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Abstract

Chain-of-Thought (CoT) prompting has001
emerged as a pivotal technique for augmenting002
the inferential capabilities of language models003
during reasoning tasks. Despite its advance-004
ments, CoT often grapples with challenges005
in validating reasoning validity and ensuring006
informativeness. Addressing these limitations,007
this paper introduces the Logic Agent (LA),008
an agent-based framework aimed at enhancing009
the validity of reasoning processes in Large010
Language Models (LLMs) through strategic011
logic rule invocation. Unlike conventional012
approaches, LA transforms LLMs into logic013
agents that dynamically apply propositional014
logic rules, initiating the reasoning process015
by converting natural language inputs into016
structured logic forms. The logic agent017
leverages a comprehensive set of predefined018
functions to systematically navigate the019
reasoning process. This methodology not020
only promotes the structured and coherent021
generation of reasoning constructs but also022
significantly improves their interpretability023
and logical coherence. Through extensive024
experimentation, we demonstrate LA’s capacity025
to scale effectively across various model sizes,026
markedly improving the precision of complex027
reasoning across diverse tasks.028

1 Introduction029

The quest for augmenting the reasoning capabil-030

ities of language models has been a focal point031

of recent advancements in the evolving landscape032

of artificial intelligence. Chain-of-Thought (CoT)033

prompting (Wei et al., 2022; Kojima et al., 2022;034

Wang et al., 2022b; Chu et al., 2023) marked a035

significant stride in this journey, revealing the po-036

tential of large language models (LLMs) to mimic037

human-like reasoning processes. These advance-038

ments have led to remarkable achievements, with039

LLMs demonstrating proficiency in a variety of040

competitive examinations, including those focused041

on mathematics (Li et al., 2022; He-Yueya et al.,042

Context:
If the Moon's surface was once a magma ocean, then the distribution of many elements on 
it should be continuous. The magma ocean holds the key to unlocking the mystery of the 
Moon's origin. If the existence of a magma ocean is confirmed, then the 'Giant Impact 
Hypothesis' becomes the most plausible explanation for the Moon's origin.
Question:
From this, we can infer:
Options:
A. If the Moon's surface was never a magma ocean, then the distribution of elements on its 
surface is not continuous.
B. If the 'Giant Impact Hypothesis' is not the most plausible explanation for the Moon's 
origin, then it indicates that the distribution of elements on the Moon's surface is not 
continuous.
C. If the distribution of elements on the Moon's surface is not continuous, then the Moon's 
surface was never a magma ocean.
D. If the distribution of elements on the Moon's surface is continuous, then the 'Giant 
Impact Hypothesis' will become the most plausible.

Atoms: 
P: Moon's surface was a magma ocean
Q: Continuous distribution of elements
R: the 'Giant Impact Hypothesis' is the 
most plausible explanation
Implies:
P → Q
P → R

External guides:
¬ Q → ¬ P
¬ R → ¬ P

¬ P → ¬ Q
¬ P → ¬ R

Contrapositive Law

Invalid

GPT-4 CoT Freeform:

…

Now, let's translate each of the given inferences:

A. ¬P→¬Q
This is the contrapositive of the first part of the ori
ginal statement (P→Q), so it is logically equivalent
and true.
…
GPT-4 LA Guided:

…
Given the original statement (P→Q),  according to 
Contrapositive(P→Q): ¬ Q → ¬ P, so the inference 
in option A is invalid.

…

Figure 1: An example of logical reasoning problems in
competitive exams. GPT-4 can handle abstract logical
reasoning, however, it fails to conduct a valid inference
chain.

2023; Imani et al., 2023) and reading comprehen- 043

sion (Wang et al., 2023; Xiao et al., 2023). 044

However, despite its implications in various rea- 045

soning tasks, CoT has faced limitations, particu- 046

larly in validating reasoning and ensuring the in- 047

formativeness of its outputs. (Lanham et al., 2023) 048

Their performance in logical reasoning tasks, a 049

critical component of examinations like the Law 050

School Admission Test (LSAT) and Chinese civil 051

service selection exams, remains notably inferior 052

to that of well-trained humans (liu et al., 2023). 053

Figure 1 shows an example of such questions. 054

Crafted by experts to challenge human logical rea- 055

soning abilities, they require a valid and rule-bound 056

chain of logic that is often non-trivial to discern. 057

Testees must engage in abstract thinking, trans- 058

lating contexts into logical symbols and applying 059

strict inference rules to form logical chains. This 060

gap highlights a critical challenge: the ability of 061
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LLMs to consistently follow rules and verify the062

validity of logic chains. As illustrated in Figure 1,063

a GPT-4 model struggles with the deduction of064

the contrapositive law, despite having conceptual065

knowledge of it. One reason can be that there is066

no strict guarantee for a statistical system such as067

LLM to ensure correct complex reasoning chains068

across contexts.069

Inspired by the integration of the neural network070

with formal symbolic solvers (Azerbayev et al.,071

2023; Jiang et al., 2023; Thakur et al., 2023), tool-072

use (Gao et al., 2023; Schick et al., 2023; Paranjape073

et al., 2023), and constrained decoding (Du et al.,074

2020; Geng et al., 2024), we address this issue by075

introducing Logic Agent (LA), an agent-based con-076

strained generation framework, leveraging propo-077

sitional logic and inference rules as fundamental078

guides to constructing logically sound inference079

chains. LA is designed to steer Large Language080

Models (LLMs) toward a trajectory of enhanced081

logical coherence and interpretability by introduc-082

ing symbolic reasoning. In particular, we let an083

LLM serve as a decision-making agent and make a084

callable symbolic reasoning agent by assembling085

a set of essential formal logical rules. The LLM086

agent is taught to make use of the symbolic reason-087

ing agent in its instructions so that formal reasoning088

steps can be guaranteed strictly correct.089

With LA, LLMs are guided towards a path of log-090

ical coherence and interpretability. We first define091

the essentials of compositional logic, i.e. the logic092

components and syntax. This step serves as the093

initial step, converting complex natural language094

statements into structured compositional logic rep-095

resentations. Second, we define the functions for096

applying deduction rules, given a logic expression,097

we are able to form an inference chain with implicit098

logic. These functions are tools for LLMs to use.099

Lastly, we prompt LLMs to decide which rule to100

apply in different states. When LLMs call a rule,101

the output of the corresponding function is guaran-102

teed to give valid logic chains for LLMs to make103

judgments on the truthfulness of the hypotheses.104

In our study, we rigorously evaluated the Logic105

Agent (LA) framework using a mix of commercial106

and open-source Large Language Models, includ-107

ing OpenAI’s GPT-4 and various Hugging Face108

models. Our findings, across this diverse range of109

models, consistently highlight LA’s effectiveness110

in enhancing logical reasoning in complex tasks.111

Alongside our experimental insights, we’re releas-112

ing our code to contribute to ongoing research. To 113

the best of our knowledge, this is the first initiative 114

to integrate propositional logic into LLMs at such 115

a scale. 116

2 Related Work 117

Traditional pre-trained models have primarily tack- 118

led logical reasoning through statistical training, a 119

connectionist approach that often misinterprets the 120

complexity of language. Similarly, formal sym- 121

bolic systems, while precise, struggle with the 122

adaptability needed for diverse linguistic phenom- 123

ena. This backdrop sets the stage for the introduc- 124

tion of new approaches to complex reasoning in 125

Large Language Models (LLMs). 126

Reasoning Paradigms in Large Language 127

Model Prompting: The development of few- 128

shot (Wei et al., 2022) and zero-shot (Kojima 129

et al., 2022) Chain-of-Thought prompting has 130

been instrumental in enabling LLMs to tackle 131

complex reasoning tasks. Subsequent develop- 132

ments have introduced varied data structures, such 133

as Tree-of-Thought (Yao et al., 2023), Graph-of- 134

Thought (Besta et al., 2024), and Program-of- 135

Thought (Chen et al., 2022), enhancing LLMs’ 136

capabilities to reflect on and evaluate their reason- 137

ing processes. Moving beyond basic prompting 138

strategies, the ReAct model (Yao et al., 2022) inter- 139

twines reasoning with actionable tasks like search, 140

while the Selection-Inference framework (Creswell 141

et al., 2023) employs a two-step process of con- 142

text formation and logical chaining. Although 143

these approaches parallel ours in process struc- 144

ture, they do not incorporate explicit logical rules, 145

and the chaining mechanism is entirely model- 146

dependent. The use of external tools within prompt- 147

ing paradigms, particularly for tasks necessitating 148

additional knowledge, represents another signif- 149

icant advancement. In mathematical reasoning, 150

tools such as calculators have proven invaluable. 151

Analogously, in our methodology, predefined func- 152

tions for applying inference rules are akin to exter- 153

nal tools, a concept previously unexplored in this 154

context. Another paradigm shift in LLM prompting 155

is the division of complex tasks into subproblems 156

or the collaborative engagement of diverse models. 157

Cumulative reasoning (Zhang et al., 2023) adopts 158

a streamlined, iterative approach utilizing distinct 159

LLMs as AI agents; ScratchPad (Nye et al., 2021) 160

contributes to multi-step reasoning by revealing 161

intermediate steps; Meta-prompting (Suzgun and 162
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Contrapositive Law
P→Q↔¬Q→¬P
Transitive Law
P→Q,Q→R↔P→R
De_Morgan’s Law
¬ (P ∨ Q) ↔ ¬ P ∧ ¬ Q , ¬ (P ∧ Q) ↔ ¬ P ∨ ¬ Q 
Contradictory Relationships
A↔¬O,O↔¬A,E↔¬I,I↔¬E
Contrary Relationships (Upper Contrary)
A→¬E,E→¬A
Subcontrary Relationships (Lower Contrary)
¬I→O,¬O→I
Subalternation
A→I,E→O,¬I→¬A,¬O→¬E

Origin:
Context:
If the Moon's surface was once a magma ocean, 
then
…
Parsed:
Implies(
Atom(Moon's surface was once a magma ocean),
Atom(the distribution of many elements on it 
should be continuous)
)
Implies(
Atom(existence of a magma ocean is confirmed),
Atom(the 'Giant Impact Hypothesis' becomes the 
most plausible explanation for the Moon's origin)
)

…
Option A 
Implies(Not(Atom(Moon's surface was once a magma ocean)),
Not(Atom(the distribution of many elements on it should be 
continuous))
)
Given the original statement Implies(
Atom(Moon's surface was once a magma ocean),
Atom(the distribution of many elements on it should be 
continuous)
),  applying Contrapositive(Atom(the distribution of many 
elements on it should be continuous), Atom(Moon's surface 
was once a magma ocean),
):Implies(
Not(Atom(Moon's surface was once a magma ocean)),
Not(Atom(the distribution of many elements on it should be 
continuous))), Option A can not be inferred from the 
contrapositive law.
…

Parsed Logic Logic rules Guided Generation

Figure 2: The architecture of the LA framework. Highlighted texts are the output of pre-defined functions.

Kalai, 2024) envisions LLMs as orchestrators in163

a collaborative environment, responsible for de-164

composing complex tasks, delegating sub-tasks to165

specialized models, facilitating inter-model com-166

munication, and applying critical analysis through-167

out. Our approach similarly harnesses the LLMs’168

decision-making capability in selecting appropriate169

inference rules, aligning with this broader trend170

of utilizing LLMs for complex, collaborative rea-171

soning processes. Unlike previous attempts, we172

leverage the computational power and contextual173

understanding of LLMs to act as agents that dy-174

namically invoke logic rules. This integration en-175

ables the LLMs to not only process language with176

their inherent sophistication but also apply logi-177

cal reasoning in a structured and accurate man-178

ner, akin to utilizing a calculator for mathemati-179

cal enhancements. Apart from that, recent stud-180

ies have explored instruct-tuning Large Language181

Models (LLMs) with specific datasets to enhance182

their abstract reasoning capabilities. LogiCoT (Liu183

et al., 2023) fine-tunes an LLAMA-7B model us-184

ing logical chaining data, demonstrating signifi-185

cant improvements across various logical reason-186

ing tasks; LogicLLM (Jiao et al., 2023) employs187

a self-supervised post-training approach tailored188

for logical reasoning enhancements; Symbol-LLM189

(Xu et al., 2023) leverages symbolic data within a190

two-stage tuning framework to imbue a LLAMA-191

2-CHAT model with symbolic knowledge. While192

these approaches underscore the potential of fine-193

tuning strategies in augmenting LLMs, our work194

distinguishes itself as the first to specifically ad-195

dress and enhance logical reasoning capabilities at196

the decoding stage, employing a multi-agent strat-197

egy to elevate the process.198

Formal Reasoning: Formal reasoning systems199

have primarily been developed to address mathe-200

matical challenges. Peano (Poesia and Goodman, 201

2023), designed to solve educational mathemati- 202

cal problems, employs dependent types to encode 203

mathematical definitions and proofs, echoing the 204

structured approach in our work. Yet, our focus 205

diverges towards logical reasoning scenarios, an 206

area where systems like Peano have traditionally 207

been less potent. Addressing formal logical rea- 208

soning, LINC (Olausson et al., 2023) leverages 209

LLMs as FOL language translators to attain formal 210

representations of contextual information, comple- 211

mented by traditional theorem provers for valida- 212

tion. LINC’s approach, which employs a voting 213

strategy to resolve inconsistencies in FOL language 214

generation, contrasts with our method which adopts 215

a more flexible propositional logic to distill the ab- 216

stract essence of context while meticulously con- 217

trolling the validity of generative reasoning. Fur- 218

thermore, the exploration of language models as 219

theorem provers has introduced systems like Lang- 220

Pro (Abzianidze, 2017), a natural language theo- 221

rem prover that harnesses higher-order logic to as- 222

sess linguistic expressions’ consistency. LangPro’s 223

reliance on CCG parsing and a dedicated knowl- 224

edge base for generating Lambda Logical Forms 225

(LLFs) presents a contrast to our work, which uti- 226

lizes propositional logic, thereby circumventing 227

the need for a theorem-proving knowledge base. 228

In parallel, semantic-constrained decoding tech- 229

niques, as exemplified by NEUROLOGIC DE- 230

CODING (Lu et al., 2020), enable language mod- 231

els to generate contextually coherent text while 232

adhering to complex lexical constraints. Our ap- 233

proach resonates with this paradigm, albeit with a 234

distinct focus on employing constrained generation 235

paired with guided deduction rules, thereby carving 236

a unique niche in the landscape of formal reasoning 237

and logical inference. 238
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3 Logic Agent239

Distinctively, we encapsulate the logical reason-240

ing process into callable function forms, packaging241

logic rules as tools for LLM agents. This strategic242

shift in leveraging LLMs as autonomous decision-243

makers, equipped with a toolkit of generalized244

logic reasoning functions, marks a significant de-245

parture from existing models.246

Figure 2 presents the Logic Agent (LA) frame-247

work’s architecture. Initially, natural language in-248

puts undergo logic parsing on the left, resulting249

in structured logic forms (see Section 3.1). The250

center highlights the application of deduction rules251

for logical inference (see Section 3.2). Finally,252

on the right, the constrained generation process253

employs these inferences to produce contextually254

relevant and logically coherent outputs, illustrating255

the LA’s systematic approach to enhancing reason-256

ing in large language models (see Section 3.3). At257

the heart of LA lies the meticulous definition and258

utilization of compositional logic essentials, en-259

compassing both the critical logic components and260

their associated syntax. This pivotal initial step261

involves the intricate transformation of complex262

natural language statements into structured repre-263

sentations of compositional logic.264

3.1 Logical Construct Classes265

Within LA, various classes of logical constructs are266

parsed and utilized. These include:267

Variable: Represents a variable symbol in logi-268

cal expressions. Atom: Denotes an atomic formula,269

the fundamental unit of logical statements. Not:270

Embodies the negation operation in logic. And:271

Indicates logical conjunction, combining multiple272

propositions. Or: Symbolizes logical disjunction,273

offering alternative propositions. Implies: Repre-274

sents the implication relationship between proposi-275

tions. Equiv: Denotes logical equivalence between276

statements. Exists and Forall: Represent exis-277

tential and universal quantification, respectively,278

allowing for the expression of propositions about279

‘some’ or ‘all’ entities within a domain. Rule-based280

functions within LA parse these logical constructs281

and quantified sentences, ensuring accurate repre-282

sentation and manipulation of logical expressions.283

3.2 Inference Rules284

On this foundational layer, LA incorporates a suite285

of defined functions for applying various deduc-286

tion rules. These functions serve as advanced tools287

for LLMs, facilitating the formation of inference 288

chains that integrate both explicit and implicit logic 289

elements. This enables LLMs to navigate the com- 290

plexities of logical deduction, maintaining struc- 291

tured and coherent reasoning throughout. 292

The key inference rules and their corresponding 293

functions in LA include: 294

Contrapositive: A function applying the con- 295

trapositive law, turning implications into their log- 296

ically equivalent forms. Transitive: A function 297

for the transitive law, linking propositions through a 298

common term. De_Morgans: Implements De Mor- 299

gan’s laws, transforming conjunctions and disjunc- 300

tions while preserving logical equivalence. 301

We also integrate the foundational principles of 302

categorical propositions, which is essential to syl- 303

logistic logic. There are four key proposition types: 304

SAP (A) - Universal Affirmative, SIP (I) - Par- 305

ticular Affirmative, SEP (E) - Universal Negative, 306

and SOP (O) - Particular Negative. Below are the 307

corresponding functions: 308

Contradictory: A function handling contra- 309

dictory relationships, identifying mutually ex- 310

clusive propositions. Contrary: Manages con- 311

trary relationships, where two propositions can- 312

not be true simultaneously but can be false 313

together. Subcontrary: Deals with sub- 314

contrary relationships, where two propositions 315

cannot be false simultaneously but can be 316

true together. Subalternation_forward and 317

Subalternation_backward: Functions facilitat- 318

ing subalternation, capturing the inferential rela- 319

tionships between universal and particular propo- 320

sitions. Through these specialized functions, LA 321

empowers LLMs to apply logical reasoning accu- 322

rately and effectively, enhancing their capability 323

to tackle complex reasoning tasks with a higher 324

degree of precision and reliability. 325

3.3 Rule-Guided Generation 326

We prompt LLMs to discern and decide upon the 327

most appropriate rule to apply in varying states 328

of reasoning. This dynamic interaction empow- 329

ers LLMs to judiciously invoke the corresponding 330

functions, each meticulously crafted to guarantee 331

the generation of valid logic chains. Consequently, 332

LLMs are equipped with a powerful mechanism 333

to scrutinize the veracity of hypotheses, making 334

informed judgments based on the logically consis- 335

tent chains produced. We use in-context examples 336

to demonstrate how these functions are called in 337
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Dataset Size Target
ReClor dev 500 4-way multi-choice
AR-LSAT test 230 5-way multi-choice
LogiQA22 1,354 4-way multi-choice
ConTRoL test 805 E, C, N
NaN-NLI test 259 E, C, N
RuleTaker dev 10,068 Yes, No
ProofWriter dev 10,158 Yes, No

Table 1: The statistics of the datasets. (“E” refers to
“entailment”; “C” refers to “contradiction”; “N” refers
to “neutral”.)

the guided generation process and leverage the ca-338

pabilities of existing LLMs developed by OpenAI339

and HuggingFace. These models offer a robust340

starting point, owing to their advanced language341

understanding and processing abilities. However,342

our approach goes beyond the conventional use343

of LLMs by optimizing each component for its344

specific role in the logical reasoning process. This345

targeted optimization is key to transcending the cur-346

rent limitations of LLMs in handling the nuanced347

and rule-bound nature of logical reasoning tests.348

By integrating a structured, rule-guided reason-349

ing methodology into the operational framework of350

LLMs, LA aims to improve not only the logical pre-351

cision of these models but also their interpretability352

and coherence. The incorporation of propositional353

logic, deduction rules, and a strategic prompting354

mechanism positions LA as an innovative approach.355

It seeks to bridge the current divide between the356

computational efficiency of LLMs and the detailed,357

logical discernment typical of human reasoning.358

3.4 Tasks359

We consider various logical reasoning tasks, in-360

cluding Multi-Choice Reading Comprehension361

(MCRC), Natural Language Inference (NLI), and362

True-or-False questions (TF).363

The datasets we use are listed in Table 1. Re-364

Clor (Yu et al., 2020), AR-LSAT (Wang et al.,365

2022a), and LogiQA22 (liu et al., 2023) are three366

renowned multi-choice reading comprehension367

datasets for logical reasoning. ReClor and AR-368

LSAT are collected from verbal reasoning ques-369

tions in competitive tests like the LSAT (Law370

School Admission Test) exam. LogiQA22 is col-371

lected from the Chinese Civil Service Examination372

in the year 2022. ConTRoL (Liu et al., 2021) and373

NaN-NLI (Truong et al., 2022) are two logical rea-374

soning datasets for the natural language inference375

task. The task is to decide whether a hypothesis can376

be logically entailed by the premises. ConTRoL 377

features entailment relationships for long texts, and 378

NaN-NLI is for negations. Both datasets are three- 379

way classification tasks. RuleTaker (Clark et al., 380

2020) and ProofWriter (Tafjord et al., 2020) are two 381

synthetic datasets widely used in formal logic rea- 382

soning. They take the form of yes-or-no questions, 383

which are designed to test the ability of models 384

to understand and apply rules and facts stated in 385

natural language. 386

The tasks are evaluated with few-shot prompting, 387

we use three in-context examples, covering differ- 388

ent inference rule scenarios. For the implementa- 389

tion, we use a series of models from the OpenAI 390

suite, including DAVINCI-002, GPT-3.5-TURBO, 391

and GPT-4. DAVINCI-002 is the GPT base model 392

currently supported by OpenAI API. GPT-3.5- 393

TURBO and GPT-4 are two chat models available in 394

the OpenAI API. Furthermore, we extend our evalu- 395

ation to Huggingface models like LLAMA-2-13B 396

(Touvron et al., 2023) and MIXTRAL-8X7B-V0.1 397

(Jiang et al., 2024), thereby encompassing a broad 398

spectrum of AI models. LLAMA-2-13B is a 13B 399

open LLM developed by Meta. MIXTRAL-8X7B- 400

V0.1 is a Mixture-of-Expert (MoE) model devel- 401

oped by MistralAI. This diverse selection includes 402

both base and instruction-tuned models, covering 403

a range of open-source and closed-source options, 404

to provide a comprehensive overview of the capa- 405

bilities and performance variations across different 406

AI architectures in logical reasoning tasks. We 407

use the guidance library 1 for implementing our 408

rule-constrained generation framework. 409

4 Experiments 410

We employ a diverse range of datasets and models 411

to ensure a robust and thorough assessment of our 412

framework. We detail our experimental setup, the 413

metrics used for evaluation, and our main findings. 414

4.1 Experimental Setup 415

Baselines: Our experimental baselines comprise 416

two distinct approaches: direct answering and 417

Chain-of-Thought (CoT) reasoning. To facili- 418

tate a fair comparison between base models and 419

instruction-tuned models, we provide three in- 420

context examples for both the direct answering and 421

the CoT scenarios. This approach aids LLMs in 422

generating answers that can be directly compared 423

with the gold labels. 424

1https://github.com/guidance-ai/guidance
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Task MCRC NLI TF
Dataset Reclor AR-LSAT LogiQA22 ConTRoL NaN-NLI RuleTaker ProofWriter
Human avg. 63.00 56.00 83.00 87.00 94.00 84.00 82.00
Human Ceiling 100.00 91.00 99.00 94.00 100.00 95.00 93.00
GPT-3.5-Direct 56.28 51.31 41.14 57.94 56.86 55.33 54.68
GPT-3.5-CoT 56.90 51.45 42.92 58.29 55.54 55.88 53.02
GPT-3.5-LA 59.73 55.29 42.98 62.01 61.34 71.30 73.85
GPT-4-Direct 88.54 74.21 60.11 56.34 77.07 59.85 61.58
GPT-4-CoT 89.06 73.49 58.43 56.97 77.83 61.43 60.64
GPT-4-LA 89.47 77.28 60.67 58.93 80.66 65.84 68.42
Davinci-002-Direct 20.41 13.54 11.02 8.43 10.78 25.98 22.54
Davinci-002-CoT 19.43 18.85 13.27 13.61 15.34 26.84 27.33
Davinci-002-LA 27.45 22.60 30.68 15.58 24.73 32.10 33.54
LLaMA-2-Direct 17.31 12.70 18.55 20.12 22.08 25.50 23.39
LLaMA-2-CoT 15.62 13.76 16.03 21.75 25.44 22.39 23.16
LLaMA-2-LA 23.76 21.63 30.21 25.48 22.76 28.79 25.11
Mixtral-8x7b-Direct 48.92 41.40 38.97 50.84 50.13 46.84 44.80
Mixtral-8x7b-CoT 49.21 44.33 40.96 50.32 53.04 48.52 45.85
Mixtral-8x7b-LA 50.58 45.95 44.92 52.25 55.96 52.53 55.68

Table 2: Main results. All results are in %.

Data preprocessing425

• For the Multiple-Choice Reading Comprehen-426

sion (MCRC) task, we combine the context,427

question, and options to form a single input.428

• In Natural Language Inference tasks, premises429

and hypotheses are concatenated, with a dis-430

tinct identifier prefacing each segment.431

• For True-or-False questions, we concatenate432

the context with the question to generate a433

cohesive input prompt.434

Metrics To assess the performance of LLMs435

in our experiments, we employ the exact-match436

metric. This involves prompting LLMs to generate437

answers either as the first token (direct answer) or438

at the end of the generation process (CoT and LA).439

The extracted answers are then compared with the440

gold labels to calculate the accuracy score.441

4.2 Results442

The primary outcomes of our experiments are sum-443

marized in Table 2, where we juxtapose the perfor-444

mances of different models under various logical445

reasoning tasks. These tasks span multiple-choice446

reading comprehension (MCRC), natural language447

inference (NLI), and true-or-false (TF) questions,448

utilizing datasets such as ReClor, AR-LSAT, and449

LogiQA22 for MCRC, ConTRoL and NaN-NLI450

for NLI, and RuleTaker and ProofWriter for TF451

tasks. The human performance benchmarks, as452

referenced in the table, are sourced from prior re- 453

search (Yu et al., 2020; Wang et al., 2022a; liu et al., 454

2023). 455

Direct Answer vs. Chain-of-Thought (CoT): 456

Our analysis reveals that, in the context of the log- 457

ical reasoning tasks tested, the few-shot CoT ap- 458

proach marginally outperforms the direct answer 459

methodology. However, this superiority is not uni- 460

form across all cases. In certain instances, the CoT 461

method appears to detrimentally impact the over- 462

all results, suggesting limitations in the effective- 463

ness of CoT prompting in some logical reasoning 464

scenarios. This observation highlights the inher- 465

ent challenge in using CoT prompting to navigate 466

the complexities of logical reasoning, especially in 467

tasks where intricate inference is required. 468

Performance Across Models: Our further anal- 469

ysis delves into the performance distinctions across 470

various models, highlighting the contrasts between 471

advanced models such as GPT-4 and base models 472

like DAVINCI-002 and LLAMA-2-13B. 473

DAVINCI-002, as a base model, shows distinct 474

performance characteristics under the LA frame- 475

work. For instance, in the MCRC task on the 476

ReClor dataset, DAVINCI-002 under LA achieves 477

a 27.45% accuracy, a notable improvement from 478

its Direct answer performance at 20.41%. This 479

trend is consistent across other datasets, such as 480

in LogiQA22, where DAVINCI-002’s accuracy in- 481

creases from 11.02% (Direct) to 30.68% (LA). 482

These results suggest that the structured reason- 483
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ing provided by LA can significantly enhance the484

logical reasoning abilities of even base models, en-485

abling them to outperform their standard configura-486

tions.487

Similarly, LLAMA-2-13B, another base model,488

exhibits a marked performance enhancement with489

the application of LA. In the TF task using the490

RuleTaker dataset, LLAMA-2-13B registers an ac-491

curacy of 28.79% under LA, compared to 25.50%492

in the Direct answering format. In the more chal-493

lenging ProofWriter dataset, the model improves494

from 23.39% (Direct) to 25.11% (LA). These im-495

provements, while not as pronounced as those seen496

with advanced models like GPT-4, nonetheless in-497

dicate that LA can elevate the performance of base498

models in logical reasoning tasks.499

Comparatively, advanced models like GPT-4500

demonstrate a more significant leap in performance501

with the LA approach. This is particularly evi-502

dent in datasets that require complex logical deduc-503

tions, such as ProofWriter, where GPT-4 with LA504

achieves a 68.42% accuracy, substantially higher505

than both its Direct (61.58%) and CoT (60.64%)506

counterparts.507

This comparative analysis across different mod-508

els underscores the versatility of the LA frame-509

work. While advanced models like GPT-4 nat-510

urally exhibit higher baseline performances, the511

introduction of LA leads to substantial improve-512

ments in logical reasoning tasks across all model513

types, including base models like DAVINCI-002514

and LLAMA-2-13B. This suggests that LA’s struc-515

tured, rule-guided reasoning approach is univer-516

sally beneficial, enhancing the logical reasoning517

capabilities of a wide range of LLMs.518

LA’s Efficacy: The implementation of LA con-519

sistently enhances accuracy across various datasets,520

underscoring its effectiveness in logical reasoning.521

In the TF tasks using the RuleTaker dataset, LA522

with GPT-3.5 achieves an impressive 71.30% ac-523

curacy, a substantial leap from the 55.33% in the524

Direct approach and 55.88% in the CoT approach.525

Similarly, in the ProofWriter dataset, GPT-3.5 with526

LA reaches 73.85% accuracy, outperforming both527

its Direct (54.68%) and CoT (53.02%) formats.528

These figures highlight LA’s capability to signifi-529

cantly refine the reasoning process in LLMs, en-530

abling them to handle complex logic with greater531

precision and reliability. The improvement is even532

more pronounced with advanced models like GPT-533

4, where the accuracy in the RuleTaker dataset534

jumps to 65.84% under LA, compared to 59.85% 535

(Direct) and 61.43% (CoT). This consistent pattern 536

across various models and datasets firmly estab- 537

lishes LA as a transformative approach in logical 538

reasoning, bridging the gap between computational 539

AI and nuanced human-like reasoning. We present 540

a detailed case study in Appendix A. This case 541

study meticulously demonstrates how LA navigates 542

complex logical reasoning tasks, showcasing its 543

capabilities and the enhancements it brings to the 544

decoding stage of Large Language Models (LLMs). 545

Task-Specific Insights: Delving into task- 546

specific performances, we observe that LA aligns 547

exceptionally well with the demands of MCRC and 548

NLI tasks, as evidenced by GPT-4’s superior perfor- 549

mance in the ReClor and NaN-NLI datasets. The 550

tailored application of LA’s rule-based reasoning 551

to each task’s unique requirements elucidates its 552

broad applicability and effectiveness. The differen- 553

tial performance uplifts across datasets highlight 554

the adaptability of LA. For instance, the significant 555

accuracy increase in the ProofWriter dataset for 556

GPT-4 underscores LA’s capacity to handle datasets 557

requiring complex logical deductions. This adapt- 558

ability is crucial for tailoring reasoning enhance- 559

ments to specific task demands. 560

5 Discussion 561

5.1 GPT-4 as Logic Parser 562

GPT-4, despite its occasional inconsistencies in 563

generating new logical expressions, exhibits a note- 564

worthy capability in parsing natural language into 565

formal logic. This ability is particularly relevant 566

to our "Chain-of-Logic" (LA) framework, where 567

accurate translation of natural language into propo- 568

sitional logic is crucial. 569

To harness GPT-4’s parsing capabilities, we 570

crafted specific prompts aimed at guiding the model 571

to translate natural language statements into propo- 572

sitional logic forms. These forms are then seam- 573

lessly integrated into the deduction functions of 574

LA. A critical requirement for this integration is 575

the compatibility of GPT-4’s output with our frame- 576

work’s syntax. Therefore, the prompts are designed 577

not only to elicit the correct logical structures but 578

also to ensure that these structures adhere to the 579

syntax conventions of our default parser. 580

To evaluate the effectiveness of GPT-4 in this 581

role, we conducted experiments comparing its pars- 582

ing capabilities with our default logic parser. The 583

comparative results, as detailed in Table 3, demon- 584
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Dataset Default parser GPT-4 parser
ReClor dev 59.73 60.65
AR-LSAT test 55.29 55.87
LogiQA22 42.98 44.07
ConTRoL 62.01 65.24
NaN-NLI 61.34 63.48
RuleTaker dev 71.30 71.45
ProofWriter dev 73.85 72.13

Table 3: GPT-3.5-TURBO model results with GPT-4 as
the parser.

strate a slight edge in performance when utilizing585

GPT-4 as a parser. This finding underscores the586

efficiency and accuracy of GPT-4 in interpreting587

and translating complex logical statements from588

natural language into formal logic constructs.589

However, it’s important to consider the trade-offs590

involved. Utilizing GPT-4 as a parser introduces591

additional computational costs, and there may be592

instances of variability in the parsing quality. These593

factors necessitate a careful assessment of the cost-594

benefit ratio, especially in scenarios where com-595

putational resources are a limiting factor or where596

absolute consistency in logic parsing is critical.597

Our findings suggest that while GPT-4 can effec-598

tively augment our framework as a neural parser,599

its integration should be strategically employed,600

taking into account the specific requirements and601

constraints of the given logical reasoning task. The602

potential of GPT-4 to enhance the versatility and603

adaptability of logical reasoning frameworks is604

clear, yet its application needs to be tempered with605

an understanding of its limitations and costs.606

5.2 Ablation study607

An essential aspect of our research was to ascertain608

the specific contribution of the parsed logic within609

the LA method. To achieve this, we conducted610

an ablation study where we tested the impact of611

augmenting text with parsed logic on the direct612

answer approach, while deliberately omitting the613

constrained generation component integral to LA.614

This approach allowed us to isolate and under-615

stand the effectiveness of the logic parsing pro-616

cess in isolation. By comparing the performance617

of models using only parsed logic-augmented text618

for direct answering with their performance under619

the full LA framework, we could assess the incre-620

mental value added by the constrained generation621

aspect of LA.622

We choose one dataset from each task and use623

GPT-3.5-TURBO as the tested model. The results624

0 20 40 60 80

AR-LSAT

ConTRoL

RuleTaker

LA Parsed Logic Original text

Figure 3: GPT-3.5-TURBO results on ablation test.

are shown in Figure 3. Across the three datasets, we 625

observed a noticeable decrease in accuracy when 626

the models were deprived of the constrained gener- 627

ation process and relied solely on the parsed logic- 628

augmented text. This decline in performance under- 629

scores the significance of the constrained genera- 630

tion component in the LA framework. It highlights 631

that while the logic parsing capability is a valuable 632

contributor to the model’s overall performance, the 633

full potential of LA is realized only when it is cou- 634

pled with the sophisticated generation constraints 635

that guide the model towards more logically coher- 636

ent and accurate conclusions. 637

6 Conclusion 638

In this study, we present Logic Agent (LA), an 639

innovative framework guided by logic rules to en- 640

hance the logical reasoning capabilities of Large 641

Language Models (LLMs). Our comprehensive 642

experiments across various models and datasets 643

demonstrate that LA, with its integration of propo- 644

sitional logic and deduction rules, consistently sur- 645

passes traditional reasoning approaches. Notably, 646

it shows superior performance in tasks requiring 647

intricate logical deductions, highlighting its poten- 648

tial to bridge the gap between AI computational 649

power and human-like logical reasoning. The ex- 650

ploration of GPT-4 as a neural logic parser further 651

reveals the feasibility and challenges of incorpo- 652

rating advanced LLMs within logical reasoning 653

systems. Looking ahead, the refinement of LA 654

for broader applications and its scalability remain 655

pivotal areas for future research. In sum, the LA 656

framework not only elevates the performance of 657

LLMs in complex reasoning tasks but also paves 658

the way for more sophisticated and interpretable 659

AI reasoning capabilities. 660
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Limitations661

While the Logic Agent (LA) framework presents662

significant advancements in logical reasoning with663

Large Language Models (LLMs), it is important to664

acknowledge its limitations for a balanced under-665

standing of our research.666

Dependency on Model Capability: The effec-667

tiveness of LA is partly contingent on the under-668

lying capabilities of the LLMs used. This depen-669

dency indicates that the full potential of LA might670

be limited by the current state of LLM technology.671

Scope of Logical Reasoning: Currently, LA672

primarily focuses on propositional logic and certain673

deduction rules. Its applicability to other forms674

of logic, such as predicate logic or modal logic,675

has not been extensively explored, which might676

restrict its utility in more diverse logical reasoning677

scenarios.678

Generalizability: While the framework has679

shown promise across various datasets, the general-680

izability of LA to real-world scenarios or domains681

beyond those tested remains an area for future in-682

vestigation.683
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A Case Study887

Question:888

If a person is wise, then they must be humble;889

and a person can only be humble if they recog-890

nize their own shortcomings. However, if a person891

cannot accept others’ opinions, then they will not892

recognize their own shortcomings. From this, we893

can deduce:894

A. If a person recognizes their own shortcom-895

ings, they are wise.896

B. If a person cannot accept others’ opinions,897

they are not wise.898

C. If a person can accept others’ opinions, they899

will recognize their own shortcomings.900

D. If a person does not recognize their own short-901

comings, they definitely cannot accept others’ opin-902

ions.903

Reasoning:904

To solve this, we’ll first translate the given state-905

ment and the options into first-order logic nota-906

tions, then use logical deduction rules, including907

contraposition, to determine which option is a valid908

inference.909

Step 1: Identify Key Propositions and Relations910

Given Premises Translated into Functions:911

Premise 1:912

Implies(Atom(Wise), Atom(Humble))913

Premise 2:914

Implies(Atom(Humble),915

Atom(RecognizeShortcomings))916

Premise 3:917

Implies(Not(Atom(AcceptOpinions)),918

Not(Atom(RecognizeShortcomings)))919

Translating Options into Functions:920

Option A: "If a person recognizes their own921

shortcomings, they are wise."922

Implies(Atom(RecognizeShortcomings),923

Atom(Wise))924

Option B: "If a person cannot accept others’925

opinions, they are not wise."926

Implies(Not(Atom(AcceptOpinions)), 927

Not(Atom(Wise))) 928

Option C: "If a person can accept others’ opin- 929

ions, they will recognize their own shortcomings." 930

Implies(Atom(AcceptOpinions), 931

Atom(RecognizeShortcomings)) 932

Option D: "If a person does not recognize their 933

own shortcomings, they definitely cannot accept 934

others’ opinions." 935

Implies(Not(Atom(RecognizeShortcomings)), 936

Not(Atom(AcceptOpinions))) Logical Deduction 937

Using Functions: 938

Step 2: Use Deduction Laws 939

Applying Transitive(Implies(Atom(Wise), 940

Atom(Humble)), Implies(Atom(Humble), 941

Atom(RecognizeShortcomings))): 942

Implies(Atom(Wise), 943

Atom(RecognizeShortcomings)) 944

Applying Contraposi- 945

tive(Implies(Not(Atom(AcceptOpinions)), 946

Not(Atom(RecognizeShortcomings)))): 947

Implies(Atom(RecognizeShortcomings), 948

Atom(AcceptOpinions)) 949

Evaluating Options: 950

Option A: "Recognizing shortcomings makes 951

one wise." This would require reversing our tran- 952

sitive output, not directly supported by the logic 953

functions used. 954

Option B: "Not accepting opinions im- 955

plies not being wise." This follows from 956

the combined use of premises through tran- 957

sitive and contrapositive applications, sug- 958

gesting Implies(Not(Atom(AcceptOpinions)), 959

Not(Atom(Wise))). 960

Option C: "Accepting opinions leads to recog- 961

nizing shortcomings." Against the contrapositive 962

application of premise 3. 963

Option D: "Not recognizing shortcomings means 964

not accepting opinions." Against the contrapositive 965

application of premise 3. 966

Based on the function calls and logical 967

deductions made within the LA framework, 968

Option B Implies(Not(Atom(AcceptOpinions)), 969

Not(Atom(Wise))) is logically valid and directly 970

supported by the deductions made. 971

The correct answer is Option B 972
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