in average accuracy. This implies that prompt tuning for
both modules are benefical: tuned prompts to Q-former allow it to extract visual features from
input image embeddings that are more conducive to differentiating between real and fake images.
Tuned prompts to LLM can more precisely describe the idea of fake image detection for LLM, and
thus, LLM is able to make more accurate decisions on differentiating real and fake images. Due
to the improved visual features and improved instruction, the application of prompt tuning for both
Q-former and LLM yields better performance.

Number of training images. We also study the effect of the number of real images in the training
dataset. While fixing the number of fake images in training dataset to 60K, we gradually increase the
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number of real images from 30K to 120K in the step of 30K, resulting in the total size of our training
dataset ranging from 90K to 180K. As shown in Column 8 to 11 in table 1, while the accuracies on
testing datasets of real images increase along with the increments of real images in training dataset,
our detector suffers from a decrease in accuracies on fake testing datasets. Thus, we adopt the
detector trained on 150K training dataset as our optimal model to achieve balanced accuracies on
real and fake images.

To explore the limit of few-shot learning ability of our detector, we gradually reduce the numbers of
both real images and fake images in training dataset to one tenth at each step until only 150 images
remain in total. As shown in Column 12 to 14 in table 1, we found out that our detector still out-
performs DE-FAKE in almost every testing datasets (except for SD2, SDXL and IF) when there are
as few as 15K training samples, almost a quarter of DE-FAKE. Additionally, when we reduce our
training dataset to only 1.5K images, only 0.2% of Wang2020 training dataset, our detector outper-
forms Wang2020 on every fake dataset, exhibiting only slightly lower accuracies on real datasets.
These findings underscore the data efficiency of our detector in terms of training data size compared
to eight baseline models.

4.3 COMPARISONS WITH SOTAS

AntifakePrompt vs. Pretrained InstructBLIP. As depicted in the columns marked as “Antifake-
Prompt” with variant “Orig.” and “InstructBLIP” with variant “P” in table 3, our detector, trained
only on images generated by SD2 and those from COCO dataset, exhibits excellent (> 85%) per-
formance on most held-in and held-out datasets. In contrast, InstructBLIP without prompt tuning
demonstrates generally lower accuracies on most of the testing datasets except for COCO, Flickr30k,
and LIIF. This implies that with the help of prompt tuning, our detector can better understand the
deepfake detection task. Thus, our detector is capable of collecting more useful visual features from
the input images, resulting in making more accurate decisions on distinguishing real images from
fake ones.

AntifakePrompt vs. Non-VLM Baselines. As shown in the column marked as “Wang2020” with
variant “P” in table 3, Wang2020, trained on images generated by ProGAN (Karras et al., 2017b)
and ImageNet (Deng et al., 2009), exhibits satisfactory performance on StyleGAN-XL (denoted
as SGXL) and yields excellent accuracies on COCO and Flickr30k, in contrast to our detector.
However, we observe notable decreases in accuracy when it is tested on other held-out datasets.
Since they consist of images generated by non-GAN-based models and these images do not share
the same artifacts as those in ProGAN-generated images, the detector proposed by (Wang et al.,
2020) is unable to differentiate such images by the traits learned from ProGAN-generated images.
For Ricker2022, which uses the same settings as Wang2020 but trained on more datasets, shows
acceptable performances on some diffusion- or GAN-generated datasets. Similar to Wang2020,
Ricker2022 struggles to generalize beyond text-to-image models by the artifact learned from its
training dataset. Regarding DE-FAKE, trained on images generated by SD and COCO, it shows
impressive performance in real images and 3 diffusion-based models (i.e., SD2, SDXL, and IF)
and Deeperforensics, as shown in the column marked as “DE-FAKE” with variant “P” in table 3.
However, it struggles to achieve accuracies above 80% on other held-out datasets. Because the
detector proposed in DE-FAKE uses a similar backbone as that in Wang2020, it suffers from similar
accuracy drops when applying to images generated by unseen generative models. Even though it
takes the corresponding captions into consideration, which allows it to detect the “informativeness”
difference between synthesized and real images, it still fails to improve its performance on held-out
datasets. This is because they are generated by newer models, and thus they can generate images as
informative as real images.

As for DIRE, trained on images generated by ADM (Dhariwal & Nichol, 2021), the results are not
as excellent as they demonstrated in their paper. The possible reason is that our testing dataset (e.g.,
SD2) comprises images generated by more advanced models than ADM, implying that the distribu-
tion of these images is closer to that of real images. Thus, the reconstruction errors of such images
are smaller than those of the images generated by ADM, making DIRE harder to differentiate them
from real images. Regarding LASTED, we observe performance drops on almost every dataset ex-
cept for SGXL and 3 face swapping datasets. Since these datasets all employ GAN-based models
or models with encoder/decoder structure during their generating process, LASTED can demon-
strate relatively high accuracies due to the learned GAN-related artifacts from its training sets. As
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for other datasets, LASTED exhibits performances similar to random guessing, underscoring the
poor generalizability of LASTED. Although QAD indeed exhibits its excellent performance on 3
face swapping datasets, we observe that it shows relatively low accuracies when testing on other
datasets. This indicates that QAD, trained only on 7 face swapping datasets, might not be able to
generalize its detection ability to other types of fake images. Lastly, although Fatformer considers
extra features learned in frequency domain, it fails to generalized it performances on models other
than real datasets and SGXL, since the artifacts of diffusion-generated images in frequency domain
are not as significant as those of GAN-based images as reported in (Ricker et al., 2022).

We also compare AntifakePrompt with 6 recent or classic non-VLM baselines trained on the training
dataset of AntifakePrompt, as depicted in columns marked with variant F in table 3. Although these
baseline methods demonstrate improved or even higher accuracies on some of the testing datasets,
none of these baselines achieve comparable performance with respect to our AntifakePrompt, i.e.,
> 85% accuracies on most of held-in and held-out datasets.

Therefore, we can conclude that methods using different strategies or frameworks other than VLM,
e.g. ResNet, generally demonstrate relatively low accuracies on almost every datasets comprising
images generated by unseen models, implying their lacks of generalizability. In contrast, Antifake-
Prompt can maintain its excellent performance on images generated by unseen models. To discuss
the reason, the notable generalizability of LLM, brought by its large training corpus, gives the strong
zero-shot ability of VLM, and thus enables AntifakePrompt to show its outstanding generalizabil-
ity on unseen data. Also, AntifakePrompt consistently outperforms almost every baseline on the
datasets generated by 3 attacking strategies. We conclude that AntifakePrompt is more sensitive to
slight and malicious pixel perturbations than its opponents.

Additionally, to address the relatively lower performance observed on LaMa testing dataset, we
conduct an experiment to include additional images generated by LaMa into our training dataset.
Under this modified setting, as depicted in the columns marked as “AntifakePrompt” with variants
“Orig.” and “+LaMa” in table 3, our detector gives generally comparable or even higher accu-
racies on almost every fake dataset compared to the original setting (the detector trained on 150K
training dataset). However, these accuracy enhancements come at the cost of decreased accuracies
on real datasets since our detector must now generalize to the inclusion of additional LaMa images
in our training set.

Finetuning InstructBLIP with LoRA. Furthermore, we conduct extended experiments to compare
between our prompt tuning and LoRA-based (Hu et al., 2021) InstructBLIP parameter finetuning.
The results, as shown in columns marked as “AntifakePrompt” with variant “Orig.” and “Instruct-
BLIP” with variant “LoRA” in table 3, reveal that while the detector finetuned with LoRA achieves
comparable results in certain testing datasets, our detector consistently outperforms it in the three
attack datasets. This underscores the sensitivity of our detector to such attack scenarios. Since ad-
ditional LoRA matrices introduce relatively more learnable parameters into LLM (around 4M) than
those introduced by prompt tuning (around 4K), it is more likely for LoRA-tuned InstructBLIP to
overfit to artifacts of training datasets, resulting in accuracy drops when applied to fake datasets with
different traits, namely three attack datasets.

5 CONCLUSION

In this paper, we propose a solution, AntifakePrompt, to the deepfake detection problem utilizing
vision-language model to address the limitations of traditional deepfake detection methods when
being applied on held-out dataset. We formulate the deepfake detection problem as a visual question
answering problem, and apply soft prompt tuning on InstructBLIP. To evaluate the generalizability
and effectiveness of AntifakePrompt, we carefully gather 23 datasets covering diverse real images
and six commonly encountered synthetic scenarios, which can be used as benchmarks in deepfake
detection for future studies. Empirical results demonstrate improved performance of our detector in
both held-in and held-out testing datasets, which is trained solely on generated images using SD3
and real images from COCO datasets. Furthermore, in contrast to prior studies which require one to
finetune/learn millions of parameters, our model only needs to tune 4864 trainable parameters, thus
striking a better balance between the training cost and the effectiveness. Consequently, Antifake-
Prompt provides a potent defense against the potential risks associated with the misuse of generative
models, while demanding fewer training resources.
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A CHECKPOINTS OF EACH BASELINE

This section lists the checkpoint details of all the baselines mentioned in the paragraph “Baseline”
of Section 3 in our main manuscript.

1. Ricker2022 (Ricker et al., 2022): We use the checkpoint that was trained on images gener-
ated by 5 GANs and 5 DMs (i.e., ProGAN, StyleGAN, ProjectedGAN (Sauer et al., 2021),
Diff-StyleGAN2 (Wang et al., 2022a), Diff-ProjectedGAN (Wang et al., 2022a), DDPM,
IDDPM, ADM, PNDM (Liu et al., 2022) and LDM).

2. ResNet (He et al., 2016): We finetune the pretrained ResNet50 model, which is loaded
from PyTorch Hub4.

3. Fatformer (Liu et al., 2024): We use the checkpoint trained on ProGAN-generated 4-class
data (car, cat, chair, horse) from (Wang et al., 2020), which can be found at their official
GitHub page5.

4. Wang2020 (Wang et al., 2020): We use the detector checkpoint that is trained on dataset
with images that are possibly Gaussian blurr- and JPEG-augmented, each with 10% prob-
ability.

5. DE-FAKE (Sha et al., 2022): We use the checkpoint of the hybrid detector, which consid-
ers both the image and the corresponding prompts during detection.

6. DIRE (Wang et al., 2023b): We use the checkpoint of detector trained on images from
LSUN-Bedroom (LSUN B.) (Yu et al., 2015) and those generated by ADM.

7. LASTED (Wu et al., 2023): We use the checkpoint of the detector trained on images from
LSUN (Yu et al., 2015) and Danbooru (Dan, 2021), and those generated by ProGAN (Kar-
ras et al., 2017a) and SD1.5 (SD1).

8. QAD (Le & Woo, 2023): We use the checkpoint of detector trained on 7 face swap-
ping datasets (i.e., NeuralTextures (Thies et al., 2019), Deepfakes, Face2Face (Thies et al.,
2016), FaceSwap (Thies et al., 2016), FaceShifter (Li et al., 2019), CelebDFv2 (Li et al.,
2020) and FaceForensicsIntheWild).

9. InstructBLIP (Dai et al., 2023): We use the pretrained weight provided by LAVIS and
preset question prompt without prompt tuning.

10. InstructBLIP (LoRA-tuned (Hu et al., 2021)): We also use the pretrained weight pro-
vided by LAVIS and the preset question prompt, but apply LoRA tuning on LLM of In-
structBLIP instead of prompt tuning.

11. CogVLM (Wang et al., 2023a): We use the model weights finetuned on 8 open-sourced
VQA datasets, including VQAv2 (Goyal et al., 2017), OKVQA (Marino et al., 2019),
TextVQA (Singh et al., 2019), OCRVQA (Mishra et al., 2019), LLaVAInstruct (Liu et al.,
2023b), ScienceQA (Saikh et al., 2022) and LRV-Instruction (Liu et al., 2023a), which can
be found at the official GitHub page6.

B DATA GENERATION DETAILS

1. Text-to-images generation: We collected 3K prompts, half of which are sampled from the
COCO ground truth captions and the other half from Flickr30k captions. These prompts
are then input into six different generative models, i.e., SD2, SD3, SDXL, DeepFloyd IF,
DALLE-2, DALLE-3 , Playground v2.5 , SGXL, and GLIDE, to generate the correspond-
ing images. For DiffusionDB, we randomly sample 3000 images for testing set.

2. Image stylization: We begin by extracting Canny edge features from the 3000 test images
in COCO dataset mentioned in the previous paragraph. Subsequently, we pass these Canny
edge feature images, along with the corresponding prompts, into ControlNet to generate
stylized images.

4https://pytorch.org/hub/pytorch vision resnet/
5https://github.com/Michel-liu/FatFormer?tab=readme-ov-file#model-zoo
6https://github.com/THUDM/CogVLM/#model-checkpoints
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3. Image inpainting: We employ the same 3000 test images and resize them to make the
shorter side of each image be 224, which matches the input size of InstructBLIP. Then, we
randomly generate masks of three distinct thickness levels for these resized images using
the scripts from the LaMa (Suvorov et al., 2022) GitHub7. With original images and the
corresponding masks prepared, we utilize two different models, SD2-Inpainting (denoted
as SD2IP) and LaMa, to inpaint images, respectively. The resizing step ensures that most
of artifacts created during the inpainting process will be retained before being inputted to
the detector.

4. Super Resolution: Out of the same reason in the inpainting, we apply the same resiz-
ing process to the same 3000 test images before downsizing them to one-forth of their
original sizes. These low-resolution images are then passed into two different models,
SD2-SuperResolution (denoted as SD2SR) and LIIF (Chen et al., 2021), to upsize back.
A scaling factor of four is chosen, as only the ×4-upscaling weights for SD2 are publicly
available.

5. Face Swap: Since face swapping is also one of the common means to generate fake im-
ages, we employ three large-scale face swapping video datasets, namely DeeperForensics
(denoted as DF) (Jiang et al., 2020), DFDC (Dolhansky et al., 2019) and FaceForensics++
(denoted as FF++) (Rossler et al., 2019). From each of these datasets, we randomly extract
3, 3 and 4 frames from 1000, 1000 and 750 randomly selected videos, respectively. To
ensure the extracted subset better represents the entire dataset, we randomly selected 125
videos from each of the 6 distinct categories within FF++. Following (Wang et al., 2020),
we then apply Faced (Itzcovich, 2018) to crop out 3000 faces from the extracted frames of
each dataset to ensure that complete facial features are present in every image.

6. Image attacks: We apply three common types of attacks to edit images and target at a
traditional ResNet-50 classifier. The attack types include adversarial attack (Kim, 2020),
backdoor attack (Li et al., 2021) and data poisoning attack (Geiping et al., 2020) (denoted
as Adver., Backboor, and Data Poison., respectively). Default settings are employed for
each attack. By testing our detector on these attacks, we can have a better understanding of
its sensitivity against these slight and malicious image editing.

C TRAINING DATASETS AND TRAINABLE PARAMETERS COMPARISON

We list the size of training datasets and the number of trainable parameters of each baseline method
along with those of AntifakePrompt for comparisons. Together with Table 1 in the main manuscript,
we can conclude that AntifakePrompt demonstrates excellent performance at less number of training
dataset and less trainable parameters among all other opponents.

Table 3: Training datasets and trainable parameters. The least number of training
dataset/trainable parameters is denoted in bold. The 2nd-least number of training dataset/trainable
parameters is denoted in underline.

Methods
No. of

training
dataset

No. of
trainable
param.

Ricker2022 195K 23.51M
Wang2020 720K 23.51M
DE-FAKE 40K 308.02M
DIRE 200K 23.51M
LASTED 792K 625.63M
QAD 636K 2.56K
CogVLM >1.5B 6.5B
InstructBLIP 15.183M 188.84M
InstructBLIP (LoRA-tuned) 150K 4.19M
AntifakePrompt 150K 4.86K

7https://github.com/advimman/lama/blob/main/bin/gen_mask_dataset.py
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D SAMPLES FOR EACH DATASET

We provide some samples for each testing set and its correspong accuracy. Please refer to Figure 2
to Figure 24.

MS-COCO

Correct (92.53%) Incorrect (7.47%)

Figure 2: Samples for MS-COCO. 92.53% of images in the MS-COCO are correctly classified as
real.

Flickr30k

Correct (91.57%) Incorrect (8.43%)

Figure 3: Samples for Flickr30k. 91.57% of images in the Flickr30k are correctly classified as real.
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SD2

Correct (98.33%) Incorrect (1.67%)

Figure 4: Samples for SD2. 98.33% of images generated by SD2 are correctly classified as fake.

SD3

Correct (96.17%) Incorrect (3.83%)

Figure 5: Samples for SD3. 96.17% of images generated by SD3 are correctly classified as fake.
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Correct (99.17%) Incorrect (0.83%)

SDXL

Figure 6: Samples for SDXL. 99.17% of images generated by SDXL are correctly classified as
fake.

IF

Correct (97.10%) Incorrect (2.90%)

Figure 7: Samples for IF. 97.1% of images generated by IF are correctly classified as fake.
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DALLE-2

Correct (97.27%) Incorrect (2.73%)

Figure 8: Samples for DALLE-2. 97.27% of images generated by DALLE-2 are correctly classified
as fake.

DALLE-3

Correct (80.80%) Incorrect (19.20%)

Figure 9: Samples for DALLE-3. 80.80% of images generated by DALLE-3 are correctly classified
as fake.
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Playground v2.5

Correct (97.73%) Incorrect (2.27%)

Figure 10: Samples for Playground v2.5. 97.73% of images generated by playground v2.5 are
correctly classified as fake.

DiffusionDB

Correct (98.47%) Incorrect (1.53%)

Figure 11: Samples for DiffusionDB. 98.47% of images generated by DiffusionDB are correctly
classified as fake.
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SGXL

Correct (99.03%) Incorrect (0.97%)

Figure 12: Samples for SGXL. 99.03% of images generated by SGXL are correctly classified as
fake.

GLIDE

Correct (98.90%) Incorrect (1.10%)

Figure 13: Samples for GLIDE. 98.9% of images generated by GLIDE are correctly classified as
fake.
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Stylization

Correct (94.10%) Incorrect (5.90%)

Figure 14: Samples for Stylization. 94.1% of images generated by ControlNet are correctly classi-
fied as fake.

DeeperForensics

Correct (95.03%) Incorrect (4.97%)

Figure 15: Samples for DeeperForensics. 95.03% of images in DeeperForensics are correctly
classified as fake.
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DFDC

Correct (99.83%) Incorrect (0.17%)

Figure 16: Samples for DFDC. 99.83% of images in DFDC are correctly classified as fake.

FaceForensics++

Correct (95.63%) Incorrect (4.37%)

Figure 17: Samples for FaceForensics++. 95.63% of images in FaceForensics++ are correctly
classified as fake.
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LaMa

Correct (39.40%) Incorrect (60.60%)

Figure 18: Samples for LaMa. 39.4% of images generated by LaMa are correctly classified as fake.

SD2-Inpainting

Correct (80.80%) Incorrect (19.20%)

Figure 19: Samples for SD2-Inpainting). 80.8% of images generated by SD2-Inpainting(SD2-IP)
are correctly classified as fake.
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Correct (98.50%)

LIIF

Incorrect (1.50%)

Figure 20: Samples for LIIF. 98.5% of images generated by LIIF are correctly classified as fake.

SD2-SuperResolution

Correct (99.43%) Incorrect (0.57%)

Figure 21: Samples for SD2SR. 99.43% of images generated by SD2-SuperResolution(SD2-SR)
are correctly classified as fake.
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Adversarial Attack

Correct (87.10%) Incorrect (12.90%)

Figure 22: Samples for adversarial attack. 87.1% of images generated under adversarial attack
are correctly classified as fake.

Correct (86.20%) Incorrect (13.80%)

Backdoor Attack

Figure 23: Samples for backdoor attack. 86.2% of images generated under backdoor attack are
correctly classified as fake.
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Correct (88.63%) Incorrect (11.37%)

Data Poisoning Attack

Figure 24: Samples for data poisoning attack. 88.63% of images generated under data poisoning
attack are correctly classified as fake.
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