
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS STABLE LEARNING IN PREDICTIVE CODING
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Predictive coding (PC) offers a biologically plausible model of cortical functions,
encompassing processes such as learning, prediction, encoding, and memory. How-
ever, predictive coding networks (PCNs) face significant challenges in stability
and scalability, which constrain our capacity to elucidate cortical computation.
Our study identifies instability in PCNs as a fundamental issue, focusing on the
exponential growth of latent state norms and prediction errors after inference.
These dynamics lead to exploding and vanishing gradients in PCNs. Moreover, the
concentration of prediction errors near the input and output layer impedes effective
learning, exacerbating performance degradation as network depth increases. To
address these limitations, we propose stabilizing techniques for PCNs, including
length regularization and sequential training with skip connection modules. This
approach counteracts the exponential growth of latent states and makes the dis-
tribution of prediction errors more uniform across layers. Empirical evaluations
demonstrate that our approach enhances stability and generalization, enabling the
training of deeper networks more efficiently. This study deepens our understand-
ing of complex dynamics in cortical networks, thereby advancing the practical
application of predictive coding theory to its full potential.

1 INTRODUCTION

Predictive coding (PC) (Srinivasan et al., 1982; Mumford, 1992; Rao & Ballard, 1999) is a theoretical
framework for cortical information processing, including learning, prediction, encoding, and memo-
rization. Since PC theory accommodates key computations in the brain, it emerges as an appealing
alternative for artificial intelligence (AI) systems aiming to achieve human-compatible learning and
inference mechanisms (Salvatori et al., 2023a; Song et al., 2024). Deep predictive coding networks
(PCNs) hold an untapped potential for engineering applications due to their inherent ability to perform
local predictions and updates. This capability allows parallel computing during both learning and
inference, making PCNs a viable alternative to conventional feed-forward neural networks that rely on
backpropagation (Rumelhart et al., 1986). Additionally, predictive coding is adaptable to models with
arbitrary topologies (Millidge et al., 2022b; Salvatori et al., 2022), making it a flexible framework for
various learning tasks. That being said, critical issues limit our use of PCNs to their full potential:
Training often becomes unstable, particularly when applied to deeper network architectures. The
underlying causes of this instability are not fully understood, which limits the scalability and practical
applicability of PCNs.

This study aims to address these challenges by analyzing the dynamics of latent state lengths during
inference and proposing solutions to stabilize the training of deeper PCNs. The term length refers to
the normalized squared norm, a more statistically traceable metric than the norm itself. Under the
assumption of sufficiently high dimensionality, length approaches the variance of the elements of the
respective variable. Since length is a norm-dependent metric, its changes are closely tied to variations
in the norm. Specifically, changes in length during the dynamic processes of inference or learning
can be used to detect variations in the norm while also providing insights into which layers exhibit a
concentration of prediction error length. By leveraging dynamical mean-field theory (Sompolinsky
et al., 1988; Poole et al., 2016; Schoenholz et al., 2017), we explore the recursive updates of latent
state lengths in a random PCN ensemble and identify critical issues that hinder training.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1. We show that the latent state dynamics cause an exponential growth in the norms of latent states
and prediction errors, directly impacting the gradients used for parameter updates. Such latent
dynamics cause the exploding and vanishing gradient problems (EVGPs; (Bengio et al., 1994;
Hochreiter, 1998; Pascanu et al., 2012; Arjovsky et al., 2016)) in PCNs.

2. We found that prediction errors tend to remain near the input and output layers after inference. Since
prediction errors influence parameter updates, the occurrence of prediction errors predominantly
near the input and output layer in deep networks prevents the other layers from being effectively
trained. Consequently, this leads to a significant performance degradation as the network depth
increases.

These issues are validated through a comparative analysis of theoretical predictions and empirical
evidence.

To address the exponential growth of lengths, we explore regularization methods to suppress the
pathological growth of the squared norms of the latent states. Additionally, to address the issue of
prediction error occurring predominantly near the input and output layer, we introduce a sequential
training framework with skip connection modules that enable the distributed propagation of prediction
error. This approach, called stable prediction coding networks (SPCNs), effectively transfers the
stalled prediction error to the other layers, stabilizing the learning process and improving performance.
We validate the proposed methods through comprehensive analyses and experiments, demonstrating
that PCNs with length regularization and skip connection modules significantly improve the stability
and scalability of PCNs. Our approach guides the training of deeper predictive coding networks with
improved accuracy and robustness.

Overview This paper investigates key challenges and advancements in PCNs, focusing on theoreti-
cal and empirical insights. In Section 2, the background and motivation for this work are introduced
by emphasizing a critical challenge in PCNs: achieving the inference condition ∆z = 0, as assumed
in earlier studies, motivating a deeper exploration of this issue. Section 3 provides the theoretical
framework for analyzing PCNs, presenting tools for length dynamics analysis. These tools form
the foundation for understanding the underlying instabilities and inefficiencies in PCN inference
processes. In Section 4, our observations regarding the dynamics of length in PCNs are then detailed,
focusing on their inherent instability. The analysis reveals how instability in PCNs affects weight
update lengths, contributing to the EVGPs. This finding underscores the difficulty of achieving the
inference condition ∆z = 0. Additionally, the analysis shows that prediction errors are unevenly
distributed across layers, primarily concentrating on the input and output layers. This uneven distri-
bution allows intermediate layers to process information unrelated to the input or output, creating
inefficiencies in learning and inference. In Section 5, we propose SPCNs to address these challenges.
The proposed model introduces structural modifications that mitigate the identified issues, improving
stability and performance. As shown in Section 6, experimental results validate the effectiveness of
SPCNs in addressing the instability and error distribution problems outlined earlier. Finally, the paper
discusses related works to situate this study within the broader context of predictive coding research
and concludes by summarizing the contributions in the last sections.

2 FOUNDATIONS OF PREDICTIVE CODING NETWORKS

The Predictive coding (PC) theory posits that the brain continuously predicts the external environment
and refines latent states by minimizing local prediction errors. A PCN, built based on the PC idea,
connects local predictive coding modules in a chain structure. In this model, the forward step predicts
the latent state of the subsequent layer, and the backward step minimizes local prediction errors, as
shown in Figure 1. In contrast to the conventional von Neumann-style computational regime, the PC
attempts to accommodate the human brain’s cortical information processing with extremely parallel
computation. They can also learn models with arbitrary graphical topologies (Millidge et al., 2022b;
Salvatori et al., 2022).

Neural Model The key characteristic of PCNs is that prediction and learning are performed locally.
The prediction ẑl+1 for the latent state of the (l + 1)-th layer zl+1 is made through the forward
operation f l of the latent state of the l-th layer zl ∈ RNl .

ẑl+1 = f l(zl) = ϕ(W lzl + bl), (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Inference phase (b) Learning phase

Figure 1: Inference and learning phases of a local predictive coding module. (a) During the inference
phase, the prediction error δl+1 is calculated to determine the changes in zl and zl+1 according to
Equation 2-3. This process is repeated until (ideally) the latent state converges or (practically) the
final inference step T . The ∆zl equation assumes the linearity of f l and gl. (b) During the learning
phase, the weight and bias parameters are updated according to Equation 4-5. This learning phase
begins once the inference phase is completed. The equations for ∆W l and ∆bl are valid under the
assumption of the linearity of f l.

where W l ∈ RNl+1×Nl denotes the weight parameters, bl ∈ RNl represents the bias vector, and ϕ(·)
is a non-linear activation function, occasionally substituted with linearity in theoretical analyses (Whit-
tington & Bogacz, 2017; Millidge et al., 2022a). The preactivation is denoted by hl = W lzl+bl. The
total and local PC losses are defined by LPC =

∑L
l=2 Ll

PC and Ll
PC = 1

2∥δ
l∥2, respectively, which

allows the model to reduce the local prediction error for each layer δl = zl − ẑl for l ∈ [2, . . . , L]. In
neuroscience, this concept often has been articulated as variational free energy minimization (Friston,
2005; Buckley et al., 2017). As an extension of Whittington & Bogacz (2017), we employ encoding-
based PCNs with supervised learning settings; to learn input-output association (x,y), both ends of
the latent layers are fixed to the corresponding data pair: z1 = x and zL = y.

Inference and Learning Process To minimize prediction errors, the PCNs alternate the (latent
state) inference and the learning phase; the former revises the latent states, while the latter adjusts
the parameters (Figure 1). During inference, the model updates the latent states until the loss is
sufficiently reduced. The learning phase with a single-step parameter update follows it. The latent
state of each layer serves as a source of prediction for the subsequent layer, as well as a prediction
target for the preceding layer. Accordingly, the latent states are updated as follows:

(1/η) ·∆zl = −∇zl

L∑
k=2

Lk
PC = −∇zlLl

PC −∇zlLl+1
PC = −δl + gl(δl+1), (2)

zl,t+1 = zl,t +∆zl,t, (3)

where η represents the inference rate for latent update, t denotes the inference step, and gl(a) =

W l⊤Dla is the backward operation, where Dl is diag(ϕ′(hl)) if ϕ(·) is nonlinear, or I if linear. The
latent state updates diminish the information of the l-th latent state. During the learning phase, the
parameters are updated as follows.

(1/ζ) ·∆W l = −∇W l

L∑
k=2

Lk
PC = −∇W lLl

PC = Dlδl+1zl
⊤
, (4)

W l,τ+1 = W l,τ +∆W l,τ . (5)

Here, ζ and τ refer to a learning rate and a learning step, respectively.

Challenges in Achieving Equilibrium in Inference The update rule of Equation 4 is analogous to
error backpropagation of feed-forward networks (FFNs-BP). However, the distinctions between PCNs
and FFNs-BP emerge in how the latent state z and prediction error δ are structured. The delta relation
transforms into (1/η) ·∆zl = 0 = −δl + gl(δl+1) =⇒ δl = gl(δl+1), only if the model reaches
the equilibrium state ∆z = 0, resembling δ-propagation in BP. Based on this relation, the authors
of Whittington & Bogacz (2017); Millidge et al. (2022a) argue that PCNs possess the same learning
capabilities as BP. Nevertheless, our analysis indicates challenges in attaining the equilibrium through
the inference phase (see Sections ??), and even if reached, δ influences the forward mechanism of z
unless δ equals 0 (i.e., zl = f l−1(zl−1) + δl). Thus, the update in PCNs diverges from FFNs-BP. As

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

δ → 0, the relation becomes similar to FFNs-BP only when learning concludes flawlessly. This makes
it hard to understand the dynamics of inference and learning. Subsequent sections focus on analyzing
the discrepancies in the lengths of the latent states, prediction errors, and parameters stemming from
the update dynamics.

3 INVESTIGATING LENGTH DYNAMICS IN PREDICTIVE CODING NETWORKS

Unlike BP, PC involves an inference process, requiring a (tailored) analysis to understand its behavior.
Using dynamical mean-field theory (Sompolinsky et al., 1988; Poole et al., 2016; Schoenholz
et al., 2017), we examine the length dynamics of latent states during the inference process in PC
ensemble models, where a length of a vector x is defined as the average of the squared entries of
the vector (Poole et al., 2016), i.e., ⟨x2

i ⟩ = 1
N

∑N
i=1 x

2
i , where x = [x1, · · · , xN] is a vector. In the

inference phase, since ∆z has not reached zero yet, it is challenging to describe the statistics of δ
based on the relationship between δl and δl+1 as in (Whittington & Bogacz, 2017; 2019; Millidge
et al., 2022a). Therefore, using Equation 1-3, we expand the length dynamics in the recursive form
of the latent state z. These analyses play a fundamental role in understanding how information
propagates and adapts across layers during inference.

Assumptions In this simulation, elements of weights and biases are drawn i.i.d. as wl
i,j ∼ N (0,

σ2
w

Nl
)

and bli ∼ N (0, σ2
b). The elements of initial latent states at t = 1 are also drawn i.i.d.,: zli ∼ N (0, 1).

To preclude any complication during the analyses, we assume the linearity of the prediction and
homogeneous dimensionality of latent states across layers. For cases involving non-linear activations,
empirical verification of the results is provided in Figure 2 and Appendix K.

Update Rules of Latent States The forward and backward passes in the network can be expressed
as f l−1(zl−1) = W l−1zl−1 + bl−1 and gl(zl+1) = W l⊤zl+1, repectively. Given these transforms,
we define the update rule for the latent state zl,t as Equation 1-3. Expanding this rule, we obtain:

zl,t+1 = ρM l−1zl−1,t + κzl,t + ρM l⊤zl+1,t + ηbl−1 − ρM l⊤bl, (6)

where M = 1
σw

W , ρ = ησw, and κ = 1− η(1 + σ2
w). (See Appendix D.1 for the derivation.) This

expression forms the basis for deriving the dynamics of latent states and interactions across layers.

Capturing Layer-wise Interactions in PCNs We define several key matrices to model the inter-
actions between latent states and biases over different layers. The latent self-interaction matrix Pt

captures the interaction between latent states at different layers: P t
l+k,l =

1
N zl+k,t⊤M l+k−1:lzl,t,

where M l+k:l = M l+kM l+k−1 · · ·M l is the product of normalized weight matrices across multiple
layers. The diagonal elements of P t represent the length of the latent state at layer l, denoted as pl,t,
while off-diagonal elements describe cross-layer interactions. Additionally, we define the bias-latent
state interaction matrix Bt as: Bt

l,l−k = 1
N bl−1⊤M l:l−kzl−k,t. Finally, the bias self-interaction

matrix Γ captures interactions between biases at different layers and approaches to a constant matrix
due to the fixed nature of bias terms and the distribution of Gaussian products with increasing
dimensionality. Thus, we set Γ = σ2

b I.

Analyzing the Dynamics of Interaction Matrices The interaction matrices evolve according to
the latent state update rule. For the latent self-interaction matrix P , the update rule can be expressed
as:

P t+1
l,l−k = c⊤z P

t
l−1:l+1,l−k−1:l−k+1cz + c⊤b B

t
l−k:l−k+1,l−1:l+1cz

+ c⊤b B
t
l:l+1,l−k−1:l−k+1cz + c⊤b Γl−1:l,l−k−1:l−kcb,

P t+1
1,l

⊤
= P t+1

l,1 = c⊤z P
t
l−1:l+1,1, and P t+1

L,l

⊤
= P t+1

l,L = c⊤z P
t
l−1:l+1,L, (7)

for 1 < l, l − k < L, where cz = [ρ, κ, ρ]⊤ and cb = [η,−ρ]⊤ are coefficient vectors, and Pa:b,c:d

is the submatrix of the P matrix that spans from row a to b, and from column c to column d. This

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

equation accounts for interactions between latent states at different layers and time steps. Similarly,
the bias-latent state interaction matrix B is updated as:

Bt+1
l,l−k = Bt

l,l−k−1:l−k+1cz + c⊤b Γl−k−1:l−k,l. (8)

The evolution of these matrices provides a comprehensive view of how latent states and biases interact
during the inference process. (See Appendix D.4 for the derivation.)

Analyzing the Length Dynamics We now focus on the dynamics of lengths of latent states,
prediction errors, and weight updates, denoted by pl,t, ql,t, and rl,t, respectively. Each of the lengths
can be traced through the derivations provided in Appendix D.5, utilizing the previously defined
interaction matrices P , B, and Γ, or the values of other lengths referenced in the analysis. These
lengths provide essential insights into the behavior of the variables as information propagates through
the network. By the definition of the length, pl,t = 1

N zl,t
⊤
zl,t, which is is given by the diagonal

elements of P t by definition of the interaction matrix, i.e., pl,t = P t
l,l. The length of prediction

errors at layer l is ql,t = 1
N ∥δ

l,t∥2 which can be expanded as a function of the latent state and bias
interactions: ql,t = c⊤q P

t
l−1:l,l−1:lcq−2Bt

l,l−1:lcq+Γt
l−1,l−1, where the coefficient cq = [−σw, 1]

⊤

(See Appendix D.5 for the derivation.). Finally, the length of the weight updates at each layer is
rl,t = 1

N2 ∥∆W l∥2F = ql+1,t · pl,t, where ∆Wl is the weight update at layer l. The length of the bias
update is equivalent to q and is therefore omitted.

The length dynamics derived in this section are critical for understanding the temporal evolution
of latent states and interactions in PCNs. By modeling latent state updates and their interactions
with biases and neighboring layers, we have presented a comprehensive framework that captures
the essential dynamics of inference in these networks. The analytical tools developed here provide
a foundation for understanding the issues of length explosion and the skewed prediction error
distribution in PCNs.

4 KEY CHALLENGES IN DEEP PCNS: INSIGHTS FROM LENGTH DYNAMICS

In this section, we identify key issues in the length dynamics observed in PCNs, focusing on the
exponential growth of length dynamics (Subsection 4.1) and the concentration of prediction errors
(Subsection 4.2).

4.1 EXPONENTIAL GROWTH IN LENGTH DYNAMICS

Figure 2 illustrates the length dynamics for pl,t, ql,t, and rl,t based on both analytical and empirical
results.

Length Depending on the Weight Variance: The length of the latent state, pl,t, is highly dependent
on the weight variance, σw, while the impact of the bias variance, σb, is less significant (Figure 2a
and i).

Exponential Growth of Length Dynamics: Figure 2e shows the mapping from pl,t to pl,t+1,
highlighting the transformation of latent states across inference steps. When the variance of the
weight parameters is high (σw = 5.4), there is a noticeable tendency for pl,t+1 to exceed pl,t,
as indicated by points above the line pl,t+1 = pl,t. Conversely, when the weight variance is low
(σw = 0.185), pl,t+1 is less than pl,t. Figure 2b illustrates the dynamics of pl,t over the inference
step t. With σw = 5.4, pl,t grows exponentially, while for σw = 0.185, it decays exponentially.
Importantly, the theoretical predictions (dotted lines) align closely with the experimental observations
(solid lines). Figure 2f shows the layer-wise distribution of pl,t at the final inference step, t = T . The
lengths of the latent states in the intermediate layers are significantly larger than those in the input
and output layers, which are constant, especially for high values of σw. In a similar fashion to the
latent state results, ql,t and rl,t exhibit exponential growth (Figure 2d and h), implying the potential
for exploding and vanishing gradients of parameters by inference.

Length Dynamics in Nonlinear PCNs: In Figures 2c and g, we examine the latent state length
dynamics in PCNs with nonlinear activation functions (tanh), confirming that the results are consistent
with those observed for linear PCNs. One might expect that nonlinear activations would confine the
latent state lengths, yet they directly impact the prediction values rather than confining the latent states.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Le
ng

th

Layer

Iteration

Le
ng

th

Length

Le
ng

th

(j)

(n)(m)

Le
ng

th

Layer

Iteration

Le
ng

th

(k)

(o)

Le
ng

th

Iteration
(p)

Iteration

Le
ng

th

(l)
,

Nonlinear
(tanh)

Le
ng

th

Layer

Iteration

Le
ng

th

Length

Le
ng

th

(b)

(f)(e)

Le
ng

th

Layer

Iteration

Le
ng

th

(c)

(g)

Le
ng

th

Iteration
(h)

Iteration

Le
ng

th

(d)
,

Length Length (d) & (h)

PC
N

s
SP

C
N

s

(a), (i)

(b), (c), (d), (e),
(f), (g), (h), (j),
(k), (l), (m), (n),
(o), (p)

Iteration

Le
ng

th

(a)

Iteration

Le
ng

th

(i)

Figure 2: The dynamics of pl,t, ql,t, and rl,t and their layer-wise results for PCNs (a)-(h) and SPCNs
(i)-(p). Settings: We set L = 30, with each layer having a latent dimension of N = 100. σ2

w and σ2
b

represent the variance of the weights and biases, respectively. The inference rate is set to η = 0.05.
(c), (g), (k), and (o) depict the results for nonlinear PCNs, while the remaining figures correspond
to linear PCNs. Notably, the dotted lines represent theoretical predictions, while the solid lines
correspond to empirical observations in the linear PCN results. In all subfigures, except for (a) and (i),
the results are shown for the cases of σw ∈ {0.185, 1.0, 5.4} with different colors, and σb = 0. (i)-(p)
The experimental settings are identical to (a)-(h) but with length regularization applied. Subfigures:
(a) Dynamics of pl,t across σb ∈ {0.185, 1.0, 5.4}. (b)-(d) & (h) Dynamics of pl,t, pl,t of nonlinear
PCNs, ql,t, and rl,t for T = 500 inference steps. In (a), (b), (d), and (h), l = 15, while in (c), l = 28.
(e) Scatter plot showing the points (pl,t, pl,t+1). The darker the dot’s color, the later the inference step
t. (f)-(g) Length of each layer at t = 500 and 20 for pl,t of linear and nonlinear PCNs, respectively.
(i)-(p) The same subfigures as (a)-(h) but with length regularization applied.

The update process of the latent states involves changes in ∆z, which are influenced by the derivative
of the nonlinearity. Still, this influence does not act as a confining mechanism. This growth pattern
persists across various activation functions, as shown in Appendix K, indicating that nonlinearity
alone does not fully mitigate the destabilizing effects. Additionally, this instability can emerge early
in the inference phase, especially in deeper layers. These findings emphasize the importance of
regularization strategies, such as those used in SPCNs, to prevent excessive growth and maintain
stability in both linear and nonlinear PCNs, particularly when nonlinearity alone is insufficient to
prevent the excessive growth of latent states and prediction errors.

In summary, the analysis reveals that both linear and nonlinear PCNs exhibit exponential growth in
the length dynamics of latent states.

4.2 CONCENTRATED PREDICTION ERRORS: HOW PREDICTION ERRORS REMAIN AFTER
INFERENCE

Information Propagation in Inference: As described in Equation 6, the latent state at the inference
step t + 1, denoted as zl,t+1, retains information from zl,t at O(1), while prediction errors from
adjacent layers are incorporated at O(ρ). By the inference step t + 2, this influence accumulates;
zl,t+2 retains information from zl,t at O(1), with influences from adjacent layers at O(ρ) and from
layers two steps away at O(ρ2). Without loss of generality, the influence from the k-th layer away is
at O(ρk) after k-step updates.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Le
ng

th

Layer
(a)

/

Iteration Layer

/

(c)

 /

Layer
(d)

Le
ng

th

(b)(a), (c), (d)

(b)

Figure 3: The length dynamics of the q and r. Setting: We set L = 30, the terminal inference step is
T = 200, and the latent dimension of each layer is set to 100. The inference rate is set to η = 0.05.
σw and σb are set to 1 and 0.1, respectively. In (a), (c), (d), the cases for t ∈ {10, 20, 50, 100, 200}
are shown in different colors. In (b), the cases for layer l ∈ {5, 10, 15, 20, 25, 30} are presented
in different colors. In (c), the plots depict the T = 200 results. Subfigures: (a) The length of the
prediction error, ql,t across layers at the inference step t. (b) The dynamics of q/p over the inference
step t for each layer. (c) The ratio q/p across layers at the inference step t. (d) The length of the
amount of the weight parameter update, rl,t, for each layer at the inference step t.

Prediction Error Concentration: As shown in Figure 3a, ql,t decreases in the intermediate layers
with repeated iterations. In Figures 3b and c, to eliminate the influence of the latent state magnitude on
the prediction error, since δl,t = zl,t− ẑl,t, we examine the ratio of ql,t to pl,t. As inference proceeds,
the q/p ratio diminishes gradually, leaving significant normalized prediction errors concentrated near
the input and output layers. As depicted in Figure 3c, after T = 200 inference steps, the q/p ratio is
significantly larger near the output layer. This trend also affects the updates of weight parameters
after inference (Figure 3d).

Impact of Concentrated Prediction Errors on Learning: We observe that prediction errors tend
to remain concentrated near the input and output layers during inference. According to Equation 4,
updates to the weights and biases during subsequent learning phases become negligible if the
prediction error approaches zero. While this issue has been previously addressed in Kinghorn et al.
(2023), we demonstrate that the cause of this problem can be explained through length dynamics. In
the following section, we propose a method to propagate the prediction error while maintaining the
PC mechanism.

5 A FRAMEWORK FOR STABLE LEARNING IN DEEP PREDICTIVE CODING
NETWORKS

We propose SPCNs as a simple and practical solution to the challenges of PCNs. SPCNs incorporate
length regularization to control the lengths of latent states and parameters, and sequential training
with skip connection modules to enable progressive learning from layers close to the data pairs.

Length Regularization The exponential change in the length of the latent state affects the learning
signal (see Section 4). We introduce length regularization to ensure stable update signals during
training. This regularization directly applies to the latent states and learning parameters in the
inference and learning phases. The regularization loss for a length p is given byRp :=

∑
l(cp − pl)2,

where cp indicates the target length of p. We similarly defined regularization loss for r, denoted
byRr. Note that regularizing q is equivalent to LPC, and therefore it is omitted. By combining the
regularization loss with the original predictive coding loss, the total loss becomes:

L = LPC + λpRp + λrRr, (9)

where λ is the corresponding length regularization loss coefficient. We set the target lengths as cp = 1
and cr = 1, and the coefficients as λp = 1 and λr = 1, respectively.

Sequential Training with Skip Connection Modules To address the issue introduced in Sub-
section 4.2, we propose a novel approach: sequential learning with a skip connection module, as
illustrated in Figure 4. Details of this method are provided in Appendix E. We point out that prediction
errors remain near the input or output layer after inference (depending on T). To mitigate this issue,
we introduce skip-connection modules to directly propagate the prediction error from the output
layer, thus preventing the latent states in intermediate layers from inferring and learning undesirable

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(b) Training stage 2(a) Training stage 1 (d) Evaluation(c) Training stage

Figure 4: Sequential training with skip-connection modules. Each node represents a latent state,
and each edge represents a local PC module (Figure 1). During the training phase, SPCNs include
auxiliary skip connection edges in addition to the feed-forward connections. (a-c) Training is divided
into ⌈L−1

2 ⌉ stages, with (a), (b), and (c) representing stages 1, 2, and ⌈L−1
2 ⌉, respectively. (d) Only

the learned feed-forward connections are used for assessment in the evaluation phase.

Table 1: Lyapunov exponent of series of pl,t on MNIST dataset, comparing results with and without
regularization (Rosenstein et al., 1993). The values are presented on a scale of ×10−2. N/A indicates
that the Lyapunov exponent could not be computed due to the divergence of trajectories. Bold value
(or text) indicates λLyapunov > 0 (or N/A). T = 500 and l = 15.

σw 0.1 0.2 0.5 1 2 5 10

PCNs -5.36 -3.34 -1.43 -2.08 -2.04 2.38 N/A
± 4.29 ± 2.10 ± 2.58 ± 0.08 ± 0.12 ± 1.97 N/A

SPCNs -2.10 -1.67 -0.64 -0.44 -1.66 -2.25 -2.29
± 1.16 ± 1.43 ± 1.28 ± 0.78 ± 0.70 ± 0.10 ± 0.03

random predictions.
Conventional PCNs connect PC modules in a chain-like structure. Skip connection modules, on the
other hand, serve as auxiliary PC modules connecting each latent state to the input or output directly,
as shown in Figure 4. While these modules modify the chain-like structure of PCNs, each module
maintains local inference and learning as a PC module.
The model gradually learns layer by layer toward the intermediate layers. The inference and learning
process is divided into ⌈L−1

2 ⌉ stages. The incremental process starts with the layer closest to the
data pair and progressively includes increasingly distant layers. In the initial training stage, the latent
states z2 and zL−1 closest to the data pair are inferred. The parameters associated with these states
are learned in the subsequent learning phase. At this stage, the latent states from z3 to zL−2 do not
participate in inference, and their connected predictive coding modules are not learned, isolating the
information flow from input to output. It ensures that layers not involved in inference or learning
do not integrate unnecessary information. However, this disconnection allows the latent states and
parameters connected from the input to encode information independently of the output and vice
versa.
During the inference phase at each stage, a relatively small T is used to halt early, avoiding fitting
the latent states to a prematurely trained network. Skip connection modules are applied only during
training, while predictions during evaluation are made solely through the feed-forward connection
modules.

6 EXPERIMENTS FOR SPCNS

The experiments in this section evaluate the stability and performance of SPCNs compared to (vanilla)
PCNs. The study focuses on three key aspects: controlling the exponential growth of latent state
lengths (Section 6.1), balancing prediction error distribution across network layers, and improving
classification accuracy (Section 6.2).

6.1 CONTROLLED LENGTH DYNAMICS

Length Dynamics Comparison Controlled length dynamics are critical for ensuring stable and
efficient performance in deep PCNs. We explore how SPCNs successfully manage length growth
and maintain robust prediction performance. Figure 2i-p presents the dynamics of length for pl,t,
ql,t, and rl,t within SPCNs. The length of the latent state, pl,t, is influenced by the weight variance
σw; however, this relationship is effectively regularized by SPCNs. In Figure 2m, the mapping
between pl,t and pl,t+1 demonstrates that SPCNs successfully constrain length dynamics near the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

identity mapping line pl,t+1 = pl,t, even for high variances (σw = 5.4). This contrasts with the
behavior observed in standard PCNs. Additionally, Figure 2j illustrates that pl,t stabilizes, avoiding
the exponential growth typically seen as t increases. This stabilization is essential for maintaining
manageable lengths throughout inference iterations. Figures 2n and o show that at the final iteration
step t = T , SPCNs maintain relatively even lengths across layers, with intermediate layers no longer
exhibiting excessive length expansion. Moreover, Figures 2k and o analyze SPCNs with nonlinear
activation functions (tanh), demonstrating that the lengths of latent states remain constrained, in
contrast to the divergence seen in standard nonlinear PCNs (Figure 2c and g). A similar trend can be
observed for ql,t and rl,t under SPCNs, as shown in Figures 2l and p, where growth is significantly
reduced compared to PCNs (Figure 2d and h).

Lyapunov Exponent Comparison Furthermore, We compute the Lyapunov exponent to assess the
stability of length dynamics. The Lyapunov exponent measures the rate of divergence or convergence
of nearby trajectories in a dynamical system. It is defined as: λLyapunov = limt→∞

1
t ln

|ϵx(t)|
|ϵx(0)| , where

ϵx(t) represents the separation between two initially close trajectories at time t. If λLyapunov > 0, the
system exhibits chaotic dynamics, with trajectories diverging exponentially. Using the Rosenstein
method (Rosenstein et al., 1993), we estimate the largest Lyapunov exponent directly from empirical
length data. The results, shown in Table 1, reveal that regularization reduces the Lyapunov exponent
for pl,t, ql,t, and rl,t in SPCNs. For larger values of σw, SPCNs are still able to control the system
with λLyapunov < 0, whereas PCNs exhibit dynamics with λLyapunov > 0. Length regularization ensures
that the exponential growth of lengths across layers is suppressed, stabilizing inference.

Length after Training Although our study primarily focuses on the length dynamics during
inference, it is equally important to maintain stable length dynamics during training. Appendix J
analyzes length dynamics after training, demonstrating that SPCNs effectively control the length
dynamics during inference and learning.

6.2 SPCNS FOR BALANCED ERROR PROPAGATION

Table 2: Comparative results on MNIST and CIFAR-10. For the MNIST dataset, MLP-based
PCNs/SPCNs are employed; For the CIFAR-10 dataset, CNN-based PCNs/SPCNs-s are employed.
The table shows the classification performances (accuracy) of models based on different layer depths:
L = 3, 4, 6, 9, and 13. We evaluate models in terms of classification accuracy (%). Bold values
represent the best performance for each configuration. Each entry provides the average accuracy (top)
and one standard deviation (middle) from five runs. The table also reports the entropy (bottom) of the
length of the prediction error, ql,T . SPCN-s: SPCN without sequential training and skip connection
modules from the input (See Appendix G).

L 3 4 6 9 13

MNIST

PCN (MLP) acc. (%) 90.61 88.81 83.31 81.17 49.97
± 0.15 ± 0.1 ± 0.26 ± 0.28 ± 0.59

entropy 5.09×10−2 5.44×10−2 5.33×10−2 3.77×10−3 5.91×10−5

SPCN (MLP) acc. (%) 89.71 90.02 90.19 89.47 64.71
± 0.18 ± 0.06 ± 0.21 ± 0.18 ± 1.46

entropy 2.96×10−2 2.31×10−2 1.12×10−2 1.02×10−2 1.38×10−2

CIFAR-10

PCN (CNN) acc. (%) 16.83 26.33 35.52 40.9 24.6
± 0.64 ± 0.44 ± 0.42 ± 1.06 ± 6.06

entropy 4.80×10−6 7.68×10−6 1.17×10−73 7.46×10−6 4.28×10−3

SPCN-s (CNN) acc. (%) 16.36 27.69 45.1 37.65 29.12
± 1.46 ± 0.58 ± 0.62 ± 1.47 ± 1.9

entropy 3.80×10−6 4.98×10−5 2.17×10−1 6.13×10−2 5.29×10−2

We conducted a series of experiments to verify the effectiveness of the proposed SPCN in addressing
the discussed challenges.

Balancing Errors and Classification Perforamance We trained both PCNs and SPCNs and
evaluated their performance on the MNIST dataset. The detailed experimental setup is presented
in Appendix F. We varied the layer depth L from 3 to 13, measuring the test accuracy for each

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

configuration. Note that in this study, L includes both the input and output layers. This experiment
aimed to analyze how changes in network depth impact classification accuracy. As shown in Table 2,
the classification performance of PCNs decreases with increasing layer depth L. In contrast, SPCNs
demonstrated more stable performance across different layer depths, with smaller degradation as L
increased. Our experiments demonstrate that SPCNs effectively enhance performance in image clas-
sification tasks compared to traditional PCNs. To investigate whether prediction error concentration
affects performance, we also measured entropy alongside accuracy by considering the lengths of the
prediction errors as negative energy. The results in Table 2 suggest that in PCNs, entropy decreases
as network depth L increases, indicating that prediction errors concentrate on specific layers. In
contrast, SPCNs maintain a relatively stable entropy scale, demonstrating a more even distribution of
prediction errors across layers. In conclusion, introducing skip connection modules and sequential
training in SPCNs addresses the prediction error concentration problem discussed in Section 4.2.
SPCNs provide a more robust framework for predictive coding in deep networks by facilitating better
error propagation and reducing bias toward the output layers.

PC + CNNs on CIFAR-10 The performance of CNNs varies significantly depending on the latent
state initialization schemes. While the feed-forward latent initialization scheme used in recent imple-
mentations of PCNs greatly improves performance, it does not align with the Gaussian assumptions
made in this paper. In addition, it is not a fundamental component of the predictive coding mechanism.
To demonstrate the performance of CNNs, we adopted the feed-forward latent initialization scheme.
The resulting changes in the pattern of prediction error concentration and the corresponding modifica-
tions to SPCNs (SPCN-s) are discussed in Appendix G. Consequently, the performance advantage of
utilizing CNNs alongside the feed-forward initialization scheme is somewhat attenuated.

Overall, SPCNs successfully address the challenges of exponential growth in length dynamics and
prediction error concentration, offering a more robust and stable framework for deep PCNs.

7 CONCLUSION

This study delves into the underlying causes of unstable training in deep PCNs, focusing particularly
on the length dynamics of the latent states during the inference process and the length of the
parameter gradient affected by the dynamics. Our investigation highlights the exponential growth of
the lengths of the latent states and prediction errors, culminating in the challenge of the exploding and
vanishing gradient problem inherent to PCNs. Furthermore, we have identified that the intermediate
layers of PCNs will likely be fitted to random predictions rather than information from data pairs,
causing performance deterioration with increasing network depth. To address these issues, we
introduce SPCNs, which implement strategies to regularize the lengths of latent states and adopt
sequential training for deepening PCNs. Empirical evaluations of SPCNs demonstrate their efficacy
in mitigating the issues and enhancing the trainability and generalizability of PCNs. Overall, this
research significantly contributes to the advancement of PCNs by offering theoretical insights and
empirical validation to improve their trainability and performance in practical applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary Evolution Recurrent Neural Networks. In
Proceedings of The 33rd International Conference on Machine Learning, pp. 1120–1128. PMLR,
June 2016.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994. ISSN 1941-0093.
doi: 10.1109/72.279181.

Julie Blumberg and Gabriel Kreiman. How cortical neurons help us see: Visual recognition in the
human brain. The Journal of Clinical Investigation, 120(9):3054–3063, September 2010. ISSN
0021-9738. doi: 10.1172/JCI42161.

Christopher L. Buckley, Chang Sub Kim, Simon McGregor, and Anil K. Seth. The free energy
principle for action and perception: a mathematical review. Journal of Mathematical Psychology,
81:55–79, December 2017. ISSN 0022-2496. doi: 10.1016/j.jmp.2017.09.004.

Bhavin Choksi, Milad Mozafari, Callum Biggs O’ May, B. ADOR, Andrea Alamia, and Rufin
VanRullen. Predify: Augmenting deep neural networks with brain-inspired predictive coding
dynamics. In Advances in Neural Information Processing Systems, volume 34, pp. 14069–14083.
Curran Associates, Inc., 2021.

Taylor Chomiak and Bin Hu. Mechanisms of Hierarchical Cortical Maturation. Frontiers in Cellular
Neuroscience, 11, September 2017. ISSN 1662-5102. doi: 10.3389/fncel.2017.00272.

J. Sebastian Espinosa and Michael P. Stryker. Development and Plasticity of the Primary Visual
Cortex. Neuron, 75(2):230–249, July 2012. ISSN 0896-6273. doi: 10.1016/j.neuron.2012.06.009.

Simon Frieder and Thomas Lukasiewicz. (Non-)Convergence Results for Predictive Coding Networks.
In Proceedings of the 39th International Conference on Machine Learning, pp. 6793–6810. PMLR,
June 2022.

Karl Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B:
Biological Sciences, 360(1456):815–836, April 2005. doi: 10.1098/rstb.2005.1622.

Jay Hegdé and Daniel J. Felleman. Reappraising the Functional Implications of the Primate Visual
Anatomical Hierarchy. The Neuroscientist, 13(5):416–421, October 2007. ISSN 1073-8584. doi:
10.1177/1073858407305201.

Sepp Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and
Problem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
6:107–116, April 1998. doi: 10.1142/S0218488598000094.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 2012. ISBN 978-1-139-
02041-1.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, March 2015.

Georg B. Keller and Thomas D. Mrsic-Flogel. Predictive Processing: A Canonical Cortical Computa-
tion. Neuron, 100(2):424–435, October 2018. ISSN 0896-6273. doi: 10.1016/j.neuron.2018.10.003.

Paul F. Kinghorn, Beren Millidge, and Christopher L. Buckley. Preventing Deterioration of Classifi-
cation Accuracy in Predictive Coding Networks. In Christopher L. Buckley, Daniela Cialfi, Pablo
Lanillos, Maxwell Ramstead, Noor Sajid, Hideaki Shimazaki, and Tim Verbelen (eds.), Active
Inference, pp. 1–15, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-28719-0. doi:
10.1007/978-3-031-28719-0_1.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mathieu Letellier, Florian Levet, Olivier Thoumine, and Yukiko Goda. Differential role of pre- and
postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. PLOS
Biology, 17(6):e2006223, 2019. 6. 5. ISSN 1545-7885. doi: 10.1371/journal.pbio.2006223.

William Lotter, Gabriel Kreiman, and David Cox. Deep Predictive Coding Networks for Video
Prediction and Unsupervised Learning, February 2017.

Fabian A. Mikulasch, Lucas Rudelt, Michael Wibral, and Viola Priesemann. Where is the error?
Hierarchical predictive coding through dendritic error computation. Trends in Neurosciences, 46
(1):45–59, January 2023. ISSN 0166-2236, 1878-108X. doi: 10.1016/j.tins.2022.09.007.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. A
Theoretical Framework for Inference and Learning in Predictive Coding Networks. In The Eleventh
International Conference on Learning Representations, September 2022a.

Beren Millidge, Alexander Tschantz, and Christopher L. Buckley. Predictive Coding Approximates
Backprop Along Arbitrary Computation Graphs. Neural Computation, 34(6):1329–1368, May
2022b. ISSN 0899-7667. doi: 10.1162/neco_a_01497.

David Mumford. On the computational architecture of the neocortex: Ii the role of cortico-cortical
loops. Biological cybernetics, 66(3):241–251, 1992.

Inaki-Carril Mundinano, William Chin Kwan, and James A. Bourne. Mapping the mosaic sequence
of primate visual cortical development. Frontiers in Neuroanatomy, 9, October 2015. ISSN
1662-5129. doi: 10.3389/fnana.2015.00132.

Kathryn M. Murphy and Leanne Monteiro. Anatomical and molecular development of the human
primary visual cortex. Frontiers in Cellular Neuroscience, 18, September 2024. ISSN 1662-5102.
doi: 10.3389/fncel.2024.1427515.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient problem.
ArXiv, November 2012.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch.

Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine
M’Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, Thomas Lukasiewicz, and Tommaso
Salvatori. Benchmarking Predictive Coding Networks – Made Simple, July 2024. Comment: 33
pages, 25 figures.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos, June 2016.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: A functional interpre-
tation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):79–87, January
1999. ISSN 1546-1726. doi: 10.1038/4580.

Michael T. Rosenstein, James J. Collins, and Carlo J. De Luca. A practical method for calculating
largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1):
117–134, May 1993. ISSN 0167-2789. doi: 10.1016/0167-2789(93)90009-P.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, October 1986. ISSN 1476-4687. doi:
10.1038/323533a0.

Tommaso Salvatori, Luca Pinchetti, Beren Millidge, Yuhang Song, Tianyi Bao, Rafal Bogacz, and
Thomas Lukasiewicz. Learning on arbitrary graph topologies via predictive coding. Advances in
neural information processing systems, 35:38232–38244, 2022.

Tommaso Salvatori, Ankur Mali, Christopher L. Buckley, Thomas Lukasiewicz, Rajesh P. N. Rao,
Karl Friston, and Alexander Ororbia. Brain-Inspired Computational Intelligence via Predictive
Coding, August 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tommaso Salvatori, Ankur Mali, Christopher L. Buckley, Thomas Lukasiewicz, Rajesh P. N. Rao,
Karl Friston, and Alexander Ororbia. Brain-Inspired Computational Intelligence via Predictive
Coding, August 2023b.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Information
Propagation, April 2017.

Caitlin R. Siu and Kathryn M. Murphy. The development of human visual cortex and clinical
implications. Eye and Brain, 10:25–36, April 2018. doi: 10.2147/EB.S130893.

H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in Random Neural Networks. Physical
Review Letters, 61(3):259–262, July 1988. doi: 10.1103/PhysRevLett.61.259.

Yuhang Song, Beren Millidge, Tommaso Salvatori, Thomas Lukasiewicz, Zhenghua Xu, and Rafal
Bogacz. Inferring neural activity before plasticity as a foundation for learning beyond back-
propagation. Nature Neuroscience, 27(2):348–358, February 2024. ISSN 1546-1726. doi:
10.1038/s41593-023-01514-1.

Mandyam Veerambudi Srinivasan, Simon Barry Laughlin, and Andreas Dubs. Predictive coding:
a fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B.
Biological Sciences, 216(1205):427–459, 1982.

Mototaka Suzuki, Cyriel M. A. Pennartz, and Jaan Aru. How deep is the brain? The shallow brain
hypothesis. Nature Reviews Neuroscience, 24(12):778–791, December 2023. ISSN 1471-0048.
doi: 10.1038/s41583-023-00756-z.

Mufeng Tang, Helen Barron, and Rafal Bogacz. Sequential Memory with Temporal Predictive
Coding, October 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need, August 2023.

James C. R. Whittington and Rafal Bogacz. An Approximation of the Error Backpropagation
Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity. Neural
Computation, 29(5):1229–1262, May 2017. ISSN 0899-7667. doi: 10.1162/NECO_a_00949.

James C. R. Whittington and Rafal Bogacz. Theories of Error Back-Propagation in the Brain. Trends in
Cognitive Sciences, 23(3):235–250, March 2019. ISSN 1364-6613. doi: 10.1016/j.tics.2018.12.005.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 32(1):4–24, January 2021. ISSN 2162-2388. doi: 10.1109/TNNLS.2020.
2978386.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORKS

A theoretical study (Millidge et al., 2022a) asserted that PCNs approximate learning rules such as
backpropagation and target propagation, thereby highlighting the learning potential of PCNs. Previous
studies (Whittington & Bogacz, 2017; 2019; Millidge et al., 2022a) have discussed the relationship
with backpropagation under the assumption of equilibrium of latent states (∆x = 0); however, we
have directly probed the latent dynamics itself. Our analysis indicates that reaching the equilibrium
can be challenging due to the exponential growth of transition in latent states. To our knowledge, this
study is the first to investigate the inherent instability in the latent dynamics of PCNs. Our research is
directly inspired by previous works (Poole et al., 2016; Schoenholz et al., 2017) that analyze stability
issues in deep neural networks (DNNs) through the lens of length dynamics. These studies have
focused on the stability of both forward and backward passes in DNNs, which is also linked to the
EVGP (Bengio et al., 1994; Hochreiter, 1998; Pascanu et al., 2012; Arjovsky et al., 2016). We extend
similar reasoning to demonstrate that this stability issue can also arise during the latent state inference
process in PCNs. Previous research (Frieder & Lukasiewicz, 2022) explored the (non-)convergence
behavior of PCNs, but our study identifies new challenges through an analysis of length dynamics.
Specifically, we highlight the occurrence of EVGP from length analysis and the concentration of
prediction errors in specific layers, forming the basis for our proposed sequential training with skip
connection modules.

Meanwhile, PCNs have been applied to supervised and temporal sequence learning tasks (Whitting-
ton & Bogacz, 2017; Tang et al., 2023). However, although not explicitly stated, their published
implementations of these studies are typically confined to a shallow network; generally, it is hard
to train deep PCNs. Our study examines the stability and scalability issues inherent in deep PCNs
through theoretical and empirical analysis. In addition, previous work (Kinghorn et al., 2023) has
suggested that the instability of PCNs stems from discrepancies in updates across layers, which aligns
with our observations regarding latent length dynamics. However, we approach this problem from a
length dynamics perspective and propose SPCNs as a solution to enhance the entropy of prediction
errors.

Predictive coding has also been adopted to design other models, such as (Lotter et al., 2017;
Choksi et al., 2021). PredNet (Lotter et al., 2017) predicts sequences by combining a PCN with
Long Short-Term Memory (LSTM (Hochreiter & Schmidhuber, 1997)) units; however, unlike the
original PC theory (Rao & Ballard, 1999), this approach relies on backpropagation rather than local
computation and uses the encoded error as a prediction target. Predify (Choksi et al., 2021) represents
a hybridization of FFNs-BP and PCNs, circumventing the chronic problems of PCNs by utilizing
FFNs-BP and modern deep learning mechanisms such as batch normalization (Ioffe & Szegedy,
2015). In summary, many studies have adopted the predictive coding idea but often compromised the
original theory. Our study pinpoints the issue underlying the unstable PCN training and improves its
applicability to deeper PCNs.

B DISCUSSION

Broader Impacts Predictive coding (PC) is a biologically plausible learning mechanism based on
local computation. It acquired attention as a potential link between artificial network learning and
brain learning (Whittington & Bogacz, 2017; 2019). However, we have demonstrated that PCNs have
inherent limitations in stable learning. Our solution shows that regularization of neural activity is
necessary for stable deep predictive coding in PCNs, which is supported by neuroscience research
regarding the effects of normalization on the brain (Letellier et al., 2019. 6. 5.).
While our results advance our understanding of cortical computations, they could pose a risk of
misuse, such as attacks or hacking of brain-like intelligence models. Finally, SPCNs still need to
address fairness and privacy issues critical to various social concerns.

Limitations We propose a stable, dynamic learning system and suggest an early stop of the
inference phase to prevent random or premature overfitting of the predictive module. That said,
its computational cost is still high compared to feed-forward neural networks, which may limit
its practical applicability. The theory presented in our study is based on conventional PCNs with
a feed-forward architecture, whereas the proposed model has a specific structure, as illustrated in
Figure 4. Based on our theory, future works could suggest a more general theory accommodating

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

various structures, such as graph NNs (Wu et al., 2021) or transformers (Vaswani et al., 2023). We
leave the theoretical understanding of complex topologies and their application to advanced cortical
models for future research. Finally, our theoretical results mainly focus on the latent dynamics in
random PCNs, leaving room for further research on the parameter dynamics.

C BIOLOGICAL PLAUSIBILITY OF SPCNS

C.1 REGULARIZATION

Predictive Coding Networks (PCNs) have garnered attention for their alignment with cortical
processes, given their reliance on local computations and the minimization of prediction er-
rors—principles thought to underpin neural activity in the brain. In PCNs, each neuron updates
its state based solely on local information, reflecting how neurons in the brain operate without a
global control signal. This feature is particularly crucial for maintaining the biological plausibility of
these models. However, traditional PCNs face challenges in terms of stability and trainability, raising
questions about their biological plausibility when applied to deeper networks. The unstable learning
dynamics observed in PCNs, characterized by the exponential growth of latent states and prediction
errors, do not align with the stable learning observed in biological systems. This discrepancy suggests
that while PCNs may capture some aspects of cortical function, they may not fully embody the
robustness inherent in biological systems.

To address these issues, we propose Stable Predictive Coding Networks (SPCNs), which incorporate
mechanisms to regularize the latent state dynamics, thereby improving stability and enhancing bio-
logical plausibility. SPCNs implement local computations similarly to traditional PCNs but introduce
constraints that prevent the runaway dynamics observed in deeper networks. This modification aligns
SPCNs more closely with the stable functioning of biological neural networks and enhances their
scalability and applicability in practical settings. Despite these improvements, SPCNs retain some
biological limitations. For instance, the introduction of regularization techniques, while stabilizing,
may not have a direct analog in biological neural systems, where stability might be achieved through
different, yet undiscovered, mechanisms. While SPCNs advance the biological plausibility of PCNs
by addressing key stability issues, they represent an abstraction that balances biological fidelity with
computational tractability. Further research is necessary to refine these models and explore how
closely they can mimic the complex and dynamic processes observed in the brain.

C.2 SQUENTIAL TRAINING

Figure 5: Sequential Training as Sequential Maturation

The SPCN framework draws inspiration from the nervous system’s sequential maturation. In biologi-
cal feedforward networks, supervised learning can be conceptualized as processing data pairs (x, y)
as sensory information (Whittington & Bogacz, 2017). Our method, which prioritizes training layers
closer to those handling external information such as data pairs, mirrors the sequential maturation
observed in the brain as shown in Figure 5. For example, neural systems responsible for capturing
low-level visual features mature earlier, akin to the hierarchical development of visual pathways in
the nervous system.

Examples of sequential maturation in the nervous system include the following:

• Early V1 Maturation: During the early stages of visual cortex development, layer 4 of
the primary visual cortex (V1), which receives input from the lateral geniculate nucleus
(LGN), develops first. This leads to the formation of topographic maps and orientation
selectivity (Espinosa & Stryker, 2012). Such foundational processing is completed before
more complex visual processing develops in higher cortical areas.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Hierarchical Maturation of Visual Cortex: Maturation signals are known to propagate
hierarchically from primary sensory cortical regions to higher-order cortical processing
areas (Chomiak & Hu, 2017). For instance, V1, which receives initial visual input, matures
early to establish basic processing capabilities like edge detection. Subsequently, extrastriate
areas (e.g., V2, V3, and V4) develop sequentially to support more complex visual tasks
such as form recognition and color perception (Espinosa & Stryker, 2012; Mundinano et al.,
2015; Siu & Murphy, 2018).

• Development of Complex V1 Connections: Research on the development of human V1
shows that feedforward connections from V1 to V2 mature earlier than feedback connections.
Additionally, long-range horizontal connections within the superficial layers of V1, which
integrate information across the visual field, continue to mature postnatally (Murphy &
Monteiro, 2024) This suggests that circuits related to complex processing within V1 mature
later than those responsible for basic input-output organization.

While the exact structural and maturational processes of the biological visual pathway are not directly
emulated, PCNs are versatile and can be applied to various neural architectures (Salvatori et al.,
2022). They exhibit varying degrees of biological plausibility (Mikulasch et al., 2023; Keller &
Mrsic-Flogel, 2018; Salvatori et al., 2023b). The SPCN method draws inspiration from the brain’s
sequential maturation, facilitating stable long-term learning. By aligning with these principles, our
method ensures consistency with predictive coding (PC) principles while maintaining stability and
reinforcing its biological plausibility.

C.3 SKIP CONNECTION MODULES

Our skip connection module mirrors structures observed in various neural circuits:

• Visual Cortex Hierarchy: The skip connection module reflects bypass connections in the
visual cortex hierarchy (Blumberg & Kreiman, 2010; Hegdé & Felleman, 2007; Suzuki
et al., 2023). For instance, the lower-level V1 directly connects to higher-order regions such
as V4 or MT.

• Thalamo-Cortical Loops: The module aligns with circuits in the thalamocortical
loop (Hegdé & Felleman, 2007; Suzuki et al., 2023), where regions such as the thala-
mus’s LGN and pulvinar nuclei establish forward connections to multiple visual cortical
areas.

• Sensory-Motor Integration: Skip connections link sensory information to motor outcomes,
as seen in the pathways connecting the primary sensory cortex to higher cortical areas and
subcortical motor centers (Suzuki et al., 2023).

These examples highlight that information in the cortex flows hierarchically and through lateral
and recurrent pathways, enabling efficient and flexible error correction. Skip connection modules in
PCNs emulate these pathways by directly propagating prediction errors across layers, improving both
stability and error integration.

By incorporating skip connection modules, our SPCN model enhances computational stability while
reflecting key cortical structure and function aspects. This design choice draws inspiration from
hierarchical processing in the visual system and bypasses connections, thereby reinforcing the
biological plausibility of our approach.

D DERIVATION OF LENGTH DYNAMICS

This section investigates the length dynamics in predictive coding networks. We present the theoretical
aspects of how latent variables evolve during the inference process, leveraging assumptions of linearity
and Gaussian-distributed parameters. We focus on the statistical distribution of Gaussian samples,
which serves as the foundation for understanding the Gaussian ensemble network’s behavior under
large-scale computations. We present a rigorous analysis of interaction matrices of latents and bias
and their dynamics, offering insights into the lengths dynamics of latent states, prediction errors, and
weight updates.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.1 ASSUMPTIONS AND LATENT STATES UPDATE RULE

Our primary goal is to track the changes in the length of the latent state during the inference step t.
To perform this analysis, we adopt the following assumptions:

Gaussian Assumption We assume that the initial latent state at the inference step t = 1 is
drawn i.i.d. as zl,ti ∼ N (0, 1). The learnable parameters, weight and bias, are drawn i.i.d. as

wl
i,j ∼ N (0,

σ2
w

Nl
) and bli ∼ N (0, σ2

b).

Linearity Assumption The correlation between variables may vary arbitrarily depending on
the nonlinearity of the activation function ϕ, making it difficult to expand interaction analytically.
Therefore, we initially analyze the case where ϕ is a linear function. For cases involving non-linear
activation functions, empirical verification is performed to confirm the results in Appendix K. In the
context of the linearity assumption, the forward and backward transformations are defined as follows

f l−1(zl−1) = W l−1zl−1 + bl−1 (10)

gl(zl+1) = W l⊤zl+1. (11)

Dimensionality Assumption We assume that all layers share the same dimensionality. If the
dimensions differ, the latent spaces must be transformed using matrices like M , resulting in non-
generalizable cross-layer interactions.

With these assumptions, we can expand the latent state update rule as follows:

zl,t+1 = zl,t +∆zl,t

= zl,t + η
(
−δl,t +W l⊤δl+1,t

)
= zl,t + η

(
−
(
zl,t − ẑl,t

)
+W l⊤ (

zl+1,t − ẑl+1,t
))

(12)

The update rule can be further simplified as:

zl,t+1 = (1− η)zl,t + η · (W l−1zl−1,t + bl−1) + η ·W l⊤zl+1,t − η ·W l⊤ (
W lzl,t + bl

)
= ρM l−1zl−1,t + κzl,t + ρM l⊤zl+1,t + ηbl−1 − ρM l⊤bl, (13)

where M = 1
σw

W , ρ = ησw, κ = 1− η(1 + σ2
w), and ξ = ησ2

w.

D.2 THE DISTRIBUTION OF THE PRODUCT OF GAUSSIAN SAMPLES

Before delving into the dynamics of length, given that our analysis involves the product of different
forms of Gaussian samples, it is essential to review the generalized results of this. Let ui ∼ N (0,

σ2
u

N)

and and vi ∼ N (0,
σ2
v

N). The square of ui follows a chi-square distribution, while the product ui · vi
follows a normal product distribution. Our interest lies in understanding the distribution of the
following inner product values

u⊤u =

N∑
i=1

u2
i and u⊤v =

N∑
i=1

ui · vi (14)

as N →∞. Applying the Central Limit Theorem (CLT) to these values, we obtain the following:

√
N ·

u⊤u
N E[u2

i]√
Var(u2

i)
→ N (0, 1), (15)

where E[u2
i] = Var(ui) =

σ2
u

N , and Var(u2
i) = E[u4

i] − E[u2
i]

2 = 3
σ4
u

N2 − σ4
u

N2 = 2
σ4
u

N2 . As a result,

u⊤u→ N (σ2
u,

2σ4
u

N), and equivalently,

u⊤u→ σ2
u · N (1,

2

N
). (16)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Similarly, applying the CLT to the cross-product yields:

√
N ·

u⊤v
N E[ui · vi]√
Var(ui · vi)

→ N (0, 1), (17)

where E[ui · vi] = 0, since ui and vi are independent, and Var(ui · vi) = σ2
u · σ2

v . Hence, we obtain
u⊤v→ N (0,

σ2
u·σ

2
v

N). Equivalently, for large N ,

u⊤v ∼ σuσv · N (0,
1

N
), (18)

and if σu = σv , this converges to σ2
u · N (0, 1

N).

We can conduct a similar analysis for the distribution of vector lengths. Let ui ∼ N (0, σ2
u) and

vi ∼ N (0, σ2
v). In these cases, we want to understand the asymptotic distribution of the following

length terms:

〈
u2
i

〉
=

1

N

N∑
i=1

u2
i and

〈
ui · vi

〉
=

1

N

N∑
i=1

ui · vi, (19)

as N → ∞. Note that the variance of the Gaussian distribution in the length calculation is not
divided by N in contrast to the inner product version. Instead, the length includes a division by N .
By applying the CLT, similar to the inner product case, we have:〈

u2
i

〉
→ σ2

u · N (1,
2

N
). (20)

Using this result, we can apply it to the cases of interest.

Lengths In the case of vector-vector multiplication, consider vectors z1, zL, and bl, where l ∈
{1, . . . , L− 1}. Each of these vectors is assumed to be sampled from a Gaussian distribution, i.e.,
each element is drawn fromN (0, 1). The length defined by the relationship between these vectors, as
N →∞, follows: 〈

u2
i

〉
→ N (1,

2

N
), (21)

while the cross-product between different vectors converges to:〈
ui · vi

〉
→ N (0,

1

N
). (22)

Consequently, the self-product (length) converges to 1, while the product with a different vector
converges to 0 as N → ∞. Finally, consider the length l = 1

N v⊤Au, where each element of A,
Aij , is drawn from N (0, 1

N), and each element of u and v follows N (0, 1). The transformed vector
(Au)i ∼ N (0, 1), Therefore, v⊤(Au) ∼ N (0, 1), Thus, the length l follows:

l ∼ N (0,
1

N2
). (23)

Matrix-Matrix Multiplication In the case of matrix-matrix multiplication, consider C = A⊤A,
where each element of A, i.e., Aij , is drawn from N (0, 1

N). The diagonal entries of C, Cii, follow
N (1, 2

N), The off-diagonal entries Cij , where i ̸= j, follow N (0, 1
N), Hence, C approaches the

identity matrix I as N →∞. For the product of two matrices D = AB, where both Aij and Bij are
sampled from N (0, 1

N), the resulting matrix Dij shares the same distribution as Aij and Bij .

D.3 INTERACTION MATRICES

For the analysis of length dynamics, we define several key variables as follows.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Latent Self-Interaction Let P t
l+k,l = 1

N zl+k,t⊤M l+k−1:lzl,t for 1 ≤ l, l − k ≤ L, where
M l+k:l = M l+kM l+k−1 · · ·M l is the products of the series of matrices. By definition, we can
observe that P is systematic, meaning that P t

l,l+k = P t
l+k,l. The length of the latent state at layer

l and time step t, pl,t can be represented as the diagonal elements of P t, pl,t =

〈(
zl,ti

)2
〉

=

1
N

∑N
i=1

(
zl,ti

)2

= 1
N zl,t⊤zl,t = P t

l,l. With this definition, the matrix P t contains the length
information and interactions between latent states at different layers at the inference step t. Since
the input and output are fixed during the inference phase as z1,t+1 = z1,t and zL,t+1 = zL,t, the
interaction terms with the indices 1 and L are constants as P1,1 = PL,L = 1 and P1,L = PL,1 = 0.
Similarly, at t = 0, P 0 = I .

Bias-Latent State Interaction Let bias-latent state interaction Bt
l,l−k = 1

N bl−1⊤M l−1:l−kzl−k,t

be a bilinear term of interaction between the bias and latent states at layers l and l − k at inference
step t for 1 ≤ l, l − k ≤ L. Likewise, let Bt

l−k,l =
1
N zl,t

⊤
M l−1:l−kbl−k−1. Since the bias, the

input (z1) and output (zL) are fixed during the inference phase, the interaction terms between these
independent components, B:,1 and B:,L, are also fixed at 0. At t = 0, B0 = 0.

Bias Self-Interaction The term Γl,l−k represents 1
N bl⊤M l:l−k+1bl−k = 0 for 1 ≤ l, l − k ≤ L.

Since the bias terms are sampled from N (0, σ2
b) and fixed during the inference phase, Γ = σ2

b I is a
constant matrix by the properties introduced in Appendix D.2.

D.4 DYNAMICS OF INTERACTION MATRIX

We derive the update rule for the P using the definition of the interaction and the latent update rule
in Equation 13. For an element of P t

l,l−k, where l − k > 1 and l < L, the update equation can be
described as follows:

P t+1
l,l−k =

1

N
zl,t+1⊤M l−1:l−kzl−k,t+1

=
1

N

(
κ · zl,t + ρ ·M l−1zl−1,t + ρ ·M l⊤zl+1,t + η · bl−1 − ρ ·M l⊤bl

)⊤

×M l−1:l−k

×
(
κ · zl−k,t + ρ ·M l−k−1zl−k−1,t + ρ ·M l−k⊤zl−k+1,t + η · bl−k−1 − ρ ·M l−k⊤bl−k

)
We want to expand this equation fully, showing all combinations of terms in the product. First, we
identify the components of the vectors involved in the equation. The expression consists of a sum of
transposed vectors, multiplied by a matrix M l−1:l−k, and then multiplied by another sum of vectors.
The components of the first sum of vectors are

u1 = ρ ·M l−1zl−1,t,u2 = κ · zl,t,u3 = ρ ·M l⊤zl+1,t,u4 = η ·bl−1, and u5 = −ρ ·M l⊤bl.

The components of the second sum of vectors are

v1 = ρ ·M l−k−1zl−k−1,t,v2 = κ · zl−k,t,v3 = ρ ·M l−k⊤zl−k+1,t,v4 = η · bl−k−1,

and v5 = −ρ ·M l−k⊤bl−k.

We can rewrite the original equation using the components we defined:

P t+1
l,l−k =

1

N
(u1 + u2 + u3 + u4 + u5)

⊤
M l−1:l−k (v1 + v2 + v3 + v4 + v5)

We compute all possible products u⊤
i M

l−1:l−kvj for i, j = 1 to 5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Terms involving u1:

u⊤
1 M

l−1:l−kv1 = ρ2
(
zl−1,t

)⊤
M l−1⊤M l−1:l−kM l−k−1zl−k−1,t = ρ2 · P t

l−1,l−k−1

u⊤
1 M

l−1:l−kv2 = ρκ
(
zl−1,t

)⊤
M l−1⊤M l−1:l−kzl−k,t = κρ · P t

l−1,l−k

u⊤
1 M

l−1:l−kv3 = ρ2
(
zl−1,t

)⊤
M l−1⊤M l−1:l−kM l−k⊤zl−k+1,t = ρ2 · P t

l−1,l−k+1

u⊤
1 M

l−1:l−kv4 = ρη
(
zl−1,t

)⊤
M l−1⊤M l−1:l−kbl−k−1 = ρη ·Bt

l−k,l−1

u⊤
1 M

l−1:l−kv5 = −ρ2
(
zl−1,t

)⊤
M l−1⊤M l−1:l−kM l−k⊤bl−k = −ρ2 ·Bt

l−k+1,l−1

• Terms involving u2:

u⊤
2 M

l−1:l−kv1 = κρ
(
zl,t

)⊤
M l−1:l−kM l−k−1zl−k−1,t = κρ · P t

l,l−k−1

u⊤
2 M

l−1:l−kv2 = κ2
(
zl,t

)⊤
M l−1:l−kzl−k,t = κ2 · P t

l,l−k

u⊤
2 M

l−1:l−kv3 = κρ
(
zl,t

)⊤
M l−1:l−kM l−k⊤zl−k+1,t = κρ · P t

l,l−k+1

u⊤
2 M

l−1:l−kv4 = κη
(
zl,t

)⊤
M l−1:l−kbl−k−1 = κη ·Bt

l−k,l

u⊤
2 M

l−1:l−kv5 = −κρ
(
zl,t

)⊤
M l−1:l−kM l−k⊤bl−k = −κρ ·Bt

l−k+1,l

• Terms involving u3:

u⊤
3 M

l−1:l−kv1 = ρ2
(
zl+1,t

)⊤
M lM l−1:l−kM l−k−1zl−k−1,t = ρ2 · P t

l+1,l−k−1

u⊤
3 M

l−1:l−kv2 = ρκ
(
zl+1,t

)⊤
M lM l−1:l−kzl−k,t = κρ · P t

l+1,l−k

u⊤
3 M

l−1:l−kv3 = ρ2
(
zl+1,t

)⊤
M lM l−1:l−kM l−k⊤zl−k+1,t = ρ2 · P t

l+1,l−k+1

u⊤
3 M

l−1:l−kv4 = ρη
(
zl+1,t

)⊤
M lM l−1:l−kbl−k−1 = ρη ·Bt

l−k,l+1

u⊤
3 M

l−1:l−kv5 = −ρ2
(
zl+1,t

)⊤
M lM l−1:l−kM l−k⊤bl−k = −ρ2 ·Bt

l−k+1,l+1

• Terms involving u4:

u⊤
4 M

l−1:l−kv1 = ηρ
(
bl−1

)⊤
M l−1:l−kM l−k−1zl−k−1,t = ρη ·Bt

l,l−k−1

u⊤
4 M

l−1:l−kv2 = ηκ
(
bl−1

)⊤
M l−1:l−kzl−k,t = κη ·Bt

l,l−k

u⊤
4 M

l−1:l−kv3 = ηρ
(
bl−1

)⊤
M l−1:l−kM l−k⊤zl−k+1,t = ρη ·Bt

l,l−k+1

u⊤
4 M

l−1:l−kv4 = η2
(
bl−1

)⊤
M l−1:l−kbl−k−1 = η2 · γl−1,l−k−1

u⊤
4 M

l−1:l−kv5 = −ηρ
(
bl−1

)⊤
M l−1:l−kM l−k⊤bl−k = −ρη · γl−1,l−k

• Terms involving u5:

u⊤
5 M

l−1:l−kv1 = −ρ2
(
bl
)⊤

M lM l−1:l−kM l−k−1zl−k−1,t = −ρ2 ·Bt
l+1,l−k−1

u⊤
5 M

l−1:l−kv2 = −ρκ
(
bl
)⊤

M lM l−1:l−kzl−k,t = −κρ ·Bt
l+1,l−k

u⊤
5 M

l−1:l−kv3 = −ρ2
(
bl
)⊤

M lM l−1:l−kM l−k⊤zl−k+1,t = −ρ2 ·Bt
l+1,l−k+1

u⊤
5 M

l−1:l−kv4 = −ρη
(
bl
)⊤

M lM l−1:l−kbl−k−1 = −ρη · γl,l−k−1

u⊤
5 M

l−1:l−kv5 = ρ2
(
bl
)⊤

M lM l−1:l−kM l−k⊤bl−k = ρ2 · γl,l−k

By systematically breaking down the original equation into its constituent components and computing
all possible interactions between them, we have fully expanded the expression:
P t+1
l,l−k = ρ2 · P t

l−1,l−k−1 + κρ · P t
l−1,l−k + ρ2 · P t

l−1,l−k+1 + ρη ·Bt
l−k,l−1 − ρ2 ·Bt

l−k+1,l−1

+ κρ · P t
l,l−k−1 + κ2 · P t

l,l−k + κρ · P t
l,l−k+1 + κη ·Bt

l−k,l − κρ ·Bt
l−k+1,l

+ ρ2 · P t
l+1,l−k+1 + κρ · P t

l+1,l−k + ρη ·Bt
l−k,l+1 − ρ2 ·Bt

l−k+1,l+1

+ ρη ·Bt
l,l−k−1 + κη ·Bt

l,l−k + ρη ·Bt
l,l−k+1 + η2 · γl−1,l−k−1 − ρη · γl−1,l−k

− ρ2 ·Bt
l+1,l−k−1 − κρ ·Bt

l+1,l−k − ρ2 ·Bt
l+1,l−k+1 − ρη · γl,l−k−1 + ρ2 · γl,l−k (24)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

On the other hand, when updating P t
l,l−k, it is important to account for the cases where l or l − k are

1 or L, since the values of the latent states are fixed in such cases. For instance, the update equation
for the interaction with the input layer, P t+1

l,1 , can be expressed as follows:

P t+1
l,1 =

1

N
zl,t+1⊤M l−1:1z1,t+1

=
1

N

(
κ · zl,t⊤M l−1:1z1,t + ρ · zl−1,t⊤M l−2:1z1,t + ρ · zl+1,t⊤M l:1z1,t

)
= κ · P t

l,1 + ρ · P t
l−1,1 + ρ · P t

l+1,1 (25)

Furthermore, by considering the symmetry of p, we have P t
1,l = P t

l,1. Similarly, the update equation
for the interaction with the output layer, P t+1

L,L−k, is as follows:

P t+1
L,L−k =

1

N
zL,t⊤ML−1:L−kzL−k,t+1

=
1

N

(
κ · zL,t⊤ML−1:L−kzL−k,t + ρ · zL,t⊤ML−1:L−k−1zL−k−1,t

+ ρ · zL,t⊤ML−1:L−k+1zL−k+1,t
)

= κ · P t
L,L−k + ρ · P t

L,L−k−1 + ρ · P t
L,L−k+1 (26)

Moreover, PL,L−k = PL−k,L.

We now aim to express the above update rules, which involve many combination terms, in a more
concise matrix and vector calculation form. Let us carefully examine the structure of the update
equations for both the latent states and p. The update equation for z can be divided into two parts.
The first part is the sum of the element-wise product of the latent states [zl−1, zl, zl+1]⊤ and the
coefficients cz = [ρ, κ, ρ]⊤. The second part is the sum of the element-wise product of the bias terms
[bl−1,bl] and the coefficients cb = [η,−ρ]⊤. The update equation for p, which is derived from the
update equation of z, can be seen as the outer product of the latent updates of layer l and another
layer l − k. The coefficients are fixed, and the values of l and l − k correspond to the indices in the
P matrix. Utilizing this, we can rewrite the update rule from Equations 24 to 26 in matrix form as
follows:

P t+1
l,l−k = c⊤z P

t
l−1:l+1,l−k−1:l−k+1cz + c⊤b B

t
l−k:l−k+1,l−1:l+1cz

+ c⊤b B
t
l:l+1,l−k−1:l−k+1cz + c⊤b Γl−1:l,l−k−1:l−kcb,

P t+1
1,l

⊤
= P t+1

l,1 = c⊤z P
t
l−1:l+1,1, and P t+1

L,l

⊤
= P t+1

l,L = c⊤z P
t
l−1:l+1,L, (27)

for 1 < l, l − k < L.

The update rules for B represent the evolution of the interaction between the latent states z and the
bias terms b.

Bt+1
l+1,l−k =

1

N
bl⊤M l:l−kzl−k,t+1

=
1

N
bl⊤M l:l−k(κ · zl−k,t + ρ ·M l−k−1zl−k−1,t + ρ ·M l−k⊤zl−k+1,t

+ η · bl−k−1 − ρ ·M l−k⊤bl−k)

=
1

N

(
κ · bl⊤M l:l−kzl−k,t + ρ · bl⊤M l:l−kM l−k−1zl−k−1,t

+ ρ · bl⊤M l:l−kM l−k⊤zl−k+1,t + η · bl⊤M l:l−kbl−k−1 − ρ · bl⊤M l:l−kM l−k⊤bl−k
)

=
1

N

(
κ · bl⊤M l:l−kzl−k,t + ρ · bl⊤M l:l−k−1zl−k−1,t

+ ρ · bl⊤M l:l−k+1zl−k+1,t + η · bl⊤M l:l−kbl−k−1 − ρ · bl⊤M l:l−k+1bl−k
)

= κ ·Bt
l+1,l−k + ρ ·Bt

l+1,l−k−1 + ρ ·Bt
l+1,l−k+1 + η · Γl,l−k−1 − ρ · Γl,l−k (28)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We can simplify the update rule for B as follows:

Bt+1
l,l−k = Bt

l,l−k−1:l−k+1cz + c⊤b Γl−k−1:l−k,l. (29)

Note that since Γ is a symmetric matrix, swapping the column and row indices in the update equation
for B does not alter the result.

D.5 DYNAMICS OF LENGTHS

Lengths of the Latent States As mentioned earlier, the diagonal elements of Pt represent the
lengths of the latent states. That is, pl,t = P t

l,l.

Lengths of the Prediction Errors Let the length of the prediction error at layer l be denoted by
ql,t. We can express it as follows:

ql,t =
〈
(δl,ti)2

〉
=

1

N
∥δl,t∥2

=
1

N
(zl,t − ẑl,t)⊤(zl,t − ẑl,t), (30)

where ẑl,t = W l−1zl−1,t + bl−1. By substituting the prediction term, ql,t can be further expanded
as follows:

ql,t =
1

N
(zl,t − σw ·M l−1zl−1,t − bl−1)

⊤
(zl,t − σw ·M l−1zl−1,t − bl−1)

=
1

N
(zl,t

⊤ − σw · zl−1,t⊤M l−1⊤ − bl−1⊤)(zl,t − σw ·M l−1zl−1,t − bl−1)

=
1

N

(
zl,t

⊤
(zl,t − σw ·M l−1zl−1,t − bl−1)

− σw · zl−1,t⊤M l−1⊤(zl,t − σw ·M l−1zl−1,t − bl−1)

− bl−1⊤(zl,t − σw ·M l−1zl−1,t − bl−1)
)

=
1

N

(
zl,t

⊤
zl,t − σw · zl,t

⊤
M l−1zl−1,t − zl,t

⊤
bl−1

− σw · zl−1,t⊤M l−1⊤zl,t + σ2
w · zl−1,t⊤M l−1⊤M l−1zl−1,t + σw · zl−1,t⊤M l−1⊤bl−1

− bl−1⊤zl,t + σw · bl−1⊤M l−1zl−1,t + bl−1⊤bl−1
)

= P t
l,l − σw · P t

l,l−1 −Bt
l,l

− σw · P t
l−1,l + σ2

w · P t
l−1,l−1 + σw ·Bt

l,l−1

−Bt
l,l + σw ·Bt

l,l−1 + γl−1,l−1 (31)

The above equation can be simplified as:

ql,t = c⊤q P
t
l−1:l,l−1:lcq − 2Bt

l,l−1:lcq + Γt
l−1,l−1, (32)

where the coefficient cq = [−σw, 1]
⊤.

Lengths of Weight Updates The length of the weight updates at layer l is denoted by rl,t, and is
defined as:

rl,t =
1

N2
∥∆W l,t∥2F , (33)

where ∆W l,t = δl+1,tzl,t
⊤, with δl+1,t representing the error signal at the next layer and zl,t being

the signal at the current layer.

Before proceeding further, we prove a simple lemma for the Frobenius norm:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Lemma 1 (Horn & Johnson, 2012) ∥xy⊤∥2F = ∥x∥2 · ∥y∥2, where x and y are vectors.

Proof:

∥xy⊤∥2F =
∑
i,j

(xy⊤)2i,j =
∑
i,j

(xiyj)
2 =

∑
i

x2
i

∑
j

y2
j = ∥x∥2 · ∥y∥2. (34)

Using Lemma 1 for the Frobenius norm, we can simplify rl,t as:

rl,t = ∥δl+1,tzl,t
⊤∥2F = ∥δl+1,t∥2 · ∥zl,t∥2

= ql+1,t · pl,t (35)

Since 1
N ∥∆bl∥2 = 1

N ∥δ
l,t∥2, The length of the bias update is equivalent to ql,t and is therefore

omitted.

E DETAILS OF SEQUENTIAL TRAINING WITH SKIP CONNECTION MODULES

Figure 6: PC modules in Algorithm 1

In Algorithm 1, capital letters such as X,Y , and Z represent batch versions of the corresponding
variables described in the main paper. The training process iterates nepochs epochs, which are divided
into nstages stages. The lines 11-14 represent inference and 15-16 learning processes, repectively.
Specifically, the algorithm incrementally expands the involvement of PC modules in inference and
learning, starting near the input and output layers and gradually moving inward during each stage. For
instance, the modules denoted as floc compute the predictions and loss based on errors in the lines 24
and 26 in a chain structure. These computations span from the first to istage-th (line 24) and from
(L− istage)-th to L-th layers (line 26). These chain-based modules are complemented by additional
skip connection modules denoted as fin and fout as in lines 29 and 30. Each of the modules denoted as
fin is a module that takes Z1 as input and predicts and compares with latent states from (L− istage)-th
to (L − 1)-th layers (line 29) . Each of the modules denoted as fout is a module that takes latent
states from the second to (istage + 1)-th layers as input and predicts and compares with ZL (line 30).
Figure 6 illustrates how the PC modules are connected and indicates their corresponding indices
in the algorithm. This design effectively balances the computation of predictions and errors across
layers, leveraging skip connection modules to maintain stability and accuracy during training.

F EXPERIMENTAL SETUP

This section details the experimental setup, code, and procedures for simulating the length dynamics
and evaluating the proposed SPCNs and baselines. We provide comprehensive information to ensure
reproducibility.

Length Dynamics Analysis The simulations described in Section 4 analyzed the length dynamics
of latent states and prediction errors during the inference process in a random PCNs ensemble. The

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 1 Sequential Training with Skip Connection Modules
nepochs: number of training epochs
B: size of mini-batch
T : number of inference steps
Uz: latent state update procedure
Uf : PC module update procedure
L: loss function based on prediction errors

1: procedure SEQUENTIALTRAINING_SKIPCONNECTIONMODULES
2: Initialize PC modules floc, fin, fout
3: nstages ← ⌈(L− 1)/2⌉
4: neos ← nepochs/nstages
5: for i = 1 · · ·nepochs do
6: istage ← (i+ 1//neos) + 1
7: for b = 1 · · · B do
8: Sample a batch of data Xb, Yb

9: Z1 ← Xb, ZL ← Yb

10: Z2:L−1 ∼ N (0, 1)
11: for t = 1 · · ·T do
12: loss← PREDICTIONLOSS(Z1:L, istage)
13: Z1:L ← Uz(loss, Z1:L)
14: end for
15: loss← PREDICTIONLOSS(Z1:L, istage)
16: floc, fin, fout ← Uf (loss, floc, fin, fout)
17: end for
18: end for
19: return floc
20: end procedure

21: procedure PREDICTIONLOSS(Z1:L, istage)
22: loss← 0
23: for l = 1 · · · istage do
24: loss += L(Zl+1, floc[l](Z

l))
25: if l < L− l then
26: loss += L(ZL−l+1, floc[L− l](ZL−l))
27: end if
28: if l < L//2 then
29: loss += L(ZL−l, fin[l](Z

1))
30: loss += L(ZL, fout[l](Z

l+1))
31: end if
32: end for
33: return loss
34: end procedure

dataset consisted of samples from a random unit Gaussian distribution ((xi, yi) ∼ N (0, I)). The
dataset contained 128 samples processed in a single batch. The number of inference steps (T) was
mainly set to 2000 to track the iterative changes in length dynamics. The inference rate was fixed at
0.05. The model consisted of 30 layers to effectively show the exponential growth in PCN (Section 4).
The latent dimension was set to 100.

Image Classification The experiments in Section 6 evaluate the classification accuracy of the
proposed SPCN and baselines. Except for SPCN-specific parameters, all other parameters are
identical to those used for the baseline PCNs. The dataset used is MNIST, with a batch size of 256.
The inference steps were set to a short iteration number of T = 10 to prevent the overfitting of latent
states in the intermediate layers. The inference rate decreases linearly from 0.2 to 0.02. We set the
number of learning epochs to L× 5. For example, when L = 3, the number of epochs is set to 15.
The learning rate increases from 0 to 0.001 during the first 2% of total batch iterations as a warm-up

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

strategy. Subsequently, it follows stepwise learning rate decays, dropping by 0.1 at the 50% and 75%
epochs of learning. The Adam (Kingma & Ba, 2017) optimizer was used to update the weights and
biases with momentum parameters set to 0.9 and 0.999. The number of layers in the model varied
from 3 to 13 to observe performance changes. For experiments where L varied, σw and σb were fixed
at 1.0 and 0.1, respectively. The activation function used was tanh.

Common Setup Each configuration was run five times using different seeds to ensure statistical
robustness. Each run was performed on a single NVIDIA GeForce RTX 3090 GPU and completed
within a few seconds. The implementation was done by using PyTorch (Paszke et al.). Our code is
provided as supplementary material.

G FEED-FORWARD INITIALIZATION OF LATENT STATES

Le
ng

th

Layer
(a)

/

Iteration Layer

/

(c)

 /

Le
ng

th

Layer
(d)(b)

(b)(a), (c), (d)

Figure 7: The length dynamics of the q and r with feed-forward latent initialization. Setting &
Subfigures: same as in Figure 3.

(b) Evaluation(a) Training

Figure 8: SPCN-s: a variation of an SPCN. (a) During the training phase, SPCN-s include feed-
forward and auxiliary skip connections. (b) In the evaluation phase, only the learned feed-forward
connections are used for assessment.

The performance of CNNs is highly dependent on the choice of latent state initialization schemes,
with the feed-forward initialization scheme enhancing performance despite not aligning with the
Gaussian assumptions of this paper. This section discusses the resulting changes in prediction error
concentration patterns and the corresponding modifications to SPCNs following the adoption of this
scheme.

Prediction Error Concentration with Feed-Forward Initialization: The performance of the
network can vary significantly based on how the latent states are initialized, especially in the context
of CNNs. Feed-forward initialization of latent states has been widely used in recent studies of
PCNs (Whittington & Bogacz, 2017; Millidge et al., 2022b; Pinchetti et al., 2024). In this approach,
zl,0 = f l−1(zl−1,0) for 2 ≤ l ≤ L− 1. Figure 7a shows that the length of the prediction error during
inference is high near the output layer. At t = 0, since all latent states, except those at the output layer,
are initialized by predictions, no prediction error occurs at the lower layers, with errors generated only
at the output layer. According to Equation 2-3, latent states remain unchanged if no prediction error
arises from adjacent layers. Thus, the latent state update begins with the output layer’s prediction
error. If a layer is k layers away from the output layer, the prediction error propagates at the rate
of O(ηk). Figure 7c shows that the length ratio near the output layer is significantly higher after
T = 2000 inference steps. Similar to the case of Gaussian initialization, the length of the weight
parameter update, rl,t, follows a similar pattern (Figure 7d).

Modification of SPCNs for Feed-Forward Initialization: To address the issue of concentrated
prediction errors near the output layer, we introduce modifications to the proposed SPCNs. As the
initialization of latent states in a feed-forward manner necessitates the full connectivity of all feed-
forward connection modules, the sequential training approach is rendered inapplicable. Furthermore,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

due to the tendency of prediction errors to concentrate around the output layer, we restructure the
skip connection modules to emphasize connections with the output layer, as depicted in Figure 8.
Accordingly, in comparison to the original SPCNs, this revised configuration omits sequential training.
It employs only a subset of skip connection modules directed towards the output layer, resulting in a
less optimal variant. Consequently, the performance advantages typically associated with integrating
the modified SPCNs and the feed-forward initialization scheme are moderately reduced.

H ABLATION STUDY

Table 3: Comparative results of an ablation study performed on MNIST over models from SPCN to
PCN through its ablation. Each entry provides the average accuracy (top) and one standard deviation
(middle) from five runs. This table follows the same format as Table 1. PCN+r: PCN with only
regularization added to PCN. SPCN-sk: SPCN excluding skip connection modules. SPCN-sq: SPCN
without sequential learning.

L 3 4 6 9 13

PCN
acc. (%) 90.69 89 83.29 81.46 50.49

± 0.08 ± 0.2 ± 0.26 ± 0.15 ± 0.62
entropy 4.98× 10−2 5.20× 10−2 5.28× 10−2 3.74× 10−3 6.76× 10−5

PCN+r
acc. (%) 90.71 88.81 83.37 81.63 50.98

± 0.11 ± 0.29 ± 0.16 ± 0.11 ± 1.48
entropy 5.05× 10−2 5.25× 10−2 5.35× 10−2 3.72× 10−3 3.97× 10−5

SPCN-sk
acc. (%) 89.43 85.91 81.35 49.69 22.64

± 0.2 ± 0.21 ± 0.32 ± 1.24 ± 1.05
entropy 8.16× 10−2 2.93× 10−1 1.60× 10−1 4.55× 10−1 6.15× 10−1

SPCN-s
acc. (%) 89.57 90.12 90.44 89.39 64.95

± 0.11 ± 0.13 ± 0.13 ± 0.18 ± 2.30
entropy 3.20× 10−2 2.29× 10−2 1.21× 10−2 9.87× 10−3 1.40× 10−2

SPCN
acc. (%) 89.64 89.87 90.37 89.34 66

± 0.13 ± 0.18 ± 0.07 ± 0.25 ± 0.74
entropy 3.18× 10−2 2.24× 10−2 1.27× 10−2 9.88× 10−3 1.44× 10−2

We trained ablated models, including SPCN and PCN, and evaluated their performance on the MNIST
dataset. The detailed experimental setup is provided in Appendix F. The experiment examined how
variations in network depth and removing the proposed components affect classification accuracy
and the entropy of prediction errors across the layer axis. As shown in Table 3, the classification
performance of PCN declines as the network depth L increases. While regularization provides
marginal improvements, these gains are negligible compared to the improvements achieved by SPCN.
In contrast, SPCN demonstrates more stable performance across various layer depths and significantly
less degradation as L increases. Notably, performance degradation in SPCN is minimal, even when
sequential training is excluded. However, excluding skip connection modules leads to a substantial
decline in performance. Sequential training without skip connection modules essentially trains on
short-circuited chains, which perform poorly. Furthermore, entropy consistently correlates with
performance, as SPCN and SPCN-sq demonstrate lower entropy alongside higher accuracy.

I ADDITIONAL RESULTS

Figure 9 shows the dynamics of the latent state lengths pl,t, the prediction error lengths ql,t, and the
weight update lengths rl,t for PCNs across varying σw and η values. The results demonstrate how the
network’s stability depends heavily on the initialization of the weights and inference rate. In both
the linear and nonlinear PCN cases, we observe that as σw or η increases, the system becomes more
prone to instability, with the exponential growth of the latent state lengths becoming apparent. This is
especially visible for higher values of σw (e.g., 8.0), where the growth accelerates drastically. This
behavior aligns with the theoretical predictions discussed in the paper, where weight variance σw

significantly influences the dynamics of the latent states. For smaller values of σw, such as 1.0, the
growth is more contained, allowing the network to maintain more stable latent states across inference
steps. However, larger values lead to a divergence in pl,t, which necessitates additional regularization
techniques, as suggested in our proposed SPCN framework.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Le
ng

th

Iteration

Li
ne

ar
ta

nh

Le
ng

th

Le
ng

th

Le
ng

th

Le
ng

th

Le
ng

th

Le
ng

th

Le
ng

th

Iteration Iteration

Iteration Iteration

Iteration

Iteration

Iteration

Figure 9: The dynamics of pl,t, ql,t, and rl,t for PCNs (l = 26 and L = 30). Settings: In all subfigures,
the results are shown for the cases of σw ∈ {0.5, 1.0, 2.0, 4.0, 8.0}with different colors, and σb = 0.3.
Settings not mentioned or indicated are identical to those in Figure 2. Subfigures: (a)-(d) Dynamics
of pl,t of linear PCNs over the 100 inference steps. (e)-(h) Dynamics of pl,t of nonlinear PCNs (tanh)
over the 100 inference steps.

Le
ng

th

Iteration

Le
ng

th

Iteration

Le
ng

th

layer layer

Le
ng

th

 100,000 100,000

1e+4 1e+4

Figure 10: The dynamics of pl,t and ql,t for PCNs (T = 100, 000). Settings not mentioned or
indicated are identical to those in Figure 2.

Figure 10 explores the effect of extremely large inference steps (T = 100, 000) on the dynamics
of pl,t and ql,t. Despite the large number of steps, the latent states and prediction errors stabilize
after sufficient inference steps when σw = 1.0. However, we also observe that prediction errors
tend to concentrate near the output layer, a phenomenon consistent with earlier findings that show
concentrated prediction errors as a major challenge in deep PCNs. This stability over extended
inference periods suggests that while PCNs can converge in theory, the issue of error concentration
near the output layer persists. The results emphasize the need to balance prediction errors to prevent
output-layer dominance, a feature crucial in deep networks for robust training.

Linear tanh SELU SiLUReLU

Figure 11: Heatmap plot of length pl,t for linear and nonlinear PCNs. (σw ∈ {0.6, 1.2, ..., 6.0} and
σb ∈ {0.6, 1.2, ..., 6.0}). The total number of inference T = 10 and the layer index l = 15. Settings
not mentioned or indicated are identical to those in Figure 2.

Figure 11 provides a heatmap visualization showing the effects of σw and σb on the latent state
lengths. For both linear and nonlinear PCNs, we observe that σw has a much more significant impact
on the length dynamics than σb. This supports the notion that the variance of the weights is the
primary driver of instability, while the bias variance has a more subdued role. The heatmap also
reveals that larger σw values result in increasingly longer latent state lengths. These findings underline
the necessity of controlling weight variance during initialization, as unchecked variance can lead to
runaway growth in latent states.

Figure 12 presents a detailed examination of the layer-wise distribution of pl,t, ql,t, and rl,t in linear
PCNs for different inference steps t. These subfigures aim to capture how the latent state lengths,
prediction errors, and weight update magnitudes evolve across different layers and with varying t.
In Figure 12a-c, for σw = 5.4, we observe a exponential growth pattern in the values of p, q, and
r across all layers, particularly as T increases. This growth is expected, given that larger weight
variances typically result in larger latent state dynamics, leading to a cascading effect on prediction

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Le
ng

th

Le
ng

th

Le
ng

th

Layer Layer Layer

Le
ng

th

,
 &

(a) (b) (c) (d)

Figure 12: (a)-(c) The layer-wise distribution of pl,t, ql,t, and rl,t for linear PCNs (σw = 5.4 and
σb = 0.1). The results are shown for the cases of t ∈ {10, 20, 50, 100, 200, 500} with different colors.
(d) Direct comparison of p, p̂, q, and r for l = 15 and t = 20. p̂ represents the length of the prediction.
Settings not mentioned or indicated are identical to those in Figure 2.

errors and weight updates. The increase in p, q, and r with inference steps indicates that the internal
representations become increasingly unstable as the inference phase progresses without proper
regularization. Figure 12d highlights a direct comparison between p, p̂ (the length of predictions), q,
and r for layer l = 15 at T = 20. Across all values of σw, we observe that p, p̂, and q remain within a
similar range, though their values become more exaggerated for higher σw values. Notably, r, which
represents the weight update length, shows explosive growth when σw = 5.4, making it impractical
to display fully. This behavior confirms that the higher values of σw without regularization lead to
unstable weight updates. Interestingly, for lower σw values (e.g., σw = 0.185), r remains small,
indicating that proper initialization can contain these dynamics. However, σw = 1 shows a more
moderate, controllable behavior in r. This figure emphasizes the need for length regularization and
highlights the trade-off between network capacity (as influenced by σw) and the necessity of stability
through regularization techniques.

Le
ng

th

Iteration

Le
ng

th

Le
ng

th

,
 &

Iteration

(a) (b) (c)
Figure 13: (a) & (b) The dynamics of ql,t for linear PCNs (σw = 1 and σb = 0.1). The results are
shown for the cases of different layer index l with different colors. (c) Direct comparison of p, p̂, q,
and r for l = 15 and T = 2000. p̂ represents the length of the prediction. Settings not mentioned or
indicated are identical to those in Figure 3.

Figure 13 illustrates the dynamics of ql,t (prediction error lengths) in linear PCNs, with σw = 1 and
σb = 0.1, across different layer indices and inference steps. In Figure 13a and b, we see that the
prediction error length (ql,t) increases significantly as we approach the output layer (indicated by red
lines). This trend is consistent with the concentration of prediction errors in deeper layers, a challenge
observed in deep PCNs that affects the learning capacity of intermediate layers. Conversely, the
prediction error length in earlier layers (indicated by blue lines) starts small. It grows gradually with
further inference steps, reinforcing the observation that early layers tend to stabilize more effectively
than deeper layers. Figure 13c compares p, p̂, q, and r for layer l = 15 at T = 2000. The comparison
shows how the dynamics of prediction lengths (p̂), latent state lengths (p), and the magnitude of r
(weight update length) become highly dependent on σw. As noted earlier, the growth in r with larger
σw values can lead to instability, stressing the need for controlled weight updates via regularization
mechanisms.

J LENGTH ANALYSIS OVER TRAINING PROCESS

Figure 14 provides a comparison of the layer-wise latent state lengths (p) and prediction error lengths
(q) between standard PCNs and SPCNs after the training process, for σw = 5.4. This figure serves
as a direct contrast between the unregularized dynamics of PCNs and the stabilized dynamics in
SPCNs. In the standard PCNs, p and q show exponential growth across layers, regardless of the value

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

layer layer layer

layer layer layer

Figure 14: Layer-wise p and q comparison of PCN and SPCN (σw = 5.4). Settings are identical to
those in Figure 3.

of T . This outcome is a direct consequence of the unregulated inference process, where latent states
and prediction errors grow uncontrollably due to the lack of constraint on the interaction between
layers. As a result, even early stopping during the inference phase fails to prevent length explosion,
indicating that temporal constraints are insufficient for controlling latent dynamics. In contrast, the
SPCNs exhibit a more contained growth of p and q. Regularization techniques, as introduced in
SPCNs, effectively prevent the exponential escalation of latent states and prediction errors across
layers. The comparison demonstrates that without length regularization, PCNs struggle to maintain
stable dynamics, while SPCNs ensure that the lengths remain within a manageable range, contributing
to more stable and efficient training. Overall, this figure reinforces the necessity of regularization
techniques, such as those employed in SPCNs, to control the growth of latent state lengths and
prediction errors, thus ensuring the scalability and stability of the network during training.

K LENGTH DYNAMICS WITH NONLINEAR ACTIVATIONS

Figure 15 explores the dynamics of latent state lengths (pl,t), prediction error lengths (ql,t), and
weight update lengths (rl,t) in nonlinear PCNs across different activation functions. The analysis
focuses on common nonlinearity types such as tanh, ReLU, SELU, and SiLU, each applied to
layers with varying weight variances (σw). The results show that the dynamics for p, q, and r are
highly sensitive to σw, even in nonlinearity. The odd rows depict the temporal evolution of p, q, and r
at layer l = 27, while the even rows display the layer-wise distribution of these values at the T = 20
inference step. These subfigures illustrate two key phenomena that occur regardless of the applied
nonlinear activation function:

1. In the odd rows, we observe that even with nonlinearity applied, p, q, and r exhibit exponential
growth near the output layer when σw is large (e.g., σw = 5.4). This suggests that while nonlinear
activations are typically expected to provide some degree of constraint on the predicting latent
state dynamics by squashing the outputs (e.g., tanh), the latent state length growth persists for
larger σw. This pattern holds across all activation functions examined, indicating that nonlinearity
alone is insufficient to counteract the destabilizing effects of high weight variance.

2. The even rows reveal that these exponential growth patterns can emerge early in the inference
phase, even at T = 20, particularly in deeper layers. The layer-wise distributions of p, q, and r
show that the effects of large σw extend throughout the network, with prediction errors (q) and
weight updates (r) becoming increasingly concentrated toward the output layer. This observation
underscores a key challenge in training deep PCNs with nonlinearity. While early inference stages
may seem stable, instability can rapidly accumulate in deeper layers due to the interplay between
nonlinearity and large weight variances.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

tanh ReLU SELU SiLU

Le
ng

th

Iteration

Iteration

Le
ng

th

Iteration

Le
ng

th

Layer

Le
ng

th

Layer

Le
ng

th

Layer

Iteration

Layer

Iteration

Layer

Iteration

Layer

Layer

Iteration

Layer

Iteration

Layer

Iteration

Iteration

Layer

Iteration

Layer

Iteration

Layer

Le
ng

th

Figure 15: The dynamics of pl,t, ql,t, and rl,t and their layer-wise results for nonlinear PCNs. In
all subfigures, the results are shown for the cases of σw ∈ {0.185, 1.0, 5.4} with different colors,
and σb = 0.1. Settings not mentioned or indicated are identical to those in Figure 2. Each column
represents the applied nonlinear function. The odd rows are the dynamics of p, q, and r, respectively
(l = 27). The even rows are the layer-wise distribution of p, q, and r, respectively (T = 20).

Importantly, this analysis highlights the need for regularization strategies, even in networks with non-
linear activations. The exponential growth seen here mirrors the behavior in linear PCNs, suggesting
that length regularization and weight variance control are critical to preventing runaway dynamics
in both linear and nonlinear architectures. Regularization techniques, such as those introduced in
SPCNs, become essential for maintaining stability, particularly when nonlinearity alone is insufficient
to prevent the excessive growth of latent states and prediction errors.

30

	Introduction
	Foundations of Predictive Coding Networks
	Investigating Length Dynamics in Predictive Coding Networks
	Key Challenges in Deep PCNs: Insights from Length Dynamics
	Exponential Growth in Length Dynamics
	Concentrated Prediction Errors: How Prediction Errors Remain after Inference

	A Framework for Stable Learning in Deep Predictive Coding Networks
	Experiments for SPCNs
	Controlled Length Dynamics
	SPCNs for Balanced Error Propagation

	Conclusion
	Related Works
	Discussion
	Biological plausibility of SPCNs
	Regularization
	Squential Training
	Skip Connection Modules

	Derivation of Length Dynamics
	Assumptions and Latent States Update rule
	The distribution of the product of Gaussian samples
	Interaction Matrices
	Dynamics of Interaction Matrix
	Dynamics of Lengths

	Details of Sequential Training with Skip Connection Modules
	Experimental Setup
	Feed-Forward Initialization of Latent States
	Ablation Study
	Additional Results
	Length Analysis over Training Process
	Length Dynamics with Nonlinear activations

