
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

On The Expressive Power of GNN Derivatives

Anonymous authors
Paper under double-blind review

Abstract

Despite significant advances in Graph Neural Networks (GNNs), their
limited expressivity remains a fundamental challenge. Research on GNN
expressivity has produced many expressive architectures, leading to archi-
tecture hierarchies with models of increasing expressive power. Separately,
derivatives of GNNs with respect to node features have been widely studied
in the context of the oversquashing and over-smoothing phenomena, GNN
explainability, and more. To date, these derivatives remain unexplored as
a means to enhance GNN expressivity. In this paper, we show that these
derivatives provide a natural way to enhance the expressivity of GNNs. We
introduce High-Order Derivative GNN (HOD-GNN), a novel method that
enhances the expressivity of Message Passing Neural Networks (MPNNs) by
leveraging high-order node derivatives of the base model. These derivatives
generate expressive structure-aware node embeddings processed by a second
GNN in an end-to-end trainable architecture. Theoretically, we show that
the resulting architecture family’s expressive power aligns with the WL
hierarchy. We also draw deep connections between HOD-GNN, Subgraph
GNNs, and popular structural encoding schemes. For computational
efficiency, we develop a message-passing algorithm for computing high-order
derivatives of MPNNs that exploits graph sparsity and parallelism. Eval-
uations on multiple graph learning benchmarks demonstrate HOD-GNN
’s excellent performance on popular graph learning tasks.

1 Introduction

Graph Neural Networks (GNNs) have become foundational tools in geometric deep learning,
with widespread applications in domains such as life sciences (Wong et al., 2024), social
sciences (Monti et al., 2019), optimization (Cappart et al., 2023), and more. Despite their
empirical success, many GNNs suffer from a fundamental limitation: their expressive power
is inherently bounded. In particular, the widely used family of Message Passing Neural Net-
works (MPNNs) is at most as expressive as the Weisfeiler–Lehman (1-WL) graph isomorphism
test Morris et al. (2019); Xu et al. (2018), limiting their ability to distinguish between even
simple non-isomorphic graphs and capture intricate structural patterns Chen et al. (2020).
To address this shortcoming, a growing body of work has proposed more expressive GNN
architectures, typically organized into expressivity hierarchies that balance computational
cost with representational power Maron et al. (2019); Morris et al. (2019; 2021).

Concurrently to advances in GNN expressivity, the derivatives of the final node represen-
tations h

(T)
v

1 and the graph-level output hout with respect to the initial features Xv have
played a key role in several research directions. For over-squashing analysis (Di Giovanni et al.,
2023a;b), both first-order derivatives ∂h(T)

v

∂Xu
and mixed partial derivatives ∂2hout

∂Xv∂Xu
quantify

inter-node influence and communication capacity. In over-smoothing studies like Arroyo et al.
(2025), derivatives ∂hout

∂Xv
are used to analyze vanishing gradients, connecting over-smoothing

to diminished gradient flow. GNN gradient-based explainability methods (Baldassarre &
Azizpour, 2019; Pope et al., 2019) also use these derivatives to identify influential nodes
and features. The prevalence of these derivatives across diverse contexts in GNN research
suggests they encode valuable information that may be informative for graph learning tasks.

1h
(t)
v is the representation of the node v after the t-th GNN layer.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our approach. In this work, we reveal a surprising connection between these two lines
of research. We show that incorporating derivatives of a base MPNN with respect to initial
node features as additional inputs to a downstream MPNN enhances the expressivity of the
base components. One intuitive way to understand this connection is through the mechanism
by which GNNs with marking(Papp & Wattenhofer, 2022; Pellizzoni et al., 2024) improve
expressivity: they choose a node from the input graph and add to it a unique identifier before
processing it through an MPNN. While these identifiers are often implemented through an
explicit, often discrete, perturbations to the node features, our approach instead computes
derivatives of the MPNN output, capturing the effect of infinitesimal perturbations. Thus,
giving the model access to derivative information both leverages quantities which frequently
arise in theoretical analyses and may thus encode valuable structural information, and yields
expressivity gains equivalent to GNNs with marking. See Section 3 for details.

We introduce High-Order Derivative GNN (HOD-GNN), a novel expressive GNN family
that leverages the derivatives of a base MPNN to improve its expressive power. We first
introduce 1-HOD-GNN, which consists of three components: a base MPNN, a derivative
encoder network, and a downstream GNN. 1-HOD-GNN computes high-order derivatives
of the base MPNN with respect to the features of a single node at a time, i.e., ∂αh(T)

v

∂Xα
u

and
∂αhout

∂Xα
u

. These derivatives are then encoded into new derivative-aware node features via
the encoder network, which are then passed to the downstream GNN. Theoretically, We
show that 1-HOD-GNN models are more expressive than standard GNNs, can compute
popular structural encodings, and are tightly related to Subgraph GNNs Cotta et al. (2021);
Bevilacqua et al. (2021). Empirically, we demonstrate several desirable properties of our
model: it achieves strong performance across a range of standard graph benchmarks, scales
to larger graphs that remain out of reach for other expressive GNNs, and can accurately
count graph substructures, providing direct empirical evidence of its expressive power.

We then extend 1-HOD-GNN to k-HOD-GNN, which supports mixed derivatives with
respect to k distinct node features (i.e. ∂α1+···+αkh(T)

v

∂X
α1
u1

,...,X
αk
uk

, ∂α1+···+αkhout

∂X
α1
u1

,...,X
αk
uk

). Like 1-HOD-GNN,
the k-HOD-GNN forward pass begins by computing higher-order mixed derivatives of a
base MPNN, which form a k-indexed derivative tensor. This tensor is then used to construct
new node features using a higher-order encoder network (as in Maron et al. (2018); Morris
et al. (2019)), which are subsequently passed to a downstream GNN for final prediction.
We theoretically analyze k-HOD-GNN, showing that it can distinguish between graphs that
are indistinguishable to the k-WL test2, resulting in a model that is more expressive than
any of its individual components alone. Furthermore, we leverage results from Zhang et al.
(2024b) to analyze k-HOD-GNN’s ability to compute homomorphism counts, demonstrating
its capacity to capture fine-grained structure.

Efficiently computing high-order node derivatives is a core component of HOD-GNN. To
this end, we develop a novel algorithm for computing these derivatives via an analytic,
message-passing-like procedure. This approach yields two key benefits. First, being fully
analytic, it enables differentiation through the derivative computation itself, allowing
HOD-GNN to be trained end-to-end. Second, the message-passing-like structure exploits
the sparsity of graph data, improving scalability (see Section 4 for a detailed complexity
analysis). Combined with the empirical observation that HOD-GNN remains effective even
when using base MPNNs with small hidden dimensions, our method scales to benchmarks
containing larger graphs that are often out of reach for other expressive GNN architectures.

Our contributions. (1) We introduce k-HOD-GNN, a novel expressive GNN family
that integrates derivative-based embeddings; (2) We provide a theoretical analysis of its
expressivity and computational properties; (3) We propose an algorithm for efficient derivative
computation on graphs; (4) We demonstrate consistently high empirical performance across
seven standard graph classification and regression benchmarks. Additionally, we show that
HOD-GNN scales to benchmarks containing larger graphs that are typically out of reach for
many expressive architectures on standard hardware.

2We refer here to the folklore WL test rather than the oblivious variant; see Morris et al. (2023)
for a detailed discussion of the differences.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 Preliminaries and Previous Work

Notation. The size of a set S is denoted by |S|. ⊕ denotes concatenation. We denote
graphs by G = (A,X), where A ∈ Rn×n is the adjacency matrix and X ∈ Rn×d is the node
feature matrix, with n nodes and d-dimensional features per node. The node set of a graph
is denoted by V (G).
MPNNs and GNN expressivity. MPNNs(Gilmer et al., 2017) are a widely used class of
GNNs that update node representations through iterative aggregation of local neighborhood
information. At each layer t, the representation h

(t)
v of node v is updated via:

h(t)
v = MLP(t)

(
h(t−1)
v ,AGG(t)

({
h(t−1)
u : u ∈ N (v)

}))
, (1)

where N (v) denotes the neighbors of node v in the graph and AGG(t) are permutation-
preserving aggregation function. After T message-passing layers, a graph-level representation
is typically obtained by applying a global pooling operation over all node embeddings:

hout = AGGout
({

h(T)
v | v ∈ V (G)

})
, (2)

MPNNs have inherent expressivity limitations (Morris et al., 2019; Xu et al., 2018; Weisfeiler
& Leman, 1968), as they cannot distinguish graphs that are indistinguishable by the 1-
WL test. To address this, a wide range of more expressive GNN architectures have been
proposed (Morris et al., 2021; Maron et al., 2018; Puny et al., 2023; Cotta et al., 2021;
Rieck et al., 2019; Sato et al., 2021; Dwivedi et al., 2023). (See Appendix A for details or
(Sato, 2020; Morris et al., 2021; Jegelka, 2022; Li & Leskovec, 2022; Zhang et al., 2024a) for
comprehensive surveys.)

Subgraph GNNs. Subgraph GNNs (Zhang & Li, 2021; Cotta et al., 2021; Bevilacqua et al.,
2021; Frasca et al., 2022; Zhang et al., 2023b;a; Bar-Shalom et al., 2024b) are expressive
GNNs that operate over a set of subgraphs BG = {Sv | v ∈ V k(G)}, where V k(G) denotes
the set of all k-tuples of nodes in the input graph G, and each subgraph Sv corresponds to
one such tuple. In this work, we focus on the widely adopted node-marking DS-GNNs (Cotta
et al., 2021; Bevilacqua et al., 2021; Papp & Wattenhofer, 2022) and their higher-order
generalization, k-OSAN (Qian et al., 2022), though we note that many other variants of
Subgraph GNNs exist. For precise defintions of DS-GNN and k-OSAN, see Appendix E.1.

Derivatives of MPNNs. Derivatives frequently appear in the analysis of GNNs. In
the study of oversquashing—the failure of information to propagate through graph struc-
tures (Alon & Yahav, 2020; Topping et al., 2021; Di Giovanni et al., 2023a;b)—derivatives
play a key role (For a comprehensive overview, see Akansha (2023)). Node derivatives are
also used in GNN explainability (Ying et al., 2019; Luo et al., 2020; Baldassarre & Azizpour,
2019; Pope et al., 2019). Gradient-based approaches such as Sensitivity Analysis, Guided
Backpropagation (Baldassarre & Azizpour, 2019), and Grad-CAM (Pope et al., 2019) rely on
derivative magnitudes. Finally, several standalone works make use of node-based derivatives.
E.g., Arroyo et al. (2025) use node derivatives to draw a connection between vanishing gra-
dients, and over-smoothing, and Keren Taraday et al. (2024) propose aggregation functions,
designed to induce non-zero mixed node derivatives. See Appendix A for further discussion.

3 Method

We begin this section with a discussion motivating the use of MPNN derivatives and their
contribution to improving expressivity. We then introduce k-HOD-GNN, an expressive
GNN architecture that enhances representational power by leveraging derivatives of a base
MPNN. We first present the full details of the 1-HOD-GNN model, followed by an overview
of its higher-order generalization. A comprehensive treatment of the general k-order case
is provided in Appendix C.1. We emphasize that in k-HOD-GNN, the parameter k refers
to the number of distinct nodes with respect to which derivatives are taken, not the total
derivative order. For instance, 1-HOD-GNN uses derivatives of the form ∂αhv

∂αXu
, but not

mixed derivatives such as ∂α1+α2hv

∂α1Xu1
,∂α2Xu2

, which involve multiple nodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: The HOD-GNN pipeline. Given an input graph, we compute the outputs and
derivatives of a base MPNN. The derivatives are processed by two encoders (denoted U)
to produce features that are concatenated with the base MPNN outputs and passed to a
downstream GNN for final prediction.

3.1 Motivation

Beyond being a widely used and informative quantity in GNN analysis, MPNN derivatives
can enhance expressivity. To build intuition to why that is, we begin with a simple example,
showing that first-order derivatives allow us to count triangles, a task that standard MPNNs
cannot perform. Consider the model M(A,X) = A3X, which can be implemented by a
three-layer GCN with identity activation. For any node v, the derivative of its final feature
vector h(T)

v with respect to its own input feature vector Xv is exactly A3
v,v. aggregating these

derivatives, we can compute
∑

v A
3
v,v/6, which is exactly the number of triangles in the graph.

To illustrate how higher-order derivatives further enhance expressivity, we recall that GNNs
with marking (Papp & Wattenhofer, 2022) improve expressive power over standard MPNNs
by selecting a node 3 v in the input graph G = (A,X) and attaching a unique identifier to it,
yielding the modified input X+ϵev for some ϵ ∈ R. The output is then h∗ =M(A,X+ϵev).
IfM employs an analytic activation function σ (See definition E.1 in the appendix), then
M itself is analytic. Consequently, its output can be approximated by the Taylor expansion:

M(A,X + ϵev) ≈
m∑
i=0

∂iM(A,X + xev)

∂xi

∣∣∣
x=0
· ϵi =

m∑
i=0

∂ihout

∂eiv
· ϵi, (3)

where hout =M(A,X) is the output ofM without marking. This shows that by leveraging
the higher-order derivatives of an MPNN, one can approximate the output of a GNN with
marking to arbitrary precision. As a result, derivatives strictly extend the expressive power
of MPNNs. An expanded intuitive discussion of these expressivity gains, along with the
natural connection between HOD-GNN and subgraph GNNs, is provided in Appendix B.

3.2 The 1-HOD-GNN architecture

Overview. A 1-HOD-GNN model, denoted Φ, consists of two GNNs: a base MPNNM and
a downstream GNN T as well as two derivative encoder networks Unode and Uout. Given an
input graph G, the computation of Φ(G) proceeds in four steps (see Figure 1): (1) Compute
the final node representations and output ofM; (2) Compute derivative tensors of the output
with respect to the input node features (defined below); (3) Use Unode and Uout to extract
new derivative informed node features from the derivative tensors. (4) Apply T to the
input graph enriched with derivative-informed features. Importantly, we develop an efficient
algorithm for step (2) that enables backpropagation through the derivative computation
itself, making all four above steps differentiable (see Section 3.2.1). Consequently, the entire
HOD-GNN model can be trained end-to-end, a strategy we adopt in all our experiments.

3While GNNs with marking can select multiple nodes, for clarity we focus on the single-node
case. The general case is discussed in Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Steps 1 & 2. In the first two stages, we compute the final node representations h(T) and
the output vector hout using the base MPNNM, along with their corresponding derivative
tensors, defined below:

Definition 3.1. Given a graph G = (A,X) with n nodes, an MPNNM and an intermediate
node feature representation matrix h ∈ Rn×d′

, the derivative tensor of D(h) ∈ Rn×n×d′×d×m

is defined by:

D(h)[v, u, i, j, α] =
∂αhv,i

∂Xα
u,j

, (4)

where v, u ∈ V (G) are nodes, i ∈ [d′], j ∈ [d] specify the feature dimensions of the node
feature vectors hv,Xu respectively, and α ∈ [m] where m ∈ N is a hyperparameter specifying
the maximum order of derivatives to be considered. Similarly, given a graph-level prediction
vector hout ∈ Rd′

the derivative tensor D(hout) ∈ Rn×d′×d×m is defined by:

D(hout)[u, i, j, α] =
∂αhout

i

∂Xα
u,j

. (5)

In 1-HOD-GNN, we compute the output derivative tensor Dout = D(hout), which captures
how the output of the base MPNNM responds to perturbations in the input node features.
In parallel, we compute the node-wise derivative tensor D(T), where D(t) = D(h(t)) for
t = 1, . . . , T . These tensors characterize how each node’s representation at layer t changes
in response to variations in the input features. Derivative tensors are computed using
Algorithm 1, described in Section 3.2.1 and elaborated on in Appendix D. The algorithm
leverages the sparsity of the input graph to enable efficient computation of high-order
derivatives. Crucially, Algorithm 1 is fully differentiable with respect to the weights ofM,
enabling end-to-end training of Φ.

Step 3. In the third stage of our method, we extract new node features from the derivative
tensors Dout and D(T) using the encoder networks Unode and Uout. First, as Dout ∈
Rn×d′×d×m is a tensor indexed by a single node, it can be directly interpreted as a node
feature matrix by flattening the remaining dimensions. We thus define the encoder network
Uout to be a DeepSets (Zaheer et al., 2017) update 4::

Uout(Dout)v = MLP(Dout[v, . . .]). (6)

Secondly, since D(T) is indexed by pairs of nodes in G, it shares the structure of the
adjacency matrix A, which is also pairwise-indexed. We can thus define the encoder network
Unode : Rn2×d′×d×m → Rn×d̄ to be any GNN architecture which maps adjacency matrices
with edge features to node feature matrices.

To enhance sensitivity to global interactions, we select Unode to be a 2-Invariant Graph
Network (IGN)(Maron et al., 2018), optionally using a sparsity-preserving simplified variant
formally defined in Appendix C.1.

We construct the derivative-informed node features hder by combining information from the
base MPNN M, the pooled intermediate derivatives, and the output derivatives:

hder
v = h(T)

v ⊕Uout(Dout)⊕Unode(D(T)). (7)

Step 4. In the final stage, we replace the original node features of G with the derivative-
informed features hder, and apply a downstream GNN T to produce a graph-level prediction.
For the remainder of this work, we assume T is an MPNN, though our approach is compatible
with any GNN architecture.

3.2.1 Efficient derivative tensor computation

We now describe an efficient algorithm for computing the derivative tensors in a 1-HOD-
GNN model Φ with base MPNNM. For clarity, we focus on the case whereM is a GIN

4Empirically, we observe that setting Uout = 0 produces similar results; we nevertheless keep the
module in our formulation for completeness.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(Xu et al., 2018), in which case the message-passing and readout functions are given by:

h(t)
v = MLP(t)

(
(1 + ϵ)h(t−1)

v +
∑

u∈N (v)

h(t−1)
u

)
, hout = MLP

(∑
u∈V (G)

h(T)
u

)
. (8)

An extension of this algorithm to general MPNNs and higher-order mixed derivatives is
provided in Appendix D. For convenience, we decompose the node update in Equation 8
into two parts: an aggregation step and a DeepSets-based update, given respectively by:

agg. update︷ ︸︸ ︷
h̃(t−1)
v = (1 + ϵ)h(t−1)

v +
∑

u∈N (v)

h(t−1)
u ,

DeepSets update︷ ︸︸ ︷
h(t)
v = MLP(h̃(t−1)

v) . (9)

The algorithm is based on the following two observations: First since h̃
(t−1)
v is a linear

combination of h(t−1)
v and its neighboring node features {h(t−1)

u | u ∈ N (v)}, the derivatives
of h̃(t−1)

v are likewise linear combinations of the derivatives of h(t−1)
v and {h(t−1)

u | u ∈ N (v)}.
More explicitly:

D(h̃(t−1))[v, . . .] = (1 + ϵ)D(t−1)[v, . . .] +
∑

u∈N (v)

D(t−1)[u, . . .]. (10)

This computation mirrors the GIN aggregation update in Equation 8, leveraging the sparsity
of the graph. Second, since the DeepSets update applies an MLP independently to each node
feature h̃

(t−1)
v , we can apply Faà di Bruno’s formula (see e.g. (Hardy, 2006)) to compute the

derivatives of each h
(t)
v based on the derivatives of h̃(t−1)

v . This results in a “DeepSets-like”
derivative update, allowing us to compute D(t) directly from D(h̃(t−1)). Iteratively applying
these two steps yields the final node-wise derivative tensor D(T) through a differentiable,
message-passing-like procedure. A similar approach allows efficient computation of Dout

from D(T). See Appendix D for full details of the algorithm.

Computational Complexity. An important property of the above algorithm is that, for
sparse graphs or relatively shallow base MPNNs, it is computationally efficient. To see this,
first notice that since h(0) = X, the tensor D(0) is extremely sparse, satisfying:

D(0)[v, u, i, j, α] =

{
1 if v = u, i = j, α = 1,

0 otherwise.
(11)

Thus, it can be stored efficiently using sparse matrices. At each layer t, the derivative
aggregation step (Equation 10) increases the number of non-zero entries only in proportion
to the number of node pairs that exchange messages for the first time. Thus, for small
values of t or for sparse graphs G, the derivative tensor D(t) remains sparse. Moreover,
the algorithm’s message-passing-like structure ensures runtime efficiency as well. For a full
complexity analysis of our algorithm, see Section 4.

3.3 k-HOD-GNN via mixed derivatives

We now generalize 1-HOD-GNN, which operates on single-node derivatives (i.e., derivatives
of the form ∂αh(T)

v

∂Xα
u

or ∂αhout

∂Xα
u

), to k-HOD-GNN, which extracts information from mixed

partial derivatives across k nodes (i.e., ∂α1+···+αkh(T)
v

∂Xu1
α1 ···∂Xuk

αk
, or ∂α1+···+αkhout

∂Xu1
α1 ···∂Xuk

αk
). k-HOD-GNN

offers increased expressive power at the cost of greater computational complexity. We begin
by formally defining the k-indexed derivative tensors. For simplicity, we assume the input
node features are 1-dimensional, handling the more general case in Appendix C.1.
Definition 3.2. Given a graph G = (A,X) with n nodes, and an MPNN M and an
intermediate node feature matrix h ∈ Rn×d′

, the k-indexed derivative tensor of Dk(h) ∈
Rn×nk×d′×mk

is defined by:

Dk(h)[v,u, i,α] =
∂α1+···+αkhv,i

∂Xα1
u1 · · · ∂Xαk

uk

. (12)

where v ∈ V (G), u = (u1, . . . , uk) ∈ V k(G) , i ∈ [d′] and α = (α1, . . . , αk) ∈ [m]k. Dk is
defined similarly for graph-level prediction vectors.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The k-indexed derivative tensors capture how the output and node representations of M
change under joint perturbations to the features of k nodes, thereby encoding rich higher-order
structural interactions within the graph. We compute these tensors using an extension of the
derivative computation process described in Section 3.2.1 (See Appendix D for more details).

As in the 1-HOD-GNN case, a k-HOD-GNN model Φ consists of a base MPNN M and
a downstream network T . Given an input graph G, the computation of Φ(G) proceeds
in the same four stages established earlier. First, we compute the output and final node
representations ofM along with the k-indexed derivative tensors D(T)

k and Dout
k . We then

use h(T), D(T)
k and Dout

k to extract new derivative informed node features. These node
features are computed through:

hder
v = MLP

(
h(T)
v ⊕Unode(D(T)

k)v ⊕Uout(Dout
k)v

)
. (13)

where Unode and Uout are learned (k + 1)-IGN and k-IGN encoders respectively. Finally, we
substitute the original node features of graph G with hder, and input the resulting graph
into T to generate the final graph-level prediction. For more details, see Appendix C.1.

4 Theoretical Analysis

In this section, we analyze the expressive power and computational complexity of
k-HOD-GNN. Formal statements and complete proofs of all results in this section are
provided in Appendix E.2.

Expressive power. We begin by formally relating k-HOD-GNN to both k-OSAN subgraph
GNNs as well as (k + 2)-IGNs, revealing new insights into HOD-GNNs’ expressive power,
and their position in the WL hierarchy.

Theorem 4.1 (informal). Any k-OSAN model can be approximated by a k- HOD-GNN model
using an analytic activation function, to any precision. Additionally, any k- HOD-GNN
model can be approximated by a (k + 2)-IGN model.

Corollary 4.2. There exist non-isomorphic graphs that are indistinguishable by the folklore
k-WL (k-FWL) test but are distinguishable by k-HOD-GNN. Additionally, any pair of graphs
that is indistinguishable by the (k + 1)-FWL test is also indistinguishable by k-HOD-GNN.

The proof of Theorem 4.1 relies on the analyticity of the activation functions used by our base
MPNN and the use of higher-order derivatives. However, in what follows, we show that even
when restricted to first-order derivatives and using the commonly employed ReLU activation,
HOD-GNN remains strictly more expressive than a widely used technique for enhancing
GNN expressivity: incorporating Random Walk Structural Encodings (RWSEs)(Dwivedi
et al., 2021) into a base MPNN.

Theorem 4.3 (Informal). Even when limited to first-order derivatives and ReLU activations,
1-HOD-GNN is strictly more expressive than MPNNs enhanced with random walk structural
encodings.

The first part of Theorem 4.3 is constructive: it shows that a simple initialization of the base
MPNN’s weights yields derivatives equal to RWSEs. In our experiments, we use a slightly mod-
ified version of this initialization (see Appendix G), allowing HOD-GNN to serve as a learnable
extension of RWSE. Further analysis of the expressive power of HOD-GNN when using edge-
feature derivatives, or when only using output-level derivatives are presented in Appendix F.

Space and time complexity. To conclude this section, we analyze the computational
complexity of k-HOD-GNN and compare it to other expressive architectures, namely, (k+1)-
IGN and k-OSAN. We show that k-HOD-GNN achieves better complexity when using
relatively shallow base MPNNs, while maintaining comparable complexity with deeper
ones. The primary source of computational overhead in k-HOD-GNN lies in the derivative
tensor computation, and the encoder network forward pass. We now analyze each of these
components.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

First, while k-HOD-GNN computes derivative tensors D(t)
k with O(nk+1) potential entries,

these tensors are sparse for relatively shallow base MPNNs. Moreover, each D(t)
k can be

efficiently computed from D(t−1)
k . This is formalized in the following proposition:

Proposition 4.4. In a k-HOD-GNN model applied to a graph with n nodes and maximum
degree d The number of non-zero entries in D(t) is at most O

(
n ·min{nk, dk·t}

)
. Additionally,

each D(t) can be computed from D(t−1) in time O(d · n ·min{nk, dk·(t−1)}).

Focusing next on the encoder networks, we show that they can be designed to exploit
derivative sparsity for improved efficiency, while retaining the full expressivity of the k-OSAN
architecture:

Proposition 4.5. In a k-HOD-GNN model, the encoder functions Unode and Uout can be
chosen such that the model retains the expressive power of k-OSAN, while the computation
of Unode(D(T)) and Uout(Dout) has both time and space complexity O

(
n ·min{nk, dk·T }

)
.

Propositions 4.4 and 4.5 suggest that a k-HOD-GNN model with a base MPNN of depth T has
space complexity O

(
n ·min{nk, dk·T }

)
and time complexity O

(
d · n ·min{nk, dk·(T−1)}

)
.

In comparison, k-OSAN has space complexity O(nk+1) and time complexity O(d · nk+1),
while (k+1)-IGN incurs both time and space complexity of O(nk+1). Assuming the input
graph is sparse (i.e., d≪ n), k-HOD-GNN is more efficient then k-OSAN and (k + 1)-IGN
when the base MPNN is shallow (dT < n), while all three models have comparable
complexity when the base MPNN is deep (dT > n).

5 Experiments

Our experimental study is designed to validate the theoretical arguments from the previous
section and to address the following guiding questions: (Q1) How does HOD-GNN perform
on real-world datasets when compared against strong GNN baselines? (Q2) Can HOD-GNN
scale to larger graphs that are beyond the reach of Subgraph GNNs, and how does it perform
in this regime? (Q3) How does the expressive power of HOD-GNN compare with natural
and widely used GNN baselines? We evaluate HOD-GNN across eight benchmarks, with
additional experimental details provided in Appendix G.

Baselines. We compare HOD-GNN against strong representatives from three natural
families of GNNs. First, motivated by its connection to positional/structural encodings
(PSEs, Section 4), we consider encoding-augmented MPNNs, including Laplacian
PEs (Dwivedi et al., 2023), RWSEs (Dwivedi et al., 2021), SignNet (Lim et al., 2022),
random node identifiers (Abboud et al., 2020; Sato et al., 2021), as well as recent methods
such as GPSE (Cantürk et al., 2024) and MOSE (Bao et al., 2024). Second, since HOD-GNN
is theoretically related to Subgraph GNNs, we compare with representative models like
GNN-AK (Zhao et al., 2022), SUN (Frasca et al., 2022), and Subgraphormer (Bar-Shalom
et al., 2023). Because such models often struggle to scale, we also include sampling-based
variants such as Policy-Learn (Bevilacqua et al., 2024), HyMN (Southern et al., 2025), and
Subgraphormer with random sampling. Finally, we benchmark against widely used and mod-
ern general-purpose GNNs, including GIN (Xu et al., 2018), GCN (Kipf & Welling, 2016),
GatedGCN (Bresson & Laurent, 2017), GPS (Rampášek et al., 2022), and GraphViT (He
et al., 2023). Across experiments we include representatives from each family, while the
specific choice of baselines in each task reflects relevance and standard practice in prior work.
Throughout the paper, we report results directly from prior work and include any relevant
baseline, even if values for some of the benchmarks were not reported. This allows for a broad
and fair comparison rather than excluding useful baselines. Missing entries are marked by “–”.

OGB and ZINC. To evaluate HOD-GNN’s real-world performance (Q1), we benchmark it
on standard graph property prediction datasets: ZINC (Irwin et al., 2012) for regression, and
three molecular classification tasks from the OGB suite (Hu et al., 2020b)—molhiv, molbace,
and moltox21. These benchmarks provide standardized splits and are the de facto choice for
assessing GNN performance. As shown in Table 1, HOD-GNN delivers excellent results across
all tasks, standing out as the only model that consistently ranks within the top two tiers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance on OGB and ZINC datasets (4 seeds). First and second best scores
are highlighted. Scores sharing a color are not statistically distinguishable based on Welch’s
t-test with a relaxed threshold of p < 0.2. “–” denotes results not previously reported, and
“x” indicates that digits beyond this point were not provided.

Method ↓ / Dataset → ZINC-12K moltox21 molbace molhiv
(MAE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ROC-AUC ↑)

Common Baselines
GCN (Kipf & Welling, 2016) 0.321±0.009 75.29±0.69 79.15±1.44 76.06±0.97
GIN (Xu et al., 2018) 0.163±0.004 74.91±0.51 72.97±4.00 75.58±1.40
PNA (Corso et al., 2020) 0.761±0.002 73.30±1.1x – 79.05±1.32
GPS (Rampášek et al., 2022) 0.070±0.004 75.70±0.40 – 78.80±1.01
GraphViT (He et al., 2023) 0.085±0.005 78.51±0.77 – 77.92±1.49

Subgraph GNNs
Reconstr. GNN (Cotta et al., 2021) – 75.15±1.40 – 76.32±1.40
GNN-AK+ (Zhao et al., 2022) 0.091±0.011 – – 79.61±1.19
SUN (EGO+) (Frasca et al., 2022) 0.084±0.002 – – 80.03±0.55
Full (Bevilacqua et al., 2024) 0.087±0.003 76.25±1.12 78.41±1.94 76.54±1.37
OSAN (Qian et al., 2022) 0.177±0.016 – 72.30±6.60 –
Random (Bevilacqua et al., 2024) 0.102±0.003 76.62±0.63 78.14±2.36 77.30±2.56
Policy-Learn (Bevilacqua et al., 2024) 0.097±0.005 77.36±0.60 78.39±2.28 78.49±1.01
Subgraphormer (Bar-Shalom et al., 2024a) 0.063±0.001 – 84.35±0.65 79.58±0.35
HyMN (Southern et al., 2025) 0.080±0.003 77.82±0.59 81.16±1.21 81.01±1.17

PSEs
GIN + Laplacian PE (Dwivedi et al., 2023) 0.162±0.014 76.60±0.3x 80.40±1.5x 75.60±1.1x
GIN + RWSE (Dwivedi et al., 2021) 0.128±0.005 76.30±0.5x 79.60±2.8x 78.10±1.5x
SignNet (Lim et al., 2022) 0.102±0.002 – – –
RNI (Abboud et al., 2020) 0.136±0.0070 – 61.94±2.51 77.74±0.98
GSN (Bouritsas et al., 2022) 0.101±0.010 76.08±0.79 77.40±2.92 80.39±0.90
ENGNN (Wang & Zhang, 2025) 0.114±0.005 – – 78.51±0.86
GPSE (Cantürk et al., 2024) 0.065±0.003 77.40±0.8x 80.80±3.1x 78.15±1.33
MOSE (Bao et al., 2024) 0.062±0.002 – – –

Ours
HOD-GNN 0.0666±0.0035 77.99±0.71 82.10±1.45 80.86±0.52

Table 2: Performance on Peptides (4
seeds). First and second best scores
are highlighted. Same color scores are
not statistically distinguishable based on
Welch’s t-test with a relaxed threshold
of p < 0.2.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

Common Baselines
GCN 59.30±0.23 0.3496±0.0013
GINE 54.98±0.79 0.3547±0.0045
GCNII 55.43±0.78 0.3471±0.0010
GatedGCN 58.64±0.77 0.3420±0.0013
DIGL+MPNN+LapPE 68.30±0.26 0.2616±0.0018
MixHop-GCN+LapPE 68.43±0.49 0.2614±0.0023
DRew-GCN+LapPE 71.50±0.44 0.2536±0.0015
SAN+LapPE 63.84±1.21 0.2683±0.0043
GraphGPS+LapPE 65.35±0.41 0.2500±0.0005
Exphormer 65.27±0.43 0.2481±0.0007
GraphViT 69.19±0.85 0.2474±0.0016

Subgraph GNNs
Policy-Learn 64.59±0.18 0.2475±0.0011
Subgraphormer 30% 64.15±0.52 0.2494±0.0020
HyMN 68.57±0.55 0.2464±0.0013

PSEs
GCN + Laplacian PE 62.18±0.55 0.2492±0.0019
GCN + RWSE 60.67±0.69 0.2574±0.0020
SignNet 63.14±0.59 –
GPSE + GCN 63.16±0.85 0.2487±0.0011
GPSE + GPS 66.88±1.51 0.2464±0.0025
MOSE 63.5x±1.1x 0.318±0.010

Ours
HOD-GNN 69.68±0.56 0.2450±0.0011

Peptides. Section 4 established that HOD-GNN
has improved computational complexity com-
pared to Subgraph GNNs. To demonstrate its
scalability in practice (Q2) and to further assess
its performance on real-world data (Q1), we
evaluate HOD-GNN on the Peptides datasets
from the LRGB benchmark (Dwivedi et al., 2022),
where the goal is to predict global structural and
functional properties of peptides represented as
graphs. As stated in prior work (Southern et al.,
2025; Bar-Shalom et al., 2023), full-bag Subgraph
GNNs cannot process these graphs directly
using standard hardware, requiring the use of
subsampling strategies that can reduce expressivity
and introduce optimization challenges due to
randomness. In contrast, HOD-GNN handles these
graphs directly without subsampling. As shown in
Table 2, HOD-GNN surpasses all sampling-based
Subgraph GNNs and is the only model that
consistently ranks within the top two tiers,
underscoring both its scalability and effectiveness
on challenging real-world molecular tasks.

Synthetic experiments. To evaluate the realized
expressiveness of HOD-GNN (Q3) and empirically support Theorems 4.1 and 4.3, we conduct
two synthetic studies. First, following the protocol of Huang et al. (2022), we assess the
ability of 1-HOD-GNN to learn to count small substructures, a standard proxy for practical
GNN expressivity (Bouritsas et al., 2022; Arvind et al., 2020). Theorems4.1 and 4.3 predict
that: (i) with analytic activations, 1-HOD-GNN matches the power of certain Subgraph
GNNs, and (ii) with ReLU, it is strictly stronger than MPNNs with RWSEs. Table 6
(Appendix H) confirms both predictions: 1-HOD-GNN matches Subgraph GNN baselines

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and clearly surpasses MPNN+RWSE, with analytic activations providing a slight further
gain. Additional details are provided in Appendix H.1.

We additionally test 1- and 2-HOD-GNN on the regular graph pairs in the BREC
dataset (Wang & Zhang, 2024), which include 50 pairs separable by 3-WL but not 2-WL and
90 pairs indistinguishable even by 3-WL. Table 7 shows that 2-HOD-GNN separates 34/90
of the 3-WL-indistinguishable pairs, placing it among the strongest models and empirically
validating the theoretical advantage predicted by Theorem 4.1. Additionally, 1-HOD-GNN
performs similarly to DS-GNN, consistent with Theorem 4.1. Additional details are provided
in Appendix H.2.

Additional ablations and empirical insights. Appendix H includes further ablations
and analysis. We first evaluate how the hyperparameter m from Definition 3.1, which sets the
maximum derivative order used in HOD-GNN, affects expressive power. Results show that
increasing m consistently strengthens expressivity, until the performance gains eventually
plateau. This suggests that small values such as m ∈ {2, 3, 4} are already effective in practice.

Next, we analyze the stability of HOD-GNN, showing that for derivative orders m = 1, . . . , 4,
the training curves remain stable and the norms of the derivative tensors stay well-behaved
relative to the final node-feature norms produced by the base MPNN.

In addition, inspired by recent work showing that overly expressive GNNs can generalize
poorly (Franks et al., 2024; Maskey et al., 2025; Carrasco et al., 2025), we examine HOD-GNN
’s generalization behavior by measuring train–test performance gaps on OGB datasets. HOD-
GNN shows consistently smaller gaps than both less expressive models (e.g., GIN, GCN)
and more expressive models (e.g., DSS-GNN (ED)), indicating strong generalization without
overfitting despite its high expressive power. See Appendix H.5 for an in depth discussion

Finally, we compare runtime and memory against subgraph-based GNNs under different
subgraph selection policies, showing that HOD-GNN achieves superior performance on both
fronts. We also evaluate the choice of backbone MPNN on real-world datasets, and observe
consistently strong performance across GCN, GIN, and GPS.

Summary. Across all experiments, we find consistent evidence supporting the guiding
questions outlined above. (A1) Across the ZINC, OGB, and Peptides datasets, HOD-GNN
is the only architecture that consistently ranks within the top two tiers. (A2), On the
challenging Peptides datasets, HOD-GNN scales to larger graphs that full-bag Subgraph
GNNs cannot handle, while maintaining strong predictive performance. (A3) On several
synthetic experiments, 1-HOD-GNN matches the expressivity of Subgraph GNNs while
surpassing encoding-augmented MPNNs, showing that HOD-GNN is as expressive yet
more scalable than subgraph GNNs. Moreover, 2-HOD-GNN exhibits even stronger
expressive power, demonstrating the benefits of increasing derivative order. Together, these
findings establish HOD-GNN as a scalable, expressive, and broadly effective GNN framework
across synthetic, molecular, and large-scale real-world tasks.

6 Conclusion

We introduce HOD-GNN, a GNN that enhances the expressivity of a base MPNN by
leveraging its high-order derivatives. We provide a theoretical analysis of HOD-GNN’s
expressive power, connecting it to the k-OSAN framework and RWSE encodings, and
show that it can offer better scalability than comparable expressive models. Empirically,
HOD-GNN has strong performance across a range of benchmarks, matching or surpassing
encoding based methods, Subgraph GNNs, and other common baselines. Notably, HOD-GNN
scales to larger graphs than full-bag subgraph GNNs.

Limitations and Future Work. First, while HOD-GNN has favorable theoretical
complexity (Section 4), its practical efficiency relies on sparse matrix operations. A more
efficient implementation of these operators has the potential to greatly enhance the scalability
of HOD-GNN. Secondly, the connection between MPNN derivatives and oversquashing or
oversmoothing, alongside HOD-GNN’s strong performance with deep base MPNNs and
small hidden dimensions, suggests a deeper link not fully addressed in this work. Exploring
this connection is a promising direction for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The sur-
prising power of graph neural networks with random node initialization. arXiv preprint
arXiv:2010.01179, 2020.

Singh Akansha. Over-squashing in graph neural networks: A comprehensive survey. arXiv
preprint arXiv:2308.15568, 2023.

Marjan Albooyeh, Daniele Bertolini, and Siamak Ravanbakhsh. Incidence networks for
geometric deep learning. arXiv preprint arXiv:1905.11460, 2019.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205, 2020.

Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients,
over-smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. arXiv
preprint arXiv:2502.10818, 2025.

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-
leman invariance: Subgraph counts and related graph properties. Journal of Computer
and System Sciences, 113:42–59, 2020.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. arXiv preprint arXiv:2006.15646, 2020.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks. arXiv preprint arXiv:1905.13686, 2019.

Linus Bao, Emily Jin, Michael Bronstein, İsmail İlkan Ceylan, and Matthias Lanzinger.
Homomorphism counts as structural encodings for graph learning. arXiv preprint
arXiv:2410.18676, 2024.

Guy Bar-Shalom, Beatrice Bevilacqua, and Haggai Maron. Subgraphormer: Subgraph GNNs
meet graph transformers. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning,
2023. URL https://openreview.net/forum?id=e8ba9Hu1mM.

Guy Bar-Shalom, Beatrice Bevilacqua, and Haggai Maron. Subgraphormer: Unifying
subgraph GNNs and graph transformers via graph products. In Forty-first International
Conference on Machine Learning, 2024a. URL https://openreview.net/forum?id=
6djDWVTUEq.

Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, and Haggai Maron. A flexible, equivariant
framework for subgraph gnns via graph products and graph coarsening. arXiv preprint
arXiv:2406.09291, 2024b.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021.

Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, and Haggai Maron. Efficient
subgraph gnns by learning effective selection policies. International Conference on Learning
Representations, 2024.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in
Neural Information Processing Systems, 34:2625–2640, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(1):657–668, 2022.

11

https://openreview.net/forum?id=e8ba9Hu1mM
https://openreview.net/forum?id=6djDWVTUEq
https://openreview.net/forum?id=6djDWVTUEq

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf,
Dominique Beaini, and Ladislav Rampášek. Graph positional and structural encoder.
In Forty-first International Conference on Machine Learning, 2024. URL https://
openreview.net/forum?id=UTSCK582Yo.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and
Petar Veličković. Combinatorial optimization and reasoning with graph neural networks.
Journal of Machine Learning Research, 24(130):1–61, 2023.

Martin Carrasco, Caio Netto, Vahan A Martirosyan, Aneeqa Mehrab, Ehimare Okoyomon,
and Caterina Graziani. Rademacher meets colors: More expressivity, but at what cost?
In New Perspectives in Graph Machine Learning, 2025.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks
count substructures? Advances in neural information processing systems, 33:10383–10395,
2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing
Systems, 33:13260–13271, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph
representations. In Advances in Neural Information Processing Systems, volume 34, 2021.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
Michael M Bronstein. On over-squashing in message passing neural networks: The impact
of width, depth, and topology. In International Conference on Machine Learning, pp.
7865–7885. PMLR, 2023a.

Francesco Di Giovanni, T Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc
Lackenby, Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the
power of gnns? Transactions on Machine Learning Research, 2023b.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv
preprint arXiv:2110.07875, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023.

Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael Bronstein, and Haggai
Maron. Topological blind spots: Understanding and extending topological deep learning
through the lens of expressivity. arXiv preprint arXiv:2408.05486, 2024.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
Maron. Graph positional encoding via random feature propagation. In International
Conference on Machine Learning, pp. 9202–9223. PMLR, 2023.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019.

Billy J Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at
the margin: When more expressivity matters. arXiv preprint arXiv:2402.07568, 2024.

12

https://openreview.net/forum?id=UTSCK582Yo
https://openreview.net/forum?id=UTSCK582Yo

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understand-
ing and extending subgraph gnns by rethinking their symmetries. Advances in Neural
Information Processing Systems, 35:31376–31390, 2022.

Floris Geerts. The expressive power of kth-order invariant graph networks. arXiv preprint
arXiv:2007.12035, 2020.

Yoav Gelberg, Yam Eitan, Aviv Navon, Aviv Shamsian, Theo Putterman, and Haggai Maron.
Gradmetanet: An equivariant architecture for learning on gradients. In Workshop on
Neural Network Weights as a New Data Modality, 2025.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pp. 1263–1272. PMLR, 2017.

Michael Hardy. Combinatorics of partial derivatives. arXiv preprint math/0601149, 2006.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson.
A generalization of vit/mlp-mixer to graphs. In International conference on machine
learning, pp. 12724–12745. PMLR, 2023.

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu,
and Jian Tang. Graph policy network for transferable active learning on graphs. Advances
in Neural Information Processing Systems, 33:10174–10185, 2020a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. Advances in neural information processing systems, 33:22118–22133, 2020b.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting
power of graph neural networks with i2-gnns. In The Eleventh International Conference
on Learning Representations, 2022.

John J Irwin, Teague Sterling, Michael M Mysinger, Eric S Bolstad, and Ryan G Coleman.
Zinc–a free database of commercially available compounds for virtual screening. Journal
of Chemical Information and Modeling, 52(7):1757–1768, 2012.

Stefanie Jegelka. Theory of graph neural networks: Representation and learning. In The
International Congress of Mathematicians, pp. 1–23, 2022.

Mitchell Keren Taraday, Almog David, and Chaim Baskin. Sequential signal mixing ag-
gregation for message passing graph neural networks. Advances in Neural Information
Processing Systems, 37:93985–94021, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. International Conference on Learning Representations, 2016.

Pan Li and Jure Leskovec. The expressive power of graph neural networks. Graph Neural
Networks: Foundations, Frontiers, and Applications, pp. 63–98, 2022.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation
learning. arXiv preprint arXiv:2202.13013, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information
processing systems, 33:19620–19631, 2020.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. arXiv preprint arXiv:1812.09902, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in neural information processing systems, 32, 2019.

Sohir Maskey, Raffaele Paolino, Fabian Jogl, Gitta Kutyniok, and Johannes F Lutzeyer.
Graph representational learning: When does more expressivity hurt generalization? arXiv
preprint arXiv:2505.11298, 2025.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning.
Fast model editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bronstein.
Fake news detection on social media using geometric deep learning. arXiv preprint
arXiv:1902.06673, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pp. 4602–4609, 2019.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin
Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning:
The story so far. arXiv preprint arXiv:2112.09992, 2021.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin
Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning:
The story so far. The Journal of Machine Learning Research, 24(1):15865–15923, 2023.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network
extensions. In International Conference on Machine Learning, pp. 17323–17345. PMLR,
2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

Paolo Pellizzoni, Till Hendrik Schulz, Dexiong Chen, and Karsten Borgwardt. On the
expressivity and sample complexity of node-individualized graph neural networks. Advances
in Neural Information Processing Systems, 37:120221–120251, 2024.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10772–10781, 2019.

Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and Yaron Lipman. Equivariant
polynomials for graph neural networks. In International Conference on Machine Learning,
pp. 28191–28222. PMLR, 2023.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris.
Ordered subgraph aggregation networks. Advances in Neural Information Processing
Systems, 35:21030–21045, 2022.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances
in Neural Information Processing Systems, 35:14501–14515, 2022.

Ronald C Read and Robin J Wilson. An atlas of graphs. Oxford University Press, 1998.

Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler-lehman
procedure for graph classification. In International Conference on Machine Learning, pp.
5448–5458. PMLR, 2019.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph
neural networks. In Proceedings of the 2021 SIAM international conference on data mining
(SDM), pp. 333–341. SIAM, 2021.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. arXiv preprint
arXiv:1910.02421, 2019.

Joshua Southern, Yam Eitan, Guy Bar-Shalom, Michael M. Bronstein, Haggai Maron, and
Fabrizio Frasca. Balancing efficiency and expressiveness: Subgraph GNNs with walk-based
centrality, 2025. URL https://openreview.net/forum?id=2hbgKYuao1.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?
reassessing the long-range graph benchmark. arXiv preprint arXiv:2309.00367, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via
curvature. arXiv preprint arXiv:2111.14522, 2021.

Xiyuan Wang and Muhan Zhang. Using random noise equivariantly to boost graph neural
networks universally. arXiv preprint arXiv:2502.02479, 2025.

Yanbo Wang and Muhan Zhang. An empirical study of realized gnn expressiveness. In
Forty-first International Conference on Machine Learning, 2024.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the
algebra which appears therein. nti, Series, 2(9):12–16, 1968.

Felix Wong, Erica J Zheng, Jacqueline A Valeri, Nina M Donghia, Melis N Anahtar, Satotaka
Omori, Alicia Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, et al. Discovery of
a structural class of antibiotics with explainable deep learning. Nature, 626(7997):177–185,
2024.

Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. Signal processing
for implicit neural representations. Advances in Neural Information Processing Systems,
35:13404–13418, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations, 2018.

Zuoyu Yan, Junru Zhou, Liangcai Gao, Zhi Tang, and Muhan Zhang. An efficient subgraph
gnn with provable substructure counting power. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 3702–3713, 2024.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gn-
nexplainer: Generating explanations for graph neural networks. Advances in neural
information processing systems, 32, 2019.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware
graph neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 10737–10745, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems,
30, 2017.

Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang, and
Zhong Liu. The expressive power of graph neural networks: A survey. IEEE Transactions
on Knowledge and Data Engineering, 2024a.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressive-
ness hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In International
Conference on Machine Learning, pp. 41019–41077. PMLR, 2023a.

15

https://openreview.net/forum?id=2hbgKYuao1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of
gnns via graph biconnectivity. arXiv preprint arXiv:2301.09505, 2023b.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for gnn expressiveness. arXiv preprint arXiv:2401.08514,
2024b.

Muhan Zhang and Pan Li. Nested graph neural networks. In Advances in Neural Information
Processing Systems, volume 34, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting
any GNN with local structure awareness. In International Conference on Learning
Representations, 2022.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A Previous Work

Expressive Power and Hierarchies in GNNs. The expressive power of GNNs is often
measured by their ability to distinguish non-isomorphic graphs. Foundational results (Morris
et al., 2019; Xu et al., 2018) show that standard MPNNs are bounded by the 1-Weisfeiler-
Lehman (1-WL) test (Weisfeiler & Leman, 1968), motivating the development of more
expressive architectures, see (Sato, 2020; Morris et al., 2021; Jegelka, 2022; Li & Leskovec,
2022; Zhang et al., 2024a) for comprehensive surveys. For instance, Morris et al. (2019) and
Maron et al. (2018) introduced GNN hierarchies matching the expressivity of the k-WL
test at a computational cost of O(nk) in both time and memory. Other approaches include
equivariant polynomial-based models (Maron et al., 2019; Puny et al., 2023), Subgraph
GNNs (Zhang & Li, 2021; Cotta et al., 2021; Bevilacqua et al., 2021; Frasca et al., 2022;
Zhang et al., 2023b;a; Bar-Shalom et al., 2024b) topologically enhanced GNNs (Rieck et al.,
2019; Bodnar et al., 2021; Eitan et al., 2024) and more. A complementary line of work
improves expressivity by enriching node features with informative structural descriptors,
such as substructure and homomorphism counts (Bouritsas et al., 2022; Bao et al., 2024),
random node features (Abboud et al., 2020; Sato et al., 2021; Eliasof et al., 2023), or spectral
methods (Dwivedi et al., 2023; Lim et al., 2022).

Derivatives of GNNs. Derivatives frequently appear in the analysis of GNNs. A prominent
example is the study of oversquashing-the failure of information to propagate through graph
structures (Alon & Yahav, 2020; Topping et al., 2021; Di Giovanni et al., 2023a;b). A central
tool in analyzing oversquashing is the use of derivatives: specifically, the gradients of final
node representations with respect to initial features (see Di Giovanni et al., 2023a), and
mixed output derivatives with respect to pairs of input nodes (see Di Giovanni et al., 2023b).
For a comprehensive overview of oversquashing, see Akansha (2023). Node derivatives also
play a key role in GNN explainability (Ying et al., 2019; Luo et al., 2020; Baldassarre &
Azizpour, 2019; Pope et al., 2019). Gradient-based approaches such as Sensitivity Analysis,
Guided Backpropagation (Baldassarre & Azizpour, 2019), and Grad-CAM (Pope et al., 2019)
rely on derivative magnitudes to compute importance scores. Finally, several standalone
works make use of node-based derivatives. For instance, Arroyo et al. (2025) use node
derivatives to draw a connection between vanishing gradients, and over-smoothing. In
a different direction, Keren Taraday et al. (2024) propose new aggregation functions for
MPNNs, designed specifically to induce non-zero mixed node derivatives.

Learning over derivative input. Beyond GNNs, several recent works have explored
learning directly from derivative-based inputs. Xu et al. (2022) propose a framework that
processes spatial derivatives of implicit neural representations (INRs) to modify them without
explicit decoding. Mitchell et al. (2021) introduce a learned method for fact editing in LLMs
using their gradients. Gelberg et al. (2025) present a general architecture for learning over
sets of gradients, with applications in meta-optimization, domain adaptation, and curvature
estimation.

B Motivation

Beyond being a widely used and informative quantity in GNN analysis, MPNN derivatives
can enhance expressivity. We now provide an intuition for why this occurs by drawing a
connection to Subgraph GNNs.

Consider a DS-GNN model Ψ composed of a base MPNN M followed by a downstream
MPNN T . We assume for simplicity that M outputs graph-level scalars, and that the
activation function σ used inM is analytic with infinite convergence radius5. That is, for
every x ∈ R, σ satisfies:

σ(x) =

∞∑
α=0

σ(α)(0)

α!
xα. (14)

5Many commonly used functions, including sin, cos, and exp, are analytic with infinite convergence
radius. See Appendix E.2 for a discussion of the case where σ is not analytic.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For each node v of a given input graph G, we define a function fv : R→ R by:
fv(x) :=M(A,X ⊕ x · ev), (15)

which corresponds to the ouptput of M obtained by scaling the node marking feature at
node v by x. Observe that fv is analytic6 sinceM is composed of analytic functions, and
that by definition, fv(1) = hsub

v , i.e., the representation of the graph augmented with a mark
for the node v. Also observe that by expanding fv around x = 0, we can approximate hsub

v
to any desired precision using a finite number of derivatives, up to order m:

fv(1) ≈
m∑

α=0

f
(α)
v (0)

α!
. (16)

Moreover, each derivative f
(α)
v (0) corresponds to a partial derivative of the output of M

with respect to the v-th coordinate of the augmented input:

f (α)
v (0) =

∂αM(A,X ⊕ x · ev)
∂αx

∣∣∣
x=0

=
∂αhout

∂αev
. (17)

This suggests that by using an encoder network to extract node features from the first m
derivatives ofM with respect to each node feature, we can effectively reconstruct hsub

v . By
passing these derivative-based features to the downstream GNN T , we can approximate the
behavior of Ψ, and therefore be at least as expressive.

C HOD-GNN variants

C.1 k-HOD-GNN

In this section, we elaborate on the k-HOD-GNN architecture, discussed in Section 3.3.
Similar to 1-HOD-GNN, a k-HOD-GNN model, denoted Φ, consists of a base MPNN M,
two derivative encoders Unode,Uout, and a downstream network T . Given an input graph
G = (A,X), the computation of Φ(G) proceeds in four stages: (1) compute the output and
final node representation of the input graph using M; (2) compute the k-indexed derivative
tensors D(T)

k ,Dout
k ; (3) extract new derivative informed node features form the derivative

tensor; (4) Use these new node features for downstream processing.

Steps 1 & 2. In the first two stages, , we compute the final node representations h(T) and
the output vector hout using the base MPNNM, along with their corresponding derivative
tensors defined below (the k-indexed derivative tensor was defined in Section 3.3 for he case
where the input features are 1-dimensional).

Definition C.1. Given a graph G = (A,X0) with n nodes, X0 ∈ Rn×d, an MPNNM and
some intermediate node feature representation matrix h ∈ Rn×d′

, the k-indexed derivative
tensor of Dk(h) ∈ Rn×nk×d′×md×k

is defined by:

Dk(h)[v,u, i,α] = ∂αhv,i(X0) =
∂|α|hv,i∏

(j1,j2)∈[d]×[k] ∂X
αj1,j2
u1,j1

,

∣∣∣
X=X0

. (18)

where v ∈ V (G), u = (u1, . . . , uk) ∈ V k(G) , i ∈ [d′],α = (αj1,j2)d,k ∈ {0, . . . ,m − 1}d×k

and |α| =
∑

αj1,j2 .

Similarly, given a graph-level prediction vector hout ∈ Rd′
the derivative tensor Dk(h

out) ∈
Rnk×d′×dk×mk

is defined by:

Dk(h)[u, i,α] = ∂αhi(X0). (19)

The derivative tensors D(T)
k = D(h(T))k and Dout

k = D(hout)k are computed using a message-
passing-like procedure detailed in Appendix 1, which enables both efficient computation and
allows us to backpropagate through it, supporting end-to-end training of k-HOD-GNN.

6For a definition of multi-dimensional analytic functions see Appendix E.1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Step 3. In the third stage of our method, we extract new node features informed by the
derivative tensors D(T)

k ,Dout
k , using the encoder networks Unode : Rn×nk×d′×md×k → Rn×d′′

and Uout : Rnk×d′×md×k → Rn×d′′
. As D(T)

k is a tensor indexed by (k + 1) nodes and Dout
k

is a tensor indexed by k nodes, natural choices for Unode and Uout are (k + 1)-IGN and a
k-IGN (Maron et al., 2018) designed specifically to process such data.

Furthermore, Proposition 4.4 shows that for sparse graphs or relatively shallow base MPNNs,
the derivative tensor D(T)

k itself becomes sparse, with space complexity O
(
n ·min{nk, dk·T }

)
,

where d is the maximum degree of the input graph. This motivates the choice of a node
encoder Unode that preserves this sparsity structure and exploits it for improved computational
efficiency.

To enable this, we can define the encoder Unode as a subclass of the general (k+1)-IGN
architecture, implemented as a DeepSet (Zaheer et al., 2017) operating independently on the
derivative entries associated with each node feature h

(T)
v . Specifically, we define:

Uds-node(D(T)
k)v = DeepSet({

(
D(T)

k [v,u, i,α], t(v,u,α)
)
| u ∈ V k(G), i ∈ [d′],α ∈ [m]k×d}).

(20)

Here we assume nodes are given in index form, that is v ∈ {1, . . . , n}., u ∈ {1, . . . , n}k, and
t(v,u,α) is a function that encodes the derivative pattern associated with the index tuple
(v,u,α), that is
t(v1,u1,α1) = t(v2,u2,α2) ⇔ α1 = α2 and ∃σ ∈ Sn such that v1 = σ(v2), u1 = σ(u2),

(21)
where Sn denotes the symmetric group on n elements. In other words, t maps each derivative
index tuple to a canonical identifier that is invariant under permutations of the node indices
but sensitive to the derivative multi-index.

This design improves both space and time complexity, as the sets over which the DeepSet
operates are typically sparse. The proof of Theorem 4.1 provided in appendix E.2 shows
that this encoder architecture is enough to be as expressive as k-OSAN.

Finally, we proceed the same way as 1-HOD-GNN constructing the derivative-informed
node features hder by combining information from the base MPNN, the pooled intermediate
derivatives, and the output derivatives:

hder
v = h(T)

v ⊕Uout(Dout
k)⊕Unode(D(T)

k). (22)

Step 4. This step is identical to that of 1-HOD-GNN described in Section 3.2.

C.2 edge-HOD-GNN

In this section, we extend the 1-HOD-GNN formulation to incorporate edge-feature derivatives
rather than node-feature derivatives. We refer to this variant as edge-HOD-GNN. The
construction of this architecture closely parallels that of Section 3.2 and is detailed below.

Steps 1 & 2. Similarly to steps 1 & 2 in Section 3.2 , in the first two stages, we compute
the final node representations h(T) and the output vector hout using the base MPNN M.
The key difference is that we now compute the edge derivative tensors, defined below:

Definition C.2. Given a graph G = (A,X,E) with n nodes, l edges, an edge feature
matrix E, an MPNNM and an intermediate node feature representation matrix h ∈ Rn×d′

,
the edge-derivative tensor D(h) ∈ Rn×l×d′×d×m is defined by:

Dedge(h)[v, e, i, j, α] =
∂αhv,i

∂Eα
e,j

, (23)

where v ∈ V (G), e ∈ E(G), i ∈ [d′], j ∈ [d] specify the feature dimensions of the feature
vectors hv,Ee respectively, and α ∈ [m] where m ∈ N is a hyperparameter specifying the
maximum order of derivatives to be considered. Similarly, given a graph-level prediction

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

vector hout ∈ Rd′
the derivative tensor D(hout) ∈ Rl×d′×d×m is defined by:

Dedge(h
out)[e, i, j, α] =

∂αhout
i

∂Eα
e,j

. (24)

Step 3. Similarly to step 3 in Section 3.2, in the third stage of our method, we extract
new edge features from the edge derivative tensors Dout

edge and D(T)
edge using encoder networks

Unode
edge and Uout

edge. First, as Dout
edge ∈ Rl×d′×d×m is a tensor indexed by a single edge, it can be

directly interpreted as an edge feature matrix by flattening the remaining dimensions. We
thus define the encoder network Uout to be a DeepSets (Zaheer et al., 2017) update:

Uout
edge(D

out
edge)e = MLP(Dout

edge[e, . . .]). (25)

Secondly, since D(T)
edge is indexed by node-edge pairs, it shares the structure of the

incidence matrix of G denoted by B. We can thus define the encoder network
Unode

edge : Rn×l×d′×d×m → Rl×d̄ to be any GNN architecture which maps incidence matrices
to edge feature matrices. An example of such architecture is Albooyeh et al. (2019).

Step 4. In the final stage, we replace the original edge features of G with the derivative-
informed features Eder, and apply a downstream GNN T to produce a graph-level prediction.

D Derivative Computation

We now extend the derivative computation algorithm presented in Section 3.2.1, to account
for k-mixed derivatives as well as more general MPNN architectures. Similarly to Section
3.2.1, we first split the node update procedure of an MPNN into two parts: an aggregation
step:

h̃(t−1)
v = h(t−1)

v ⊕AGG(t)
({

h(t−1)
u : u ∈ N (v)

})
, (26)

and a DeepSet step:
h(t)
v = MLP(h̃(t−1)

v). (27)

Our algorithm begins by computing the initial derivative tensor D(0) (we abuse notation
and ommit the subscript k), and then recursively constructs each D̃

(t−1)
= D(h̃(t−1)) from

D(t−1) and then D(t) from D̃
(t−1)

. Finally, the output derivative tensor Dout is obtained
from D(T). See Algorithm 1 for the full procedure.

To analyze the time and memory complexity of each step, we define the derivative sparsity
of a node v of an input graph G at layer t of the base MPNN, as the number of non-zero
derivatives corresponding to h

(t)
v . That is

sv,t =
∣∣∣{(u, i,α)

∣∣∣ D(t)[v,u, i,α] ̸= 0
}∣∣∣ . (28)

st = min
v∈V (G)

sv,t. (29)

When st is small, the tensor D(t) can be stored efficiently in memory using sparse representa-
tions, requiring only O(n ·st) space. The quantities sv,t and st are leveraged in Appendix E.2
to derive concrete asymptotic bounds for the complexity of Algorithm 1.

Computing D(0). Since h(0) = X, the derivatives are straightforward to compute:

D(0)[v,u, i,α] =

{
1 if ∃s s.t. v = us,αs,i = 1,

∑
s′ ̸=s,j∈[d] αs′,j = 0

0 otherwise.
(30)

Although D(0) is high-dimensional, it is extremely sparse with s0 = O(1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Computing D̃
(t−1)

from D(t−1). Abusing notation, and assuming that for every node v

in the input graph, both h
(t−1)
v and h

(t−1),agg
v = AGG(t)

(
{h(t−1)

u : u ∈ N (v)}
)

lie in Rd′
,

we observe that since h̃
(t−1)
v,0:d′−1 = h

(t−1)
v , the derivatives of the first d′ coordinates of h̃ are

precisely D(t−1). In contrast, the derivatives with respect to the last d′ coordinates depend
heavily on the choice of aggregation function AGG.

However, when the aggregation function is linear, i.e., of the form

AGG(t)
(
{h(t−1)

u : u ∈ N (v)}
)
=

∑
v′∈N (v)

bv′,vh
(t−1)
v′ , (31)

for some coefficients bv′,v that depend only on the adjacency matrix A of the input graph
(this is the case in most widely used MPNNs), the computation of derivatives simplifies. Since
differentiation commutes with linear operations, the computation in Equation 31 carries over,
yielding

D(h(t−1),agg)[v, . . .] =
∑

v′∈N (v)

bv′,vD(t−1)[v′, . . .]. (32)

Aggregating the derivatives of neighboring nodes mirrors the structure of message passing,
which endows it with several beneficial properties. First, using Equation 32, the tensor
D̃

(t−1)
[v, . . .] can be computed in time O(d · st−1) where d is the maximal degree of the

input graph7: for each node, we aggregate d neighbor derivative vectors, each containing
at most st−1 non-zero entries. This means that the total computation time of this step is
O(d · n · st−1).

The argument above also implies that the total number of non-zero elements in D̃
(t−1)

[v, . . .]
is bounded by O

(
min{d · st−1, n

k}
)
. Thus, the above update leverages the sparsity of the

graph to achieve efficiency in both space and time complexity.

Computing D(t) from D̃
(t−1)

.

We begin by assuming that the MLP in Equation 27 has depth 1, i.e.,
MLP(t)(x) = σ(W (t) · x+ b(t)). (33)

In the general case where the MLP has depth l, the procedure described below is applied
recursively l times.

We define the intermediate linear activation as
h(t−1),Lin
v = W (t) · h̃(t)

v + b(t), (34)

and describe how to compute D(h(t−1),Lin) from D̃
(t−1)

, followed by the computation of D(t)

from D(h(t−1),Lin).

First, since the update in Equation 34 is affine, we can drop the bias term and get:

D(h(t−1),Lin)[v,u, i, α] =
∑
i′

W
(t)
i,i′ · D̃

(t−1)
[v,u, i′, α]. (35)

Second, notice that
h(t)
v = σ(h(t−1),Lin

v). (36)
We can use the Faà di Bruno’s formula (see e.g. (Hardy, 2006)) which generalizes the chain
rule to higer-order derivatives, for our last step. Faà di Bruno’s formula states that for a
pair of functions g : Rn → R, f : R→ R, y = g(x1, . . . , xn) the following holds, regardless of
whether the variables x1, . . . , xn are all distinct, identical, or grouped into distinguishable
categories of indistinguishable variables:

7We slightly abuse notation by using d to denote both the input feature dimension and other
quantities; the meaning should be clear from context.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

∂n

∂x1 · · · ∂xn
f(y) =

∑
π∈Π

f (|π|)(y) ·
∏
B∈π

∂|B|y∏
j∈B ∂xj

(37)

where:

• Π denotes the collection of all partitions of the index set {1, . . . , n},
• The notation B ∈ π indicates that B is one of the subsets (or "blocks") in the

partition π ,
• For any set A , the notation |A| represents its cardinality. In particular, |π| is the

number of blocks in the partition, and |B| is the number of elements in the block B.

Equations 36 and 37 Imply that we are able to compute D(t)[v,u, . . .] based only on
D(h(t−1),Lin)[v,u, . . .] and the derivatives of σ at the point h

(t−1),Lin
v . Combining this

update with Equation 35 results in a way to compute D(t) from D̃
(t−1)

.

Importantly, the update above computes each entry of D(t)[v,u, . . .] using only the cor-
responding entries of D̃

(t−1)
[v,u, . . .], i.e., those associated with the same node tuple

(v,u). Moreover, from Equations 35 and 37, it follows that if D̃
(t−1)

[v,u, . . .] = 0,
then D(t)[v,u, . . .] = 0 as well. This implies that like D̃

(t−1)
the number of non-zero

entries in each D(t)[v, . . .] is also bounded by O
(
min{d · st−1, n

k}
)
. Consequently, the

update—performed only over the non-zero entries of D̃
(t−1)

—has a runtime complexity of
O
(
n ·min{d · st−1, n

k}
)
.

Computing Dout from D(T).

Recall that
hout = AGGfin

({
h(T)
v | v ∈ V (G)

})
, (38)

where AGGfin denotes the final aggregation over node embeddings. This operation can be
treated analogously to the node update step: For most common MPNNs, it decomposes into
a linear aggregation followed by an MLP. Consequently, the derivative tensor Dout can be
computed from D(T) using the same primitives described above.

Algorithm 1 Efficient Computation of Derivative Tensors

Require: Graph G = (A,X), base GINM with T layers
1: h(0) ←X ▷ node feature init.
2: D(0) ← D(X) ▷ deriv. init through Eq 30.
3: for t = 1 to T do
4: h̃

(t−1)
v ← h

(t−1)
v ⊕

(∑
v′∈N (v) bv′,vh

(t−1)
v′

)
▷ linear node agg.

5: D̃
(t−1)

[v, . . .]← D(t−1)[v, . . .]⊕
(∑

v′∈N (v) bv′,vD(t−1)[v′, . . .]
)

▷ deriv. agg.

6: h
(t)
v = MLP(t−1)(h̃(t−1))v ▷ DeepSet update

7: D(t)[v, . . .] = get-der(MLP(t−1), D̃
(t−1)

[v, . . .], h̃
(t−1)
v) ▷ deriv. DeepSet update.

8: end for
Dout = get-out-der(D(T)) ▷ extract output deriv.

9: return D(T),Dout

E Extended Theoretical Analysis

E.1 Definitions

Before delving into the proofs, we begin by formally defining several key concepts used
throughout the analysis:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Definition E.1 (Analytic Function). A function f : Rn → R is said to be analytic at
x0 ∈ Rn if for some R ∈ Rn it holds that for all |X| < R:

f(x) =

∞∑
|α|=0

1

α!
∂αf(x0)(x− x0)

α (39)

where α ∈ Nn and we use the following notation:

• |α| = α1 + α2 + · · ·+ αn,

• α! = α1! · α2! · · ·αn!,

• (x)α = (x1)
α1 · (x2)

α2 · · · (xn)
αn

• ∂αf(a) = ∂|α|f
∂x

α1
1 ∂x

α2
2 ···∂xαn

n

∣∣∣
x=a

.

The largest such R is called the radius of convergence. A function f : Rn → Rm is analytic
if all functions f1, . . . , fm are analytic.

Definition E.2 (k-OSAN). A k-OSAN model Ψ consists of a base MPNNM that produces
updated node features (as opposed to directly outputting a graph-level prediction), followed
by a downstream MPNN T that aggregates these features to produce a final graph-level
output. Given an input graph G = (A,X), the output Ψ(G) is computed in four stages:

Step 1: Construct a bag of subgraphs BG = {Su | u ∈ V k(G)} each of the form Su =
(A,X ⊕ eu). Here eu ∈ Rn×k is a "node marking"8 feature matrix assigning a unique
identifier to each node u1, . . . uk. That is:

euv,j =

{
1 v = uj

0 else.
(40)

Step 2:

Compute the (k + 1)-node indexed tensor:
H[v,u] =M(Su)v (41)

Step 3: use a set aggregation function to produce new node features:

hsub
v = AGG({H[v,u] | u ∈ V k(G)}). (42)

Step 4: Compute the final output through:
Ψ(G) = T (A,hsub). (43)

For k = 1, k-OSAN are also reffered to as DS-GNNs.

Definition E.3 (Random Walk Structural Encoding). For a graphG = (A,X) , the Random
Walk Structural Encoding (RWSE) with L number of steps is defined as

hrwse =

L⊕
l=1

diag(Ãl), (44)

where Ã = A · Diag(deg(u1)
−1, . . . ,deg(un)

−1) is the row-normalized adjacency matrix,
diag(·) denotes the vector of diagonal entries of a matrix, and Diag(v) denotes the diagonal
matrix with vector v on its diagonal.

8Although alternative methods for initializing node features in subgraphs have been proposed,
they offer the same expressive power. We therefore focus on the simple approach used here.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.2 Proofs

Theorem 4.1. We begin by formally stating and proving Theorem 4.1, splitting it into two
Theorem-corollary pairs.
Theorem E.4 (k-HOD-GNN is as expressive as k-OSAN). Let {Gi = (Ai,Xi) | i ∈ [l]} be a
finite set of graphs, and let Ψ be a k-OSAN model. for any ϵ > 0, there exists a k-HOD-GNN
model Φ such that for each i ∈ [l]

|Ψ(Gi)− Φ(Gi)| < ϵ. (45)
Corollary E.5. There exist non-isomorphic graphs that are indistinguishable by the folklore
k-WL test but are distinguishable by k-HOD-GNN. Additionally, k-HOD-GNN is able to
compute the homomorphism count of k-apex forest graphs.

Proof. We begin the proof by making a few simplifying assumptions on Ψ, which we can do
without loss of generality. We begin by assuming that all activation functions used inM,
the base MPNN of Ψ, are analytic with infinite radius of convergence (e.g., exp(x), sin(x)).
This assumption can be made without loss of generality: Since MLPs with non-polynomial
analytic activations are universal approximators, each MLP in M can be replaced with one
using an analytic activation function that approximates the original to arbitrary precision.
Furthermore, since the composition of analytic functions with infinite convergence radius
remains analytic with infinite convergence radius, it follows thatM—as a composition of
affine transformations and activation functions—is itself analytic.

Secondly, we assume that the final node representations produced byM are one-dimensional.
This assumption can be made without loss of generality: we can append a final MLP to
M that compresses each node’s feature vector to a scalar, and prepend an MLP to the
downstream network T that reconstructs the original feature dimension. This effectively
amounts to inserting an autoencoder, where the encoder is a final pointwise update inM
and the decoder is an initial pointwise update in T . Since this architecture can approximate
the original architecture to arbitrary precision, we may assume without loss of generality
thatM produces 1-dimensional node embeddings.

Additionally, we can assume the input node feature matrices Xi, i ∈ [l] are also all 1-
dimensional. This follows from the same argument as above.

Finally, we consider k-HOD-GNN models that only use the node derivative tensor D(T),
which we use to extract node features through an IGN encoder U, and disregard Dout.

We prove the theorem in three steps

1. We show that an intermediate representation of U(D(T)) can encode the tensor Hv,u

that is produced at stage (2) of the forward pass of Ψ (see Definition E.2). 9

2. we show that U(D(T)) can approximate the node feature matrix hsub produced at
stage (3) of the forward pass of Ψ.

3. We show Φ can approximate Ψ to finite precision.

Step 1 For each k-tuple of nodes u ∈ V k(Gi) and matrix Y ∈ Rk×k, we define the node
feature matrix broadu(Y) ∈ Rn×k (here we abuse notation and not include the graph index
i) by

broadu(Y)v,i =

{
yj,i v = uj

0 else.
(46)

Additionally, for each node v ∈ Gi, we define f i
v,u : Rk×k :→ R

f i
v,u(Y) =M(A,X ⊕ broadu(Y)). (47)

9In cases where u has repeated entries uj1 = uj2 , we only consider values of Y for which
Yj1,: = Yj2,:.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Finally, define Y u ∈ Rk×k by
Y u
i,j = euui,j . (48)

where eu is the node marking node feature matrix introduced in Definition E.2 (That is,
broadu(Y

u) = eu).

First, it is easy to see that
f i
v,u(Y

u) =M(Siu)v = Hi[v,u], (49)

where Siu and Hi[v,u] are introduced in Definition E.2.

Second, as M is analytic with infinite convergence radius, the functions f i
v,u are all analytic

with infinite convergence radi, and so

f i
v,u(Y

u) =

∞∑
|α|=0

1

α!
∂αf i(0)(Y u)α. (50)

Here, α ∈ {0, . . . ,m− 1}k×k and (Y u)α =
∏
(Y u

j1,j2
)αj1,j2 . Since we are concerned with a

finite number of graphs, for any ϵ > 0 we can choose an integer I such that for all graphs Gi
and all v ∈ V (Gi), u ∈ V k(Gi) it holds that:

|f i
v,u(Y

u)−
I∑

|α|=0

1

α!
∂αf i

v,u(0)(Y
u)α| < ϵ. (51)

Defining

H̃[iv,u] =

I∑
|α|=0

1

α!
∂αf i

v,u(0)(Y
u)α, (52)

we get that

H̃
i
≈ Hi (53)

Additionally, from the definition of f i
v,u it holds that the derivatives of f i

v,u at zero correspond
to the entries of the k-indexed derivative tensor of Gi, denoted by D(T),i10, that is

∂αf i
v,u(0) = D(T),i[v,u,α], (54)

where we only take derivatives with respect to the last k feature dimensions, which correspond
to the "marking vectors"

Moreover, let t be a function such that t(v,u,α) encodes the derivative pattern associated
with the index tuple (v,u,α). That is, t satisfies:
t(v1,u1,α1) = t(v2,u2,α2) ⇔ α1 = α2; and ;∃σ ∈ Sn such that v1 = σ(v2), ;u1 = σ(u2),

(55)
where Sn is the symmetric group on n elements. The value of 1

α! (Y
u)α is determined entirely

by t(v,u,α), and thus can be recovered from it.

This implies that the DeepSet encoder Uds-node defined in Equation 20 in Appendix C.1, can
have an intermediate layer L such that

L(D(T),i) = H̃
i
. (56)

Here L simply multiples each entry D(T),i[v,u,α] by 1
α! (Y

u)α, followed by summing over the
α indices. Thus, by Equations 53 and 56, choosingM as the base MPNN of a k-HOD-GNN
model allows us to approximate each Hi to arbitrary precision using its derivatives. Note
that since the DeepSet encoder is a restricted instance of a (k + 1)-IGN encoder, it can
achieve the same effect.

10here we abuse notation and omit the subscrit k in Dk.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Step 2 Equation 42 shows that the node features hsub,i
v are constructed by applying a

set-wise aggregation function over the set {Hi[v,u] | u ∈ V k(Gi)}. Any continuous set-wise
aggregation function can be approximated to arbitrary precision by a DeepSet architecture
(Zaheer et al., 2017) (see Segol & Lipman (2019) for proof). Moreover, any DeepSet
model applied in parallel over the first index of a k-indexed node tensor can be exactly
implemented by a k-IGN, since each layer in such a model consists of a linear equivariant
transformation followed by a pointwise nonlinearity. Thus, we can construct our encoder
U to first approximate the mapping Di → H̃

i
as an intermediate representation, and then

approximate the subsequent mapping H̃
i
→ hsub,i. Since both approximations can be made

to arbitrary precision, this completes the proof of the claim in Step 2.

Step 3 The final forward step—applying a downstream GNN to the updated node features to
produce a graph-level representation—is identical in both OSAN and HOD-GNN. Therefore,
by choosing the downstream GNN in the k-HOD-GNN model to match that of Ψ, the proof
is complete.

Using Theorem E.4 we now prove corollary E.5

Proof of corollary E.5. It was shown by Qian et al. (2022) that k-OSAN models can dis-
tinguish between graphs that are indistinguishable by the k-WL test. As Theorem E.4
establishes that our method can approximate any k-OSAN model to arbitrary precision, it
follows that k-HOD-GNN can do the same. Similarly, Zhang et al. (2024b) showed that
k-OSAN models can compute homomorphism counts of k-apex forests—graphs in which
the removal of at most k nodes yields a forest. Therefore, by Theorem E.4, Corollary E.5
follows.

Theorem E.6 ((k + 2)-IGNs are as expressive as k-HOD-GNN). Let Φ be a k-HOD-GNN
model and let G,G′ be a pair of graphs such that

Φ(G) ̸= Φ(G′). (57)

There exists a (k + 2)-IGN model Ψ such that:
Ψ(G) ̸= Ψ(G′). (58)

Corollary E.7. k-HOD-GNN is unable to distinguish any pair of (k + 1)-FWL indistin-
guishable graphs.

Proof. First, recall that the k-HOD GNN HOD −GNN is composed of a base MPNN M,
a downstream MPNN T , a (k + 1)-IGN encoder Unode and a k-IGN encoder Uout, all of
which are less expressive than the (k + 2)-IGN architecture. Thus, it is enough to show that
(k + 2)-IGN is able to simulate the efficient derivative algorithm presented in Appendix D,
to compute the k-order derivative tensors D(T) and D(out). We now show how (k + 2)-IGN
is able to simulate each step of this algorithm.

Before we begin, recall that a (k + 2)-IGN operates on tensors T ∈ Rnk+2×d where d is
called "the feature dimension". As the derivative tenors are of the form D ∈ Rnk+1×d′×md×k

we slightly change the notation for the tensors T which (k + 2)-IGN operates on to T ∈
Rnk+2×d1,···×dk allowing multiple feature dimensions. We stress this is only a notation
convenience, as we can transform T back to a single feature dimension simply by "flattening"
the different feature dimensions. Thus, for the rest of the proof, similarly to definition C.1
we assume T is indexed by T [u, i,α] where u = (u1, . . . , uk+2) ∈ V (G)k+2, i ∈ [d],α =
(αj1,j2)d,k ∈ {0, . . . ,m− 1}d×k and |α| =

∑
αj1,j2 .

Throughout the proof, tensor representations corresponding to G,G′ will be denoted by T,T′

respectively.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Step 1: Computing D(0).

For an input graph G = (A,X) Recall that:

Since h(0) = X, we have:

D(0)[v,u, i,α] =

{
1 if ∃s s.t. v = us,αs,i = 1,

∑
s′ ̸=s,j∈[d] αs′,j = 0

0 otherwise.
(59)

The initial tensor T(0) used by a (k + 2)-IGN is such that T [u, . . .] = T [v, . . .] if and only
if the map vi → ui is a graph isomorphism on the subgraphs of G induced by v and u
respectively.

In addition, one of the core operations of (k+2)-IGNs allows it to apply a "pointwise" linear
layer followed by an activation on any entry T[u, . . .] of the tensor T simultaneously. That
is, using (k+2)-IGN layers we can update the tensor T via MLP(T[u, . . .])→ T[u, . . .] (See
Maron et al. (2019); Frasca et al. (2022) for more details).

Define

S1 = {T(0)[u, . . .]|u1 = u2} ∪ {T′(0)[u, . . .]|u1 = u2}. (60)

S2 = {T(0)[u, . . .]|u1 ∈ NG(u2)} ∪ {T′(0)[u, . . .]|u1 ∈ NG′(u2)}. (61)

S3 = {T(0)[u, . . .]|u1 /∈ (NG(u2) ∪ {u2})} ∪ {T′(0)[u, . . .]|u1 /∈ (NG′(u2) ∪ {u2})}. (62)
Here N (·) is the neighborhood of a node.

From the definition of the initial tensor T(0) above, S1, S2, S3 all have pairwise empty
intersections. Thus, we can define an MLP such that ∀x ∈ S1

MLP(x)[i,α] =

{
1 if ∃s s.t. αs,i = 1,

∑
s′ ̸=s,j∈[d] αs′,j = 0

0 otherwise,
(63)

∀x ∈ S2:
MLP(x)[i,α] = 1, (64)

and ∀x ∈ S3:
MLP(x)[i,α] = 0. (65)

by updating T[u, . . .] = MLP(T(0)[u, . . .]) , T′[u, . . .] = MLP(T′(0)[u, . . .]) we now get:

T[u1, . . . , uk+1, uk+1, . . .] = D(0)[u2, . . . , uk+2, . . .] (66)

and for u1 ̸= u2 :

T[u1, u2, . . . , uk+2, . . .] = Au1,u2
. (67)

Thus T now stores both the information of the tensor D(0) and the adjacency A.

Step 2: Computing D̃
(t−1)

from D(t−1).

For simplicity assume the base MPNN used in k-HOD-GNN is a GIN architecture (the proof
can be easily generalized to the general case)

Recall from Appendix D that

D̃
(t−1)

[u, . . .] = D(t−1)[u, . . .](1 + ϵ)
∑

u′∈N (u)

D(t−1)[u′, . . .]. (68)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

This amounts to constructing a "flattened" node feature vector Dflat ∈ Rn×d̃ defined by
Dflat[u] = D(t−1)[u, . . .].flatten() (69)

and performing standard message passing on it.

We can follow a similar path, defining a "flattened" matrix Tflat ∈ Rn2×d̃ defined by
Tflat[u1, u2] = T[u1, u2, . . .].flatten() (70)

and then use (k + 2)-IGN layer to perform 2-IGN updates on Tflat. From equation 67
the tensor T retains the adjacency information of the input graph. Following arguments
presented in Maron et al. (2019) a 2-IGN layer can simulate message passing. Thus, we are
able to compute D̃

(t−1)
, completing the step.

Step 3: Computing D(t) from D̃
(t−1)

. As shown in Appendix D, D(t) can be computed
from D̃

(t−1)
by a point-wise update. That is, there exists a continuous function f which

depends on the choice of the activation and weights of the base MPNNM such that

D(t)[u, i,α] = f(D̃
(t−1)

[u, i,α]). (71)

We can thus choose an MLP which approximates f to finite precision and update our tensors
T,T′ according to T[u, . . .] = MLP(T[u, . . .]) , T′[u, . . .] = MLP(T′[u, . . .]). This finishes
the current step.

Iteratively updating the tensors T and T′ according to steps 1-3, we reach final tensors such
that

T[u2, u2 . . . , , uk+2, . . .] = D(T)[u2, . . . , uk+2, . . .] (72)

T′[u2, u2, . . . , uk+2, . . .] = D′(T)[u2, . . . , uk+2, . . .] (73)

a (k + 2)-IGN can then apply a projection P : Rnk+2×d1,···×dk → Rnk+1×d1,···×dk

defined by

P (T)[u1, u2, · · · , uk+2, . . .] = T [u2, u2, . . . , uk+2, . . .] = D(T)[u2, . . . , uk+2, . . .]. (74)

Thus a (k + 2)-IGN can recover D(T).

Step 4: Computing Dout from D(T). For most common MPNNs, this step decomposes
into a linear aggregation (which can be handled exactly like step 2) followed by an MLP
(which is equivalent to the update of step 3). Consequently, the derivative tensor Dout can
be computed from D(T) using the same primitives described above.

Proof of corollary E.7. Recall that the (k + 1)-FWL has equivalent expressive power to the
(k + 2)-oblivious WL test (see Morris et al. (2023)). In addition, as shown in Geerts (2020);
Azizian & Lelarge (2020); Maron et al. (2019), (k + 2)-IGNs have the same expressive power
as the (K + 2) oblivious WL test. This together with Theorem E.6 completes the proof.

Theorem 4.3. We now formally state and prove Theorem 4.3

Theorem E.8 (HOD-GNN is strictly more expressive than RWSE+MPNN). For any MPNN
T augmented with random walk structural encodings (see Definition E.3), there exists a
1-HOD-GNN model Φ that uses ReLU activations and only first-order derivatives such that,
for every graph G, it holds that

T (G) = Φ(G). (75)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 2: Two quartic vertex-transitive graphs that cannot be distinguished by MPNNs
augmented with RWSE, but can be distinguished using HOD-GNN.

Moreover, there exist a pair of graphs G1 and G2 such that for every RWSE-augmented
MPNN T ,

T (G1) = T (G2), (76)
yet there exists a 1-HOD-GNN model Φ, using ReLU activations and only first-order deriva-
tives, such that

Φ(G1) ̸= Φ(G2). (77)

Proof. To prove the first part of the theorem for RSWE with L number of steps, we begin
with a simple preprocessing step. For each input graph G = (A,X) with node feature matrix
X ∈ Rn×d, we define an extended feature matrix X̄ = X ⊕ 1L ∈ Rn×(d+L) by padding X
with a constant vecotr of lenght L and value 1. We then pass X̄ to the HOD-GNN model
instead of the original X.

It is now sufficient to construct a base MPNN M with T layers such that:

1. The first d coordinates of each final node embedding satisfy h
(T)
v,0:d−1 = Xv, i.e., the

original features are preserved.

2. The first-order derivatives of the remaining L coordinates (i.e., for indices l =
d, . . . , d+ L− 1) satisfy:

∂h
(T)
v,l

∂X̄v,l
= Ãl

v,v, (78)

where Ã is the row-normalized adjacency matrix (see Definition E.3).

If the above conditions hold, we can choose an MLP such that

hder
v = MLP

(
h(T)
v ⊕U(T)(D(T))v ⊕Uout(Dout)

)
= Xv ⊕ hrwse

v (79)

and choose our downstream model to be exactly T thus satisfying Equation 76.

We now construct an MPNN M that satisfies both of the conditions above.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

For each layer t = 0, . . . , T −1, we define the update rule ofM to act separately on two parts
of the node feature vector: the first d+ t coordinates and the remaining T − t coordinates.
Specifically:

h
(t+1)
v,0:d+t−1 = h

(t)
v,0:d+t−1, (80)

h
(t+1)
v,d+t:T−1 = ReLU

 1

deg(v)

∑
u∈N (v)

h
(t)
u,d+t:T−1

 . (81)

.

We set the number of layers inM to be T = L, where L is the number of random walk steps
used in the original RWSE encoding.

First, the proposed update rule is straightforward to implement within the MPNN framework
defined by Equation 1, as it follows a standard message-passing structure.

Second, Equation 80 guarantees that the first d coordinates of each node’s feature vector
remain unchanged throughout the layers, thereby satisfying condition (1).

Finally, Equations 80 and 81 together imply that for all t = 0, . . . , T − 1, it holds that

h
(T)
v,t = Ãt · 1T . (82)

This implies that

∂h
(T)
v,t

∂X̄v,t
= Ãt

v,v (83)

and so condition (2) holds, completing the first part of the proof.

For the second part of the proof, following the notation of (Read & Wilson, 1998), let G1 and
G2 denote the quartic vertex-transitive graphs Qt15 and Qt19, respectively (see Figure 2)
with all initial node features equal to 12 ∈ R2. Here, "vertex-transitive" means that for any
pair of nodes, there exists a graph automorphism mapping one to the other, and "quartic"
indicates that the graphs are 4-regular. This pair of graphs was shown in (Southern et al.,
2025) to be indistinguishable by MPNNs augmented with RWSE. Therefore, to conclude the
proof, it suffices to construct an HOD-GNN model that can distinguish between them.

We define the base MPNNM to consist of two layers, specified as follows. The first layer
performs standard neighbor aggregation:

h(1)
v = ReLU

 ∑
u∈N (v)

h(0)
u

 . (84)

In the second layer, the first coordinate of each node feature is preserved, while the second
coordinate is updated via another aggregation step. That is

h
(2)
v,0 = h

(1)
v,0, (85)

h
(2)
v,1 = ReLU

 ∑
u∈N (v)

h
(1)
u,1

 . (86)

.

from the same argument as the first part of the proof, we get that for M, it holds that

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

∂h
(2)
v,l

∂Xu,l
= Al

v,u, (87)

Note that for a pair of nodes u, v, we have Au,v = 1 and A2
u,v = 0 if and only if u ∈ N (v)

and, for all u′ ∈ N (v), it holds that u /∈ N (u′)—that is, there is no path of length exactly
2 from u to v. A straightforward computation shows that no such node pairs exist in G1,
whereas several such pairs appear in G2. Thus, the set of off-diagonal derivative vectors
{D(2),2[u, v, 1, :] | u ≠ v ∈ V (G2)} contains values that do not appear in the corresponding
set {D(2),1[u, v, 1, :] | u ̸= v ∈ V (G1)}.

We define the node derivative encoder Unode as a 2-IGN model that operates in two steps.
First, it constructs a filtered tensor D̄ by zeroing out all entries of D(2) that are not off-
diagonal or are farther than ϵ = 1

4 from the vector (1, 0). Then, it performs row-wise
summation over D̄ to produce node features:

Unode(D(2))v =
∑

u∈V (G)

D̄[v, u]. (88)

It follows that Unode(D(2),1) = 0, while Unode(D(2),2) ̸= 0. Therefore, when these vectors
are passed to the downstream MPNN, it will be able to distinguish between the two graphs,
completing the proof.

Computational complexity.

We now prove Propositions 4.4 and 4.5,which analyze the time and space complexity of
HOD-GNN.

Proof. Recall that in Appendix D, we have defined the derivative sparsity of a node v of an
input graph G at layer t of the base MPNN, as

sv,t =
∣∣∣{(u, i,α)

∣∣∣ D(t)[v,u, i,α] ̸= 0
}∣∣∣ , (89)

and the maximal derivative sparsity at layer t is
st = min

v∈V (G)
sv,t. (90)

the tensor D(t) has memory complexity of O(n · st) as it can be stored using sparse matrix
representations. Algorithm 1 for efficient derivative computation iteratively computes D(t)

using D(t−1) and finally computes Dout from D(T). We now prove by induction that for an
input graph G with maximal degree d11, there exists a constant C which depends on the
maximal number of derivatives, the input node feature dimension, and the dimension of h(t),
all of which are hyperparameters, such that

st < C ·min{dk·t, nk}. (91)

We additionally show that D(t) can be constructed from D(t−1) in time complexity of
O(d · n ·min{dk·(t−1), nk})
To begin, as we saw in Appendix D,

D(0)[v,u, i, j,α] =

{
1 if ∃s s.t. v = us, i = js,αs = 1,

∑
s′ ̸=s αs′ = 0

0 otherwise,
(92)

and so sv,0 < C = mk · lk+1 where m is the maximal derivative degree, and l is the
dimension of the input node features. Now assuming Equation 91 holds for t − 1, in
Appendix D we saw that D(t) can be computed from D(t−1) in time complexity of O(d ·
n · st−1) = O(d · n ·min{dk·(t−1), nk}), secondly, we saw that st = O

(
min{d · st−1, n

k}
)
=

O
(
min{dk·t, nk}

)
completing the induction. As the memory complexity of storing D(t) is

11We slightly abuse notation by using d to denote the maximal degree as it usually denotes the
input feature dimension, we denote this quantity as l for this discussion.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

O(n · st) = O
(
n ·min{dk·t, nk}

)
this proves Proposition 4.4. Recall now that we have seen

in the proof of theorem E.4 that k-HOD-GNN is able to achieve the same expressivity as
k-OSAN by disregarding Dout and choosing the encoder Unode to be

Uds-node(D(T))v = DeepSet({D(T)[v,u, i,α] | u ∈ V k(G), i ∈ [d′],∈ [d]k,α ∈ [m]k}). (93)

This encoder can leverage the sparsity of D(T), having runtime complexity of O(n · sT) =
O(n ·min{nk, dk·T }), completing the proof of proposition 4.5.

F Additional propositions

In this section, we present three additional propositions which further explore the exact
expressivity gains obtained from using derivative signals.

The first proposition shows that even when using only output-level derivatives, 1-HOD-GNN
is still fairly expressive.

Proposition F.1. Even when setting Unode = 0, 1-HOD-GNN is still as expressive as the
DS-WL for node based policies test defined in Bevilacqua et al. (2021).

Proof. We begin by recalling the definition of the DS-WL test. Consider two graphs
G1 = (A1,X1) and G2 = (A2,X2). For each graph, the DS-WL test constructs a bag of
node-marked subgraphs, where each subgraph is obtained by appending a unique mark to
the feature of exactly one node. Formally, for i ∈ {1, 2},

Bi = { Si,v | v ∈ V (Gi)} , (94)
where each marked subgraph is defined as

Si,v = (Ai, Xi ⊕ ev), (95)
with ev denoting a one-hot indicator applied to node v.

The DS-WL test then applies the WL refinement procedure independently to each marked
subgraph Si,v until convergence, and assigns it a final color

cS = WL(S). (96)
This produces, for each graph, a multiset of resulting WL colors:

Ci = { cS | S ∈ Bi} , i ∈ {1, 2}. (97)

Finally, DS-WL declares G1 and G2 to be non-isomorphic if and only if C1 ̸= C2. If the
two multisets coincide, the test does not distinguish the graphs.

As shown in Morris et al. (2019), for any finite collection of graphs there exists an MPNNM
whose output is equivalent to the WL coloring. In particular,

M(S) =M(S ′) ⇐⇒ cS = cS′ , (98)
for any marked subgraphs S and S ′.
Consequently, G1 and G2 are separated by the DS-WL test if and only if there exists an
MPNN such that

{M(S) | S ∈ B1} ≠ {M(S) | S ∈ B2} . (99)

As previously discussed, we may assume without loss of generality that the activation function
used by M is analytic. Indeed, if this is not the case, the MLP components of M can be
approximated to arbitrary precision by MLPs employing an analytic activation function.

For every node v ∈ V (Gi), define the scalar function
f i
v (x) = M(Ai, Xi ⊕ x ev), (100)

where x ∈ R.

We note the following properties:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1. f i
v (1) =M(Si,v) by definition of the marked subgraph Si,v.

2. For every j ∈ N,
∂j

∂xj
f i
v (x)

∣∣∣∣
x=0

=
∂j

∂Xj
v

M(Si,v), (101)

since the perturbation x only modifies the feature at node v.

3. Each f i
v is analytic, asM is a composition of linear transformations and analytic

activation functions.

Since analytic functions are uniquely determined by their derivatives at a point, we obtain
that for any pair of nodes v ∈ V (G1) and u ∈ V (G2),(

∂j

∂Xj
v

M(S1,v) =
∂j

∂Xj
u

M(S2,u) for all j ∈ N

)
=⇒ M(S1,v) =M(S2,u). (102)

Therefore, ifM(S1,v) ̸=M(S2,u), analyticity implies that there exists some integer m such
that

∂m

∂Xm
v

M(S1,v) ̸=
∂m

∂Xm
u

M(S2,u), (103)

and consequently
Dout(S1,v) ̸= Dout(S2,u). (104)

Hence,
{M(S) | S ∈ B1} ≠ {M(S) | S ∈ B2} (105)

can hold only if {
Dout(S)

∣∣ S ∈ B1} ̸= {
Dout(S)

∣∣ S ∈ B2} . (106)

Finally, by choosing the encoder Uout to be a fully expressive multiset function (e.g.,
DeepSets Zaheer et al. (2017)), 1-HOD-GNN is able to distinguish G1 from G2 using only
the derivative tensor Dout. This completes the proof.

The following proposition analyses the expressive power of edge-HOD-GNN.
Proposition F.2. edge-HOD-GNN is as expressive as the DS-WL for edge based policies test
defined in Bevilacqua et al. (2021), and can thus separate pairs of 2-FWL indistinguishable
graphs.

Proof. The proof of this proposition follows the same argument as the previous one; we
include it here for completeness. For brevity, for the rest of this prove we refer to the
edge-marking WL test simply as the WL test, and the edge-derivative tensor simply as the
derivative tensor, denoted by Dout. We begin by recalling the definition of the DS-WL test
with edge marking. Consider two graphs G1 = (A1,X1,E1) and G2 = (A2,X2,E2) where
E1,E2 represent edge feature matrices. For each graph, the DS-WL test constructs a bag of
edge-marked subgraphs, where each subgraph is obtained by appending a unique mark to
the feature of exactly one edge. Formally, for i ∈ {1, 2},

Bi = { Si,e | e ∈ E(Gi)} , (107)
where each marked subgraph is defined as

Si,e = (Ai, Xi,Ei ⊕ ee), (108)
with ee denoting a one-hot indicator applied to edge e.

The DS-WL test then applies the WL refinement procedure independently to each marked
subgraph Si,e until convergence, and assigns it a final color

cS = WL(S). (109)
This produces, for each graph, a multi-set of resulting WL colors:

Ci = { cS | S ∈ Bi} , i ∈ {1, 2}. (110)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Finally, DS-WL declares G1 and G2 to be non-isomorphic if and only if C1 ̸= C2. If the
two multi-sets coincide, the test does not distinguish the graphs.

As shown in Morris et al. (2019), for any finite collection of graphs there exists an MPNNM
whose output is equivalent to the WL coloring. In particular,

M(S) =M(S ′) ⇐⇒ cS = cS′ , (111)
for any marked subgraphs S and S ′.
Consequently, G1 and G2 are separated by the DS-WL test if and only if there exists an
MPNN such that

{M(S) | S ∈ B1} ≠ {M(S) | S ∈ B2} . (112)

As previously discussed, we may assume without loss of generality that the activation function
used by M is analytic. Indeed, if this is not the case, the MLP components of M can be
approximated to arbitrary precision by MLPs employing an analytic activation function.

For every edge e ∈ E(Gi), define the scalar function
f i
e (x) = M(Ai, Xi,Ei ⊕ x · ev), (113)

where x ∈ R.

We note the following properties:

1. f i
e (1) =M(Si,e) by definition of the marked subgraph Si,e.

2. For every j ∈ N,
∂j

∂xj
f i
e (x)

∣∣∣∣
x=0

=
∂j

∂Ej
e

M(Si,e), (114)

since the perturbation x only modifies the feature at edge e.

3. Each f i
e is analytic, asM is a composition of linear transformations and analytic

activation functions.

Since analytic functions are uniquely determined by their derivatives at a point, we obtain
that for any pair of edges ei ∈ E(Gi) i ∈ [2],(

∂j

∂Ej
e1

M(S1,e1) =
∂j

∂Ej
e2

M(S2,e2) for all j ∈ N

)
=⇒ M(S1,e1) =M(S2,e2). (115)

Therefore, ifM(S1,e1) ̸=M(S2,e2), analyticity implies that there exists some integer m such
that

∂m

∂Em
e1

M(S1,e1) ̸=
∂m

∂Em
e2

M(S2,e2), (116)

and consequently
Dout(S1,e1) ̸= Dout(S2,e2). (117)

Hence,
{M(S) | S ∈ B1} ≠ {M(S) | S ∈ B2} (118)

can hold only if {
Dout(S)

∣∣ S ∈ B1} ̸= {
Dout(S)

∣∣ S ∈ B2} . (119)

Finally, by choosing the encoder Uout
edge to be a fully expressive multiset function (e.g.,

DeepSets Zaheer et al. (2017)), edge-HOD-GNN is able to distinguish G1 from G2 using only
the edge derivative tensor Dout. the edge marking WL test was shown in Bevilacqua et al.
(2021) to be able to separate 2-FWL indistinguishable graphs. This completes the proof.

Finally, the next proposition shows that for a fixed base MPNN M, increasing the hyperpa-
rameter m (Definition 3.1), which specifies the highest derivative order used by HOD-GNN,
strictly improves expressivity.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Proposition F.3. For any m ∈ N, there exist choices of the base MPNN M such that a
1-HOD-GNN using M with hyper-parameter m is unable to count the number of triangles of
a given input graph, while a k-HOD-GNN using M with m+ 1 can.

Proof. Let m ∈ N. We define the base message-passing network Mm as follows.

Consider an input graph G = (A,X), where X ∈ Rn is a node-feature matrix with scalar
features.

Initialization. We define the first hidden representation by a node-wise MLP update
(which ignores all neighbors):

h(1)
v :=

X m+1
v

(m+ 1)!
. (120)

This update depends only on Xv and is therefore realizable by a local node transformation.

Message passing. For t ∈ {2, 3, 4}, we define

h(t) := Ah(t−1), i.e., h(t)
v =

∑
u∈N(v)

h(t−1)
u . (121)

Each update is realizable by a standard MPNN aggregation step without applying a post-
aggregation MLP.

Readout. The global output ofMm is defined by summing the final node representations:

hout :=
∑
v∈V

h(4)
v . (122)

Thus, Mm is a message-passing neural network consisting of one node-wise MLP layer
followed by three pure aggregation layers, and a final sum readout.

As a consequence of the chain rule, all partial derivatives of both h(4) and hout of order at
most m vanish. Therefore, a 1-HOD-GNN model restricted to the hyperparameter m has
expressive power equivalent to a standard MPNN, and in particular it cannot count triangles.

Moreover, we have
∂m+1h

(4)
v

∂X m+1
v

=
(
A3
)
v,v

. (123)

Hence, a 1-HOD-GNN model with hyperparameter m + 1 can exploit this derivative to
compute ∑

v

(
A3
)
v,v

6
, (124)

which equals the number of triangles in the input graph G. This completes the proof.

G Experimental Details

In this section, we provide details on the experimental validation described and discussed in
Section 5.

G.1 architecture

In all of our experiments, we have used a 1-HOD-GNN architecture, We now describe its
components in detail.

Base MPNN. In all experiments, we use a GIN (Xu et al., 2018) architecture as the base
MPNN—described in Equation 9 (Section 3)—due to its simplicity and maximal expressivity.
All MLPs used in the node updates are two layers deep and employ ReLU activations.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

We extract first-order derivatives from the base MPNN, which—by Theorem 4.3—yields
greater expressivity than MPNNs augmented with RWSE. After computing the final node
representations h(T), we apply a residual connection by aggregating all intermediate layers:

h(T) ←
T⊕

t=1

h(t)

t!
. (125)

where normalizing in t! helped stabalize training.

Derivative Encoding.

For simplicity, we ignore the output derivatives of the base MPNN and use only the final
node-wise derivative tensor D(T). The encoder Unode is implemented as a lightweight, efficient
module that applies a pointwise MLP to the diagonal entries of D(T):

Unode(D(T))v = MLP
(
D(T)[v, v, . . .]

)
. (126)

Downstream GNN.

For simplicity and to isolate the effects of HOD-GNN, we restrict our experiments to MPNNs
as downstream architectures—We use GIN for all experiments but peptieds func in which
we used a GCN (Kipf & Welling, 2016). All MLPs used in the node updates are two layers
deep with ReLU activations. The final MLP head also uses ReLU activations and consists of
1 to 3 layers, following the default settings from Southern et al. (2025), without tuning. In
experiments with parameter budgets, we adjust only the hidden dimension to fit within the
limit, selecting the largest value that satisfies the constraint.

Initialization. We initialize the base MPNN such that all categorical feature embeddings
are set to the constant vector 1, all MLP weights are initialized to the identity, and the ϵ
parameters in the GIN update (Equation 9) are set to −1. This initialization is motivated by
the proof of Theorem 4.3; following a similar line of reasoning, it implies that the diagonal of
the derivative tensor D(T)[v, v, . . .] corresponds exactly to the centrality encoding proposed
in Southern et al. (2025).

Optimization. We use separate learning rates for the base and downstream MPNNs. For
the downstream MPNN, we adopt the learning rates used in Southern et al. (2025), while
for the base MPNN, we fine-tune by selecting either the same rate or one-tenth of it.

G.2 Experiments

We provide below the details of the datasets and hyperparameter configurations used in our
experiments. Our method is implemented using PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, 2019), and is based on code provided in Southern et al. (2025)
and Rampášek et al. (2022). Test performance is evaluated at the epoch achieving the best
validation score and is averaged over four runs with different random seeds. We optimize
all models using AdamW (Loshchilov & Hutter, 2017), with a linear learning rate warm-up
followed by cosine decay. We track experiments and perform hyperparameter optimization
using the Weights and Biases platform. All experiments were conducted on a single NVIDIA
A100-SXM4-40GB GPU.

OGB datasets. We evaluate on three molecular property prediction benchmarks from the
OGB suite (Hu et al., 2020b): MOLHIV, MOLBACE, and MOLTOX21. These datasets
share a standardized node and edge featurization capturing chemophysical properties. We
adopt the challenging scaffold split proposed in (Hu et al., 2020a). To prevent memory
issues, we use a batch size of 128 for MOLHIV and 32 for the remaining datasets. All
Downstream models use a hidden dimension of 300, consistent with prior work (Hu et al.,
2020a; Bevilacqua et al., 2024). We sweep over several architectural choices, including the
hidden dimension of the Base MPNN k = 8, 10, . . . , 30, 32, the initial learining rate of the
Base MPNN k = 0.001, 0.0001, and the dropout rate k = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 . The
number of layers in the base MPNN was selected to match the positional encoding step used
in the corresponding experiment from Southern et al. (2025). Hyperparameter tuning was
performed on the validation set using four random seeds. Results are reported at the test

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

epoch corresponding to the best validation performance. All models were trained for 100
epochs. The final parameters used for each experiment are reported in table 3

Zinc The ZINC dataset (Dwivedi et al., 2023) includes 12k molecular graphs of commercially
available chemical compounds, with the task of predicting molecular solubility. We follow the
predefined dataset splits and report the Mean Absolute Error (MAE) as both the loss and
evaluation metric. Our downstream MPNN for this task includes 6 message-passing layers
and 3 readout layers, with a hidden size of 120 and no dropout. We use a batch size of 32
and train for 2000 epochs. We performed a small sweep over the depth of the base MNPNN
k = 10, 12, 14, 16, 18, 20 and the hidden dimension k = 30, 35, . . . , 80. The hidden dimension
of the downstream MPNN was chose as 120 to meet the 500k parameter constraint. The
final hyperparameters are listed in Table 4.

Peptides Peptides-func and Peptides-struct, introduced by Dwivedi et al. (2022), consist of
graphs representing atomic peptides. Peptides-func is a multi-label classification benchmark
with 10 nonexclusive peptide function labels, while Peptides-struct is a regression task
involving 11 different structural attributes derived from 3D conformations.

For both datasets, we adopt the hyperparameter setup proposed by Tönshoff et al. (2023)
for the downstream GNN, which has a parameter budget under 500k and where they use 250
epochs. We set the number of message-passing layers in our base MPNN with the positional
encoding steps to be 20, aligned with the number of steps used for the random-walk structural
encoding. The only tuned component is the learning rate of the base MPNN. The final
configurations are summarized in Table 5.

Key empirical findings. Across all benchmarks, HOD-GNN is highly competitive and
the only architecture that consistently ranks within the top two model tiers. Additionally,
the strong performance of HOD-GNN on the large-scale Peptides datasets—where full-bag
Subgraph GNNs are generally unable to run—shows its ability to scale effectively. Notably,
the base MPNNs in HOD-GNN are often significantly deeper and narrower than those
in typical GNNs. For instance, on the OGB datasets, the base MPNNs use 17-20 layers
with hidden dimensions as low as 16–32. Despite their compact size, these base MPNNs
yield notable performance gains over standard GINE, suggesting potential robustness to
oversquashing. Moreover, the fact that they are significantly deeper than typical MPNNs
further suggests that HOD-GNN may help mitigate oversmoothing, a hypothesis we leave
for future work.Table 3: Best-performing hyperparameters for each OGB dataset.

Hyperparameter MOLHIV MOLBACE MOLTOX21

Downstream model
#Layers 2 8 10
#Readout Layers 1 3 3
Hidden Dimension 300 300 300
Dropout 0.0 0.5 0.3
Learning Rate 0.0001 0.0001 0.001

Base MPNN
#Layers 16 20 20
Hidden Dimension 16 16 16
Dropout 0.2 0.5 0.2
Learning Rate 0.0001 0.0001 0.0001

#Parameters 450,848 1,723,448 2,165,782

H Additional Experiments

H.1 Substructure Counting

We adopt the synthetic node-level subgraph counting experiment used in Huang et al.
(2022); Yan et al. (2024). The dataset consists of 5,000 graphs generated from a mixture of
distributions (see Zhao et al. (2022) for more details), with a train/validation/test split of
0.3/0.2/0.5. The task is node-level regression: predicting the number of substructures such

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 4: Best-performing hyperparameters for the ZINC dataset.

Hyperparameter ZINC

Downstream model
#Layers 6
#Readout Layers 3
Hidden Dimension 120
Dropout 0.0
Learning Rate 0.001

Base MPNN
#Layers 12
Hidden Dimension 75
Dropout 0.0
Learning Rate 0.0001

#Parameters 498,144

Table 5: Best-performing hyperparameters for the Peptides-func and Peptides-struct datasets.

Hyperparameter Peptides-func Peptides-struct

Downstream model
#Layers 6 10
#Readout Layers 3 3
Hidden Dimension 234 143
Dropout 0.1 0.2
Learning Rate 0.001 0.001

Base MPNN
#Layers 20 20
Hidden Dimension 8 8
Dropout 0.1 0.2
Learning Rate 0.0001 0.001

#Parameters 498,806 493,849

as 3-cycles, 4-cycles, 5-cycles, 6-cycles, tailed triangles, chordal cycles, 4-cliques and 4-paths,
where continuous outputs approximate discrete counts. We report the normalized MAE for
each baseline, and highlight cases where the error falls below 0.001, since in these instances
rounding the predictions yields exact counts.

For training, we use the AdamW optimizer with an initial learning rate of 0.001, a cosine
scheduler with warmup, and train for 5,00 epochs. The batch size is set to 128. We compare
HOD-GNN against both positional/structural encoding methods (MPNN+RWSE (Dwivedi
et al., 2021), GPS+RWSE (Rampášek et al., 2022), HyMN (Southern et al., 2025)) and
node-based subgraph GNNs (GNN-AK+ (Zhao et al., 2022), Nested GNN (Zhang & Li,
2021), ID-GNN (You et al., 2021), HyMN (Southern et al., 2025)).

To examine the role of activation functions, we evaluate HOD-GNN with the non-analytic
ReLU and the analytic SiLU. The results, summarized in Table 6, are consistent with
our theory. In line with Theorem 4.1, HOD-GNN achieves performance comparable to or
surpassing other subgraph GNNs. Furthermore, consistent with Theorem 4.3, we observe that
analytic activations enhance expressivity, while even with non-analytic ReLU, HOD-GNN
still outperforms encoding-based methods.

H.2 Graph Separation Ability of k-HOD-GNN

To further evaluate the expressive power of k-HOD-GNN and to empirically validate Theo-
rem 4.1, we experimented with both 1-HOD-GNN and 2-HOD-GNN on the family of regular
graph pairs from the BREC benchmark (Wang & Zhang, 2024). This dataset contains 140
pairs of regular graphs: 50 pairs that are distinguishable by 3-WL but not by 2-WL, and
90 pairs that remain indistinguishable even under 3-WL. We follow the exact training and
evaluation procedures proposed in Wang & Zhang (2024).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 6: Normalized MAE results on the counting subgraphs dataset. Cells below 0.01 are
highlighted in yellow.

Method 3-Cycle 4-Cycle 5-Cycle 6-Cycle Tailed Tri. Chordal Cycle 4-Clique 4-Path

MPNN 0.3515 0.2742 0.2088 0.1555 0.3631 0.3114 0.1645 0.1592
MPNN+RWSE 0.0645 0.0264 0.0746 0.0578 0.0505 0.1008 0.0905 0.0217
GPS+RWSE 0.0185 0.0433 0.0472 0.0551 0.0446 0.0974 0.0836 0.0284
HyMN 0.0384 0.0933 0.1350 0.0936 0.0084 0.0746 0.0680 0.0120
GNN-AK+ 0.0004 0.0040 0.0133 0.0238 0.0043 0.0112 0.0049 0.0075
HOD-GNN + ReLU 0.0012 0.0046 0.0210 0.0380 0.0083 0.0510 0.0293 0.0081
HOD-GNN + SiLU 0.0008 0.0042 0.0068 0.0222 0.0066 0.0195 0.0055 0.0069

Table 7: Results on separation of pairs of regular graphs from the BREC dataset.

Model Regular Graphs Number Regular Graphs Accuracy

3-WL 50 35.7%
NGNN 48 34.3%
DE+NGNN 50 35.7%
DS-GNN 48 34.3%
DSS-GNN 48 34.3%
SUN 50 35.7%
SSWL_P 50 35.7%
GNN-AK 50 35.7%
KP-GNN 106 75.7%
I2-GNN 100 71.4%
OSAN 8 5.7%
1-HOD GNN 47 33.5%
2-HOD GNN 84 60.0%

Table 7 reports the separation performance of our models alongside several subgraph-based
GNNs. As shown, 2-HOD-GNN successfully distinguishes 34/90 of the 3-WL-indistinguishable
pairs, placing it among the top-performing models and providing strong empirical support
for the theoretical advantage predicted in Theorem 4.1.

Furthermore, 1-HOD-GNN obtains accuracy comparable to DS-GNN on the same benchmark,
aligning with Theorem 4.1 for the k = 1 case and reinforcing that, without accessing higher-
order derivatives, the model behaves similarly to standard MPNNs.

H.3 Ablation on Derivative Order

To assess the impact of higher-order derivatives on HOD-GNN’s expressive power, we
conduct an ablation study on the most challenging substructure counting task: 6-cycle
prediction, which consistently yields the highest MAE. Specifically, we evaluate models
restricted to derivatives of order at most k, for k = 0, . . . , 4. The results, presented in Table 8,
demonstrate that increasing the maximal derivative order consistently improves MAE, with
performance saturating at k = 4. All experiments use the analytic SiLU activation function.
We hypothesize that the observed saturation arises because higher-order derivatives of SiLU
rapidly diminish toward zero, limiting the additional expressive gain.

Table 8: Effect of maximal derivative order on 6-Cycle MAE.

Maximal derivative order 6-Cycle MAE

0 0.1555
1 0.0275
2 0.0223
3 0.0221
4 0.0231

H.4 Stability Analysis

We evaluate the stability of HOD-GNN both in terms of training dynamics and the behavior
of the derivative tensor norm. Across all tasks, we consistently observe smooth and stable

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 3: The training loss of HOD-GNN with maximal derivative d ∈ {1, 2, 3, 4} on the
6-cycle counting task.

loss curves, even when incorporating higher-order derivatives. To further assess stability, we
conduct two dedicated experiments.

Training Loss Dynamics. We examine convergence behavior on the 6-cycle subgraph
counting task by varying the maximum derivative order d ∈ 1, 2, 3, 4. Figure 3 shows the
training loss curves, showing consistent and reliable convergence across all derivative orders.

Norm of the Derivative Tensor. We additionally assess the stability of the derivative
tensors used by HOD-GNN. We compute the norm of the derivative tensor during training on
the MOLBACE dataset. Following standard practice (Higham, 2002), we report the relative
norm: the ratio between the derivative tensor norm and the final node feature norm of the
base MPNN. Figure 4 shows that the relative norm consistently remains significantly lower
than that of the node features throughout training, confirming that HOD-GNN operates in
a well-conditioned regime.

H.5 Analysis of Generalization Behavior of HOD-GNN

Recent studies (Franks et al., 2024; Maskey et al., 2025; Carrasco et al., 2025) have raised
concerns about the generalization ability of highly expressive GNNs, showing that performance
can degrade when a model becomes “too expressive.” These findings suggest that GNNs
often generalize best when they have just the right capacity, a balance influenced both by
architectural expressivity and by parameter scale (e.g., overly wide hidden dimensions can
also harm generalization).

Motivated by these observations, we examine train-test gaps for HOD-GNN on the OGB
datasets molhiv and moltox21 (Table 9). HOD-GNN exhibits moderate gaps that are
smaller than those of (i) less expressive architectures such as GCN and GIN, (ii) models of
comparable expressivity such as DSS-GNN (ND), and (iii) more expressive variants such
as DSS-GNN (ED). These findings indicate that HOD-GNN displays strong generalization.
Baseline values are taken from Bevilacqua et al. (2021).

We propose two hypotheses as to why HOD-GNN generalizes well, informed by recent
literature:

1. Compact parameterization enabled by higher-order derivatives. Across our
experiments, the base MPNN within HOD-GNN consistently performs best with small

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure 4: The relative norm of the derivative tensor with maximal derivative d ∈ {1, 2} with
respect to the norm of the final node feature matrix of the base MPNN on the MOLBACE
dataset.
Table 9: Comparison of model train-test performance gap on MOLHIV and MOLTOX21.
Method MOLHIV Train AUC MOLHIV Test AUC Gap-MOLHIV MOLTOX21 Train AUC MOLTOX21 Test AUC Gap-MOLTOX21

GCN 88.65± 2.19 76.06± 0.97 12.59 92.06± 1.81 75.29± 0.69 16.77
GIN 88.64± 2.54 75.58± 1.40 13.06 93.06± 0.88 74.91± 0.51 18.15
DSS-GNN (ED) 91.71± 3.50 76.43± 2.12 15.28 92.38± 1.57 75.12± 0.50 17.26
DSS-GNN (ND) 89.70± 3.20 76.19± 0.96 13.51 91.23± 2.15 75.34± 1.21 15.89
HOD-GNN 88.15± 0.51 80.86± 0.52 7.29 93.73± 1.09 77.99± 0.71 15.74

hidden dimensions (8–32), resulting in models with relatively few parameters, thus aligning
well with the "just the right capacity" approach mentioned above. We hypothesize
that higher-order derivatives enrich these compact representations, effectively increasing
expressive power without increasing model size, thereby supporting better generalization.

2. Principled initialization that recovers RWSE. The constructive proof following
Theorem 4.2 gives an explicit initialization for HOD-GNN’s derivative features that exactly
matches Random Walk Structural Encodings (RWSE) - a widely used structural prior
known to improve expressivity without overfitting. This suggests an alternative view of
HOD-GNN:

• At the beginning of training, the derivative-informed features remain close to RWSE,
maintaining well known baseline behavior.

• When the task benefits from additional capacity, the model can naturally move
beyond RWSE and leverage higher-order derivative information.

This yields a natural “just expressive enough” bias: HOD-GNN begins from a well-
understood RWSE baseline and increases expressivity only when the data requires it.

We view further investigation of HOD-GNN’s generalization properties as a promising
direction for future work.

H.6 Comparison of Runtime and Memory usage against subgraph GNNs

In section 5 we show that HOD-GNN is able to scale to the Peptides datasets, which are
unreachable for full-bag subgraph GNNs on standard hardware, as stated in Southern et al.
(2025); Bar-Shalom et al. (2023).To further demonstrate the scalability of HOD-GNN, we
benchmark its runtime and memory usage against subgraph-based GNNs on the MOLHIV
dataset. Since the choice of subgraph selection policy is the primary factor determining the
asymptotic complexity of subgraph GNNs (Bevilacqua et al., 2021), we evaluate a range of
policies using the default parameters from the original work. For subgraph GNNs, we adopt

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 10: Runtime and memory comparison on the MOLHIV dataset. HOD-GNN demon-
strates both improved memory efficiency and competitive runtime.

GNN GPU Memory (MiB) Training Time / Epoch (s) Test Time / Epoch (s)

edge-deletion 32,944 62.13 5.70
node-deletion 29,826 58.80 4.01
ego-nets 25,104 53.16 3.07
ego-nets+ 25,211 54.19 3.20
HOD-GNN 12,964 53.34 2.28

Table 11: MAE comparison of different GNN architectures on ZINC-12K.

GNN MAE

GCN 0.321 ± 0.009
HOD-GNN + GCN 0.080 ± 0.006

GIN 0.163 ± 0.004
HOD-GNN + GIN 0.066 ± 0.003

GPS 0.070 ± 0.004
HOD-GNN + GPS 0.064 ± 0.002

the hyperparameters reported in Bevilacqua et al. (2021) for MOLHIV. For HOD-GNN, we
use the same hyperparameters as in Section 5, detailed in Appendix G.

Results. Table 10 reports GPU memory usage and per-epoch training and test runtimes.
HOD-GNN achieves improvements in memory efficiency, requiring less than half the GPU
memory compared to subgraph GNNs. In terms of runtime, HOD-GNN is faster than edge-
deletion and node-deletion policies, while achieving comparable training time to ego-nets
and ego-nets+. Notably, ego-net policies are known to be less expressive (Bevilacqua et al.,
2021), highlighting that HOD-GNN achieves both efficiency and expressivity.

Discussion. The improvements primarily stem from the analytic computation of higher-
order derivatives in HOD-GNN, which avoids the costly enumeration of subgraphs. While
these advantages already translate to lower memory usage and faster runtimes in practice,
we emphasize that HOD-GNN’s scalability potential is not yet fully realized. In particular, it
relies on efficient sparse matrix multiplications, which are currently suboptimally implemented
in popular GNN libraries such as PyTorch Geometric. We therefore anticipate that further
optimization of sparse kernels would amplify the scalability benefits of HOD-GNN.

H.7 Ablation on Backbone GNN

In most experiments, we employ GIN (Xu et al., 2018) as the backbone of HOD-GNN. A key
advantage of our approach, however, is its compatibility with any message-passing backbone.
To assess the effect of backbone choice, we evaluate HOD-GNN on the Zinc dataset using
GCN, GIN, and GPS as base architectures. The results, summarized in Table 11, demonstrate
that HOD-GNN consistently improves upon its backbone across all settings. Among the
tested architectures, GPS achieves the strongest performance, followed by GIN, with GCN
ranking third—reflecting its lower expressivity relative to the other backbones.

I Ethics Statement

This paper advances the theoretical and empirical study of graph neural networks through
derivative-based architectures. Our experiments are conducted exclusively on widely used,
publicly available benchmark datasets (ZINC, OGB, and Peptides molecular tasks), which
contain no personally identifiable or sensitive information. We believe our work does not
raise immediate ethical concerns. Nevertheless, we acknowledge that improvements in graph
representation learning may be applied to sensitive domains (e.g., biological or social network
data). We encourage responsible use of our methods in accordance with the ICLR Code of
Ethics.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

J Reproducibility Statement

We have taken several steps to ensure reproducibility. All datasets used are standard bench-
marks with clearly defined splits. A detailed description of architectures, hyperparameters,
and training settings as well as full proofs of the theoretical results appear in the Appendix.
Additionally, anonymized source code is provided as supplementary material and will be
released publicly upon publication. Together, these resources should allow researchers to
fully reproduce our experimental and theoretical results.

43

	Introduction
	Preliminaries and Previous Work
	Method
	Motivation
	The 1-HOD-GNN architecture
	Efficient derivative tensor computation

	k-HOD-GNN via mixed derivatives

	Theoretical Analysis
	Experiments
	Conclusion
	Previous Work
	Motivation
	HOD-GNN variants
	k-HOD-GNN
	blueedge-HOD-GNN

	Derivative Computation
	Extended Theoretical Analysis
	Definitions
	Proofs

	blueAdditional propositions
	Experimental Details
	architecture
	Experiments

	Additional Experiments
	Substructure Counting
	blueGraph Separation Ability of k-HOD-GNN
	Ablation on Derivative Order
	Stability Analysis
	blueAnalysis of Generalization Behavior of HOD-GNN
	Comparison of Runtime and Memory usage against subgraph GNNs
	Ablation on Backbone GNN

	Ethics Statement
	Reproducibility Statement

