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ABSTRACT

Despite significant advances in Graph Neural Networks (GNNs), their
limited expressivity remains a fundamental challenge. Research on GNN
expressivity has produced many expressive architectures, leading to archi-
tecture hierarchies with models of increasing expressive power. Separately,
derivatives of GNNs with respect to node features have been widely studied
in the context of the oversquashing and over-smoothing phenomena, GNN
explainability, and more. To date, these derivatives remain unexplored as
a means to enhance GNN expressivity. In this paper, we show that these
derivatives provide a natural way to enhance the expressivity of GNNs. We
introduce High-Order Derivative GNN (HOD-GNN), a novel method that
enhances the expressivity of Message Passing Neural Networks (MPNNs) by
leveraging high-order node derivatives of the base model. These derivatives
generate expressive structure-aware node embeddings processed by a second
GNN in an end-to-end trainable architecture. Theoretically, we show that
the resulting architecture family’s expressive power aligns with the WL
hierarchy. We also draw deep connections between HOD-GNN, Subgraph
GNNs, and popular structural encoding schemes. For computational
efficiency, we develop a message-passing algorithm for computing high-order
derivatives of MPNNs that exploits graph sparsity and parallelism. Eval-
uations on multiple graph learning benchmarks demonstrate HOD-GNN
’s excellent performance on popular graph learning tasks.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become foundational tools in geometric deep learning,
with widespread applications in domains such as life sciences (Wong et al.l [2024)), social
sciences (Monti et all [2019), optimization (Cappart et all 2023)), and more. Despite their
empirical success, many GNNs suffer from a fundamental limitation: their expressive power
is inherently bounded. In particular, the widely used family of Message Passing Neural Net-
works (MPNNs) is at most as expressive as the Weisfeiler-Lehman (1-WL) graph isomorphism
test Morris et al.| (2019); [Xu et al.|(2018), limiting their ability to distinguish between even
simple non-isomorphic graphs and capture intricate structural patterns Chen et al.| (2020)).
To address this shortcoming, a growing body of work has proposed more expressive GNN
architectures, typically organized into expressivity hierarchies that balance computational
cost with representational power [Maron et al.| (2019); [Morris et al.| (2019; [2021]).

Concurrently to advances in GNN expressivity, the derivatives of the final node represen-

tations hg)T) and the graph-level output h°"* with respect to the initial features X, have
played a key role in several research directions. For over-squashing analysis (Di Giovanni et al.,
2’h

(T) out
2023ab)), both first-order derivatives %’}u and mixed partial derivatives X, X quantify

inter-node influence and communication capacity. In over-smoothing studies like |Arroyo et al.

(2025)), derivatives 86’;;: are used to analyze vanishing gradients, connecting over-smoothing

to diminished gradient flow. GNN gradient-based explainability methods (Baldassarre &
Azizpour, |2019; [Pope et al.l [2019)) also use these derivatives to identify influential nodes
and features. The prevalence of these derivatives across diverse contexts in GNN research
suggests they encode valuable information that may be informative for graph learning tasks.

1h1(,t) is the representation of the node v after the t-th GNN layer.
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Our approach. In this work, we reveal a surprising connection between these two lines
of research. We show that incorporating derivatives of a base MPNN with respect to initial
node features as additional inputs to a downstream MPNN enhances the expressivity of the
base components. One intuitive way to understand this connection is through the mechanism
by which GNNs with marking(Papp & Wattenhofer] 2022 Pellizzoni et al.l 2024) improve
expressivity: they choose a node from the input graph and add to it a unique identifier before
processing it through an MPNN. While these identifiers are often implemented through an
explicit, often discrete, perturbations to the node features, our approach instead computes
derivatives of the MPNN output, capturing the effect of infinitesimal perturbations. Thus,
giving the model access to derivative information both leverages quantities which frequently
arise in theoretical analyses and may thus encode valuable structural information, and yields
expressivity gains equivalent to GNNs with marking. See Section [3] for details.

We introduce High-Order Derivative GNN (HOD-GNN), a novel expressive GNN family
that leverages the derivatives of a base MPNN to improve its expressive power. We first
introduce 1-HOD-GNN, which consists of three components: a base MPNN, a derivative

encoder network, and a downstream GNN. 1-HOD-GNN computes high-order derivatives
ap (T)
of the base MPNN with respect to the features of a single node at a time, i.e., 88;7; and

2RO
axXa
the encoder network, which are then passed to the downstream GNN. Theoretically, We
show that 1-HOD-GNN models are more expressive than standard GNNs, can compute
popular structural encodings, and are tightly related to Subgraph GNNs [Cotta et al.| (2021);
Bevilacqua et al.| (2021). Empirically, we demonstrate several desirable properties of our
model: it achieves strong performance across a range of standard graph benchmarks, scales
to larger graphs that remain out of reach for other expressive GNNs, and can accurately
count graph substructures, providing direct empirical evidence of its expressive power.

We then extend 1-HOD-GNN to k-HOD-GNN, which supports mixed derivatives with

g1+ tag p(T) g1+ +ay pout .
= ¥ = - ). Like 1-HOD-GNN
BXull,...,Xu,’; ? 8Xu11,....,Xul’: ) ’

the k-HOD-GNN forward pass begins by computing higher-order mixed derivatives of a
base MPNN, which form a k-indexed derivative tensor. This tensor is then used to construct
new node features using a higher-order encoder network (as in Maron et al.| (2018]); [Morris
et al| (2019)), which are subsequently passed to a downstream GNN for final prediction.
We theoretically analyze k-HOD-GNN, showing that it can distinguish between graphs that
are indistinguishable to the k-WL testﬂ resulting in a model that is more expressive than
any of its individual components alone. Furthermore, we leverage results from [Zhang et al.
(2024b)) to analyze k-HOD-GNN'’s ability to compute homomorphism counts, demonstrating
its capacity to capture fine-grained structure.

These derivatives are then encoded into new derivative-aware node features via

respect to k distinct node features (i.e.

Efficiently computing high-order node derivatives is a core component of HOD-GNN. To
this end, we develop a novel algorithm for computing these derivatives via an analytic,
message-passing-like procedure. This approach yields two key benefits. First, being fully
analytic, it enables differentiation through the derivative computation itself, allowing
HOD-GNN to be trained end-to-end. Second, the message-passing-like structure exploits
the sparsity of graph data, improving scalability (see Section |4| for a detailed complexity
analysis). Combined with the empirical observation that HOD-GNN remains effective even
when using base MPNNs with small hidden dimensions, our method scales to benchmarks
containing larger graphs that are often out of reach for other expressive GNN architectures.

Our contributions. (1) We introduce k-HOD-GNN, a novel expressive GNN family
that integrates derivative-based embeddings; (2) We provide a theoretical analysis of its
expressivity and computational properties; (3) We propose an algorithm for efficient derivative
computation on graphs; (4) We demonstrate consistently high empirical performance across
seven standard graph classification and regression benchmarks. Additionally, we show that
HOD-GNN scales to benchmarks containing larger graphs that are typically out of reach for
many expressive architectures on standard hardware.

*We refer here to the folklore WL test rather than the oblivious variant; see Morris et al.| (2023)
for a detailed discussion of the differences.
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2 PRELIMINARIES AND PREVIOUS WORK

Notation. The size of a set S is denoted by |S|. @ denotes concatenation. We denote
graphs by G = (A, X), where A € R"*" is the adjacency matrix and X € R™*? is the node
feature matrix, with n nodes and d-dimensional features per node. The node set of a graph
is denoted by V(G).

MPNNs and GNN expressivity. MPNNs(Gilmer et al., [2017) are a widely used class of
GNNs that update node representations through iterative aggregation of local neighborhood

information. At each layer t, the representation hg,t) of node v is updated via:

R — MLP® (hff*l),AGG(” ({hS*” Lu € N(U)})) : (1)

where N(v) denotes the neighbors of node v in the graph and AGG® are permutation-
preserving aggregation function. After T message-passing layers, a graph-level representation
is typically obtained by applying a global pooling operation over all node embeddings:

Rt = AGG ({0 |vevg)}), 2)

MPNNSs have inherent expressivity limitations (Morris et al., |2019; Xu et al., [2018; [Weisfeiler|
1968)), as they cannot distinguish graphs that are indistinguishable by the 1-
WL test. To address this, a wide range of more expressive GNN architectures have been
proposed (Morris et all [2021; Maron et al., |2018; Puny et all 2023} |Cotta et al., 2021}
[Rieck et al [2019; [Sato et al., 2021; Dwivedi et al [2023). (See Appendix [A|for details or
(Satol, [2020; [Morris et al., 2021} |Jegelkal, 2022} [Li & Leskovec, [2022; |Zhang et al.| |2024al) for
comprehensive surveys. )

Subgraph GNNs. Subgraph GNNs (Zhang & Lil 2021 |Cotta et al. 2021} [Bevilacqua et al.|
[2021; [Frasca et all 2022} |Zhang et al., [2023bja; Bar-Shalom et al. [2024b) are expressive
GNNs that operate over a set of subgraphs Bg = {S, | v € VF(G)}, where V*(G) denotes
the set of all k-tuples of nodes in the input graph G, and each subgraph S,, corresponds to
one such tuple. In this work, we focus on the widely adopted node-marking DS-GNNs (Cotta
let all) [2021; Bevilacqua et al., 2021} Papp & Wattenhofer} [2022) and their higher-order
generalization, k-OSAN (Qian et al., [2022)), though we note that many other variants of
Subgraph GNNs exist. For precise defintions of DS-GNN and k-OSAN, see Appendix

Derivatives of MPNNSs. Derivatives frequently appear in the analysis of GNNs. In
the study of oversquashing—the failure of information to propagate through graph struc-
tures (Alon & Yahav, 2020; [Topping et al. 2021} Di Giovanni et al., [2023aib)—derivatives
play a key role (For a comprehensive overview, see |Akanshal (2023)). Node derivatives are
also used in GNN explainability (Ying et al., 2019 Luo et al., 2020; Baldassarre & Azizpour’
[2019; [Pope et al., [2019). Gradient-based approaches such as Sensitivity Analysis, Guided
Backpropagation (Baldassarre & Azizpour| 2019)), and Grad-CAM (Pope et al., [2019) rely on
derivative magnitudes. Finally, several standalone works make use of node-based derivatives.
E.g., [Arroyo et al| (2025) use node derivatives to draw a connection between vanishing gra-
dients, and over-smoothing, and [Keren Taraday et al.| (2024) propose aggregation functions,
designed to induce non-zero mixed node derivatives. See Appendix [A] for further discussion.

~—

3 METHOD

We begin this section with a discussion motivating the use of MPNN derivatives and their
contribution to improving expressivity. We then introduce k-HOD-GNN, an expressive
GNN architecture that enhances representational power by leveraging derivatives of a base
MPNN. We first present the full details of the 1-HOD-GNN model, followed by an overview
of its higher-order generalization. A comprehensive treatment of the general k-order case
is provided in Appendix[C.I] We emphasize that in k-HOD-GNN, the parameter k refers
to the number of distinct nodes with respect to which derivatives are taken, not the total
derivative order. For instance, 1-HOD-GNN uses derivatives of the form aah,’; , but not

07X
: s at] __9uteeh,
mixed derivatives such as 55 X, 072 X,

, which involve multiple nodes.
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Figure 1: The HOD-GNN pipeline. Given an input graph, we compute the outputs and
derivatives of a base MPNN. The derivatives are processed by two encoders (denoted U)
to produce features that are concatenated with the base MPNN outputs and passed to a
downstream GNN for final prediction.

3.1 MOTIVATION

Beyond being a widely used and informative quantity in GNN analysis, MPNN derivatives
can enhance expressivity. To build intuition to why that is, we begin with a simple example,
showing that first-order derivatives allow us to count triangles, a task that standard MPNNs
cannot perform. Consider the model M(A, X) = A3X, which can be implemented by a
three-layer GCN with identity activation. For any node v, the derivative of its final feature

vector hg,T) with respect to its own input feature vector X, is exactly Af’w. aggregating these
derivatives, we can compute Ai’v /6, which is exactly the number of triangles in the graph.

To illustrate how higher-order derivatives further enhance expressivity, we recall that GNNs
with marking (Papp & Wattenhofer, |2022)) improve expressive power over standard MPNNs
by selecting a node [|v in the input graph G = (A, X)) and attaching a unique identifier to it,
yielding the modified input X +ee,, for some ¢ € R. The output is then h* = M(A, X +¢ce,).
If M employs an analytic activation function o (See definition in the appendix), then
M itself is analytic. Consequently, its output can be approximated by the Taylor expansion:

Em: IPM(A, X + ze,) . f: diRoM )
- oz’ a0 © el <

=0 =0

where h°" = M(A, X) is the output of M without marking. This shows that by leveraging
the higher-order derivatives of an MPNN, one can approximate the output of a GNN with
marking to arbitrary precision. As a result, derivatives strictly extend the expressive power
of MPNNs. An expanded intuitive discussion of these expressivity gains, along with the

natural connection between HOD-GNN and subgraph GNNs, is provided in Appendix

M(A, X +ce,) =~

3.2 THE 1-HOD-GNN ARCHITECTURE

Overview. A 1-HOD-GNN model, denoted @, consists of two GNNs: a base MPNN M and
a downstream GNN 7 as well as two derivative encoder networks U4 and U°". Given an
input graph G, the computation of ®(G) proceeds in four steps (see Figure[L): (1) Compute
the final node representations and output of M; (2) Compute derivative tensors of the output
with respect to the input node features (defined below); (3) Use U™ and U°" to extract
new derivative informed node features from the derivative tensors. (4) Apply 7 to the
input graph enriched with derivative-informed features. Importantly, we develop an efficient
algorithm for step (2) that enables backpropagation through the derivative computation
itself, making all four above steps differentiable (see Section . Consequently, the entire
HOD-GNN model can be trained end-to-end, a strategy we adopt in all our experiments.

3While GNNs with marking can select multiple nodes, for clarity we focus on the single-node
case. The general case is discussed in Appendix E}
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Steps 1 & 2. In the first two stages, we compute the final node representations h(7) and
the output vector h°" using the base MPNN M, along with their corresponding derivative
tensors, defined below:

Definition 3.1. Given a graph G = (A, X)) with n nodes, an MPNN M and an intermediate

node feature representation matrix h € R"*4' the derivative tensor of D(h) € R™*nxd xdxm

is defined by:
0%, ;
= :’Z ) (4)
0X3;
where v,u € V(G) are nodes, i € [d'],j € [d] specify the feature dimensions of the node
feature vectors h,,, X,, respectively, and a € [m] where m € N is a hyperparameter specifying
the maximum order of derivatives to be considered. Similarly, given a graph-level prediction
vector h°" € R? the derivative tensor D(hU) € R"*4 XdXm ig defined by:
o hqut
= aX; o (5)
u,j

D(h)[v,u,i, ],

D(h")[u, 4, 0]

In 1-HOD-GNN, we compute the output derivative tensor D°"* = D(h°"), which captures
how the output of the base MPNN M responds to perturbations in the input node features.
In parallel, we compute the node-wise derivative tensor D(T), where D®) = D(h(t)) for
t=1,...,T. These tensors characterize how each node’s representation at layer ¢ changes
in response to variations in the input features. Derivative tensors are computed using
Algorithm [T described in Section and elaborated on in Appendix [D] The algorithm
leverages the sparsity of the input graph to enable efficient computation of high-order
derivatives. Crucially, Algorithm [1}is fully differentiable with respect to the weights of M,
enabling end-to-end training of ®.

Step 3. In the third stage of our method, we extract new node features from the derivative
tensors D" and D™ using the encoder networks U™ and U°. First, as D" €
Rrxd'xdxm ig g tensor indexed by a single node, it can be directly interpreted as a node

feature matrix by flattening the remaining dimensions. We thus define the encoder network
U°"™ to be a DeepSets (Zaheer et al., [2017) update :

U (Do), = MLP(D°"[v,...]). (6)

Secondly, since D™ is indexed by pairs of nodes in G, it shares the structure of the

adjacency matrix A, which is also pairwise-indexed. We can thus define the encoder network

yrode ; gn®xd'xdxm _y prxd 6 he any GNN architecture which maps adjacency matrices

with edge features to node feature matrices.

To enhance sensitivity to global interactions, we select U™ to be a 2-Invariant Graph
Network (IGN)(Maron et all, [2018]), optionally using a sparsity-preserving simplified variant
formally defined in Appendix

We construct the derivative-informed node features h9°" by combining information from the
base MPNN M, the pooled intermediate derivatives, and the output derivatives:

hger — hE;T) ® Uout(Dout> ® UnOdC(D(T)). (7)
Step 4. In the final stage, we replace the original node features of G with the derivative-
informed features h9°*, and apply a downstream GNN 7 to produce a graph-level prediction.

For the remainder of this work, we assume 7 is an MPNN, though our approach is compatible
with any GNN architecture.

3.2.1 EFFICIENT DERIVATIVE TENSOR COMPUTATION

We now describe an efficient algorithm for computing the derivative tensors in a 1-HOD-
GNN model & with base MPNN M. For clarity, we focus on the case where M is a GIN

4Empirically, we observe that setting U°"* = 0 produces similar results; we nevertheless keep the
module in our formulation for completeness.



Under review as a conference paper at ICLR 2026

(Xu et all 2018)), in which case the message-passing and readout functions are given by:
A =MLPY (14 ehl~ + > A1), pt=MLP( Y h{f (8)
weEN (v) ueV(g)

An extension of this algorithm to general MPNNs and higher-order mixed derivatives is
provided in Appendix [D} For convenience, we decompose the node update in Equation 3]
into two parts: an aggregation step and a DeepSets-based update, given respectively by:

agg. update DeepSets update
R{™D = (1+eohl™+ > Bl Bl =MLP(RIY). (9)
weN (v)

The algorithm is based on the following two observations: First since R~

combination of A" and its neighboring node features {hgf —1 | u € N(v)}, the derivatives
of isz‘l) are likewise linear combinations of the derivatives of th‘” and {th -1 |u e N()}.
More explicitly:
DR v,...]=(1+D" V,...]+ > DV, (10)
ueN (v)

This computation mirrors the GIN aggregation update in Equation [§] leveraging the sparsity

of the graph. Second, since the DeepSets update applies an MLP independently to each node

feature fNLE,t_l)

is a linear

, we can apply Faa di Bruno’s formula (see e.g. (Hardy, 2006)) to compute the
derivatives of each hq(f) based on the derivatives of izq(f_l). This results in a “DeepSets-like”
derivative update, allowing us to compute D® directly from D(fz(t_l)). Iteratively applying
these two steps yields the final node-wise derivative tensor D™ through a differentiable,
message-passing-like procedure. A similar approach allows efficient computation of D"
from D). See Appendix |§| for full details of the algorithm.

Computational Complexity. An important property of the above algorithm is that, for
sparse graphs or relatively shallow base MPNNs, it is computationally efficient. To see this,

first notice that since h(®) = X, the tensor D) is extremely sparse, satisfying:

D(O)[v u, i, j,a] = { (11)

Thus, it can be stored efficiently using sparse matrices. At each layer ¢, the derivative
aggregation step (Equation increases the number of non-zero entries only in proportion
to the number of node pairs that exchange messages for the first time. Thus, for small
values of t or for sparse graphs G, the derivative tensor D" remains sparse. Moreover,
the algorithm’s message-passing-like structure ensures runtime efficiency as well. For a full
complexity analysis of our algorithm, see Section [4]

1 ifo=wu,i=j a=1,
0 otherwise.

3.3 K-HOD-GNN VIA MIXED DERIVATIVES

We now generalize 1-HOD-GNN, which operates on single-node derivatives (i.e., derivatives

ap(T) o pout . . . .

9’h 9_h ), to k-HOD-GNN, which extracts information from mixed
3a1+~-~+akh(UT) g1+ +akhouc

axs OF Tpxu
partial derivatives across k nodes (i.e., X a T oX e O oK u T Xy —). k-HOD-GNN
offers increased expressive power at the cost of greater computational Complexity. We begin
by formally defining the k-indexed derivative tensors. For simplicity, we assume the input
node features are 1-dimensional, handling the more general case in Appendix
Definition 3.2. Given a graph G = (A, X) with n nodes, and an MPNN M and an
intermediate node feature matrix h € R"*% | the k-indexed derivative tensor of Di(h) €
Rnxn*xd'xm" ig defined by:

of the form

8a1+m+akhv71
0Xgl - 0Xgk

where v € V(G), u = (u1,...,ux) € VF(G) ,i € [d] and a = (a1,...,ax) € [m]*. Dy is
defined similarly for graph-level prediction vectors.

Dk(h)[vv u, ia a] -
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The k-indexed derivative tensors capture how the output and node representations of M
change under joint perturbations to the features of k nodes, thereby encoding rich higher-order
structural interactions within the graph. We compute these tensors using an extension of the
derivative computation process described in Section (See Appendix |§| for more details).

As in the 1-HOD-GNN case, a k-HOD-GNN model ® consists of a base MPNN M and
a downstream network 7. Given an input graph G, the computation of ®(G) proceeds
in the same four stages established earlier. First, we compute the output and final node

representations of M along with the k-indexed derivative tensors D,(CT) and D", We then

use h(T), D,(CT) and D" to extract new derivative informed node features. These node
features are computed through:

rie = MLP (BT @ U (D), U™ (D}™), ) (13)

where U and U™ are learned (k + 1)-IGN and k-IGN encoders respectively. Finally, we
substitute the original node features of graph G with h9°", and input the resulting graph
into T to generate the final graph-level prediction. For more details, see Appendix

4  THEORETICAL ANALYSIS

In this section, we analyze the expressive power and computational complexity of
k-HOD-GNN. Formal statements and complete proofs of all results in this section are
provided in Appendix

Expressive power. We begin by formally relating k~-HOD-GNN to both £-OSAN subgraph
GNNs as well as (k + 2)-IGNs, revealing new insights into HOD-GNNs’ expressive power,
and their position in the WL hierarchy.

Theorem 4.1 (informal). Any k-OSAN model can be approzimated by a k- HOD-GNN model
using an analytic activation function, to any precision. Additionally, any k- HOD-GNN
model can be approzimated by a (k + 2)-IGN model.

Corollary 4.2. There exist non-isomorphic graphs that are indistinguishable by the folklore
k-WL (k-FWL) test but are distinguishable by k-HOD-GNN. Additionally, any pair of graphs
that is indistinguishable by the (k + 1)-FWL test is also indistinguishable by k-HOD-GNN.

The proof of Theorem [4.T]relies on the analyticity of the activation functions used by our base
MPNN and the use of higher-order derivatives. However, in what follows, we show that even
when restricted to first-order derivatives and using the commonly employed ReLU activation,
HOD-GNN remains strictly more expressive than a widely used technique for enhancing
GNN expressivity: incorporating Random Walk Structural Encodings (RWSEs)(Dwivedi
et al., 2021)) into a base MPNN.

Theorem 4.3 (Informal). Even when limited to first-order derivatives and ReLU activations,
1-HOD-GNN is strictly more expressive than MPNNs enhanced with random walk structural
encodings.

The first part of Theorem [I.3]is constructive: it shows that a simple initialization of the base
MPNN'’s weights yields derivatives equal to RWSEs. In our experiments, we use a slightly mod-
ified version of this initialization (see Appendix, allowing HOD-GNN to serve as a learnable
extension of RWSE. Further analysis of the expressive power of HOD-GNN when using edge-
feature derivatives, or when only using output-level derivatives are presented in Appendix [F]

Space and time complexity. To conclude this section, we analyze the computational
complexity of &-HOD-GNN and compare it to other expressive architectures, namely, (k+1)-
IGN and k-OSAN. We show that k-HOD-GNN achieves better complexity when using
relatively shallow base MPNNs, while maintaining comparable complexity with deeper
ones. The primary source of computational overhead in k&~-HOD-GNN lies in the derivative
tensor computation, and the encoder network forward pass. We now analyze each of these
components.
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First, while k-HOD-GNN computes derivative tensors D,(Ct) with O(n*+1) potential entries,

)

these tensors are sparse for relatively shallow base MPNNs. Moreover, each D,(: can be

efficiently computed from D}:fl). This is formalized in the following proposition:

Proposition 4.4. In a k-HOD-GNN model applied to a graph with n nodes and mazximum
degree d The number of non-zero entries in DY is at most O (n -min{n¥, dk't}), Additionally,

each DY can be computed from DU~V in time O(d - n - min{n¥, d*¢=D}),

Focusing next on the encoder networks, we show that they can be designed to exploit
derivative sparsity for improved efficiency, while retaining the full expressivity of the k-OSAN
architecture:

Proposition 4.5. In a k-HOD-GNN model, the encoder functions U™ and U™ can be
chosen such that the model retains the expressive power of k-OSAN, while the computation

of U™*(D™)) and U°*(D°™) has both time and space complexity O (n - min{n*, a*7}).

Propositions[f.4] and [£.5] suggest that a k-HOD-GNN model with a base MPNN of depth 7" has
space complexity O (n - min{n*, dk'T}) and time complexity O (d -n - min{n*, dk'(T_l)}).
In comparison, k-OSAN has space complexity O(n**1) and time complexity O(d - n*+1),
while (k+1)-IGN incurs both time and space complexity of O(n**1!). Assuming the input
graph is sparse (i.e., d < n), k-HOD-GNN is more efficient then k-OSAN and (k + 1)-IGN
when the base MPNN is shallow (d” < n), while all three models have comparable
complexity when the base MPNN is deep (d > n).

5 EXPERIMENTS

Our experimental study is designed to validate the theoretical arguments from the previous
section and to address the following guiding questions: (Q1) How does HOD-GNN perform
on real-world datasets when compared against strong GNN baselines? (Q2) Can HOD-GNN
scale to larger graphs that are beyond the reach of Subgraph GNNs, and how does it perform
in this regime? (Q3) How does the expressive power of HOD-GNN compare with natural
and widely used GNN baselines? We evaluate HOD-GNN across eight benchmarks, with
additional experimental details provided in Appendix [G]

Baselines. We compare HOD-GNN against strong representatives from three natural
families of GNNs. First, motivated by its connection to positional/structural encodings
(PSEs, Section [4)), we consider encoding-augmented MPNNSs, including Laplacian
PEs (Dwivedi et al., [2023), RWSEs (Dwivedi et al., [2021), SignNet (Lim et al., |2022),
random node identifiers (Abboud et al.l 2020; Sato et al., [2021)), as well as recent methods
such as GPSE (Cantiirk et al.l [2024) and MOSE (Bao et al., |2024). Second, since HOD-GNN
is theoretically related to Subgraph GNNs, we compare with representative models like
GNN-AK (Zhao et al., [2022)), SUN (Frasca et al.,|2022), and Subgraphormer (Bar-Shalom
et al} 2023). Because such models often struggle to scale, we also include sampling-based
variants such as Policy-Learn (Bevilacqua et all 2024), HyMN (Southern et al., [2025), and
Subgraphormer with random sampling. Finally, we benchmark against widely used and mod-
ern general-purpose GNNs, including GIN (Xu et al.} [2018)), GCN (Kipf & Welling} 2016]),
GatedGCN (Bresson & Laurent) [2017), GPS (Rampasek et al., |2022), and GraphViT (He
et al.l |2023)). Across experiments we include representatives from each family, while the
specific choice of baselines in each task reflects relevance and standard practice in prior work.
Throughout the paper, we report results directly from prior work and include any relevant
baseline, even if values for some of the benchmarks were not reported. This allows for a broad
and fair comparison rather than excluding useful baselines. Missing entries are marked by “-".

OGB and ZINC. To evaluate HOD-GNN'’s real-world performance (Q1), we benchmark it
on standard graph property prediction datasets: ZINC (Irwin et al.,2012)) for regression, and
three molecular classification tasks from the OGB suite (Hu et al., [2020b)—molhiv, molbace,
and moltox21. These benchmarks provide standardized splits and are the de facto choice for
assessing GNN performance. As shown in Table[T} HOD-GNN delivers excellent results across
all tasks, standing out as the only model that consistently ranks within the top two tiers.
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Table 1: Performance on OGB and ZINC datasets (4 seeds). First and second best scores
are highlighted. Scores sharing a color are not statistically distinguishable based on Welch’s
t-test with a relaxed threshold of p < 0.2. “~” denotes results not previously reported, and

L( 97

indicates that digits beyond this point were not provided.

ZINC-12K MOLTOX21 MOLBACE MOLHIV
Method |/ Dataset — ‘ (MAE |) (ROC-AUC 1) (ROC-AUC 1) (ROC-AUC 1)
Common Baselines
GCN (Kipf & Wellin; 2016' 0.32140.009 75.29+0.69 79.15+1.44 76.06+£0.97
GIN (Xu et al. 0.163+0.004 74.91+0.51 72.97+4.00 75.58+1.40
PNA (Corso et al. 20 0.76140.002 73.30+£1.1x - 79.054+1.32
GPS (Rampasek et al.[]2022 0.07040.004 75.70+0.40 - 78.804+1.01
GraphVi eet al. 0.08540.005 78.51+0.77 - 77.924+1.49
Subgraph GNNs
Reconstr. GNN _(Cotta et al.|[2021 - 75.154+1.40 - 76.324+1.40
GNN-AK+ (Zhao et al. l 0.09140.011 - - 79.61+1.19
SUN EGO+ (Frasca et al.[|2022 0.08440.002 - - 80.03+0.55
) 0.087+0.003 76.25+1.12 78.41+1.94 76.54+1.37
Q 0.1774+0.016 - 72.30+6.60 -
Random (]Bevﬂacqua et al.| [2024) 0.10240.003 76.62+0.63 78.14+2.36 77.30+£2.56
Policy-Learn (Bevilacqua et al.[]2024) 0.097+0.005 77.36+0.60 78.39+2.28 78.494+1.01
Subgraphormer (Bar-Shalom et al.[|2024a) | 0.0634-0.001 - 84.35+0.65 79.5840.35
HyMN QSouthern et al.||2025) 0.080£0.003 77.82+0.59 81.16+1.21 81.01+1.17
PSEs
GIN + Laplacian PE (Dwivedi et al. 2023' 0.1624+0.014 76.60£0.3x 80.40£1.5x 75.60£1.1x
GIN + RWSE (Dwivedi et al.[|2021] 0.12840.005 76.30+0.5x 79.60£2.8x 78.10+1.5x
SignNet (Lim et al.| 2022] 0.102-£0.002 - - -
RNI (Abboud et al.|[2020] 0.136+0.0070 - 61.94+2.51 77.74+0.98
GSN (Bouritsas et al.| [2022] 0.101£0.010  76.08+0.79 77.40+£2.92  80.39-+0.90
ENGNN (Wang & Zhang| 2025} 0.114:£0.005 - - 78.510.86
GPSE 1W|m 0.065:£0.003  77.40+0.8x  80.80+3.1x  78.15+1.33
MOSE (| 0.062+0.002 - -
Ours
HOD-GNN 0.0666+0.0035 77.99+0.71 82.10+1.45 80.86+0.52

Peptides. Section [ established that HOD-GNN
has improved computational complexity com-
pared to Subgraph GNNs. To demonstrate its
scalability in practice (Q2) and to further assess
its performance on real-world data (Q1), we
evaluate HOD-GNN on the Peptides datasets
from the LRGB benchmark (Dwivedi et al., 2022),
where the goal is to predict global structural and
functional properties of peptides represented as
graphs. As stated in prior work (Southern et al.
2025; Bar-Shalom et al., [2023), full-bag Subgraph
GNNs cannot process these graphs directly
using standard hardware, requiring the use of
subsampling strategies that can reduce expressivity
and introduce optimization challenges due to
randomness. In contrast, HOD-GNN handles these
graphs directly without subsampling. As shown in
Table 2, HOD-GNN surpasses all sampling-based
Subgraph GNNs and is the only model that
consistently ranks within the top two tiers,
underscoring both its scalability and effectiveness
on challenging real-world molecular tasks.

Synthetic experiments. To evaluate the realized

Table 2: Performance on PEPTIDES (4

seeds).

First and second best scores

are highlighted. Same color scores are
not statistically distinguishable based on
Welch’s t-test with a relaxed threshold

of p < 0.2.
Peptides-func Peptides-struct
Model AP 1 MAE |
Common Baselines
GCN 59.30+0.23 0.3496+0.0013
GINE 54.984+0.79 0.354740.0045
GCNII 55.434+0.78 0.3471+0.0010
GatedGCN 58.64+0.77 0.3420+£0.0013
DIGL+MPNN+LapPE 68.30+0.26 0.2616+0.0018
MixHop-GCN-LapPE 68.4340.49 0.261440.0023
DRew-GCN-+LapPE 71.50+0.44 0.25364+0.0015
SAN+LapPE 63.84+1.21 0.2683+0.0043
GraphGPS+LapPE 65.35+0.41 0.2500+£0.0005
Exphormer 65.271+0.43 0.248140.0007
GraphViT 69.19+0.85 0.247440.0016
Subgraph GNNs
Policy-Learn 64.59+0.18 0.2475+0.0011
Subgraphormer 30% 64.154+0.52 0.2494+0.0020
HyMN 68.57+0.55 0.2464+0.0013
PSEs
GCN + Laplacian PE 62.184+0.55 0.2492+0.0019
GCN + RWSE 60.67+0.69 0.2574+£0.0020
SignNet 63.144+0.59 -
GPSE + GCN 63.161+0.85 0.2487+0.0011
GPSE + GPS 66.88+1.51 0.2464+0.0025
MOSE 63.5xt1.1x 0.318+0.010
Ours
HOD-GNN 69.68+0.56 0.2450+0.0011

expressiveness of HOD-GNN (Q3) and empirically support Theorems [4.1]and [4.3] we conduct
two synthetic studies. First, following the protocol of Huang et al.| (2022), we assess the
ability of 1-HOD-GNN to learn to count small substructures, a standard proxy for practical

GNN expressivity (Bouritsas et al. [2022; [Arvind et al] [2020). Theoremd4.1] and [4.3] predict

that: (i) with analytic activations, 1-HOD-GNN matches the power of certain Subgraph

GNNs, and (ii) with ReLU, it is strictly stronger than MPNNs with RWSEs.

Table |§|

(Appendix confirms both predictions: 1-HOD-GNN matches Subgraph GNN baselines
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and clearly surpasses MPNN+RWSE, with analytic activations providing a slight further
gain. Additional details are provided in Appendix

We additionally test 1- and 2-HOD-GNN on the regular graph pairs in the BREC
dataset (Wang & Zhang} [2024)), which include 50 pairs separable by 3-WL but not 2-WL and
90 pairs indistinguishable even by 3-WL. Table [7| shows that 2-HOD-GNN separates 34/90
of the 3-WL-indistinguishable pairs, placing it among the strongest models and empirically
validating the theoretical advantage predicted by Theorem Additionally, 1-HOD-GNN
performs similarly to DS-GNN, consistent with Theorem 4.1. Additional details are provided
in Appendix [H.2]

Additional ablations and empirical insights. Appendix [H] includes further ablations
and analysis. We first evaluate how the hyperparameter m from Definition [3.I] which sets the
maximum derivative order used in HOD-GNN, affects expressive power. Results show that
increasing m consistently strengthens expressivity, until the performance gains eventually
plateau. This suggests that small values such as m € {2,3,4} are already effective in practice.

Next, we analyze the stability of HOD-GNN, showing that for derivative orders m =1,...,4,
the training curves remain stable and the norms of the derivative tensors stay well-behaved
relative to the final node-feature norms produced by the base MPNN.

In addition, inspired by recent work showing that overly expressive GNNs can generalize
poorly (Franks et all 2024} Maskey et all 2025} [Carrasco et all,[2025), we examine HOD-GNN
’s generalization behavior by measuring train—test performance gaps on OGB datasets. HOD-
GNN shows consistently smaller gaps than both less expressive models (e.g., GIN, GCN)
and more expressive models (e.g., DSS-GNN (ED)), indicating strong generalization without
overfitting despite its high expressive power. See Appendix [[L.5] for an in depth discussion

Finally, we compare runtime and memory against subgraph-based GNNs under different
subgraph selection policies, showing that HOD-GNN achieves superior performance on both
fronts. We also evaluate the choice of backbone MPNN on real-world datasets, and observe
consistently strong performance across GCN, GIN, and GPS.

Summary. Across all experiments, we find consistent evidence supporting the guiding
questions outlined above. (A1) Across the ZINC, OGB, and Peptides datasets, HOD-GNN
is the only architecture that consistently ranks within the top two tiers. (AZ2), On the
challenging Peptides datasets, HOD-GNN scales to larger graphs that full-bag Subgraph
GNNs cannot handle, while maintaining strong predictive performance. (A3) On several
synthetic experiments, 1-HOD-GNN matches the expressivity of Subgraph GNNs while
surpassing encoding-augmented MPNNs, showing that HOD-GNN is as expressive yet
more scalable than subgraph GNNs. Moreover, 2-HOD-GNN exhibits even stronger
expressive power, demonstrating the benefits of increasing derivative order. Together, these
findings establish HOD-GNN as a scalable, expressive, and broadly effective GNN framework
across synthetic, molecular, and large-scale real-world tasks.

6 CONCLUSION

We introduce HOD-GNN, a GNN that enhances the expressivity of a base MPNN by
leveraging its high-order derivatives. We provide a theoretical analysis of HOD-GNN’s
expressive power, connecting it to the k-OSAN framework and RWSE encodings, and
show that it can offer better scalability than comparable expressive models. Empirically,
HOD-GNN has strong performance across a range of benchmarks, matching or surpassing
encoding based methods, Subgraph GNNs, and other common baselines. Notably, HOD-GNN
scales to larger graphs than full-bag subgraph GNNs.

Limitations and Future Work. First, while HOD-GNN has favorable theoretical
complexity (Section , its practical efficiency relies on sparse matrix operations. A more
efficient implementation of these operators has the potential to greatly enhance the scalability
of HOD-GNN. Secondly, the connection between MPNN derivatives and oversquashing or
oversmoothing, alongside HOD-GNN’s strong performance with deep base MPNNs and
small hidden dimensions, suggests a deeper link not fully addressed in this work. Exploring
this connection is a promising direction for future research.

10
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A PREvVIOUS WORK

Expressive Power and Hierarchies in GNNs. The expressive power of GNNs is often
measured by their ability to distinguish non-isomorphic graphs. Foundational results
let al., 2019; Xu et al., 2018)) show that standard MPNNs are bounded by the 1-Weisfeiler-
Lehman (1-WL) test (Weisfeiler & Leman, [1968), motivating the development of more
expressive architectures, see (Sato, [2020; Morris et al., 2021} |Jegelka), 2022; Li & Leskovec
2022, |Zhang et al. [2024a) for comprehensive surveys. For instance, Morris et al. (2019) and
Maron et al.| (2018) introduced GNN hierarchies matching the expressivity of the k-WL
test at a computational cost of O(n*) in both time and memory. Other approaches include
equivariant polynomial-based models (Maron et al. [2019; [Puny et al., 2023), Subgraph
GNNs (Zhang & Li, [2021}; |Cotta et al., 2021} Bevilacqua et al., [2021} [Frasca et al. 2022
Zhang et al., 2023bja; Bar-Shalom et al., 2024Db) topologically enhanced GNNs (Rieck et al.
2019; Bodnar et al., [2021} [Eitan et al., 2024) and more. A complementary line of work
improves expressivity by enriching node features with informative structural descriptors,
such as substructure and homomorphism counts (Bouritsas et al.l [2022; Bao et al., 2024)),
random node features (Abboud et al., 2020; [Sato et al., 2021} Eliasof et al., [2023), or spectral
methods (Dwivedi et al.| 2023} [Lim et al., [2022).

Derivatives of GNNs. Derivatives frequently appear in the analysis of GNNs. A prominent
example is the study of oversquashing-the failure of information to propagate through graph
structures (Alon & Yahav| [2020; Topping et al.,[2021; Di Giovanni et all 2023ab). A central
tool in analyzing oversquashing is the use of derivatives: specifically, the gradients of final
node representations with respect to initial features (see [Di Giovanni et al., [2023a), and
mixed output derivatives with respect to pairs of input nodes (see |Di Giovanni et al., [2023D)).
For a comprehensive overview of oversquashing, see |Akanshal (2023). Node derivatives also
play a key role in GNN explainability (Ying et al.; 2019; [Luo et al.| |2020; [Baldassarre &|
|Azizpour} [2019} [Pope et all [2019). Gradient-based approaches such as Sensitivity Analysis,
Guided Backpropagation (Baldassarre & Azizpour, 2019), and Grad-CAM (Pope et al., [2019)
rely on derivative magnitudes to compute importance scores. Finally, several standalone
works make use of node-based derivatives. For instance, [Arroyo et al] (2025) use node
derivatives to draw a connection between vanishing gradients, and over-smoothing. In
a different direction, [Keren Taraday et al. (2024) propose new aggregation functions for
MPNNSs, designed specifically to induce non-zero mixed node derivatives.

o

Learning over derivative input. Beyond GNNs, several recent works have explored
learning directly from derivative-based inputs. propose a framework that
processes spatial derivatives of implicit neural representations (INRs) to modify them without
explicit decoding. Mitchell et al.|(2021) introduce a learned method for fact editing in LLMs
using their gradients. |Gelberg et al.| (2025)) present a general architecture for learning over
sets of gradients, with applications in meta-optimization, domain adaptation, and curvature
estimation.

B MOTIVATION

Beyond being a widely used and informative quantity in GNN analysis, MPNN derivatives
can enhance expressivity. We now provide an intuition for why this occurs by drawing a
connection to Subgraph GNNs.

Consider a DS-GNN model ¥ composed of a base MPNN M followed by a downstream
MPNN 7. We assume for simplicity that M outputs graph-level scalars, and that the
activation function o used in M is analytic with infinite convergence radiusﬂ That is, for
every x € R, o satisfies:

> ()
o(z) = ,(0) . (14)
a=0 .

(07

®Many commonly used functions, including sin, cos, and exp, are analytic with infinite convergence
radius. See Appendix [E.2]for a discussion of the case where o is not analytic.

17



Under review as a conference paper at ICLR 2026

For each node v of a given input graph G, we define a function f, : R — R by:

fv(x) = M(AvX@x'ev)a (15)
which corresponds to the ouptput of M obtained by scaling the node marking feature at
node v by x. Observe that f, is analytid®[since M is composed of analytic functions, and
that by definition, f,(1) = hS"P| i.e., the representation of the graph augmented with a mark
for the node v. Also observe that by expanding f, around x = 0, we can approximate h$"
to any desired precision using a finite number of derivatives, up to order m:

m ()
L=y O (16)

a=0

Moreover, each derivative fé“) (0) corresponds to a partial derivative of the output of M
with respect to the v-th coordinate of the augmented input:
[} @}, out
fl(,o‘)(O) _ OM(A, XDz e,) _ 0%h . (17)
0%x =0 0%e,

This suggests that by using an encoder network to extract node features from the first m
derivatives of M with respect to each node feature, we can effectively reconstruct h5P. By
passing these derivative-based features to the downstream GNN 7, we can approximate the
behavior of ¥, and therefore be at least as expressive.

C HOD-GNN VARIANTS

C.1 k-HOD-GNN

In this section, we elaborate on the k~-HOD-GNN architecture, discussed in Section [3.3]
Similar to 1-HOD-GNN, a k&-HOD-GNN model, denoted ®, consists of a base MPNN M,
two derivative encoders U™9° U°" and a downstream network 7. Given an input graph
G = (A, X), the computation of ®(G) proceeds in four stages: (1) compute the output and
final node representation of the input graph using M; (2) compute the k-indexed derivative

tensors D,(CT), Dy"; (3) extract new derivative informed node features form the derivative
tensor; (4) Use these new node features for downstream processing.

Steps 1 & 2. In the first two stages, , we compute the final node representations h(") and
the output vector h°" using the base MPNN M, along with their corresponding derivative
tensors defined below (the k-indexed derivative tensor was defined in Section for he case
where the input features are 1-dimensional).
Definition C.1. Given a graph G = (A, X) with n nodes, X, € R"*? an MPNN M and
some intermediate node feature representation matrix b € R"*% | the k-indexed derivative
tensor of Dy (h) € Rrxn®xd'xm®* 5 efined by:
a‘a‘hv,i

s o

[ gy etayeppg 0K, 1 X=Xo

where v € V(G), u = (u1,...,u;) € VFG) ,i € [d],a = (e, jn)ak € {0,...,m — 1}4xk
and |af =} oy j,.

Di(h)[v,u,i,a] = 0%, ;(Xo) = (18)

Similarly, given a graph-level prediction vector h°4t € RY the derivative tensor D (h°") €
R xd'xd"xm" ig defined by:

Di(h)[u,i,a] = 0%hi(Xo). (19)

The derivative tensors D,(CT) = D(hM); and D" = D(h°"),, are computed using a message-
passing-like procedure detailed in Appendix [T} which enables both efficient computation and
allows us to backpropagate through it, supporting end-to-end training of k-HOD-GNN.

SFor a definition of multi-dimensional analytic functions see Appendix
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Step 3. In the third stage of our method, we extract new node features informed by the
derivative tensors D,(CT), D$", using the encoder networks yrede , grxntxd xm®* _, grxd”
and UOU ; R xd>xm®t _ gnxd” - Ag D,(CT) is a tensor indexed by (k + 1) nodes and D"

is a tensor indexed by k nodes, natural choices for U4 and U°" are (k 4 1)-IGN and a
k-IGN (Maron et al.l |2018) designed specifically to process such data.

Furthermore, Proposition [£.4] shows that for sparse graphs or relatively shallow base MPNNs,
the derivative tensor D,(CT) itself becomes sparse, with space complexity O (n -min{nk¥, dk'T})7
where d is the maximum degree of the input graph. This motivates the choice of a node
encoder U™°%° that preserves this sparsity structure and exploits it for improved computational

efficiency.

To enable this, we can define the encoder U™ as a subclass of the general (k+1)-IGN
architecture, implemented as a DeepSet (Zaheer et al., 2017) operating independently on the

derivative entries associated with each node feature hg,T). Specifically, we define:

UdS'HOde(D,(CT))v = DeepSet({(D,(CT) [v,u,i,al,t(v,u,a) |ue Vk(G),i e [d], o € [m]F*?}).
(20)

Here we assume nodes are given in index form, that is v € {1,...,n}., w € {1,...,n}*, and

t(v,u, @) is a function that encodes the derivative pattern associated with the index tuple

(v, u, ), that is

t(v1,ur, 1) = t(ve, Uz, x2) < @1 = ag and do € S, such that v1 = o(v2), w1 = o(us),
(21)

where S, denotes the symmetric group on n elements. In other words, ¢ maps each derivative

index tuple to a canonical identifier that is invariant under permutations of the node indices
but sensitive to the derivative multi-index.

This design improves both space and time complexity, as the sets over which the DeepSet
operates are typically sparse. The proof of Theorem provided in appendix [E.2] shows
that this encoder architecture is enough to be as expressive as k-OSAN.

Finally, we proceed the same way as 1-HOD-GNN constructing the derivative-informed
node features h9°" by combining information from the base MPNN, the pooled intermediate
derivatives, and the output derivatives:

hger _ hE)T) @ Uout(Dzut) ® Unode(D’gT)). (22)
Step 4. This step is identical to that of 1-HOD-GNN described in Section [3.2}

C.2 EDGE-HOD-GNN

In this section, we extend the 1-HOD-GNN formulation to incorporate edge-feature derivatives
rather than node-feature derivatives. We refer to this variant as edge-HOD-GNN. The
construction of this architecture closely parallels that of Section and is detailed below.

Steps 1 & 2. Similarly to steps 1 & 2 in Section [3.2], in the first two stages, we compute
the final node representations h(*) and the output vector h°"* using the base MPNN M.
The key difference is that we now compute the edge derivative tensors, defined below:

Definition C.2. Given a graph G = (A, X, F) with n nodes, [ edges, an edge feature
matrix E, an MPNN M and an intermediate node feature representation matrix h € R**¢’,
the edge-derivative tensor D(h) € R™*! xd'xdxm g defined by:
. Bahm

0B,
where v € V(G), e € E(G), i € [d'],j € [d] specify the feature dimensions of the feature

vectors h,, E. respectively, and « € [m] where m € N is a hyperparameter specifying the
maximum order of derivatives to be considered. Similarly, given a graph-level prediction

Dedge(h)[v, €,1, j, a] (23)
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vector h°'® € R? the derivative tensor D(hoUt) € R xdxm js defined by:
o hgut

?
OE¢;

Dedge(hout) [67 i» jv a] = (24)

Step 3. Similarly to step 3 in Section [3.2] in the third stage of our method, we extract

new edge features from the edge derivative tensors Dg(‘;;e and D(gg);e using encoder networks

Ugggg and Ugy;,. First, as Dy, € RIXdxdxm s 5 tensor indexed by a single edge, it can be
directly interpreted as an edge feature matrix by flattening the remaining dimensions. We

thus define the encoder network U™ to be a DeepSets (Zaheer et al., [2017) update:
U2yt (DOYE ). = MLP(DSYE [e, ... ]). (25)

edge dge edge

Secondly, since Dgée is indexed by node-edge pairs, it shares the structure of the

incidence matrix of G denoted by B. We can thus define the encoder network

4 . . . . .
Ugf{g(f  Rrxixdixdxm _ RIXd 6 he any GNN architecture which maps incidence matrices

to edge feature matrices. An example of such architecture is |[Albooyeh et al| (2019).

Step 4. In the final stage, we replace the original edge features of G with the derivative-
informed features E4°*, and apply a downstream GNN 7 to produce a graph-level prediction.

D DERIVATIVE COMPUTATION

We now extend the derivative computation algorithm presented in Section to account
for k-mixed derivatives as well as more general MPNN architectures. Similarly to Section
we first split the node update procedure of an MPNN into two parts: an aggregation
step:

RU-D — p-1) @ AGGH ({hgf—l) ‘u€ N(v)}) : (26)
and a DeepSet step:
B = MLP(R{ ). @0

Our algorithm begins by computing the initial derivative tensor D (we abuse notation
and ommit the subscript k), and then recursively constructs each pi Y = D(h(=1) from
D"V and then D from Ij(til). Finally, the output derivative tensor D°"* is obtained
from D). See Algorithm |1| for the full procedure.

To analyze the time and memory complexity of each step, we define the derivative sparsity
of a node v of an input graph G at layer ¢ of the base MPNN, as the number of non-zero

derivatives corresponding to th). That is

Syt = H(u,z’,a) ‘ D(t)[v,u,i,a] + OH (28)
— min s, ;. 29
Se= min sy (29)

When s; is small, the tensor D® can be stored efficiently in memory using sparse representa-
tions, requiring only O(n-s;) space. The quantities s, ; and s; are leveraged in Appendix
to derive concrete asymptotic bounds for the complexity of Algorithm

Computing D, Since h(® = X , the derivatives are straightforward to compute:

. 1 if3sst.v=us, 05, =1, sy icig Os'; =0
D® v, w3, 0] = {O otherwise el ’ (30)

Although D is high-dimensional, it is extremely sparse with so = O(1).
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-1 (tfl

Computing Ij(t from D . Abusing notation, and assuming that for every node v
in the input graph, both b’ and A{'""*# = AGG® ({h{™" :u e N(v)}) lie in RY,

we observe that since hE) Odi—1 = hgf_l), the derivatives of the first d’ coordinates of h are

precisely DUV, In contrast, the derivatives with respect to the last d’ coordinates depend
heavily on the choice of aggregation function AGG.

However, when the aggregation function is linear, i.e., of the form

AGGY (R iue N@)}) = 3 by bl (31)
v’ €N (v)

for some coefficients b, , that depend only on the adjacency matrix A of the input graph

(this is the case in most widely used MPNNs), the computation of derivatives simplifies. Since

differentiation commutes with linear operations, the computation in Equation [31] carries over,
yielding

D(AU!= Do)y, J= > by DUV, (32)

v eN(v)

Aggregating the derivatives of neighboring nodes mirrors the structure of message passing,
which endows it with several beneficial properties. First, using Equation [32] the tensor
~ (t—1
D( )[v can be computed in time O(d - s;—1) where d is the maximal degree of the
input grap for each node, we aggregate d neighbor derivative vectors, each containing
at most s;_1 non-zero entries. This means that the total computation time of this step is
O(d-n-si_1).

-1
The argument above also implies that the total number of non-zero elements in p" )[v N
is bounded by O (mm{d S¢—1, N }) Thus, the above update leverages the sparsity of the
graph to achieve efficiency in both space and time complexity.

Computing D from 6(t71).

We begin by assuming that the MLP in Equation [27] has depth 1, i.e.,
MLP® (z) = o(W® . 2 + b®), (33)
In the general case where the MLP has depth [, the procedure described below is applied

recursively [ times.

We define the intermediate linear activation as
R~ — @ R 4 p®) (34)

and describe how to compute D(h(*~1-Li) from piY

from D(h(t=1)Lin),

, followed by the computation of D®

First, since the update in Equation [34]is affine, we can drop the bias term and get:
5

D(RU DLy i a] = Z b z/ [v, u,i’, ql. (35)
Second, notice that
h{) = g(R{i=1)Lim), (36)

We can use the Faa di Bruno’s formula (see e.g. (Hardyl [2006)) which generalizes the chain
rule to higer-order derivatives, for our last step. Faa di Bruno’s formula states that for a
pair of functions g : R* = R, f: R = R, y = g(x1,...,x,) the following holds, regardless of
whether the variables x4, ..., x, are all distinct, identical, or grouped into distinguishable
categories of indistinguishable variables:

"We slightly abuse notation by using d to denote both the input feature dimension and other
quantities; the meaning should be clear from context.
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_ 9 = (1) _9Ply
e A T;{f (v) - 311 0w (37)
where:
e II denotes the collection of all partitions of the index set {1,...,n},

e The notation B € 7 indicates that B is one of the subsets (or "blocks") in the
partition 7 ,

e For any set A , the notation |A| represents its cardinality. In particular, |7| is the
number of blocks in the partition, and |B| is the number of elements in the block B.

Equations and Imply that we are able to compute D® [v,u,...] based only on
D(A(t=DLim)[y 4, ...] and the derivatives of o at the point hq(jtfl)’Lm.

~ (t—1
update with Equation |35| results in a way to compute D® from D(t ).

Combining this

Importantly, the update above computes each entry of D® [v,u,...] using only the cor-
responding entries of Ij(til)[v,u,... , i.e., those associated with the same node tuple

and it follows that if f)(til)[v,u,...] = 0,
then D(t)[v,u,...] = 0 as well. This implies that like I:N)(t_1 the number of non-zero

entries in each D¥[v,...] is also bounded by O (min{d - s;_1, n¥}). Consequently, the
1)

(v,u). Moreover, from Equations

~ (t—
update—performed only over the non-zero entries of D( —has a runtime complexity of

O (n-min{d - s;—1, n*}).
Computing D" from DD,
Recall that
R = AGGa, ({n v eV(©)}), (38)

where AGGg, denotes the final aggregation over node embeddings. This operation can be
treated analogously to the node update step: For most common MPNNSs, it decomposes into
a linear aggregation followed by an MLP. Consequently, the derivative tensor D°"* can be

computed from D) using the same primitives described above.

Algorithm 1 Efficient Computation of Derivative Tensors
Require: Graph G = (A, X)), base GIN M with T layers

1: A0« X > node feature init.
2: D+ D(X) > deriv. init through Eq
3: fort =1toT do
4: hg,til) — hgil) ® (Zv’eN(v) bvf,vhitfl)) > linear node agg.
5: p"“ Y [v,...] <D Vw,...]® (Zu'eN(u) by DV ]) > deriv. agg.
6: Rt = MLP¢=D (Rt=1)y > DeepSet update
T DW[v,...] = get-der(MLP*~1), [N)(til)[v, o, isz‘”) > deriv. DeepSet update.
8: end for

D" = get-out-der(D™)) > extract output deriv.
9: return D7), Do

E EXTENDED THEORETICAL ANALYSIS

E.1 DEFINITIONS

Before delving into the proofs, we begin by formally defining several key concepts used
throughout the analysis:
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Definition E.1 (Analytic Function). A function f : R® — R is said to be analytic at
xo € R" if for some R € R™ it holds that for all | X| < R:

f@)= 32 0 o) @ —w0)® (39)

lex|=0

where a € N and we use the following notation:

o la|=ai+ar+ -+ ay,
e al =l ay-ay!,

o ()™ = ()™ - (22)* -+ - (wp)*n

o - glel
e 0%f(a) = Ozt 0xy 2 -0z

X=a

The largest such R is called the radius of convergence. A function f: R™ — R™ is analytic
if all functions fi, ..., f,, are analytic.

Definition E.2 (k-OSAN). A k-OSAN model ¥ consists of a base MPNN M that produces
updated node features (as opposed to directly outputting a graph-level prediction), followed
by a downstream MPNN 7 that aggregates these features to produce a final graph-level
output. Given an input graph G = (A, X), the output ¥(G) is computed in four stages:

Step 1: Construct a bag of subgraphs Bg = {S, | u € V¥(G)} each of the form S, =
(A, X @ e*). Here e* € R™¥ is a "node marking"ﬁ feature matrix assigning a unique
identifier to each node wuq,...u. That is:

1 v=u;
€ = {0 else. ’ (40)

Step 2:

Compute the (k + 1)-node indexed tensor:
Hv, u] = M(Sy)s (41)

Step 3: use a set aggregation function to produce new node features:

R = AGG({H[v,u] | uw € V¥(G)}). (42)
Step 4: Compute the final output through:
V(G) = T(A, ™). (43)
For k =1, k-OSAN are also reffered to as DS-GNNs.

Definition E.3 (Random Walk Structural Encoding). For a graphG = (A, X) , the Random
Walk Structural Encoding (RWSE) with L number of steps is defined as

L
hre = (P diag(A), (44)
=1
where A = A - Diag(deg(ui)™!, ..., deg(u,)™") is the row-normalized adjacency matrix,

diag(-) denotes the vector of diagonal entries of a matrix, and Diag(v) denotes the diagonal
matrix with vector v on its diagonal.

8 Although alternative methods for initializing node features in subgraphs have been proposed,
they offer the same expressive power. We therefore focus on the simple approach used here.
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E.2 PROOFS

Theorem We begin by formally stating and proving Theorem splitting it into two
Theorem-corollary pairs.

Theorem E.4 (k-HOD-GNN is as expressive as k-OSAN). Let {G' = (A%, X*) | i € [I]} be a
finite set of graphs, and let U be a k-OSAN model. for any e > 0, there exists a k-HOD-GNN
model ® such that for each i € [I]

|W(Gi) — @(Gi)| <e. (45)
Corollary E.5. There exist non-isomorphic graphs that are indistinguishable by the folklore
k-WL test but are distinguishable by k-HOD-GNN. Additionally, k-HOD-GNN is able to

compute the homomorphism count of k-apex forest graphs.

Proof. We begin the proof by making a few simplifying assumptions on ¥, which we can do
without loss of generality. We begin by assuming that all activation functions used in M,
the base MPNN of U, are analytic with infinite radius of convergence (e.g., exp(x), sin(z)).
This assumption can be made without loss of generality: Since MLPs with non-polynomial
analytic activations are universal approximators, each MLP in M can be replaced with one
using an analytic activation function that approximates the original to arbitrary precision.
Furthermore, since the composition of analytic functions with infinite convergence radius
remains analytic with infinite convergence radius, it follows that M—as a composition of
affine transformations and activation functions—is itself analytic.

Secondly, we assume that the final node representations produced by M are one-dimensional.
This assumption can be made without loss of generality: we can append a final MLP to
M that compresses each node’s feature vector to a scalar, and prepend an MLP to the
downstream network 7 that reconstructs the original feature dimension. This effectively
amounts to inserting an autoencoder, where the encoder is a final pointwise update in M
and the decoder is an initial pointwise update in 7. Since this architecture can approximate
the original architecture to arbitrary precision, we may assume without loss of generality
that M produces 1-dimensional node embeddings.

Additionally, we can assume the input node feature matrices X% i € [I] are also all 1-
dimensional. This follows from the same argument as above.

Finally, we consider k-HOD-GNN models that only use the node derivative tensor D(T),
which we use to extract node features through an IGN encoder U, and disregard D",

We prove the theorem in three steps

1. We show that an intermediate representation of U(D(T)) can encode the tensor H, 4,
that is produced at stage (2) of the forward pass of ¥ (see Definition [E.2)). E|

2. we show that U(D™)) can approximate the node feature matrix h*"> produced at
stage (3) of the forward pass of U.

3. We show ® can approximate ¥ to finite precision.

Step 1 For each k-tuple of nodes u € V*(G?) and matrix Y € R*** we define the node
feature matrix broad,, (Y) € R"** (here we abuse notation and not include the graph index

1) by

Yji V=14
broad, (Y ), = 46
roadu(¥)s, {0 else. (46)
Additionally, for each node v € G¢, we define ff;yu (RFXF SR
1 u(Y) = M(A, X @ broad,(Y)). (47)
°In cases where w has repeated entries w;, = u;,, we only consider values of Y for which

Y, =Y.

24



Under review as a conference paper at ICLR 2026

Finally, define Y* € R*¥** by
}/Z;uJ' = ezuti’j' (48)
where e* is the node marking node feature matrix introduced in Definition (That is,
broad,, (Y*) = e* ).
First, it is easy to see that
rau(Y™) = M(S,)0 = H'[v, 4], (49)
where S?, and H'[v, u] are introduced in Definition

Second, as M is analytic with infinite convergence radius, the functions ff;yu are all analytic
with infinite convergence radi, and so
o0

i 1 i
LY = Y Lo p ). (50)
|ae|=0
Here, o € {0,...,m — 1}F** and (Y*)* = [](Y;*;,)®/192. Since we are concerned with a

finite number of graphs, for any € > 0 we can choose an integer I such that for all graphs G
and all v € V(G'), uw € V¥(G?) it holds that:

I
i u 1 o £i u\ox
foa¥™) = > 0 fouOY )% < (51)
la|=0
Defining
I
. 1 .
Hlv,ul = ) AUl SUks (52)
|| =0
we get that
H' ~ H (53)

Additionally, from the definition of f; , it holds that the derivatives of f; ,, at zero correspond
to the entries of the k-indexed derivative tensor of G?, denoted by D(T)’ that is

9% fi ,(0) = DT, u, o, (54)
where we only take derivatives with respect to the last k feature dimensions, which correspond
to the "marking vectors"

Moreover, let ¢t be a function such that (v, u, &) encodes the derivative pattern associated

with the index tuple (v, u, ). That is, ¢ satisfies:

t(vi, w1, 1) = t(vg, ug, ) < a1 = ag; and ;3o € S, such that vi = o(v2),;u1 = o(us),
(55)

where S,, is the symmetric group on n elements. The value of %(Y“)o‘ is determined entirely

by t(v,u, ), and thus can be recovered from it.

This implies that the DeepSet encoder U4 defined in Equation [20{in Appendix can
have an intermediate layer L such that

LD =R’ (56)
Here L simply multiples each entry D) [v,u, a] by i(Y“)"‘, followed by summing over the

a indices. Thus, by Equations 53] and 6] choosing M as the base MPNN of a k-HOD-GNN
model allows us to approximate each H' to arbitrary precision using its derivatives. Note
that since the DeepSet encoder is a restricted instance of a (k + 1)-IGN encoder, it can
achieve the same effect.

Ohere we abuse notation and omit the subscrit & in Dyg.
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Step 2 Equation shows that the node features hf)“b7i are constructed by applying a
set-wise aggregation function over the set {H'[v,u] | w € V¥(G%)}. Any continuous set-wise
aggregation function can be approximated to arbitrary precision by a DeepSet architecture
(Zaheer et all 2017) (see [Segol & Lipman| (2019) for proof). Moreover, any DeepSet
model applied in parallel over the first index of a k-indexed node tensor can be exactly
implemented by a k-IGN, since each layer in such a model consists of a linear equivariant
transformation followed by a pointwise nonlinearity. Thus, we can construct our encoder

U to first approximate the mapping D’ — H' as an intermediate representation, and then
approximate the subsequent mapping H' — hsuPi. Since both approximations can be made
to arbitrary precision, this completes the proof of the claim in Step 2.

Step 3 The final forward step—applying a downstream GNN to the updated node features to
produce a graph-level representation—is identical in both OSAN and HOD-GNN. Therefore,
by choosing the downstream GNN in the k-HOD-GNN model to match that of ¥, the proof
is complete.

O

Using Theorem [E.4] we now prove corollary [E-5]

Proof of corollary[E-5 It was shown by [Qian et al| (2022)) that k-OSAN models can dis-
tinguish between graphs that are indistinguishable by the k-WL test. As Theorem [E4]
establishes that our method can approximate any k-OSAN model to arbitrary precision, it
follows that k-HOD-GNN can do the same. Similarly, Zhang et al.| (2024b) showed that
k-OSAN models can compute homomorphism counts of k-apex forests—graphs in which
the removal of at most k& nodes yields a forest. Therefore, by Theorem [E-4] Corollary [E.5|
follows. O

Theorem E.6 ((k + 2)-IGNs are as expressive as k-HOD-GNN). Let ® be o k-HOD-GNN
model and let G,G' be a pair of graphs such that

o(G) # 2(G"). (57)
There exists a (k + 2)-IGN model ¥ such that:
U(G) # ¥ (G"). (58)

Corollary E.7. k-HOD-GNN s unable to distinguish any pair of (k + 1)-FWL indistin-
guishable graphs.

Proof. First, recall that the -~-HOD GNN HOD — GN N is composed of a base MPNN M,
a downstream MPNN T, a (k + 1)-IGN encoder U™*® and a k-IGN encoder U™, all of
which are less expressive than the (k + 2)-IGN architecture. Thus, it is enough to show that
(k 4+ 2)-IGN is able to simulate the efficient derivative algorithm presented in Appendix @

to compute the k-order derivative tensors D™ and D™, We now show how (k +2)-IGN
is able to simulate each step of this algorithm.

k2 .
R %4 where d is

k+1><d/><md><k

Before we begin, recall that a (k + 2)-IGN operates on tensors T €

called "the feature dimension". As the derivative tenors are of the form D € R"
we slightly change the notation for the tensors T which (k + 2)-IGN operates on to T €
R xdixdi gllowing multiple feature dimensions. We stress this is only a notation
convenience, as we can transform 7" back to a single feature dimension simply by "flattening"
the different feature dimensions. Thus, for the rest of the proof, similarly to definition
we assume 7T is indexed by T[u,i,a] where u = (uy,...,ups2) € V(G)**2 i € [d,a =
(@j1,g2)ak €10, ;m = 13%F and || = Y ey -

Throughout the proof, tensor representations corresponding to G, G’ will be denoted by T, T’
respectively.
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Step 1: Computing D@,
For an input graph G = (A, X) Recall that:
Since h(® = X, we have:

) 1 if3dsst.v=us, 05, =1,> . crg@s,; =0
DVv, u,i,a] = {0 otherwise #s,j€ld] I (59)

The initial tensor T® used by a (k + 2)-IGN is such that T[u,...] = T[v,...] if and only
if the map v; — wu; is a graph isomorphism on the subgraphs of G induced by v and u
respectively.

In addition, one of the core operations of (k + 2)-IGNs allows it to apply a "pointwise" linear
layer followed by an activation on any entry T[u,...] of the tensor T simultaneously. That
is, using (k + 2)-IGN layers we can update the tensor T via MLP(T[u,...]) = T[u,...] (See
[Maron et al.| (2019)); [Frasca et al.| (2022) for more details).

Define

Sy = {TOu, .. Jjuy = us} U{T Ofae, .. JJus = us}. (60)
SQ = {T(O) [u, . ]|U1 c Ng(UQ)} @] {T/(O) [u, .. ]|u1 S NG/ (UQ)} (61)

S5 = (T, Jlus ¢ We(uz) U{ua})} U{T Olus,.. JJur ¢ (Ner (u2) U {uz})}. (62)
Here N(+) is the neighborhood of a node.

From the definition of the initial tensor T above, S1,S55,53 all have pairwise empty
intersections. Thus, we can define an MLP such that V& € Sy

1 f 3 .U 5.1 — 1 / . s'g =
MLP(z)fi,a] = 4 1 35950 @i =10 e w5 =0 (63)
0 otherwise,
Va € SQZ
MLP(z)[i, o] = 1, (64)
and Vx € Ss:
MLP(z)[i, o] = 0. (65)
by updating Tlu,...] = MLP(TO[w,...]) , T'[u,...] = MLP(T'©[u, ...]) we now get:
T[ul, ey U1, U4,y - - ] = D(O)[UQ, ey U2, .- ] (66)
and for u; # us :
Tlu, w2, ..o Ukro, ... ] = Ay us- (67)

Thus T now stores both the information of the tensor D(* and the adjacency A.

Step 2: Computing Ij(t_l) from D1,

For simplicity assume the base MPNN used in k-HOD-GNN is a GIN architecture (the proof
can be easily generalized to the general case)

Recall from Appendix [D] that

D" V. ] =D PV, J1 9 Y DI, (68)
u' €N (u)

27



Under review as a conference paper at ICLR 2026

This amounts to constructing a "flattened" node feature vector Dg,t € R™*4 defined by
Dga[u] = DO Yy, ... ] Aatten() (69)
and performing standard message passing on it.

We can follow a similar path, defining a "flattened" matrix Tga € R™*4 defined by
That[u1, us] = Tlug, ug, ... |.flatten() (70)

and then use (k + 2)-IGN layer to perform 2-IGN updates on Tg,;. From equation
the tensor T retains the adjacency information of the input graph. Following arguments
presented in Maron et al|(2019) a 2-IGN layer can simulate message passing. Thus, we are

— (-1
able to compute D , completing the step.

(t_l). As shown in Appendix@ D® can be computed

(-1
from D( ) by a point-wise update. That is, there exists a continuous function f which
depends on the choice of the activation and weights of the base MPNN M such that

DO, i,a] = (B V[u, i, al). (71)

Step 3: Computing D from D

We can thus choose an MLP which approximates f to finite precision and update our tensors
T, T according to T[u,...] = MLP(Tlu,...]) , T'[u,...] = MLP(T'[u,...]). This finishes
the current step.

Iteratively updating the tensors T and T’ according to steps 1-3, we reach final tensors such
that

Tlug, vz - .., ukso, -] = DD ug, ... upro, .. ] (72)
T lug, ug, ... ukga, ... ] =D Dlug, ... upro, ... ] (73)
k+2

a (k4 2)-IGN can then apply a projection P : R™ " Xdu-xde R xdy, X

defined by

P(T)[u1,ug, -+ s ukso,...] = Tlug,u2, ... upye,...] = DD ug, . upys,...]. (74
Thus a (k + 2)-IGN can recover D7),

Step 4: Computing D°"* from D). For most common MPNNSs, this step decomposes
into a linear aggregation (which can be handled exactly like step 2) followed by an MLP
(which is equivalent to the update of step 3). Consequently, the derivative tensor D" can

be computed from D™ using the same primitives described above.

O

Proof of corollary[E. 7] Recall that the (k 4+ 1)-FWL has equivalent expressive power to the
(k + 2)-oblivious WL test (see [Morris et al.| (2023))). In addition, as shown in (2020);
|Azizian & Lelarge| (2020); Maron et al.| (2019), (k + 2)-IGNs have the same expressive power
as the (K + 2) oblivious WL test. This together with Theorem completes the proof. [

Theorem We now formally state and prove Theorem [.3]

Theorem E.8 (HOD-GNN is strictly more expressive than RWSE+MPNN). For any MPNN
T augmented with random walk structural encodings (see Definition , there exists a
1-HOD-GNN model ® that uses ReLU activations and only first-order derivatives such that,
for every graph G, it holds that

T(G) = 2(9). (75)
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Qt15 Qt19

\/

Figure 2: Two quartic vertex-transitive graphs that cannot be distinguished by MPNNs
augmented with RWSE, but can be distinguished using HOD-GNN.

Moreover, there exist a pair of graphs G' and G? such that for every RWSE-augmented
MPNN T,

T(GY) =T(G%), (76)
yet there exists a 1-HOD-GNN model ®, using ReLU activations and only first-order deriva-
tives, such that

o(G') # ®(GY). (77)

Proof. To prove the first part of the theorem for RSWE with L number of steps, we begin
with a simple preprocessing step. For each input graph G = (A, X) with node feature matrix
X € R™4 we define an extended feature matrix X = X @ 1, € R™*(4+L) by padding X
with a constant vecotr of lenght L and value 1. We then pass X to the HOD-GNN model
instead of the original X.

It is now sufficient to construct a base MPNN M with T layers such that:

1. The first d coordinates of each final node embedding satisfy hf;j,;)):d—l = X,, i.e., the

original features are preserved.

2. The first-order derivatives of the remaining L coordinates (i.e., for indices | =
d,...,d+ L —1) satisfy:

(T)
Ot _ 4t 19)
8Xv’l ’

where A is the row-normalized adjacency matrix (see Definition [E.3)).

If the above conditions hold, we can choose an MLP such that

hger — MLP (hg)T) a U(T)(D(T))v a Uout(Dout)) =X, ® hf}wse (79)
and choose our downstream model to be exactly 7 thus satisfying Equation [76]

We now construct an MPNN M that satisfies both of the conditions above.
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For each layer t = 0,...,T — 1, we define the update rule of M to act separately on two parts
of the node feature vector: the first d + ¢ coordinates and the remaining 7' — ¢ coordinates.
Specifically:

t+1 t
hi,o:d)ﬂq = hi,)O:dthfl’ (80)
(t+1) 1 (t)
h, g4y = ReLU deg(v) g/:( )hu,d-i-t:T—l . (81)

We set the number of layers in M to be T' = L, where L is the number of random walk steps
used in the original RWSE encoding.

First, the proposed update rule is straightforward to implement within the MPNN framework
defined by Equation [I], as it follows a standard message-passing structure.

Second, Equation [80| guarantees that the first d coordinates of each node’s feature vector
remain unchanged throughout the layers, thereby satisfying condition (1).

Finally, Equations [80] and [81] together imply that for all t =0,...,T — 1, it holds that

h) = At 1. (82)
This implies that

on'h) .

— = Al 83

aXv7t v,V ( )

and so condition (2) holds, completing the first part of the proof.

For the second part of the proof, following the notation of (Read & Wilsonl |1998)), let G; and
G denote the quartic vertex-transitive graphs Qt15 and Qt19, respectively (see Figure
with all initial node features equal to 1, € R?. Here, "vertex-transitive" means that for any
pair of nodes, there exists a graph automorphism mapping one to the other, and "quartic"
indicates that the graphs are 4-regular. This pair of graphs was shown in (Southern et al.|
2025) to be indistinguishable by MPNNs augmented with RWSE. Therefore, to conclude the
proof, it suffices to construct an HOD-GNN model that can distinguish between them.

We define the base MPNN M to consist of two layers, specified as follows. The first layer
performs standard neighbor aggregation:

h{) =ReLU | Y A" |. (84)
weN (v)

In the second layer, the first coordinate of each node feature is preserved, while the second
coordinate is updated via another aggregation step. That is

{7 =hi}, (85)
Al =ReLU [ Y Ay |. (86)
uweN (v)

from the same argument as the first part of the proof, we get that for M, it holds that
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(2)
Ohui _ Al (87)
8Xu,l ’

Note that for a pair of nodes u, v, we have A, , =1 and A2, =0 if and only if u € N'(v)
and, for all v’ € N (v), it holds that u ¢ N'(u')—that is, there is no path of length exactly
2 from u to v. A straightforward computation shows that no such node pairs exist in G',
whereas several such pairs appear in G2. Thus, the set of off-diagonal derivative vectors

{D@2[y,0,1,:] | u # v € V(G?)} contains values that do not appear in the corresponding
set {D@ M u, v, 1, [ u#veV(GhH}

We define the node derivative encoder U9 as a 2-IGN model that operates in two steps.

First, it constructs a filtered tensor D by zeroing out all entries of D® that are not off-
diagonal or are farther than e = i from the vector (1,0). Then, it performs row-wise

summation over D to produce node features:
Unode(D(Q))U - Z D[v, u). (88)
ueV(G)

It follows that U°%(D®1) = 0, while U™*4(D®)?) £ 0. Therefore, when these vectors
are passed to the downstream MPNN;, it will be able to distinguish between the two graphs,
completing the proof. O

Computational complexity.
We now prove Propositions [£.4] and [£.5|which analyze the time and space complexity of
HOD-GNN.

Proof. Recall that in Appendix [D] we have defined the derivative sparsity of a node v of an
input graph G at layer ¢ of the base MPNN;, as

sua = |{(wi,@) | DOl u.ia] £ 0} (89)
and the maximal derivative sparsity at layer ¢t is
St = min S,4. (90)

veV(G)

the tensor D) has memory complexity of O(n - s;) as it can be stored using sparse matrix
representations. Algorithm |1 for efficient derivative computation iteratively computes D®
using D"V and finally computes D" from D). We now prove by induction that for an
input graph G with maximal degree QFEL there exists a constant C' which depends on the
maximal number of derivatives, the input node feature dimension, and the dimension of h(®,
all of which are hyperparameters, such that

s < C- min{dk't,nk}. (91)

We additionally show that D® can be constructed from D®Y in time complexity of
O(d - n - min{d* (=1 nk})

To begin, as we saw in Appendix

DO [v,u,i,j,a] = {1 if s 5.8 v =us,i=Jgs, 5 = 1,3 oz 05 =0

92
0 otherwise, (92)
and so sy0 < C = mP . [+l where m is the maximal derivative degree, and [ is the
dimension of the input node features. Now assuming Equation holds for ¢t — 1, in
Appendix |§| we saw that D) can be computed from D*Y in time complexity of O(d -
n-si—1) = O(d-n-min{d*=Y nk}) secondly, we saw that s, = O (min{d - s;_1, n*})

0] (min{d’”, nk }) completing the induction. As the memory complexity of storing D is

1'we slightly abuse notation by using d to denote the maximal degree as it usually denotes the
input feature dimension, we denote this quantity as [ for this discussion.
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O(n-s) =0 (n -min{d*?, nk}) this proves Proposition Recall now that we have seen
in the proof of theorem [E-4] that k-HOD-GNN is able to achieve the same expressivity as
k-OSAN by disregarding D°"* and choosing the encoder U™ to be

ydsmede M)y — DeepSet({D T [v, u,i,a] | w € VF(G),i € [d], € [dF, a € [m]*}). (93)
This encoder can leverage the sparsity of D(T), having runtime complexity of O(n - sp) =
O(n - min{n*, d*T}), completing the proof of proposition

O

F  ADDITIONAL PROPOSITIONS

In this section, we present three additional propositions which further explore the exact
expressivity gains obtained from using derivative signals.

The first proposition shows that even when using only output-level derivatives, 1I-HOD-GNN
is still fairly expressive.

Proposition F.1. Even when setting U% =0, 1-HOD-GNN is still as expressive as the
DS-WL for node based policies test defined in |Bevilacqua et al| (2021).

Proof. We begin by recalling the definition of the DS-WL test. Consider two graphs
G1 = (A1, X1) and Gy = (Ag, X>). For each graph, the DS-WL test constructs a bag of
node-marked subgraphs, where each subgraph is obtained by appending a unique mark to
the feature of exactly one node. Formally, for i € {1,2},

Bi = {Sm, ‘ Ve V(Q,)}, (94)
where each marked subgraph is defined as
Siv=(A;, X;®ey), (95)

with e, denoting a one-hot indicator applied to node v.

The DS-WL test then applies the WL refinement procedure independently to each marked
subgraph &; , until convergence, and assigns it a final color

cs = WL(S). (96)
This produces, for each graph, a multiset of resulting WL colors:
Ci:{CS|SEB7;}, i€{1,2}. (97)

Finally, DS-WL declares G; and Gy to be non-isomorphic if and only if Cy # Cs. If the
two multisets coincide, the test does not distinguish the graphs.

As shown in Morris et al.| (2019)), for any finite collection of graphs there exists an MPNN M
whose output is equivalent to the WL coloring. In particular,

M(S) = M(Sl) <~ Cs = Cs/, (98)
for any marked subgraphs S and S’'.

Consequently, G; and G are separated by the DS-WL test if and only if there exists an
MPNN such that

[(M(S)|SeB} £ {M(S)|SeBs)}. (99)

As previously discussed, we may assume without loss of generality that the activation function
used by M is analytic. Indeed, if this is not the case, the MLP components of M can be
approximated to arbitrary precision by MLPs employing an analytic activation function.

For every node v € V(G;), define the scalar function
fi(x) = M(A;, Xi ®xe,), (100)
where z € R.

We note the following properties:
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1. (1) = M(S;,) by definition of the marked subgraph S; .

2. For every j € N,

o Y
@ v(x) o = an]; M(Si,v)a (101)

since the perturbation x only modifies the feature at node v.

3. Each f} is analytic, as M is a composition of linear transformations and analytic
activation functions.

Since analytic functions are uniquely determined by their derivatives at a point, we obtain
that for any pair of nodes v € V(G;) and u € V(Ga),

o7 o ,
<6XQJ; M(Sl,v) = 8X1JL M(82,u) for all j € N) = M(Sl,v) = M(SZ,U) (102)

Therefore, if M(S1,,) # M(Sz,,), analyticity implies that there exists some integer m such
that

(96){17}"/\4(81’”) 7& (96)(;"/\/1(52’”)’ (103)
and consequently
D"(S1,0) # DO(Sa). (104)
Hence,
{M(S)[SeBi} # {M(S)[S € Ba} (105)
can hold only if
{D"(S) | Se B} # {D*(S)|S € B} (106)

Finally, by choosing the encoder U™ to be a fully expressive multiset function (e.g.,
DeepSets [Zaheer et al.| (2017)), 1-HOD-GNN is able to distinguish G; from G, using only
the derivative tensor D°"*. This completes the proof.

O

The following proposition analyses the expressive power of edge-HOD-GNN.

Proposition F.2. edge-HOD-GNN is as expressive as the DS-WL for edge based policies test
defined in |Bevilacqua et al.| (2021), and can thus separate pairs of 2-FWL indistinguishable
graphs.

Proof. The proof of this proposition follows the same argument as the previous one; we
include it here for completeness. For brevity, for the rest of this prove we refer to the
edge-marking WL test simply as the WL test, and the edge-derivative tensor simply as the
derivative tensor, denoted by D°**. We begin by recalling the definition of the DS-WL test
with edge marking. Consider two graphs G; = (A1, X1, E1) and Gy = (A, Xo, E3) where
E1, Es represent edge feature matrices. For each graph, the DS-WL test constructs a bag of
edge-marked subgraphs, where each subgraph is obtained by appending a unique mark to
the feature of exactly one edge. Formally, for i € {1, 2},

Bi ={Sic|ec EG)}, (107)
where each marked subgraph is defined as
Sie=(Ai, X;,E; @ e.), (108)

with e. denoting a one-hot indicator applied to edge e.

The DS-WL test then applies the WL refinement procedure independently to each marked
subgraph S; . until convergence, and assigns it a final color

cs = WL(S). (109)
This produces, for each graph, a multi-set of resulting WL colors:
C;={cs|S € B}, i€ {1,2}. (110)
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Finally, DS-WL declares G; and G, to be non-isomorphic if and only if Cy # C5. If the
two multi-sets coincide, the test does not distinguish the graphs.

As shown in Morris et al.| (2019)), for any finite collection of graphs there exists an MPNN M
whose output is equivalent to the WL coloring. In particular,

M(8) = M(S') < cs=cs, (111)
for any marked subgraphs S and S'.

Consequently, G; and G, are separated by the DS-WL test if and only if there exists an
MPNN such that

(M(S)|SeB} # {M(S)|SeBs). (112)

As previously discussed, we may assume without loss of generality that the activation function
used by M is analytic. Indeed, if this is not the case, the MLP components of M can be
approximated to arbitrary precision by MLPs employing an analytic activation function.

For every edge e € F(G;), define the scalar function
fi(@) = M(Ai, Xi, E; @z - e,), (113)
where x € R.

We note the following properties:

1. fi(1) = M(Si.) by definition of the marked subgraph S; ..

2. For every j € N,
i J
Ry S ————
8373 x=0 8Ee
since the perturbation x only modifies the feature at edge e.

M(Sie), (114)

3. Each f. is analytic, as M is a composition of linear transformations and analytic
activation functions.

Since analytic functions are uniquely determined by their derivatives at a point, we obtain
that for any pair of edges ¢; € E(G;) i € [2],

o o ,
<6Eil M(81,€1) = 8Eg2 M(82,€2) for all J € N) = M(81,€1) = M(82,€2)' (115)

Therefore, if M(S1,¢,) # M(Sa,e,), analyticity implies that there exists some integer m such
that
om om

OB M(S1e,) # 9ET M(Sze,), (116)
and consequently
D™ (S1e,) # D™ (Szes)- (117)
Hence,
{M(S)[SeBi} # {M(S)[S e B} (118)
can hold only if
{DOUt(S) | Se 81} # {DOUt(S) | Se 82}. (119)

Finally, by choosing the encoder Uggéc to be a fully expressive multiset function (e.g.,

DeepSets Zaheer et al| (2017)), edge-HOD-GNN is able to distinguish G; from G, using only

the edge derivative tensor D", the edge marking WL test was shown in Bevilacqua et al.|
(2021)) to be able to separate 2-FWL indistinguishable graphs. This completes the proof. [

Finally, the next proposition shows that for a fixed base MPNN M, increasing the hyperpa-
rameter m (Definition [3.1]), which specifies the highest derivative order used by HOD-GNN,
strictly improves expressivity.
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Proposition F.3. For any m € N, there exist choices of the base MPNN M such that a
1-HOD-GNN using M with hyper-parameter m is unable to count the number of triangles of
a giwen input graph, while a k-HOD-GNN using M with m + 1 can.

Proof. Let m € N. We define the base message-passing network M,,, as follows.

Consider an input graph G = (A, X), where X € R" is a node-feature matrix with scalar
features.

Initialization. We define the first hidden representation by a node-wise MLP update
(which ignores all neighbors):

X m-+1
(m+1)I
This update depends only on X, and is therefore realizable by a local node transformation.

RV .= (120)

Message passing. For ¢ € {2,3,4}, we define
)= ARU=D e, R{)= > ATV (121)
u€N (v)

Each update is realizable by a standard MPNN aggregation step without applying a post-
aggregation MLP.

Readout. The global output of M,, is defined by summing the final node representations:

RO =Y " A, (122)
veV

Thus, M, is a message-passing neural network consisting of one node-wise MLP layer
followed by three pure aggregation layers, and a final sum readout.

As a consequence of the chain rule, all partial derivatives of both h(* and h°ut of order at
most m vanish. Therefore, a 1-HOD-GNN model restricted to the hyperparameter m has
expressive power equivalent to a standard MPNN, and in particular it cannot count triangles.
Moreover, we have

gm+l h5,4) 5

X = (A )w. (123)
Hence, a 1-HOD-GNN model with hyperparameter m + 1 can exploit this derivative to
compute

A3
Z ( 6)1),1)7 (124)

which equals the number of triangles in the input graph G. This completes the proof.

G EXPERIMENTAL DETAILS

In this section, we provide details on the experimental validation described and discussed in
Section B

G.1 ARCHITECTURE
In all of our experiments, we have used a 1-HOD-GNN architecture, We now describe its

components in detail.

Base MPNN. In all experiments, we use a GIN (Xu et all [2018)) architecture as the base
MPNN-—described in EquationEl (Section —due to its simplicity and maximal expressivity.
All MLPs used in the node updates are two layers deep and employ ReLLU activations.
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We extract first-order derivatives from the base MPNN, which—by Theorem [4.3}—yields
greater expressivity than MPNNs augmented with RWSE. After computing the final node
representations h(), we apply a residual connection by aggregating all intermediate layers:

T R
R — N ——. 125

t!

t=1 :

where normalizing in ¢! helped stabalize training.
Derivative Encoding.

For simplicity, we ignore the output derivatives of the base MPNN and use only the final
node-wise derivative tensor D7), The encoder U™ is implemented as a lightweight, efficient
module that applies a pointwise MLP to the diagonal entries of D).

Unode(D(T))v — MLP (D(T) [v7v’ .. ]) . (126)

Downstreamm GNN.

For simplicity and to isolate the effects of HOD-GNN, we restrict our experiments to MPNNs
as downstream architectures—We use GIN for all experiments but peptieds func in which
we used a GCN (Kipf & Welling, [2016)). All MLPs used in the node updates are two layers
deep with ReLU activations. The final MLP head also uses ReLU activations and consists of
1 to 3 layers, following the default settings from |Southern et al|(2025), without tuning. In
experiments with parameter budgets, we adjust only the hidden dimension to fit within the
limit, selecting the largest value that satisfies the constraint.

Initialization. We initialize the base MPNN such that all categorical feature embeddings
are set to the constant vector 1, all MLLP weights are initialized to the identity, and the €
parameters in the GIN update (Equation @ are set to —1. This initialization is motivated by
the proof of Theorem following a similar line of reasoning, it implies that the diagonal of
the derivative tensor D'?) [v,v,...] corresponds exactly to the centrality encoding proposed
in Southern et al.| (2025)).

Optimization. We use separate learning rates for the base and downstream MPNNs. For
the downstream MPNN, we adopt the learning rates used in [Southern et al.| (2025]), while
for the base MPNN, we fine-tune by selecting either the same rate or one-tenth of it.

G.2 EXPERIMENTS

We provide below the details of the datasets and hyperparameter configurations used in our
experiments. Our method is implemented using PyTorch (Paszke et al.l |2019) and PyTorch
Geometric (Fey & Lenssen) 2019), and is based on code provided in [Southern et al.| (2025))
and Rampasek et al.| (2022). Test performance is evaluated at the epoch achieving the best
validation score and is averaged over four runs with different random seeds. We optimize
all models using AdamW (Loshchilov & Hutter, [2017)), with a linear learning rate warm-up
followed by cosine decay. We track experiments and perform hyperparameter optimization
using the Weights and Biases platform. All experiments were conducted on a single NVIDIA
A100-SXM4-40GB GPU.

OGB datasets. We evaluate on three molecular property prediction benchmarks from the
OGB suite (Hu et al., [2020b): MOLHIV, MOLBACE, and MOLTOX21. These datasets
share a standardized node and edge featurization capturing chemophysical properties. We
adopt the challenging scaffold split proposed in (Hu et al., [2020a)). To prevent memory
issues, we use a batch size of 128 for MOLHIV and 32 for the remaining datasets. All
Downstream models use a hidden dimension of 300, consistent with prior work (Hu et al.|
2020a; Bevilacqua et al.| [2024]). We sweep over several architectural choices, including the
hidden dimension of the Base MPNN £ = 8,10, ...,30, 32, the initial learining rate of the
Base MPNN £ = 0.001,0.0001, and the dropout rate £ = 0.0,0.1,0.2,0.3,0.4,0.5 . The
number of layers in the base MPNN was selected to match the positional encoding step used
in the corresponding experiment from |Southern et al.| (2025). Hyperparameter tuning was
performed on the validation set using four random seeds. Results are reported at the test
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epoch corresponding to the best validation performance. All models were trained for 100
epochs. The final parameters used for each experiment are reported in table

Zinc The ZINC dataset (Dwivedi et al., 2023) includes 12k molecular graphs of commercially
available chemical compounds, with the task of predicting molecular solubility. We follow the
predefined dataset splits and report the Mean Absolute Error (MAE) as both the loss and
evaluation metric. Our downstream MPNN for this task includes 6 message-passing layers
and 3 readout layers, with a hidden size of 120 and no dropout. We use a batch size of 32
and train for 2000 epochs. We performed a small sweep over the depth of the base MNPNN
k =10,12,14,16, 18,20 and the hidden dimension k = 30, 35,...,80. The hidden dimension
of the downstream MPNN was chose as 120 to meet the 500k parameter constraint. The
final hyperparameters are listed in Table [4]

Peptides Peptides-func and Peptides-struct, introduced by [Dwivedi et al.| (2022)), consist of
graphs representing atomic peptides. Peptides-func is a multi-label classification benchmark
with 10 nonexclusive peptide function labels, while Peptides-struct is a regression task
involving 11 different structural attributes derived from 3D conformations.

For both datasets, we adopt the hyperparameter setup proposed by |Tonshoff et al.| (2023)
for the downstream GNN, which has a parameter budget under 500k and where they use 250
epochs. We set the number of message-passing layers in our base MPNN with the positional
encoding steps to be 20, aligned with the number of steps used for the random-walk structural
encoding. The only tuned component is the learning rate of the base MPNN. The final
configurations are summarized in Table

Key empirical findings. Across all benchmarks, HOD-GNN is highly competitive and
the only architecture that consistently ranks within the top two model tiers. Additionally,
the strong performance of HOD-GNN on the large-scale Peptides datasets—where full-bag
Subgraph GNNs are generally unable to run—shows its ability to scale effectively. Notably,
the base MPNNs in HOD-GNN are often significantly deeper and narrower than those
in typical GNNs. For instance, on the OGB datasets, the base MPNNs use 17-20 layers
with hidden dimensions as low as 16-32. Despite their compact size, these base MPNNs
yield notable performance gains over standard GINE, suggesting potential robustness to
oversquashing. Moreover, the fact that they are significantly deeper than typical MPNNs
further suggests that HOD-GNN may help mitigate oversmoothing, a hypothesis we leave

for future woplgy), 3. Best-performing hyperparameters for each OGB dataset.
Hyperparameter MOLHIV MOLBACE MOLTOX21

Downstream model

#Layers 2 8 10
#Readout Layers 1 3 3
Hidden Dimension 300 300 300
Dropout 0.0 0.5 0.3
Learning Rate 0.0001 0.0001 0.001
Base MPNN

#Layers 16 20 20
Hidden Dimension 16 16 16
Dropout 0.2 0.5 0.2
Learning Rate 0.0001 0.0001 0.0001
#Parameters 450,848 1,723,448 2,165,782

H ADDITIONAL EXPERIMENTS

H.1 SUBSTRUCTURE COUNTING

We adopt the synthetic node-level subgraph counting experiment used in [Huang et al.
(2022)); [Yan et al.| (2024]). The dataset consists of 5,000 graphs generated from a mixture of
distributions (see |Zhao et al|(2022) for more details), with a train/validation/test split of
0.3/0.2/0.5. The task is node-level regression: predicting the number of substructures such
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Table 4: Best-performing hyperparameters for the ZINC dataset.

Hyperparameter ZINC

Downstream model

#Layers 6
#Readout Layers 3
Hidden Dimension 120
Dropout 0.0
Learning Rate 0.001
Base MPNN

#Layers 12
Hidden Dimension 75
Dropout 0.0
Learning Rate 0.0001
#Parameters 498,144

Table 5: Best-performing hyperparameters for the Peptides-func and Peptides-struct datasets.

Hyperparameter Peptides-func Peptides-struct

Downstream model

#Layers 6 10
#Readout Layers 3 3
Hidden Dimension 234 143
Dropout 0.1 0.2
Learning Rate 0.001 0.001
Base MPNN

#Layers 20 20
Hidden Dimension 8 8
Dropout 0.1 0.2
Learning Rate 0.0001 0.001
#Parameters 498,806 493,849

as 3-cycles, 4-cycles, 5-cycles, 6-cycles, tailed triangles, chordal cycles, 4-cliques and 4-paths,
where continuous outputs approximate discrete counts. We report the normalized MAE for
each baseline, and highlight cases where the error falls below 0.001, since in these instances
rounding the predictions yields exact counts.

For training, we use the AdamW optimizer with an initial learning rate of 0.001, a cosine
scheduler with warmup, and train for 5,00 epochs. The batch size is set to 128. We compare
HOD-GNN against both positional /structural encoding methods (MPNN+RWSE (Dwivedi
2021), GPS+RWSE (Rampasek et al) [2022), HyMN (Southern et al 2025)) and
node-based subgraph GNNs (GNN-AK-+ (Zhao et al., 2022), Nested GNN (Zhang & Li,

2021), ID-GNN (You et al., 2021), HyMN (Southern et al.| |2025)).

To examine the role of activation functions, we evaluate HOD-GNN with the non-analytic
ReLU and the analytic SiILU. The results, summarized in Table [6] are consistent with
our theory. In line with Theorem HOD-GNN achieves performance comparable to or
surpassing other subgraph GNNs. Furthermore, consistent with Theorem [£.3] we observe that
analytic activations enhance expressivity, while even with non-analytic ReLU, HOD-GNN
still outperforms encoding-based methods.

H.2 GRAPH SEPARATION ABILITY OF k-HOD-GNN

To further evaluate the expressive power of k--HOD-GNN and to empirically validate Theo-
rem we experimented with both 1-HOD-GNN and 2-HOD-GNN on the family of regular
graph pairs from the BREC benchmark (Wang & Zhang} [2024). This dataset contains 140
pairs of regular graphs: 50 pairs that are distinguishable by 3-WL but not by 2-WL, and
90 pairs that remain indistinguishable even under 3-WL. We follow the exact training and
evaluation procedures proposed in [Wang & Zhang| (2024).
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Table 6: Normalized MAE results on the counting subgraphs dataset. Cells below 0.01 are
highlighted in yellow.

Method ‘ 3-Cycle 4-Cycle 5-Cycle 6-Cycle Tailed Tri. Chordal Cycle 4-Clique 4-Path
MPNN 0.3515 0.2742 0.2088 0.1555 0.3631 0.3114 0.1645 0.1592
MPNN-+RWSE 0.0645 0.0264 0.0746  0.0578 0.0505 0.1008 0.0905 0.0217
GPS+RWSE 0.0185 0.0433 0.0472 0.0551 0.0446 0.0974 0.0836  0.0284
HyMN 0.0384 0.0933 0.1350 0.0936 0.0084 0.0746 0.0680 0.0120
GNN-AK+ 0.0004 0.0040 0.0133 0.0238 0.0043 0.0112 0.0049  0.0075
HOD-GNN + ReLU | 0.0012 0.0046 0.0210 0.0380 0.0083 0.0510 0.0293  0.0081
HOD-GNN + SiLU | 0.0008 0.0042 0.0068 0.0222 0.0066 0.0195 0.0055  0.0069

Table 7: Results on separation of pairs of regular graphs from the BREC dataset.

Model Regular Graphs Number Regular Graphs Accuracy
3-WL 50 35.7%
NGNN 48 34.3%
DE-+NGNN 50 35.7%
DS-GNN 48 34.3%
DSS-GNN 48 34.3%
SUN 50 35.7%
SSWL_P 50 35.7%
GNN-AK 50 35.7%
KP-GNN 106 75.7%
I2-GNN 100 71.4%
OSAN 8 5.7%
1-HOD GNN 47 33.5%
2-HOD GNN 84 60.0%

Table [7] reports the separation performance of our models alongside several subgraph-based
GNNs. As shown, 2-HOD-GNN successfully distinguishes 34/90 of the 3-WL-indistinguishable
pairs, placing it among the top-performing models and providing strong empirical support
for the theoretical advantage predicted in Theorem

Furthermore, 1-HOD-GNN obtains accuracy comparable to DS-GNN on the same benchmark,
aligning with Theorem 4.1 for the k = 1 case and reinforcing that, without accessing higher-
order derivatives, the model behaves similarly to standard MPNNs.

H.3 ABLATION ON DERIVATIVE ORDER

To assess the impact of higher-order derivatives on HOD-GNN’s expressive power, we
conduct an ablation study on the most challenging substructure counting task: 6-cycle
prediction, which consistently yields the highest MAE. Specifically, we evaluate models
restricted to derivatives of order at most k, for k = 0,...,4. The results, presented in Table 8]
demonstrate that increasing the maximal derivative order consistently improves MAE, with
performance saturating at k = 4. All experiments use the analytic SiLU activation function.
We hypothesize that the observed saturation arises because higher-order derivatives of SiLU
rapidly diminish toward zero, limiting the additional expressive gain.

Table 8: Effect of maximal derivative order on 6-Cycle MAE.
Maximal derivative order 6-Cycle MAE

0 0.1555
1 0.0275
2 0.0223
3 0.0221
4 0.0231

H.4 STABILITY ANALYSIS

We evaluate the stability of HOD-GNN both in terms of training dynamics and the behavior
of the derivative tensor norm. Across all tasks, we consistently observe smooth and stable
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Figure 3: The training loss of HOD-GNN with maximal derivative d € {1,2,3,4} on the
6-cycle counting task.

loss curves, even when incorporating higher-order derivatives. To further assess stability, we
conduct two dedicated experiments.

Training Loss Dynamics. We examine convergence behavior on the 6-cycle subgraph
counting task by varying the maximum derivative order d € 1,2,3,4. Figure [3|shows the
training loss curves, showing consistent and reliable convergence across all derivative orders.

Norm of the Derivative Tensor. We additionally assess the stability of the derivative
tensors used by HOD-GNN. We compute the norm of the derivative tensor during training on
the MOLBACE dataset. Following standard practice , we report the relative
norm: the ratio between the derivative tensor norm and the final node feature norm of the
base MPNN. Figure [4] shows that the relative norm consistently remains significantly lower
than that of the node features throughout training, confirming that HOD-GNN operates in
a well-conditioned regime.

H.5 ANALYSIS OF GENERALIZATION BEHAVIOR OF HOD-GNN

Recent studies (Franks et al.| [2024} [Maskey et al.| [2025; |Carrasco et al, 2025) have raised
concerns about the generalization ability of highly expressive GNNs, showing that performance
can degrade when a model becomes “too expressive.” These findings suggest that GNNs
often generalize best when they have just the right capacity, a balance influenced both by
architectural expressivity and by parameter scale (e.g., overly wide hidden dimensions can
also harm generalization).

Motivated by these observations, we examine train-test gaps for HOD-GNN on the OGB
datasets MOLHIV and MOLTOX21 (Table E[) HOD-GNN exhibits moderate gaps that are
smaller than those of (i) less expressive architectures such as GCN and GIN, (ii) models of
comparable expressivity such as DSS-GNN (ND), and (iii) more expressive variants such
as DSS-GNN (ED). These findings indicate that HOD-GNN displays strong generalization.
Baseline values are taken from Bevilacqua et al.| (2021).

We propose two hypotheses as to why HOD-GNN generalizes well, informed by recent
literature:

1. Compact parameterization enabled by higher-order derivatives. Across our
experiments, the base MPNN within HOD-GNN consistently performs best with small
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Figure 4: The relative norm of the derivative tensor with maximal derivative d € {1,2} with
respect to the norm of the final node feature matrix of the base MPNN on the MOLBACE
dataset.

Table 9: Comparison of model train-test performance gap on MOLHIV and MOLTOX21.

Method MOLHIV Train AUC MOLHIV Test AUC  Gap-MOLHIV ~MOLTOX21 Train AUC MOLTOX21 Test AUC  Gap-MOLTOX21
GCN 88.65 +2.19 76.06 = 0.97 12.59 92.06 +1.81 75.29 +0.69 16.77
GIN 88.64 & 2.54 75.58 = 1.40 13.06 93.06 + 0.88 74.91 £ 0.51 18.15
DSS-GNN (ED) 91.71 + 3.50 76.43 +2.12 15.28 92.38 +1.57 75.12 4+ 0.50 17.26
DSS-GNN (ND) 89.70 & 3.20 76.19 = 0.96 13.51 91.23 £2.15 75.34+1.21 15.89
HOD-GNN 88.154+0.51 80.86 + 0.52 7.29 93.73 £ 1.09 77.99+0.71 15.74

hidden dimensions (8-32), resulting in models with relatively few parameters, thus aligning
well with the "just the right capacity" approach mentioned above. We hypothesize
that higher-order derivatives enrich these compact representations, effectively increasing
expressive power without increasing model size, thereby supporting better generalization.

2. Principled initialization that recovers RWSE. The constructive proof following
Theorem 4.2 gives an explicit initialization for HOD-GNN’s derivative features that exactly
matches Random Walk Structural Encodings (RWSE) - a widely used structural prior
known to improve expressivity without overfitting. This suggests an alternative view of
HOD-GNN:

e At the beginning of training, the derivative-informed features remain close to RWSE,
maintaining well known baseline behavior.

e When the task benefits from additional capacity, the model can naturally move
beyond RWSE and leverage higher-order derivative information.

This yields a natural “just expressive enough” bias: HOD-GNN begins from a well-
understood RWSE baseline and increases expressivity only when the data requires it.

We view further investigation of HOD-GNN’s generalization properties as a promising
direction for future work.

H.6 COMPARISON OF RUNTIME AND MEMORY USAGE AGAINST SUBGRAPH GNNs

In section [B] we show that HOD-GNN is able to scale to the Peptides datasets, which are
unreachable for full-bag subgraph GNNs on standard hardware, as stated in
(2025); Bar-Shalom et al.| (2023).To further demonstrate the scalability of HOD-GNN, we
benchmark its runtime and memory usage against subgraph-based GNNs on the MOLHIV
dataset. Since the choice of subgraph selection policy is the primary factor determining the
asymptotic complexity of subgraph GNNs (Bevilacqua et al., [2021)), we evaluate a range of
policies using the default parameters from the original work. For subgraph GNNs, we adopt
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Table 10: Runtime and memory comparison on the MOLHIV dataset. HOD-GNN demon-
strates both improved memory efficiency and competitive runtime.

GNN | GPU Memory (MiB) | Training Time / Epoch (s) | Test Time / Epoch (s)
edge-deletion 32,944 62.13 5.70
node-deletion 29,826 58.80 4.01
ego-nets 25,104 53.16 3.07
ego-nets+ 25,211 54.19 3.20
HOD-GNN 12,964 53.34 2.28
Table 11: MAE comparison of different GNN architectures on ZINC-12K.

GNN MAE

GCN 0.321 £ 0.009

HOD-GNN + GCN  0.080 £ 0.006

GIN 0.163 £+ 0.004

HOD-GNN + GIN  0.066 £+ 0.003

GPS 0.070 £+ 0.004

HOD-GNN + GPS  0.064 =+ 0.002

the hyperparameters reported in Bevilacqua et al.| (2021) for MOLHIV. For HOD-GNN, we
use the same hyperparameters as in Section [ detailed in Appendix [G]

Results. Table[I0] reports GPU memory usage and per-epoch training and test runtimes.
HOD-GNN achieves improvements in memory efficiency, requiring less than half the GPU
memory compared to subgraph GNNs. In terms of runtime, HOD-GNN is faster than edge-
deletion and node-deletion policies, while achieving comparable training time to ego-nets
and ego-nets+. Notably, ego-net policies are known to be less expressive (Bevilacqua et al.,
2021)), highlighting that HOD-GNN achieves both efficiency and expressivity.

Discussion. The improvements primarily stem from the analytic computation of higher-
order derivatives in HOD-GNN, which avoids the costly enumeration of subgraphs. While
these advantages already translate to lower memory usage and faster runtimes in practice,
we emphasize that HOD-GNN'’s scalability potential is not yet fully realized. In particular, it
relies on efficient sparse matrix multiplications, which are currently suboptimally implemented
in popular GNN libraries such as PyTorch Geometric. We therefore anticipate that further
optimization of sparse kernels would amplify the scalability benefits of HOD-GNN.

H.7 ABLATION ON BACKBONE GNN

In most experiments, we employ GIN (Xu et al.| |2018|) as the backbone of HOD-GNN. A key
advantage of our approach, however, is its compatibility with any message-passing backbone.
To assess the effect of backbone choice, we evaluate HOD-GNN on the ZINC dataset using
GCN, GIN, and GPS as base architectures. The results, summarized in Table[IT]} demonstrate
that HOD-GNN consistently improves upon its backbone across all settings. Among the
tested architectures, GPS achieves the strongest performance, followed by GIN, with GCN
ranking third—reflecting its lower expressivity relative to the other backbones.

I ETHICS STATEMENT

This paper advances the theoretical and empirical study of graph neural networks through
derivative-based architectures. Our experiments are conducted exclusively on widely used,
publicly available benchmark datasets (ZINC, OGB, and Peptides molecular tasks), which
contain no personally identifiable or sensitive information. We believe our work does not
raise immediate ethical concerns. Nevertheless, we acknowledge that improvements in graph
representation learning may be applied to sensitive domains (e.g., biological or social network
data). We encourage responsible use of our methods in accordance with the ICLR Code of
Ethics.
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J REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. All datasets used are standard bench-
marks with clearly defined splits. A detailed description of architectures, hyperparameters,
and training settings as well as full proofs of the theoretical results appear in the Appendix.
Additionally, anonymized source code is provided as supplementary material and will be
released publicly upon publication. Together, these resources should allow researchers to
fully reproduce our experimental and theoretical results.
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