

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
ON THE EXPRESSIVE POWER OF GNN DERIVATIVES**Anonymous authors**

Paper under double-blind review

ABSTRACT

Despite significant advances in Graph Neural Networks (GNNs), their limited expressivity remains a fundamental challenge. Research on GNN expressivity has produced many expressive architectures, leading to architecture hierarchies with models of increasing expressive power. Separately, derivatives of GNNs with respect to node features have been widely studied in the context of the oversquashing and over-smoothing phenomena, GNN explainability, and more. To date, these derivatives remain unexplored as a means to enhance GNN expressivity. In this paper, we show that these derivatives provide a natural way to enhance the expressivity of GNNs. We introduce High-Order Derivative GNN (HOD-GNN), a novel method that enhances the expressivity of Message Passing Neural Networks (MPNNs) by leveraging high-order node derivatives of the base model. These derivatives generate expressive structure-aware node embeddings processed by a second GNN in an end-to-end trainable architecture. Theoretically, we show that the resulting architecture family's expressive power aligns with the WL hierarchy. We also draw deep connections between HOD-GNN, Subgraph GNNs, and popular structural encoding schemes. For computational efficiency, we develop a message-passing algorithm for computing high-order derivatives of MPNNs that exploits graph sparsity and parallelism. Evaluations on multiple graph learning benchmarks demonstrate HOD-GNN's excellent performance on popular graph learning tasks.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become foundational tools in geometric deep learning, with widespread applications in domains such as life sciences (Wong et al., 2024), social sciences (Monti et al., 2019), optimization (Cappart et al., 2023), and more. Despite their empirical success, many GNNs suffer from a fundamental limitation: their expressive power is inherently bounded. In particular, the widely used family of Message Passing Neural Networks (MPNNs) is at most as expressive as the Weisfeiler–Lehman (1-WL) graph isomorphism test Morris et al. (2019); Xu et al. (2018), limiting their ability to distinguish between even simple non-isomorphic graphs and capture intricate structural patterns Chen et al. (2020). To address this shortcoming, a growing body of work has proposed more expressive GNN architectures, typically organized into expressivity hierarchies that balance computational cost with representational power Maron et al. (2019); Morris et al. (2019; 2021).

Concurrently to advances in GNN expressivity, the derivatives of the final node representations $\mathbf{h}_v^{(T)}$ ¹ and the graph-level output \mathbf{h}^{out} with respect to the initial features \mathbf{X}_v have played a key role in several research directions. For over-squashing analysis (Di Giovanni et al., 2023a;b), both first-order derivatives $\frac{\partial \mathbf{h}_v^{(T)}}{\partial \mathbf{X}_u}$ and mixed partial derivatives $\frac{\partial^2 \mathbf{h}^{\text{out}}}{\partial \mathbf{X}_v \partial \mathbf{X}_u}$ quantify inter-node influence and communication capacity. In over-smoothing studies like Arroyo et al. (2025), derivatives $\frac{\partial \mathbf{h}^{\text{out}}}{\partial \mathbf{X}_v}$ are used to analyze vanishing gradients, connecting over-smoothing to diminished gradient flow. GNN gradient-based explainability methods (Baldassarre & Azizpour, 2019; Pope et al., 2019) also use these derivatives to identify influential nodes and features. The prevalence of these derivatives across diverse contexts in GNN research suggests they encode valuable information that may be informative for graph learning tasks.

¹ $\mathbf{h}_v^{(t)}$ is the representation of the node v after the t -th GNN layer.

054 **Our approach.** In this work, we reveal a surprising connection between these two lines
 055 of research. We show that incorporating derivatives of a base MPNN with respect to initial
 056 node features as additional inputs to a downstream MPNN enhances the expressivity of the
 057 base components. One intuitive way to understand this connection is through the mechanism
 058 by which GNNs with marking(Papp & Wattenhofer, 2022; Pellizzoni et al., 2024) improve
 059 expressivity: they choose a node from the input graph and add to it a unique identifier before
 060 processing it through an MPNN. While these identifiers are often implemented through an
 061 explicit, often discrete, perturbations to the node features, our approach instead computes
 062 derivatives of the MPNN output, capturing the effect of *infinitesimal* perturbations. **Thus,**
 063 **giving the model access to derivative information both leverages quantities which frequently**
 064 **arise in theoretical analyses and may thus encode valuable structural information, and yields**
 065 **expressivity gains equivalent to GNNs with marking. See Section 3 for details.**

066 We introduce High-Order Derivative GNN (HOD-GNN), a novel expressive GNN family
 067 that leverages the derivatives of a base MPNN to improve its expressive power. We first
 068 introduce 1-HOD-GNN, which consists of three components: a base MPNN, a derivative
 069 encoder network, and a downstream GNN. 1-HOD-GNN computes high-order derivatives
 070 of the base MPNN with respect to the features of a *single* node at a time, i.e., $\frac{\partial^\alpha \mathbf{h}_v^{(T)}}{\partial \mathbf{X}_u^\alpha}$ and
 071 $\frac{\partial^\alpha \mathbf{h}^{\text{out}}}{\partial \mathbf{X}_u^\alpha}$. These derivatives are then encoded into new derivative-aware node features via
 072 the encoder network, which are then passed to the downstream GNN. Theoretically, We
 073 show that 1-HOD-GNN models are more expressive than standard GNNs, can compute
 074 popular structural encodings, and are tightly related to Subgraph GNNs Cotta et al. (2021);
 075 Bevilacqua et al. (2021). Empirically, we demonstrate several desirable properties of our
 076 model: it achieves strong performance across a range of standard graph benchmarks, scales
 077 to larger graphs that remain out of reach for other expressive GNNs, and can accurately
 078 count graph substructures, providing direct empirical evidence of its expressive power.

079 We then extend 1-HOD-GNN to k -HOD-GNN, which supports mixed derivatives with
 080 respect to k distinct node features (i.e. $\frac{\partial^{\alpha_1+\dots+\alpha_k} \mathbf{h}_v^{(T)}}{\partial \mathbf{X}_{u_1}^{\alpha_1}, \dots, \mathbf{X}_{u_k}^{\alpha_k}}, \frac{\partial^{\alpha_1+\dots+\alpha_k} \mathbf{h}^{\text{out}}}{\partial \mathbf{X}_{u_1}^{\alpha_1}, \dots, \mathbf{X}_{u_k}^{\alpha_k}}$). Like 1-HOD-GNN,
 081 the k -HOD-GNN forward pass begins by computing higher-order mixed derivatives of a
 082 base MPNN, which form a k -indexed derivative tensor. This tensor is then used to construct
 083 new node features using a higher-order encoder network (as in Maron et al. (2018); Morris
 084 et al. (2019)), which are subsequently passed to a downstream GNN for final prediction.
 085 We theoretically analyze k -HOD-GNN, showing that it can distinguish between graphs that
 086 are indistinguishable to the k -WL test², resulting in a model that is more expressive than
 087 any of its individual components alone. Furthermore, we leverage results from Zhang et al.
 088 (2024b) to analyze k -HOD-GNN’s ability to compute homomorphism counts, demonstrating
 089 its capacity to capture fine-grained structure.

090 Efficiently computing high-order node derivatives is a core component of HOD-GNN. To
 091 this end, we develop a novel algorithm for computing these derivatives via an analytic,
 092 message-passing-like procedure. This approach yields two key benefits. First, being fully
 093 analytic, it enables differentiation through the derivative computation itself, allowing
 094 HOD-GNN to be trained end-to-end. Second, the message-passing-like structure exploits
 095 the sparsity of graph data, improving scalability (see Section 4 for a detailed complexity
 096 analysis). Combined with the empirical observation that HOD-GNN remains effective even
 097 when using base MPNNs with small hidden dimensions, our method scales to benchmarks
 098 containing larger graphs that are often out of reach for other expressive GNN architectures.

099 **Our contributions.** (1) We introduce k -HOD-GNN, a novel expressive GNN family
 100 that integrates derivative-based embeddings; (2) We provide a theoretical analysis of its
 101 expressivity and computational properties; (3) We propose an algorithm for efficient derivative
 102 computation on graphs; (4) We demonstrate consistently high empirical performance across
 103 seven standard graph classification and regression benchmarks. Additionally, we show that
 104 HOD-GNN scales to benchmarks containing larger graphs that are typically out of reach for
 105 many expressive architectures on standard hardware.

106
 107 ²We refer here to the folklore WL test rather than the oblivious variant; see Morris et al. (2023)
 for a detailed discussion of the differences.

108 **2 PRELIMINARIES AND PREVIOUS WORK**
 109

110 **Notation.** The size of a set \mathcal{S} is denoted by $|\mathcal{S}|$. \oplus denotes concatenation. We denote
 111 graphs by $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the adjacency matrix and $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the node
 112 feature matrix, with n nodes and d -dimensional features per node. The node set of a graph
 113 is denoted by $V(\mathcal{G})$.

114 **MPNNs and GNN expressivity.** MPNNs(Gilmer et al., 2017) are a widely used class of
 115 GNNs that update node representations through iterative aggregation of local neighborhood
 116 information. At each layer t , the representation $\mathbf{h}_v^{(t)}$ of node v is updated via:
 117

$$118 \quad \mathbf{h}_v^{(t)} = \text{MLP}^{(t)} \left(\mathbf{h}_v^{(t-1)}, \text{AGG}^{(t)} \left(\left\{ \mathbf{h}_u^{(t-1)} : u \in \mathcal{N}(v) \right\} \right) \right), \quad (1)$$

120 where $\mathcal{N}(v)$ denotes the neighbors of node v in the graph and $\text{AGG}^{(t)}$ are permutation-
 121 preserving aggregation function. After T message-passing layers, a graph-level representation
 122 is typically obtained by applying a global pooling operation over all node embeddings:
 123

$$124 \quad \mathbf{h}^{\text{out}} = \text{AGG}^{\text{out}} \left(\left\{ \mathbf{h}_v^{(T)} : v \in V(\mathcal{G}) \right\} \right), \quad (2)$$

125 MPNNs have inherent expressivity limitations (Morris et al., 2019; Xu et al., 2018; Weisfeiler
 126 & Leman, 1968), as they cannot distinguish graphs that are indistinguishable by the 1-
 127 WL test. To address this, a wide range of more expressive GNN architectures have been
 128 proposed (Morris et al., 2021; Maron et al., 2018; Puny et al., 2023; Cotta et al., 2021;
 129 Rieck et al., 2019; Sato et al., 2021; Dwivedi et al., 2023). (See Appendix A for details or
 130 (Sato, 2020; Morris et al., 2021; Jegelka, 2022; Li & Leskovec, 2022; Zhang et al., 2024a) for
 131 comprehensive surveys.)

132 **Subgraph GNNs.** Subgraph GNNs (Zhang & Li, 2021; Cotta et al., 2021; Bevilacqua et al.,
 133 2021; Frasca et al., 2022; Zhang et al., 2023b;a; Bar-Shalom et al., 2024b) are expressive
 134 GNNs that operate over a set of subgraphs $\mathcal{B}_{\mathcal{G}} = \{\mathcal{S}_v \mid v \in V^k(\mathcal{G})\}$, where $V^k(\mathcal{G})$ denotes
 135 the set of all k -tuples of nodes in the input graph \mathcal{G} , and each subgraph \mathcal{S}_v corresponds to
 136 one such tuple. In this work, we focus on the widely adopted node-marking DS-GNNs (Cotta
 137 et al., 2021; Bevilacqua et al., 2021; Papp & Wattenhofer, 2022) and their higher-order
 138 generalization, k -OSAN (Qian et al., 2022), though we note that many other variants of
 139 Subgraph GNNs exist. For precise defintions of DS-GNN and k -OSAN, see Appendix E.1.

140 **Derivatives of MPNNs.** Derivatives frequently appear in the analysis of GNNs. In
 141 the study of *oversquashing*—the failure of information to propagate through graph struc-
 142 tures (Alon & Yahav, 2020; Topping et al., 2021; Di Giovanni et al., 2023a;b)—derivatives
 143 play a key role (For a comprehensive overview, see Akansha (2023)). Node derivatives are
 144 also used in GNN explainability (Ying et al., 2019; Luo et al., 2020; Baldassarre & Azizpour,
 145 2019; Pope et al., 2019). Gradient-based approaches such as Sensitivity Analysis, Guided
 146 Backpropagation (Baldassarre & Azizpour, 2019), and Grad-CAM (Pope et al., 2019) rely on
 147 derivative magnitudes. Finally, several standalone works make use of node-based derivatives.
 148 E.g., Arroyo et al. (2025) use node derivatives to draw a connection between vanishing
 149 gradients, and over-smoothing, and Keren Taraday et al. (2024) propose aggregation functions,
 150 designed to induce non-zero mixed node derivatives. See Appendix A for further discussion.

151 **3 METHOD**
 152

153 We begin this section with a discussion motivating the use of MPNN derivatives and their
 154 contribution to improving expressivity. We then introduce k -HOD-GNN, an expressive
 155 GNN architecture that enhances representational power by leveraging derivatives of a base
 156 MPNN. We first present the full details of the 1-HOD-GNN model, followed by an overview
 157 of its higher-order generalization. A comprehensive treatment of the general k -order case
 158 is provided in Appendix C.1. We emphasize that in k -HOD-GNN, the parameter k refers
 159 to the number of distinct nodes with respect to which derivatives are taken, not the total
 160 derivative order. For instance, 1-HOD-GNN uses derivatives of the form $\frac{\partial^{\alpha} \mathbf{h}_v}{\partial^{\alpha} \mathbf{X}_v}$, but not
 161 mixed derivatives such as $\frac{\partial^{\alpha_1 + \alpha_2} \mathbf{h}_v}{\partial^{\alpha_1} \mathbf{X}_{u_1}, \partial^{\alpha_2} \mathbf{X}_{u_2}}$, which involve multiple nodes.

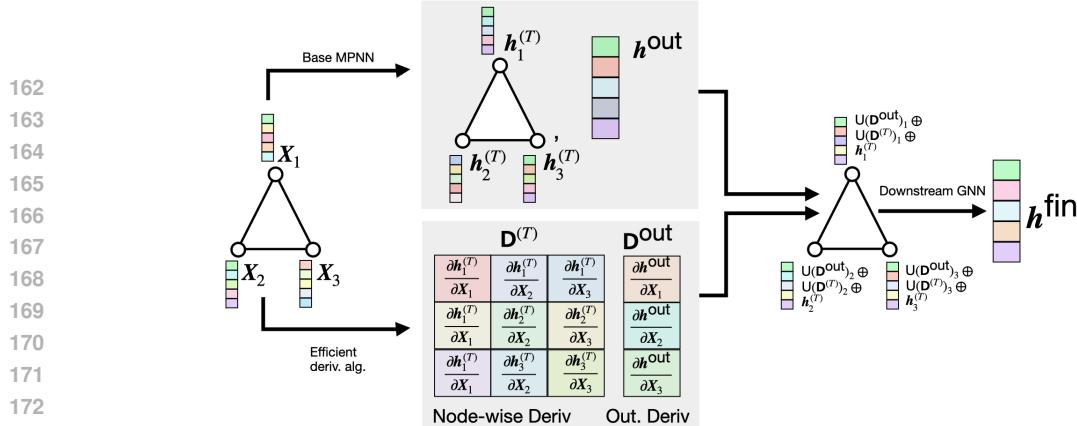


Figure 1: The HOD-GNN pipeline. Given an input graph, we compute the outputs and derivatives of a base MPNN. The derivatives are processed by two encoders (denoted U) to produce features that are concatenated with the base MPNN outputs and passed to a downstream GNN for final prediction.

3.1 MOTIVATION

Beyond being a widely used and informative quantity in GNN analysis, MPNN derivatives can enhance expressivity. To build intuition to why that is, we begin with a simple example, showing that first-order derivatives allow us to count triangles, a task that standard MPNNs cannot perform. Consider the model $\mathcal{M}(\mathbf{A}, \mathbf{X}) = \mathbf{A}^3 \mathbf{X}$, which can be implemented by a three-layer GCN with identity activation. For any node v , the derivative of its final feature vector $\mathbf{h}_v^{(T)}$ with respect to its own input feature vector \mathbf{X}_v is exactly $\mathbf{A}_{v,v}^3$. aggregating these derivatives, we can compute $\sum_v \mathbf{A}_{v,v}^3 / 6$, which is exactly the number of triangles in the graph.

To illustrate how higher-order derivatives further enhance expressivity, we recall that GNNs with marking (Papp & Wattenhofer, 2022) improve expressive power over standard MPNNs by selecting a node³ v in the input graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ and attaching a unique identifier to it, yielding the modified input $\mathbf{X} + \epsilon \mathbf{e}_v$ for some $\epsilon \in \mathbb{R}$. The output is then $\mathbf{h}^* = \mathcal{M}(\mathbf{A}, \mathbf{X} + \epsilon \mathbf{e}_v)$. If \mathcal{M} employs an analytic activation function σ (See definition E.1 in the appendix), then \mathcal{M} itself is analytic. Consequently, its output can be approximated by the Taylor expansion:

$$\mathcal{M}(\mathbf{A}, \mathbf{X} + \epsilon \mathbf{e}_v) \approx \sum_{i=0}^m \frac{\partial^i \mathcal{M}(\mathbf{A}, \mathbf{X} + x \mathbf{e}_v)}{\partial x^i} \Big|_{x=0} \cdot \epsilon^i = \sum_{i=0}^m \frac{\partial^i \mathbf{h}^{\text{out}}}{\partial \mathbf{e}_v^i} \cdot \epsilon^i, \quad (3)$$

where $\mathbf{h}^{\text{out}} = \mathcal{M}(\mathbf{A}, \mathbf{X})$ is the output of \mathcal{M} without marking. This shows that by leveraging the higher-order derivatives of an MPNN, one can approximate the output of a GNN with marking to arbitrary precision. As a result, derivatives strictly extend the expressive power of MPNNs. An expanded intuitive discussion of these expressivity gains, along with the natural connection between HOD-GNN and subgraph GNNs, is provided in Appendix B.

3.2 THE 1-HOD-GNN ARCHITECTURE

Overview. A 1-HOD-GNN model, denoted Φ , consists of two GNNs: a base MPNN \mathcal{M} and a downstream GNN \mathcal{T} as well as two derivative encoder networks U^{node} and U^{out} . Given an input graph \mathcal{G} , the computation of $\Phi(\mathcal{G})$ proceeds in four steps (see Figure 1): (1) Compute the final node representations and output of \mathcal{M} ; (2) Compute derivative tensors of the output with respect to the input node features (defined below); (3) Use U^{node} and U^{out} to extract new derivative informed node features from the derivative tensors. (4) Apply \mathcal{T} to the input graph enriched with derivative-informed features. Importantly, we develop an efficient algorithm for step (2) that enables backpropagation through the derivative computation itself, making all four above steps differentiable (see Section 3.2.1). Consequently, the entire HOD-GNN model can be trained end-to-end, a strategy we adopt in all our experiments.

³While GNNs with marking can select multiple nodes, for clarity we focus on the single-node case. The general case is discussed in Appendix B.

216 **Steps 1 & 2.** In the first two stages, we compute the final node representations $\mathbf{h}^{(T)}$ and
 217 the output vector \mathbf{h}^{out} using the base MPNN \mathcal{M} , along with their corresponding derivative
 218 tensors, defined below:

219 **Definition 3.1.** Given a graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ with n nodes, an MPNN \mathcal{M} and an intermediate
 220 node feature representation matrix $\mathbf{h} \in \mathbb{R}^{n \times d'}$, the derivative tensor of $\mathbf{D}(\mathbf{h}) \in \mathbb{R}^{n \times n \times d' \times d \times m}$
 221 is defined by:

$$223 \quad \mathbf{D}(\mathbf{h})[v, u, i, j, \alpha] = \frac{\partial^\alpha \mathbf{h}_{v,i}}{\partial \mathbf{X}_{u,j}^\alpha}, \quad (4)$$

225 where $v, u \in V(\mathcal{G})$ are nodes, $i \in [d']$, $j \in [d]$ specify the feature dimensions of the node
 226 feature vectors $\mathbf{h}_v, \mathbf{X}_u$ respectively, and $\alpha \in [m]$ where $m \in \mathbb{N}$ is a hyperparameter specifying
 227 the maximum order of derivatives to be considered. Similarly, given a graph-level prediction
 228 vector $\mathbf{h}^{\text{out}} \in \mathbb{R}^{d'}$ the derivative tensor $\mathbf{D}(\mathbf{h}^{\text{out}}) \in \mathbb{R}^{n \times d' \times d \times m}$ is defined by:

$$229 \quad \mathbf{D}(\mathbf{h}^{\text{out}})[u, i, j, \alpha] = \frac{\partial^\alpha \mathbf{h}_i^{\text{out}}}{\partial \mathbf{X}_{u,j}^\alpha}. \quad (5)$$

232 In 1-HOD-GNN, we compute the output derivative tensor $\mathbf{D}^{\text{out}} = \mathbf{D}(\mathbf{h}^{\text{out}})$, which captures
 233 how the output of the base MPNN \mathcal{M} responds to perturbations in the input node features.
 234 In parallel, we compute the node-wise derivative tensor $\mathbf{D}^{(T)}$, where $\mathbf{D}^{(t)} = \mathbf{D}(\mathbf{h}^{(t)})$ for
 235 $t = 1, \dots, T$. These tensors characterize how each node’s representation at layer t changes
 236 in response to variations in the input features. Derivative tensors are computed using
 237 Algorithm 1, described in Section 3.2.1 and elaborated on in Appendix D. The algorithm
 238 leverages the sparsity of the input graph to enable efficient computation of high-order
 239 derivatives. Crucially, Algorithm 1 is fully differentiable with respect to the weights of \mathcal{M} ,
 240 enabling end-to-end training of Φ .

241 **Step 3.** In the third stage of our method, we extract new node features from the derivative
 242 tensors \mathbf{D}^{out} and $\mathbf{D}^{(T)}$ using the encoder networks \mathbf{U}^{node} and \mathbf{U}^{out} . First, as $\mathbf{D}^{\text{out}} \in$
 243 $\mathbb{R}^{n \times d' \times d \times m}$ is a tensor indexed by a single node, it can be directly interpreted as a node
 244 feature matrix by flattening the remaining dimensions. We thus define the encoder network
 245 \mathbf{U}^{out} to be a DeepSets (Zaheer et al., 2017) update⁴:

$$246 \quad \mathbf{U}^{\text{out}}(\mathbf{D}^{\text{out}})_v = \text{MLP}(\mathbf{D}^{\text{out}}[v, \dots]). \quad (6)$$

248 Secondly, since $\mathbf{D}^{(T)}$ is indexed by pairs of nodes in \mathcal{G} , it shares the structure of the
 249 adjacency matrix \mathbf{A} , which is also pairwise-indexed. We can thus define the encoder network
 250 $\mathbf{U}^{\text{node}} : \mathbb{R}^{n^2 \times d' \times d \times m} \rightarrow \mathbb{R}^{n \times d}$ to be any GNN architecture which maps adjacency matrices
 251 with edge features to node feature matrices.

252 To enhance sensitivity to global interactions, we select \mathbf{U}^{node} to be a 2-Invariant Graph
 253 Network (IGN)(Maron et al., 2018), [optionally using a sparsity-preserving simplified variant](#)
 254 [formally defined in Appendix C.1](#).

256 We construct the derivative-informed node features \mathbf{h}^{der} by combining information from the
 257 base MPNN \mathcal{M} , the pooled intermediate derivatives, and the output derivatives:

$$258 \quad \mathbf{h}_v^{\text{der}} = \mathbf{h}_v^{(T)} \oplus \mathbf{U}^{\text{out}}(\mathbf{D}^{\text{out}}) \oplus \mathbf{U}^{\text{node}}(\mathbf{D}^{(T)}). \quad (7)$$

260 **Step 4.** In the final stage, we replace the original node features of \mathcal{G} with the derivative-
 261 informed features \mathbf{h}^{der} , and apply a downstream GNN \mathcal{T} to produce a graph-level prediction.
 262 For the remainder of this work, we assume \mathcal{T} is an MPNN, though our approach is compatible
 263 with any GNN architecture.

264 3.2.1 EFFICIENT DERIVATIVE TENSOR COMPUTATION

266 We now describe an efficient algorithm for computing the derivative tensors in a 1-HOD-
 267 GNN model Φ with base MPNN \mathcal{M} . For clarity, we focus on the case where \mathcal{M} is a GIN

269 ⁴Empirically, we observe that setting $\mathbf{U}^{\text{out}} = 0$ produces similar results; we nevertheless keep the
 270 module in our formulation for completeness.

(Xu et al., 2018), in which case the message-passing and readout functions are given by:

$$\mathbf{h}_v^{(t)} = \text{MLP}^{(t)}((1 + \epsilon)\mathbf{h}_v^{(t-1)} + \sum_{u \in \mathcal{N}(v)} \mathbf{h}_u^{(t-1)}), \quad \mathbf{h}^{\text{out}} = \text{MLP}\left(\sum_{u \in V(\mathcal{G})} \mathbf{h}_u^{(T)}\right). \quad (8)$$

An extension of this algorithm to general MPNNs and higher-order mixed derivatives is provided in Appendix D. For convenience, we decompose the node update in Equation 8 into two parts: an aggregation step and a DeepSets-based update, given respectively by:

$$\tilde{\mathbf{h}}_v^{(t-1)} = \underbrace{(1 + \epsilon)\mathbf{h}_v^{(t-1)} + \sum_{u \in \mathcal{N}(v)} \mathbf{h}_u^{(t-1)}}_{\text{agg. update}}, \quad \mathbf{h}_v^{(t)} = \underbrace{\text{MLP}(\tilde{\mathbf{h}}_v^{(t-1)})}_{\text{DeepSets update}}. \quad (9)$$

The algorithm is based on the following two observations: First since $\tilde{\mathbf{h}}_v^{(t-1)}$ is a linear combination of $\mathbf{h}_v^{(t-1)}$ and its neighboring node features $\{\mathbf{h}_u^{(t-1)} \mid u \in \mathcal{N}(v)\}$, the derivatives of $\tilde{\mathbf{h}}_v^{(t-1)}$ are likewise linear combinations of the derivatives of $\mathbf{h}_v^{(t-1)}$ and $\{\mathbf{h}_u^{(t-1)} \mid u \in \mathcal{N}(v)\}$. More explicitly:

$$\mathbf{D}(\tilde{\mathbf{h}}^{(t-1)})[v, \dots] = (1 + \epsilon)\mathbf{D}^{(t-1)}[v, \dots] + \sum_{u \in \mathcal{N}(v)} \mathbf{D}^{(t-1)}[u, \dots]. \quad (10)$$

This computation mirrors the GIN aggregation update in Equation 8, leveraging the sparsity of the graph. Second, since the DeepSets update applies an MLP independently to each node feature $\tilde{\mathbf{h}}_v^{(t-1)}$, we can apply Faà di Bruno’s formula (see e.g. (Hardy, 2006)) to compute the derivatives of each $\mathbf{h}_v^{(t)}$ based on the derivatives of $\tilde{\mathbf{h}}_v^{(t-1)}$. This results in a “DeepSets-like” derivative update, allowing us to compute $\mathbf{D}^{(t)}$ directly from $\mathbf{D}(\tilde{\mathbf{h}}^{(t-1)})$. Iteratively applying these two steps yields the final node-wise derivative tensor $\mathbf{D}^{(T)}$ through a differentiable, message-passing-like procedure. A similar approach allows efficient computation of \mathbf{D}^{out} from $\mathbf{D}^{(T)}$. See Appendix D for full details of the algorithm.

Computational Complexity. An important property of the above algorithm is that, for sparse graphs or relatively shallow base MPNNs, it is computationally efficient. To see this, first notice that since $\mathbf{h}^{(0)} = \mathbf{X}$, the tensor $\mathbf{D}^{(0)}$ is extremely sparse, satisfying:

$$\mathbf{D}^{(0)}[v, u, i, j, \alpha] = \begin{cases} 1 & \text{if } v = u, i = j, \alpha = 1, \\ 0 & \text{otherwise.} \end{cases} \quad (11)$$

Thus, it can be stored efficiently using sparse matrices. At each layer t , the derivative aggregation step (Equation 10) increases the number of non-zero entries only in proportion to the number of node pairs that exchange messages for the first time. Thus, for small values of t or for sparse graphs \mathcal{G} , the derivative tensor $\mathbf{D}^{(t)}$ remains sparse. Moreover, the algorithm’s message-passing-like structure ensures runtime efficiency as well. For a full complexity analysis of our algorithm, see Section 4.

3.3 k -HOD-GNN VIA MIXED DERIVATIVES

We now generalize 1-HOD-GNN, which operates on single-node derivatives (i.e., derivatives of the form $\frac{\partial^\alpha \mathbf{h}_v^{(T)}}{\partial \mathbf{X}_u^\alpha}$ or $\frac{\partial^\alpha \mathbf{h}^{\text{out}}}{\partial \mathbf{X}_u^\alpha}$), to k -HOD-GNN, which extracts information from mixed partial derivatives across k nodes (i.e., $\frac{\partial^{\alpha_1 + \dots + \alpha_k} \mathbf{h}_v^{(T)}}{\partial \mathbf{X}_{u_1}^{\alpha_1} \dots \partial \mathbf{X}_{u_k}^{\alpha_k}}$, or $\frac{\partial^{\alpha_1 + \dots + \alpha_k} \mathbf{h}^{\text{out}}}{\partial \mathbf{X}_{u_1}^{\alpha_1} \dots \partial \mathbf{X}_{u_k}^{\alpha_k}}$). k -HOD-GNN offers increased expressive power at the cost of greater computational complexity. We begin by formally defining the k -indexed derivative tensors. For simplicity, we assume the input node features are 1-dimensional, handling the more general case in Appendix C.1.

Definition 3.2. Given a graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ with n nodes, and an MPNN \mathcal{M} and an intermediate node feature matrix $\mathbf{h} \in \mathbb{R}^{n \times d'}$, the k -indexed derivative tensor of $\mathbf{D}_k(\mathbf{h}) \in \mathbb{R}^{n \times n^k \times d' \times m^k}$ is defined by:

$$\mathbf{D}_k(\mathbf{h})[v, \mathbf{u}, i, \boldsymbol{\alpha}] = \frac{\partial^{\alpha_1 + \dots + \alpha_k} \mathbf{h}_{v,i}}{\partial \mathbf{X}_{u_1}^{\alpha_1} \dots \partial \mathbf{X}_{u_k}^{\alpha_k}}. \quad (12)$$

where $v \in V(\mathcal{G})$, $\mathbf{u} = (u_1, \dots, u_k) \in V^k(\mathcal{G})$, $i \in [d']$ and $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_k) \in [m]^k$. \mathbf{D}_k is defined similarly for graph-level prediction vectors.

The k -indexed derivative tensors capture how the output and node representations of \mathcal{M} change under joint perturbations to the features of k nodes, thereby encoding rich higher-order structural interactions within the graph. We compute these tensors using an extension of the derivative computation process described in Section 3.2.1 (See Appendix D for more details).

As in the 1-HOD-GNN case, a k -HOD-GNN model Φ consists of a base MPNN \mathcal{M} and a downstream network \mathcal{T} . Given an input graph \mathcal{G} , the computation of $\Phi(\mathcal{G})$ proceeds in the same four stages established earlier. First, we compute the output and final node representations of \mathcal{M} along with the k -indexed derivative tensors $\mathbf{D}_k^{(T)}$ and $\mathbf{D}_k^{\text{out}}$. We then use $\mathbf{h}_v^{(T)}$, $\mathbf{D}_k^{(T)}$ and $\mathbf{D}_k^{\text{out}}$ to extract new derivative informed node features. These node features are computed through:

$$\mathbf{h}_v^{\text{der}} = \text{MLP} \left(\mathbf{h}_v^{(T)} \oplus \text{U}^{\text{node}}(\mathbf{D}_k^{(T)})_v \oplus \text{U}^{\text{out}}(\mathbf{D}_k^{\text{out}})_v \right). \quad (13)$$

where U^{node} and U^{out} are learned $(k+1)$ -IGN and k -IGN encoders respectively. Finally, we substitute the original node features of graph \mathcal{G} with \mathbf{h}^{der} , and input the resulting graph into \mathcal{T} to generate the final graph-level prediction. For more details, see Appendix C.1.

4 THEORETICAL ANALYSIS

In this section, we analyze the expressive power and computational complexity of k -HOD-GNN. Formal statements and complete proofs of all results in this section are provided in Appendix E.2.

Expressive power. We begin by formally relating k -HOD-GNN to [both \$k\$ -OSAN subgraph GNNs as well as \$\(k+2\)\$ -IGNs](#), revealing new insights into HOD-GNNs' expressive power, and their position in the WL hierarchy.

Theorem 4.1 (informal). *Any k -OSAN model can be approximated by a k -HOD-GNN model using an analytic activation function, to any precision. Additionally, any k -HOD-GNN model can be approximated by a $(k+2)$ -IGN model.*

Corollary 4.2. *There exist non-isomorphic graphs that are indistinguishable by the folklore k -WL (k -FWL) test but are distinguishable by k -HOD-GNN. Additionally, any pair of graphs that is indistinguishable by the $(k+1)$ -FWL test is also indistinguishable by k -HOD-GNN.*

The proof of Theorem 4.1 relies on the analyticity of the activation functions used by our base MPNN and the use of higher-order derivatives. However, in what follows, we show that even when restricted to first-order derivatives and using the commonly employed ReLU activation, HOD-GNN remains strictly more expressive than a widely used technique for enhancing GNN expressivity: incorporating Random Walk Structural Encodings (RWSEs) (Dwivedi et al., 2021) into a base MPNN.

Theorem 4.3 (Informal). *Even when limited to first-order derivatives and ReLU activations, 1-HOD-GNN is strictly more expressive than MPNNs enhanced with random walk structural encodings.*

The first part of Theorem 4.3 is constructive: it shows that a simple initialization of the base MPNN's weights yields derivatives equal to RWSEs. In our experiments, we use a slightly modified version of this initialization (see Appendix G), allowing HOD-GNN to serve as a learnable extension of RWSE. [Further analysis of the expressive power of HOD-GNN when using edge-feature derivatives, or when only using output-level derivatives are presented in Appendix F.](#)

Space and time complexity. To conclude this section, we analyze the computational complexity of k -HOD-GNN and compare it to other expressive architectures, namely, $(k+1)$ -IGN and k -OSAN. We show that k -HOD-GNN achieves better complexity when using relatively shallow base MPNNs, while maintaining comparable complexity with deeper ones. The primary source of computational overhead in k -HOD-GNN lies in the derivative tensor computation, and the encoder network forward pass. We now analyze each of these components.

378 First, while k -HOD-GNN computes derivative tensors $\mathbf{D}_k^{(t)}$ with $O(n^{k+1})$ potential entries,
 379 these tensors are sparse for relatively shallow base MPNNs. Moreover, each $\mathbf{D}_k^{(t)}$ can be
 380 efficiently computed from $\mathbf{D}_k^{(t-1)}$. This is formalized in the following proposition:
 381

382 **Proposition 4.4.** *In a k -HOD-GNN model applied to a graph with n nodes and maximum
 383 degree d The number of non-zero entries in $\mathbf{D}^{(t)}$ is at most $O(n \cdot \min\{n^k, d^{k \cdot t}\})$. Additionally,
 384 each $\mathbf{D}^{(t)}$ can be computed from $\mathbf{D}^{(t-1)}$ in time $O(d \cdot n \cdot \min\{n^k, d^{k \cdot (t-1)}\})$.*
 385

386 Focusing next on the encoder networks, we show that they can be designed to exploit
 387 derivative sparsity for improved efficiency, while retaining the full expressivity of the k -OSAN
 388 architecture:

389 **Proposition 4.5.** *In a k -HOD-GNN model, the encoder functions U^{node} and U^{out} can be
 390 chosen such that the model retains the expressive power of k -OSAN, while the computation
 391 of $U^{\text{node}}(\mathbf{D}^{(T)})$ and $U^{\text{out}}(\mathbf{D}^{\text{out}})$ has both time and space complexity $O(n \cdot \min\{n^k, d^{k \cdot T}\})$.*
 392

393 Propositions 4.4 and 4.5 suggest that a k -HOD-GNN model with a base MPNN of depth T has
 394 space complexity $O(n \cdot \min\{n^k, d^{k \cdot T}\})$ and time complexity $O(d \cdot n \cdot \min\{n^k, d^{k \cdot (T-1)}\})$.
 395 In comparison, k -OSAN has space complexity $O(n^{k+1})$ and time complexity $O(d \cdot n^{k+1})$,
 396 while $(k+1)$ -IGN incurs both time and space complexity of $O(n^{k+1})$. Assuming the input
 397 graph is sparse (i.e., $d \ll n$), k -HOD-GNN is more efficient than k -OSAN and $(k+1)$ -IGN
 398 when the base MPNN is shallow ($d^T < n$), while all three models have comparable
 399 complexity when the base MPNN is deep ($d^T > n$).
 400

401 5 EXPERIMENTS

402 Our experimental study is designed to validate the theoretical arguments from the previous
 403 section and to address the following guiding questions: **(Q1)** How does HOD-GNN perform
 404 on real-world datasets when compared against strong GNN baselines? **(Q2)** Can HOD-GNN
 405 scale to larger graphs that are beyond the reach of Subgraph GNNs, and how does it perform
 406 in this regime? **(Q3)** How does the expressive power of HOD-GNN compare with natural
 407 and widely used GNN baselines? We evaluate HOD-GNN across eight benchmarks, with
 408 additional experimental details provided in Appendix G.
 409

410 **Baselines.** We compare HOD-GNN against strong representatives from three natural
 411 families of GNNs. First, motivated by its connection to positional/structural encodings
 412 (PSEs, Section 4), we consider **encoding-augmented MPNNs**, including Laplacian
 413 PEs (Dwivedi et al., 2023), RWSEs (Dwivedi et al., 2021), SignNet (Lim et al., 2022),
 414 random node identifiers (Abboud et al., 2020; Sato et al., 2021), as well as recent methods
 415 such as GPSE (Cantürk et al., 2024) and MOSE (Bao et al., 2024). Second, since HOD-GNN
 416 is theoretically related to **Subgraph GNNs**, we compare with representative models like
 417 GNN-AK (Zhao et al., 2022), SUN (Frasca et al., 2022), and Subgraphormer (Bar-Shalom
 418 et al., 2023). Because such models often struggle to scale, we also include sampling-based
 419 variants such as Policy-Learn (Bevilacqua et al., 2024), HyMN (Southern et al., 2025), and
 420 Subgraphormer with random sampling. Finally, we benchmark against widely used and modern
 421 **general-purpose GNNs**, including GIN (Xu et al., 2018), GCN (Kipf & Welling, 2016),
 422 GatedGCN (Bresson & Laurent, 2017), GPS (Rampášek et al., 2022), and GraphViT (He
 423 et al., 2023). Across experiments we include representatives from each family, while the
 424 specific choice of baselines in each task reflects relevance and standard practice in prior work.
 425 **Throughout the paper, we report results directly from prior work and include any relevant
 426 baseline, even if values for some of the benchmarks were not reported. This allows for a broad
 427 and fair comparison rather than excluding useful baselines. Missing entries are marked by “-”.**
 428

429 **OGB and ZINC.** To evaluate HOD-GNN’s real-world performance **(Q1)**, we benchmark it
 430 on standard graph property prediction datasets: ZINC (Irwin et al., 2012) for regression, and
 431 three molecular classification tasks from the OGB suite (Hu et al., 2020b)—**molhiv**, **molbace**,
 432 and **moltox21**. These benchmarks provide standardized splits and are the de facto choice for
 433 assessing GNN performance. As shown in Table 1, HOD-GNN delivers excellent results across
 434 all tasks, standing out as the only model that consistently ranks within the top two tiers.
 435

Table 1: Performance on OGB and ZINC datasets (4 seeds). **First** and **second** best scores are highlighted. Scores sharing a color are not statistically distinguishable based on Welch’s t-test with a relaxed threshold of $p < 0.2$. “–” denotes results not previously reported, and “x” indicates that digits beyond this point were not provided.

Method ↓ / Dataset →	ZINC-12K (MAE ↓)	MOLTOX21 (ROC-AUC ↑)	MOLBACE (ROC-AUC ↑)	MOLHIV (ROC-AUC ↑)
Common Baselines				
GCN (Kipf & Welling, 2016)	0.321±0.009	75.29±0.69	79.15±1.44	76.06±0.97
GIN (Xu et al., 2018)	0.163±0.004	74.91±0.51	72.97±4.00	75.58±1.40
PNA (Corso et al., 2020)	0.761±0.002	73.30±1.1x	–	79.05±1.32
GPS (Rampášek et al., 2022)	0.070±0.004	75.70±0.40	–	78.80±1.01
GraphViT (He et al., 2023)	0.085±0.005	78.51±0.77	–	77.92±1.49
Subgraph GNNs				
Reconstr. GNN (Cotta et al., 2021)	–	75.15±1.40	–	76.32±1.40
GIN-AK+ (Zhao et al., 2022)	0.091±0.011	–	–	79.61±1.19
SUN (EGO+) (Frasca et al., 2022)	0.084±0.002	–	–	80.03±0.55
Full (Bevilacqua et al., 2024)	0.087±0.003	76.25±1.12	78.41±1.94	76.54±1.37
OSAN (Qian et al., 2022)	0.177±0.016	–	72.30±6.60	–
Random (Bevilacqua et al., 2024)	0.102±0.003	76.62±0.63	78.14±2.36	77.30±2.56
Policy-Learn (Bevilacqua et al., 2024)	0.097±0.005	77.36±0.60	78.39±2.28	78.49±1.01
Subgraphormer (Bar-Shalom et al., 2024a)	0.063±0.001	–	84.35±0.65	79.58±0.35
HyMN (Southern et al., 2025)	0.080±0.003	77.82±0.59	81.16±1.21	81.01±1.17
PSEs				
GIN + Laplacian PE (Dwivedi et al., 2023)	0.162±0.014	76.60±0.3x	80.40±1.5x	75.60±1.1x
GIN + RWSE (Dwivedi et al., 2021)	0.128±0.005	76.30±0.5x	79.60±2.8x	78.10±1.5x
SignNet (Lim et al., 2022)	0.102±0.002	–	–	–
RNI (Abboud et al., 2020)	0.136±0.0070	–	61.94±2.51	77.74±0.98
GSN (Bouritsas et al., 2022)	0.101±0.010	76.08±0.79	77.40±2.92	80.39±0.90
ENGNN (Wang & Zhang, 2025)	0.114±0.005	–	–	78.51±0.86
GPSE (Cantürk et al., 2024)	0.065±0.003	77.40±0.8x	80.80±3.1x	78.15±1.33
MOSE (Bao et al., 2024)	0.062±0.002	–	–	–
Ours				
HOD-GNN	0.0666±0.0035	77.99±0.71	82.10±1.45	80.86±0.52

Peptides. Section 4 established that HOD-GNN has improved computational complexity compared to Subgraph GNNs. To demonstrate its scalability in practice (**Q2**) and to further assess its performance on real-world data (**Q1**), we evaluate HOD-GNN on the **Peptides** datasets from the LRGB benchmark (Dwivedi et al., 2022), where the goal is to predict global structural and functional properties of peptides represented as graphs. As stated in prior work (Southern et al., 2025; Bar-Shalom et al., 2023), full-bag Subgraph GNNs cannot process these graphs directly using standard hardware, requiring the use of subsampling strategies that can reduce expressivity and introduce optimization challenges due to randomness. In contrast, HOD-GNN handles these graphs directly without subsampling. As shown in Table 2, HOD-GNN surpasses all sampling-based Subgraph GNNs and is the only model that consistently ranks within the top two tiers, underscoring both its scalability and effectiveness on challenging real-world molecular tasks.

Synthetic experiments. To evaluate the realized expressiveness of HOD-GNN (**Q3**) and empirically support Theorems 4.1 and 4.3, we conduct two synthetic studies. First, following the protocol of Huang et al. (2022), we assess the ability of 1-HOD-GNN to learn to count small substructures, a standard proxy for practical GNN expressivity (Bouritsas et al., 2022; Arvind et al., 2020). Theorems 4.1 and 4.3 predict that: (i) with analytic activations, 1-HOD-GNN matches the power of certain Subgraph GNNs, and (ii) with ReLU, it is strictly stronger than MPNNs with RWSEs. Table 6 (Appendix H) confirms both predictions: 1-HOD-GNN matches Subgraph GNN baselines

Table 2: Performance on PEPTIDES (4 seeds). **First** and **second** best scores are highlighted. Same color scores are not statistically distinguishable based on Welch’s t-test with a relaxed threshold of $p < 0.2$.

Model	Peptides-func AP ↑	Peptides-struct MAE ↓
Common Baselines		
GCN	59.30±0.23	0.3496±0.0013
GINE	54.98±0.79	0.3547±0.0045
GCNII	55.43±0.78	0.3471±0.0010
GatedGCN	58.64±0.77	0.3420±0.0013
DIGL+MPNN+LapPE	68.30±0.26	0.2616±0.0018
MixHop-GCN+LapPE	68.43±0.49	0.2614±0.0023
DRew-GCN+LapPE	71.50±0.44	0.2536±0.0015
SAN+LapPE	63.84±1.21	0.2683±0.0043
GraphGPS+LapPE	65.35±0.41	0.2500±0.0005
Exphormer	65.27±0.43	0.2481±0.0007
GraphViT	69.19±0.85	0.2474±0.0016
Subgraph GNNs		
Policy-Learn	64.59±0.18	0.2475±0.0011
Subgraphormer 30%	64.15±0.52	0.2494±0.0020
HyMN	68.57±0.55	0.2464±0.0013
PSEs		
GCN + Laplacian PE	62.18±0.55	0.2492±0.0019
GCN + RWSE	60.67±0.69	0.2574±0.0020
SignNet	63.14±0.59	–
GPSE + GCN	63.16±0.85	0.2487±0.0011
GPSE + GPS	66.88±1.51	0.2464±0.0025
MOSE	63.5x±1.1x	0.318±0.010
Ours		
HOD-GNN	69.68±0.56	0.2450±0.0011

486 and clearly surpasses MPNN+RWSE, with analytic activations providing a slight further
 487 gain. Additional details are provided in Appendix H.1.

488 We additionally test 1- and 2-HOD-GNN on the regular graph pairs in the BREC
 489 dataset (Wang & Zhang, 2024), which include 50 pairs separable by 3-WL but not 2-WL and
 490 90 pairs indistinguishable even by 3-WL. Table 7 shows that 2-HOD-GNN separates 34/90
 491 of the 3-WL-indistinguishable pairs, placing it among the strongest models and empirically
 492 validating the theoretical advantage predicted by Theorem 4.1. Additionally, 1-HOD-GNN
 493 performs similarly to DS-GNN, consistent with Theorem 4.1. Additional details are provided
 494 in Appendix H.2.

495 **Additional ablations and empirical insights.** Appendix H includes further ablations
 496 and analysis. We first evaluate how the hyperparameter m from Definition 3.1, which sets the
 497 maximum derivative order used in HOD-GNN, affects expressive power. Results show that
 498 increasing m consistently strengthens expressivity, until the performance gains eventually
 499 plateau. This suggests that small values such as $m \in \{2, 3, 4\}$ are already effective in practice.

500 Next, we analyze the stability of HOD-GNN, showing that for derivative orders $m = 1, \dots, 4$,
 501 the training curves remain stable and the norms of the derivative tensors stay well-behaved
 502 relative to the final node-feature norms produced by the base MPNN.

503 In addition, inspired by recent work showing that overly expressive GNNs can generalize
 504 poorly (Franks et al., 2024; Maskey et al., 2025; Carrasco et al., 2025), we examine HOD-GNN
 505 's generalization behavior by measuring train–test performance gaps on OGB datasets. HOD-
 506 GNN shows consistently smaller gaps than both less expressive models (e.g., GIN, GCN)
 507 and more expressive models (e.g., DSS-GNN (ED)), indicating strong generalization without
 508 overfitting despite its high expressive power. See Appendix H.5 for an in depth discussion

509 Finally, we compare runtime and memory against subgraph-based GNNs under different
 510 subgraph selection policies, showing that HOD-GNN achieves superior performance on both
 511 fronts. We also evaluate the choice of backbone MPNN on real-world datasets, and observe
 512 consistently strong performance across GCN, GIN, and GPS.

513 **Summary.** Across all experiments, we find consistent evidence supporting the guiding
 514 questions outlined above. **(A1)** Across the ZINC, OGB, and Peptides datasets, HOD-GNN
 515 is the only architecture that consistently ranks within the top two tiers. **(A2)**, On the
 516 challenging Peptides datasets, HOD-GNN scales to larger graphs that full-bag Subgraph
 517 GNNs cannot handle, while maintaining strong predictive performance. **(A3)** On several
 518 synthetic experiments, 1-HOD-GNN matches the expressivity of Subgraph GNNs while
 519 surpassing encoding-augmented MPNNs, showing that HOD-GNN is **as expressive yet**
 520 **more scalable** than subgraph GNNs. **Moreover, 2-HOD-GNN exhibits even stronger**
 521 **expressive power, demonstrating the benefits of increasing derivative order.** Together, these
 522 findings establish HOD-GNN as a scalable, expressive, and broadly effective GNN framework
 523 across synthetic, molecular, and large-scale real-world tasks.

524 6 CONCLUSION

525 We introduce HOD-GNN, a GNN that enhances the expressivity of a base MPNN by
 526 leveraging its high-order derivatives. We provide a theoretical analysis of HOD-GNN's
 527 expressive power, connecting it to the k -OSAN framework and RWSE encodings, and
 528 show that it can offer better scalability than comparable expressive models. Empirically,
 529 HOD-GNN has strong performance across a range of benchmarks, matching or surpassing
 530 encoding based methods, Subgraph GNNs, and other common baselines. Notably, HOD-GNN
 531 scales to larger graphs than full-bag subgraph GNNs.

532 **Limitations and Future Work.** First, while HOD-GNN has favorable theoretical
 533 complexity (Section 4), its practical efficiency relies on sparse matrix operations. A more
 534 efficient implementation of these operators has the potential to greatly enhance the scalability
 535 of HOD-GNN. Secondly, the connection between MPNN derivatives and oversquashing or
 536 oversmoothing, alongside HOD-GNN's strong performance with deep base MPNNs and
 537 small hidden dimensions, suggests a deeper link not fully addressed in this work. Exploring
 538 this connection is a promising direction for future research.

540 REFERENCES
541

542 Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The sur-
543 prising power of graph neural networks with random node initialization. *arXiv preprint*
544 *arXiv:2010.01179*, 2020.

545 Singh Akansha. Over-squashing in graph neural networks: A comprehensive survey. *arXiv*
546 *preprint arXiv:2308.15568*, 2023.

548 Marjan Albooyeh, Daniele Bertolini, and Siamak Ravanbakhsh. Incidence networks for
549 geometric deep learning. *arXiv preprint arXiv:1905.11460*, 2019.

550 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
551 implications. *arXiv preprint arXiv:2006.05205*, 2020.

553 Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
554 Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients,
555 over-smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. *arXiv*
556 *preprint arXiv:2502.10818*, 2025.

557 Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-
558 leman invariance: Subgraph counts and related graph properties. *Journal of Computer*
559 *and System Sciences*, 113:42–59, 2020.

561 Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
562 networks. *arXiv preprint arXiv:2006.15646*, 2020.

564 Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
565 networks. *arXiv preprint arXiv:1905.13686*, 2019.

566 Linus Bao, Emily Jin, Michael Bronstein, İsmail İlkan Ceylan, and Matthias Lanzinger.
567 Homomorphism counts as structural encodings for graph learning. *arXiv preprint*
568 *arXiv:2410.18676*, 2024.

570 Guy Bar-Shalom, Beatrice Bevilacqua, and Haggai Maron. Subgraphomer: Subgraph GNNs
571 meet graph transformers. In *NeurIPS 2023 Workshop: New Frontiers in Graph Learning*,
572 2023. URL <https://openreview.net/forum?id=e8ba9Hu1mM>.

574 Guy Bar-Shalom, Beatrice Bevilacqua, and Haggai Maron. Subgraphomer: Unifying
575 subgraph GNNs and graph transformers via graph products. In *Forty-first International*
576 *Conference on Machine Learning*, 2024a. URL <https://openreview.net/forum?id=6djDWVTUEq>.

578 Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, and Haggai Maron. A flexible, equivariant
579 framework for subgraph gnns via graph products and graph coarsening. *arXiv preprint*
580 *arXiv:2406.09291*, 2024b.

581 Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
582 Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
583 aggregation networks. *arXiv preprint arXiv:2110.02910*, 2021.

585 Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, and Haggai Maron. Efficient
586 subgraph gnns by learning effective selection policies. *International Conference on Learning*
587 *Representations*, 2024.

588 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
589 and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. *Advances in*
590 *Neural Information Processing Systems*, 34:2625–2640, 2021.

592 Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
593 graph neural network expressivity via subgraph isomorphism counting. *IEEE Transactions*
594 *on Pattern Analysis and Machine Intelligence*, 45(1):657–668, 2022.

594 Xavier Bresson and Thomas Laurent. Residual gated graph convnets. *arXiv preprint*
595 *arXiv:1711.07553*, 2017.

596

597 Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf,
598 Dominique Beaini, and Ladislav Rampášek. Graph positional and structural encoder.
599 In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=UTSCK582Yo>.

600

601 Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and
602 Petar Veličković. Combinatorial optimization and reasoning with graph neural networks.
603 *Journal of Machine Learning Research*, 24(130):1–61, 2023.

604

605 Martin Carrasco, Caio Netto, Vahan A Martirosyan, Aneeqa Mehrab, Ehimare Okoyomon,
606 and Caterina Graziani. Rademacher meets colors: More expressivity, but at what cost?
607 In *New Perspectives in Graph Machine Learning*, 2025.

608

609 Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks
610 count substructures? *Advances in neural information processing systems*, 33:10383–10395,
611 2020.

612

613 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
614 neighbourhood aggregation for graph nets. *Advances in Neural Information Processing
615 Systems*, 33:13260–13271, 2020.

616

617 Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph
618 representations. In *Advances in Neural Information Processing Systems*, volume 34, 2021.

619

620 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
621 Michael M Bronstein. On over-squashing in message passing neural networks: The impact
622 of width, depth, and topology. In *International Conference on Machine Learning*, pp.
623 7865–7885. PMLR, 2023a.

624

625 Francesco Di Giovanni, T Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc
626 Lackenby, Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the
627 power of gnns? *Transactions on Machine Learning Research*, 2023b.

628

629 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
630 Graph neural networks with learnable structural and positional representations. *arXiv
631 preprint arXiv:2110.07875*, 2021.

632

633 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
634 Luu, and Dominique Beaini. Long range graph benchmark. *Advances in Neural Information
635 Processing Systems*, 35:22326–22340, 2022.

636

637 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
638 and Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning
639 Research*, 24(43):1–48, 2023.

640

641 Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael Bronstein, and Haggai
642 Maron. Topological blind spots: Understanding and extending topological deep learning
643 through the lens of expressivity. *arXiv preprint arXiv:2408.05486*, 2024.

644

645 Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
646 Maron. Graph positional encoding via random feature propagation. In *International
647 Conference on Machine Learning*, pp. 9202–9223. PMLR, 2023.

648

649 Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
650 geometric. *arXiv preprint arXiv:1903.02428*, 2019.

651

652 Billy J Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at
653 the margin: When more expressivity matters. *arXiv preprint arXiv:2402.07568*, 2024.

654

648 Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding
 649 and extending subgraph gnns by rethinking their symmetries. *Advances in Neural*
 650 *Information Processing Systems*, 35:31376–31390, 2022.

651 Floris Geerts. The expressive power of kth-order invariant graph networks. *arXiv preprint*
 652 *arXiv:2007.12035*, 2020.

653 Yoav Gelberg, Yam Eitan, Aviv Navon, Aviv Shamsian, Theo Puterman, and Haggai Maron.
 654 Gradmetanet: An equivariant architecture for learning on gradients. In *Workshop on*
 655 *Neural Network Weights as a New Data Modality*, 2025.

656 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
 657 Neural message passing for quantum chemistry. In *International conference on machine*
 658 *learning*, pp. 1263–1272. PMLR, 2017.

659 Michael Hardy. Combinatorics of partial derivatives. *arXiv preprint math/0601149*, 2006.

660 Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson.
 661 A generalization of vit/mlp-mixer to graphs. In *International conference on machine*
 662 *learning*, pp. 12724–12745. PMLR, 2023.

663 Nicholas J Higham. *Accuracy and stability of numerical algorithms*. SIAM, 2002.

664 Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté, Zhiyuan Liu,
 665 and Jian Tang. Graph policy network for transferable active learning on graphs. *Advances*
 666 *in Neural Information Processing Systems*, 33:10174–10185, 2020a.

667 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
 668 Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
 669 graphs. *Advances in neural information processing systems*, 33:22118–22133, 2020b.

670 Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting
 671 power of graph neural networks with i^2 -gnns. In *The Eleventh International Conference*
 672 *on Learning Representations*, 2022.

673 John J Irwin, Teague Sterling, Michael M Mysinger, Eric S Bolstad, and Ryan G Coleman.
 674 Zinc—a free database of commercially available compounds for virtual screening. *Journal*
 675 *of Chemical Information and Modeling*, 52(7):1757–1768, 2012.

676 Stefanie Jegelka. Theory of graph neural networks: Representation and learning. In *The*
 677 *International Congress of Mathematicians*, pp. 1–23, 2022.

678 Mitchell Keren Taraday, Almog David, and Chaim Baskin. Sequential signal mixing ag-
 679 gregation for message passing graph neural networks. *Advances in Neural Information*
 680 *Processing Systems*, 37:93985–94021, 2024.

681 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
 682 networks. *International Conference on Learning Representations*, 2016.

683 Pan Li and Jure Leskovec. The expressive power of graph neural networks. *Graph Neural*
 684 *Networks: Foundations, Frontiers, and Applications*, pp. 63–98, 2022.

685 Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
 686 Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation
 687 learning. *arXiv preprint arXiv:2202.13013*, 2022.

688 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 689 *arXiv:1711.05101*, 2017.

690 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
 691 Zhang. Parameterized explainer for graph neural network. *Advances in neural information*
 692 *processing systems*, 33:19620–19631, 2020.

693 Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
 694 graph networks. *arXiv preprint arXiv:1812.09902*, 2018.

702 Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
 703 graph networks. *Advances in neural information processing systems*, 32, 2019.
 704

705 Sohir Maskey, Raffaele Paolino, Fabian Jogl, Gitta Kutyniok, and Johannes F Lutzeyer.
 706 Graph representational learning: When does more expressivity hurt generalization? *arXiv*
 707 *preprint arXiv:2505.11298*, 2025.

708 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning.
 709 Fast model editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.
 710

711 Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bronstein.
 712 Fake news detection on social media using geometric deep learning. *arXiv preprint*
 713 *arXiv:1902.06673*, 2019.

714 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
 715 Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
 716 neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33,
 717 pp. 4602–4609, 2019.

718 Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin
 719 Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning:
 720 The story so far. *arXiv preprint arXiv:2112.09992*, 2021.
 721

722 Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin
 723 Grohe, Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning:
 724 The story so far. *The Journal of Machine Learning Research*, 24(1):15865–15923, 2023.

725 Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network
 726 extensions. In *International Conference on Machine Learning*, pp. 17323–17345. PMLR,
 727 2022.

728 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 729 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
 730 style, high-performance deep learning library. *Advances in neural information processing*
 731 *systems*, 32, 2019.
 732

733 Paolo Pellizzoni, Till Hendrik Schulz, Dexiong Chen, and Karsten Borgwardt. On the
 734 expressivity and sample complexity of node-individualized graph neural networks. *Advances*
 735 *in Neural Information Processing Systems*, 37:120221–120251, 2024.

736 Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
 737 Explainability methods for graph convolutional neural networks. In *Proceedings of the*
 738 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10772–10781, 2019.
 739

740 Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and Yaron Lipman. Equivariant
 741 polynomials for graph neural networks. In *International Conference on Machine Learning*,
 742 pp. 28191–28222. PMLR, 2023.

743 Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris.
 744 Ordered subgraph aggregation networks. *Advances in Neural Information Processing*
 745 *Systems*, 35:21030–21045, 2022.

746 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
 747 Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances*
 748 *in Neural Information Processing Systems*, 35:14501–14515, 2022.
 749

750 Ronald C Read and Robin J Wilson. *An atlas of graphs*. Oxford University Press, 1998.
 751

752 Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler-lehman
 753 procedure for graph classification. In *International Conference on Machine Learning*, pp.
 754 5448–5458. PMLR, 2019.

755 Ryoma Sato. A survey on the expressive power of graph neural networks. *arXiv preprint*
arXiv:2003.04078, 2020.

756 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph
 757 neural networks. In *Proceedings of the 2021 SIAM international conference on data mining
 758 (SDM)*, pp. 333–341. SIAM, 2021.

759

760 Nimrod Segol and Yaron Lipman. On universal equivariant set networks. *arXiv preprint
 761 arXiv:1910.02421*, 2019.

762

763 Joshua Southern, Yam Eitan, Guy Bar-Shalom, Michael M. Bronstein, Haggai Maron, and
 764 Fabrizio Frasca. Balancing efficiency and expressiveness: Subgraph GNNs with walk-based
 765 centrality, 2025. URL <https://openreview.net/forum?id=2hbgKYuao1>.

766

767 Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?
 768 reassessing the long-range graph benchmark. *arXiv preprint arXiv:2309.00367*, 2023.

769

770 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
 771 Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via
 772 curvature. *arXiv preprint arXiv:2111.14522*, 2021.

773

774 Xiyuan Wang and Muhan Zhang. Using random noise equivariantly to boost graph neural
 775 networks universally. *arXiv preprint arXiv:2502.02479*, 2025.

776

777 Yanbo Wang and Muhan Zhang. An empirical study of realized gnn expressiveness. In
 778 *Forty-first International Conference on Machine Learning*, 2024.

779

780 Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the
 781 algebra which appears therein. *nti, Series*, 2(9):12–16, 1968.

782

783 Felix Wong, Erica J Zheng, Jacqueline A Valeri, Nina M Donghia, Melis N Anahtar, Satotaka
 784 Omori, Alicia Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, et al. Discovery of
 785 a structural class of antibiotics with explainable deep learning. *Nature*, 626(7997):177–185,
 786 2024.

787

788 Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. Signal processing
 789 for implicit neural representations. *Advances in Neural Information Processing Systems*,
 790 35:13404–13418, 2022.

791

792 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 793 networks? *International Conference on Learning Representations*, 2018.

794

795 Zuoyu Yan, Junru Zhou, Liangcai Gao, Zhi Tang, and Muhan Zhang. An efficient subgraph
 796 gnn with provable substructure counting power. In *Proceedings of the 30th ACM SIGKDD
 797 Conference on Knowledge Discovery and Data Mining*, pp. 3702–3713, 2024.

798

799 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnn-
 800 explainer: Generating explanations for graph neural networks. *Advances in neural
 801 information processing systems*, 32, 2019.

802

803 Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware
 804 graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
 805 volume 35, pp. 10737–10745, 2021.

806

807 Manzil Zaheer, Satwik Kottur, Siamak Ravansabkhsh, Barnabas Poczos, Russ R Salakhutdinov,
 808 and Alexander J Smola. Deep sets. *Advances in neural information processing systems*,
 809 30, 2017.

810

811 Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang, and
 812 Zhong Liu. The expressive power of graph neural networks: A survey. *IEEE Transactions
 813 on Knowledge and Data Engineering*, 2024a.

814

815 Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressive-
 816 ness hierarchy for subgraph gnn via subgraph weisfeiler-lehman tests. In *International
 817 Conference on Machine Learning*, pp. 41019–41077. PMLR, 2023a.

810 Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of
811 gnns via graph biconnectivity. *arXiv preprint arXiv:2301.09505*, 2023b.
812

813 Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
814 lehman: A quantitative framework for gnn expressiveness. *arXiv preprint arXiv:2401.08514*,
815 2024b.

816 Muhan Zhang and Pan Li. Nested graph neural networks. In *Advances in Neural Information
817 Processing Systems*, volume 34, 2021.
818

819 Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting
820 any GNN with local structure awareness. In *International Conference on Learning
821 Representations*, 2022.

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A PREVIOUS WORK
865

866 **Expressive Power and Hierarchies in GNNs.** The expressive power of GNNs is often
867 measured by their ability to distinguish non-isomorphic graphs. Foundational results (Morris
868 et al., 2019; Xu et al., 2018) show that standard MPNNs are bounded by the 1-Weisfeiler-
869 Lehman (1-WL) test (Weisfeiler & Leman, 1968), motivating the development of more
870 expressive architectures, see (Sato, 2020; Morris et al., 2021; Jegelka, 2022; Li & Leskovec,
871 2022; Zhang et al., 2024a) for comprehensive surveys. For instance, Morris et al. (2019) and
872 Maron et al. (2018) introduced GNN hierarchies matching the expressivity of the k -WL
873 test at a computational cost of $\mathcal{O}(n^k)$ in both time and memory. Other approaches include
874 equivariant polynomial-based models (Maron et al., 2019; Puny et al., 2023), Subgraph
875 GNNs (Zhang & Li, 2021; Cotta et al., 2021; Bevilacqua et al., 2021; Frasca et al., 2022;
876 Zhang et al., 2023b;a; Bar-Shalom et al., 2024b) topologically enhanced GNNs (Rieck et al.,
877 2019; Bodnar et al., 2021; Eitan et al., 2024) and more. A complementary line of work
878 improves expressivity by enriching node features with informative structural descriptors,
879 such as substructure and homomorphism counts (Bouritsas et al., 2022; Bao et al., 2024),
880 random node features (Abboud et al., 2020; Sato et al., 2021; Eliasof et al., 2023), or spectral
881 methods (Dwivedi et al., 2023; Lim et al., 2022).

882 **Derivatives of GNNs.** Derivatives frequently appear in the analysis of GNNs. A prominent
883 example is the study of *oversquashing*-the failure of information to propagate through graph
884 structures (Alon & Yahav, 2020; Topping et al., 2021; Di Giovanni et al., 2023a;b). A central
885 tool in analyzing oversquashing is the use of derivatives: specifically, the gradients of final
886 node representations with respect to initial features (see Di Giovanni et al., 2023a), and
887 mixed output derivatives with respect to pairs of input nodes (see Di Giovanni et al., 2023b).
888 For a comprehensive overview of oversquashing, see Akansha (2023). Node derivatives also
889 play a key role in GNN explainability (Ying et al., 2019; Luo et al., 2020; Baldassarre &
890 Azizpour, 2019; Pope et al., 2019). Gradient-based approaches such as Sensitivity Analysis,
891 Guided Backpropagation (Baldassarre & Azizpour, 2019), and Grad-CAM (Pope et al., 2019)
892 rely on derivative magnitudes to compute importance scores. Finally, several standalone
893 works make use of node-based derivatives. For instance, Arroyo et al. (2025) use node
894 derivatives to draw a connection between vanishing gradients, and over-smoothing. In
895 a different direction, Keren Taraday et al. (2024) propose new aggregation functions for
896 MPNNs, designed specifically to induce non-zero mixed node derivatives.

897 **Learning over derivative input.** Beyond GNNs, several recent works have explored
898 learning directly from derivative-based inputs. Xu et al. (2022) propose a framework that
899 processes spatial derivatives of implicit neural representations (INRs) to modify them without
900 explicit decoding. Mitchell et al. (2021) introduce a learned method for fact editing in LLMs
901 using their gradients. Gelberg et al. (2025) present a general architecture for learning over
902 sets of gradients, with applications in meta-optimization, domain adaptation, and curvature
903 estimation.

904 B MOTIVATION
905

906 Beyond being a widely used and informative quantity in GNN analysis, MPNN derivatives
907 can enhance expressivity. We now provide an intuition for why this occurs by drawing a
908 connection to Subgraph GNNs.

909 Consider a DS-GNN model Ψ composed of a base MPNN \mathcal{M} followed by a downstream
910 MPNN \mathcal{T} . We assume for simplicity that \mathcal{M} outputs graph-level scalars, and that the
911 activation function σ used in \mathcal{M} is *analytic* with infinite convergence radius⁵. That is, for
912 every $x \in \mathbb{R}$, σ satisfies:

$$913 \sigma(x) = \sum_{\alpha=0}^{\infty} \frac{\sigma^{(\alpha)}(0)}{\alpha!} x^{\alpha}. \quad (14)$$

914 ⁵Many commonly used functions, including \sin , \cos , and \exp , are analytic with infinite convergence
915 radius. See Appendix E.2 for a discussion of the case where σ is not analytic.

918 For each node v of a given input graph \mathcal{G} , we define a function $f_v : \mathbb{R} \rightarrow \mathbb{R}$ by:
 919
 920

$$f_v(x) := \mathcal{M}(\mathbf{A}, \mathbf{X} \oplus x \cdot \mathbf{e}_v), \quad (15)$$

921 which corresponds to the output of \mathcal{M} obtained by scaling the node marking feature at
 922 node v by x . Observe that f_v is analytic⁶ since \mathcal{M} is composed of analytic functions, and
 923 that by definition, $f_v(1) = \mathbf{h}_v^{\text{sub}}$, i.e., the representation of the graph augmented with a mark
 924 for the node v . Also observe that by expanding f_v around $x = 0$, we can approximate $\mathbf{h}_v^{\text{sub}}$
 925 to any desired precision using a **finite number** of derivatives, up to order m :
 926
 927

$$f_v(1) \approx \sum_{\alpha=0}^m \frac{f_v^{(\alpha)}(0)}{\alpha!}. \quad (16)$$

928 Moreover, each derivative $f_v^{(\alpha)}(0)$ corresponds to a partial derivative of the output of \mathcal{M}
 929 with respect to the v -th coordinate of the augmented input:
 930
 931

$$f_v^{(\alpha)}(0) = \frac{\partial^\alpha \mathcal{M}(\mathbf{A}, \mathbf{X} \oplus x \cdot \mathbf{e}_v)}{\partial^\alpha x} \Big|_{x=0} = \frac{\partial^\alpha \mathbf{h}^{\text{out}}}{\partial^\alpha \mathbf{e}_v}. \quad (17)$$

932 This suggests that by using an encoder network to extract node features from the first m
 933 derivatives of \mathcal{M} with respect to each node feature, we can effectively reconstruct $\mathbf{h}_v^{\text{sub}}$. By
 934 passing these derivative-based features to the downstream GNN \mathcal{T} , we can approximate the
 935 behavior of Ψ , and therefore be at least as expressive.
 936
 937

C HOD-GNN VARIANTS

C.1 κ -HOD-GNN

941 In this section, we elaborate on the k -HOD-GNN architecture, discussed in Section 3.3.
 942 Similar to 1-HOD-GNN, a k -HOD-GNN model, denoted Φ , consists of a base MPNN \mathcal{M} ,
 943 two derivative encoders \mathbf{U}^{node} , \mathbf{U}^{out} , and a downstream network \mathcal{T} . Given an input graph
 944 $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, the computation of $\Phi(\mathcal{G})$ proceeds in four stages: (1) compute the output and
 945 final node representation of the input graph using \mathcal{M} ; (2) compute the k -indexed derivative
 946 tensors $\mathbf{D}_k^{(T)}, \mathbf{D}_k^{\text{out}}$; (3) extract new derivative informed node features from the derivative
 947 tensor; (4) Use these new node features for downstream processing.
 948

949 **Steps 1 & 2.** In the first two stages, we compute the final node representations $\mathbf{h}^{(T)}$ and
 950 the output vector \mathbf{h}^{out} using the base MPNN \mathcal{M} , along with their corresponding derivative
 951 tensors defined below (the k -indexed derivative tensor was defined in Section 3.3 for the case
 952 where the input features are 1-dimensional).

953 **Definition C.1.** Given a graph $\mathcal{G} = (\mathbf{A}, \mathbf{X}_0)$ with n nodes, $\mathbf{X}_0 \in \mathbb{R}^{n \times d}$, an MPNN \mathcal{M} and
 954 some intermediate node feature representation matrix $\mathbf{h} \in \mathbb{R}^{n \times d'}$, the k -indexed derivative
 955 tensor of $\mathbf{D}_k(\mathbf{h}) \in \mathbb{R}^{n \times n^k \times d' \times m^{d \times k}}$ is defined by:
 956

$$\mathbf{D}_k(\mathbf{h})[v, \mathbf{u}, i, \boldsymbol{\alpha}] = \partial^\alpha \mathbf{h}_{v,i}(\mathbf{X}_0) = \frac{\partial^{|\boldsymbol{\alpha}|} \mathbf{h}_{v,i}}{\prod_{(j_1, j_2) \in [d] \times [k]} \partial \mathbf{X}_{u_1, j_1}^{\boldsymbol{\alpha}_{j_1, j_2}}} \Big|_{\mathbf{X}=\mathbf{X}_0}. \quad (18)$$

957 where $v \in V(\mathcal{G})$, $\mathbf{u} = (u_1, \dots, u_k) \in V^k(\mathcal{G})$, $i \in [d']$, $\boldsymbol{\alpha} = (\boldsymbol{\alpha}_{j_1, j_2})_{d, k} \in \{0, \dots, m-1\}^{d \times k}$
 958 and $|\boldsymbol{\alpha}| = \sum \boldsymbol{\alpha}_{j_1, j_2}$.
 959

960 Similarly, given a graph-level prediction vector $\mathbf{h}^{\text{out}} \in \mathbb{R}^{d'}$ the derivative tensor $\mathbf{D}_k(\mathbf{h}^{\text{out}}) \in$
 961 $\mathbb{R}^{n^k \times d' \times d^k \times m^k}$ is defined by:
 962
 963

$$\mathbf{D}_k(\mathbf{h})[\mathbf{u}, i, \boldsymbol{\alpha}] = \partial^\alpha \mathbf{h}_i(\mathbf{X}_0). \quad (19)$$

964 The derivative tensors $\mathbf{D}_k^{(T)} = \mathbf{D}(\mathbf{h}^{(T)})_k$ and $\mathbf{D}_k^{\text{out}} = \mathbf{D}(\mathbf{h}^{\text{out}})_k$ are computed using a message-
 965 passing-like procedure detailed in Appendix 1, which enables both efficient computation and
 966 allows us to backpropagate through it, supporting end-to-end training of k -HOD-GNN.
 967

968 ⁶For a definition of multi-dimensional analytic functions see Appendix E.1.

972 **Step 3.** In the third stage of our method, we extract new node features informed by the
 973 derivative tensors $\mathbf{D}_k^{(T)}, \mathbf{D}_k^{\text{out}}$, using the encoder networks $U^{\text{node}} : \mathbb{R}^{n \times n^k \times d' \times m^{d \times k}} \rightarrow \mathbb{R}^{n \times d'}$
 974 and $U^{\text{out}} : \mathbb{R}^{n^k \times d' \times m^{d \times k}} \rightarrow \mathbb{R}^{n \times d''}$. As $\mathbf{D}_k^{(T)}$ is a tensor indexed by $(k+1)$ nodes and $\mathbf{D}_k^{\text{out}}$
 975 is a tensor indexed by k nodes, natural choices for U^{node} and U^{out} are $(k+1)$ -IGN and a
 976 k -IGN (Maron et al., 2018) designed specifically to process such data.
 977

978 Furthermore, Proposition 4.4 shows that for sparse graphs or relatively shallow base MPNNs,
 979 the derivative tensor $\mathbf{D}_k^{(T)}$ itself becomes sparse, with space complexity $O(n \cdot \min\{n^k, d^{k \cdot T}\})$,
 980 where d is the maximum degree of the input graph. This motivates the choice of a node
 981 encoder U^{node} that preserves this sparsity structure and exploits it for improved computational
 982 efficiency.
 983

984 To enable this, we can define the encoder U^{node} as a subclass of the general $(k+1)$ -IGN
 985 architecture, implemented as a DeepSet (Zaheer et al., 2017) operating independently on the
 986 derivative entries associated with each node feature $\mathbf{h}_v^{(T)}$. Specifically, we define:
 987

$$988 U^{\text{ds-node}}(\mathbf{D}_k^{(T)})_v = \text{DeepSet}(\{(\mathbf{D}_k^{(T)}[v, \mathbf{u}, i, \boldsymbol{\alpha}], t(v, \mathbf{u}, \boldsymbol{\alpha})) \mid \mathbf{u} \in V^k(\mathcal{G}), i \in [d'], \boldsymbol{\alpha} \in [m]^{k \times d}\}). \quad (20)$$

989 Here we assume nodes are given in index form, that is $v \in \{1, \dots, n\}$, $\mathbf{u} \in \{1, \dots, n\}^k$, and
 990 $t(v, \mathbf{u}, \boldsymbol{\alpha})$ is a function that encodes the derivative pattern associated with the index tuple
 991 $(v, \mathbf{u}, \boldsymbol{\alpha})$, that is
 992

$$993 t(v_1, \mathbf{u}_1, \boldsymbol{\alpha}_1) = t(v_2, \mathbf{u}_2, \boldsymbol{\alpha}_2) \Leftrightarrow \boldsymbol{\alpha}_1 = \boldsymbol{\alpha}_2 \text{ and } \exists \sigma \in S_n \text{ such that } v_1 = \sigma(v_2), \mathbf{u}_1 = \sigma(\mathbf{u}_2), \quad (21)$$

994 where S_n denotes the symmetric group on n elements. In other words, t maps each derivative
 995 index tuple to a *canonical identifier* that is invariant under permutations of the node indices
 996 but sensitive to the derivative multi-index.
 997

998 This design improves both space and time complexity, as the sets over which the DeepSet
 999 operates are typically sparse. The proof of Theorem 4.1 provided in appendix E.2 shows
 1000 that this encoder architecture is enough to be as expressive as k -OSAN.
 1001

1002 Finally, we proceed the same way as 1-HOD-GNN constructing the derivative-informed
 1003 node features \mathbf{h}^{der} by combining information from the base MPNN, the pooled intermediate
 1004 derivatives, and the output derivatives:
 1005

$$\mathbf{h}_v^{\text{der}} = \mathbf{h}_v^{(T)} \oplus U^{\text{out}}(\mathbf{D}_k^{\text{out}}) \oplus U^{\text{node}}(\mathbf{D}_k^{(T)}). \quad (22)$$

1006 **Step 4.** This step is identical to that of 1-HOD-GNN described in Section 3.2.
 1007

1008 C.2 EDGE-HOD-GNN

1009 In this section, we extend the 1-HOD-GNN formulation to incorporate edge-feature derivatives
 1010 rather than node-feature derivatives. We refer to this variant as edge-HOD-GNN. The
 1011 construction of this architecture closely parallels that of Section 3.2 and is detailed below.
 1012

1013 **Steps 1 & 2.** Similarly to steps 1 & 2 in Section 3.2, in the first two stages, we compute
 1014 the final node representations $\mathbf{h}^{(T)}$ and the output vector \mathbf{h}^{out} using the base MPNN \mathcal{M} .
 1015 The key difference is that we now compute the edge derivative tensors, defined below:
 1016

1017 **Definition C.2.** Given a graph $\mathcal{G} = (\mathbf{A}, \mathbf{X}, \mathbf{E})$ with n nodes, l edges, an edge feature
 1018 matrix \mathbf{E} , an MPNN \mathcal{M} and an intermediate node feature representation matrix $\mathbf{h} \in \mathbb{R}^{n \times d'}$,
 1019 the edge-derivative tensor $\mathbf{D}(\mathbf{h}) \in \mathbb{R}^{n \times l \times d' \times d \times m}$ is defined by:
 1020

$$1021 \mathbf{D}_{\text{edge}}(\mathbf{h})[v, e, i, j, \alpha] = \frac{\partial^\alpha \mathbf{h}_{v,i}}{\partial \mathbf{E}_{e,j}^\alpha}, \quad (23)$$

1022 where $v \in V(\mathcal{G})$, $e \in E(\mathcal{G})$, $i \in [d']$, $j \in [d]$ specify the feature dimensions of the feature
 1023 vectors \mathbf{h}_v , \mathbf{E}_e respectively, and $\alpha \in [m]$ where $m \in \mathbb{N}$ is a hyperparameter specifying the
 1024 maximum order of derivatives to be considered. Similarly, given a graph-level prediction
 1025

1026 vector $\mathbf{h}^{\text{out}} \in \mathbb{R}^{d'}$ the derivative tensor $\mathbf{D}(\mathbf{h}^{\text{out}}) \in \mathbb{R}^{l \times d' \times d \times m}$ is defined by:
 1027

$$\mathbf{D}_{\text{edge}}(\mathbf{h}^{\text{out}})[e, i, j, \alpha] = \frac{\partial^\alpha \mathbf{h}_i^{\text{out}}}{\partial \mathbf{E}_{e,j}^\alpha}. \quad (24)$$

1031 **Step 3.** Similarly to step 3 in Section 3.2, in the third stage of our method, we extract
 1032 new edge features from the edge derivative tensors $\mathbf{D}_{\text{edge}}^{\text{out}}$ and $\mathbf{D}_{\text{edge}}^{(T)}$ using encoder networks
 1033 $\mathbf{U}_{\text{edge}}^{\text{node}}$ and $\mathbf{U}_{\text{edge}}^{\text{out}}$. First, as $\mathbf{D}_{\text{edge}}^{\text{out}} \in \mathbb{R}^{l \times d' \times d \times m}$ is a tensor indexed by a single edge, it can be
 1034 directly interpreted as an edge feature matrix by flattening the remaining dimensions. We
 1035 thus define the encoder network \mathbf{U}^{out} to be a DeepSets (Zaheer et al., 2017) update:
 1036

$$\mathbf{U}_{\text{edge}}^{\text{out}}(\mathbf{D}_{\text{edge}}^{\text{out}})_e = \text{MLP}(\mathbf{D}_{\text{edge}}^{\text{out}}[e, \dots]). \quad (25)$$

1037 Secondly, since $\mathbf{D}_{\text{edge}}^{(T)}$ is indexed by node-edge pairs, it shares the structure of the
 1038 incidence matrix of \mathcal{G} denoted by \mathbf{B} . We can thus define the encoder network
 1039 $\mathbf{U}_{\text{edge}}^{\text{node}} : \mathbb{R}^{n \times l \times d' \times d \times m} \rightarrow \mathbb{R}^{l \times d}$ to be any GNN architecture which maps incidence matrices
 1040 to edge feature matrices. An example of such architecture is Albooyeh et al. (2019).
 1041

1042 **Step 4.** In the final stage, we replace the original edge features of \mathcal{G} with the derivative-
 1043 informed features \mathbf{E}^{der} , and apply a downstream GNN \mathcal{T} to produce a graph-level prediction.
 1044

D DERIVATIVE COMPUTATION

1045 We now extend the derivative computation algorithm presented in Section 3.2.1, to account
 1046 for k -mixed derivatives as well as more general MPNN architectures. Similarly to Section
 1047 3.2.1, we first split the node update procedure of an MPNN into two parts: an aggregation
 1048 step:

$$\tilde{\mathbf{h}}_v^{(t-1)} = \mathbf{h}_v^{(t-1)} \oplus \text{AGG}^{(t)} \left(\left\{ \mathbf{h}_u^{(t-1)} : u \in \mathcal{N}(v) \right\} \right), \quad (26)$$

1049 and a DeepSet step:

$$\mathbf{h}_v^{(t)} = \text{MLP}(\tilde{\mathbf{h}}_v^{(t-1)}). \quad (27)$$

1050 Our algorithm begins by computing the initial derivative tensor $\mathbf{D}^{(0)}$ (we abuse notation
 1051 and omit the subscript k), and then recursively constructs each $\tilde{\mathbf{D}}^{(t-1)} = \mathbf{D}(\tilde{\mathbf{h}}^{(t-1)})$ from
 1052 $\mathbf{D}^{(t-1)}$ and then $\mathbf{D}^{(t)}$ from $\tilde{\mathbf{D}}^{(t-1)}$. Finally, the output derivative tensor \mathbf{D}^{out} is obtained
 1053 from $\mathbf{D}^{(T)}$. See Algorithm 1 for the full procedure.

1054 To analyze the time and memory complexity of each step, we define the derivative sparsity
 1055 of a node v of an input graph \mathcal{G} at layer t of the base MPNN, as the number of non-zero
 1056 derivatives corresponding to $\mathbf{h}_v^{(t)}$. That is

$$s_{v,t} = \left| \left\{ (\mathbf{u}, i, \alpha) \mid \mathbf{D}^{(t)}[v, \mathbf{u}, i, \alpha] \neq 0 \right\} \right|. \quad (28)$$

$$s_t = \min_{v \in V(\mathcal{G})} s_{v,t}. \quad (29)$$

1057 When s_t is small, the tensor $\mathbf{D}^{(t)}$ can be stored efficiently in memory using sparse representations,
 1058 requiring only $O(n \cdot s_t)$ space. The quantities $s_{v,t}$ and s_t are leveraged in Appendix E.2
 1059 to derive concrete asymptotic bounds for the complexity of Algorithm 1.

1060 **Computing $\mathbf{D}^{(0)}$.** Since $\mathbf{h}^{(0)} = \mathbf{X}$, the derivatives are straightforward to compute:
 1061

$$\mathbf{D}^{(0)}[v, \mathbf{u}, i, \alpha] = \begin{cases} 1 & \text{if } \exists s \text{ s.t. } v = \mathbf{u}_s, \alpha_{s,i} = 1, \sum_{s' \neq s, j \in [d]} \alpha_{s',j} = 0 \\ 0 & \text{otherwise.} \end{cases} \quad (30)$$

1062 Although $\mathbf{D}^{(0)}$ is high-dimensional, it is extremely sparse with $s_0 = O(1)$.
 1063

1080 **Computing $\tilde{\mathbf{D}}^{(t-1)}$ from $\mathbf{D}^{(t-1)}$.** Abusing notation, and assuming that for every node v
 1081 in the input graph, both $\mathbf{h}_v^{(t-1)}$ and $\mathbf{h}_v^{(t-1),\text{agg}} = \text{AGG}^{(t)}\left(\{\mathbf{h}_u^{(t-1)} : u \in \mathcal{N}(v)\}\right)$ lie in $\mathbb{R}^{d'}$,
 1082 we observe that since $\tilde{\mathbf{h}}_{v,0:d'-1}^{(t-1)} = \mathbf{h}_v^{(t-1)}$, the derivatives of the first d' coordinates of $\tilde{\mathbf{h}}$ are
 1083 precisely $\mathbf{D}^{(t-1)}$. In contrast, the derivatives with respect to the last d' coordinates depend
 1084 heavily on the choice of aggregation function AGG .
 1085

1086 However, when the aggregation function is linear, i.e., of the form

$$\text{AGG}^{(t)}\left(\{\mathbf{h}_u^{(t-1)} : u \in \mathcal{N}(v)\}\right) = \sum_{v' \in \mathcal{N}(v)} b_{v',v} \mathbf{h}_{v'}^{(t-1)}, \quad (31)$$

1087 for some coefficients $b_{v',v}$ that depend only on the adjacency matrix \mathbf{A} of the input graph
 1088 (this is the case in most widely used MPNNs), the computation of derivatives simplifies. Since
 1089 differentiation commutes with linear operations, the computation in Equation 31 carries over,
 1090 yielding

$$\mathbf{D}(\mathbf{h}^{(t-1),\text{agg}})[v, \dots] = \sum_{v' \in \mathcal{N}(v)} b_{v',v} \mathbf{D}^{(t-1)}[v', \dots]. \quad (32)$$

1091 Aggregating the derivatives of neighboring nodes mirrors the structure of message passing,
 1092 which endows it with several beneficial properties. First, using Equation 32, the tensor
 1093 $\tilde{\mathbf{D}}^{(t-1)}[v, \dots]$ can be computed in time $O(d \cdot s_{t-1})$ where d is the maximal degree of the
 1094 input graph⁷: for each node, we aggregate d neighbor derivative vectors, each containing
 1095 at most s_{t-1} non-zero entries. This means that the total computation time of this step is
 1096 $O(d \cdot n \cdot s_{t-1})$.

1097 The argument above also implies that the total number of non-zero elements in $\tilde{\mathbf{D}}^{(t-1)}[v, \dots]$
 1098 is bounded by $O(\min\{d \cdot s_{t-1}, n^k\})$. Thus, the above update leverages the sparsity of the
 1099 graph to achieve efficiency in both space and time complexity.

1100 **Computing $\mathbf{D}^{(t)}$ from $\tilde{\mathbf{D}}^{(t-1)}$.**

1101 We begin by assuming that the MLP in Equation 27 has depth 1, i.e.,

$$\text{MLP}^{(t)}(\mathbf{x}) = \sigma(\mathbf{W}^{(t)} \cdot \mathbf{x} + \mathbf{b}^{(t)}). \quad (33)$$

1102 In the general case where the MLP has depth l , the procedure described below is applied
 1103 recursively l times.

1104 We define the intermediate linear activation as

$$\mathbf{h}_v^{(t-1),\text{Lin}} = \mathbf{W}^{(t)} \cdot \tilde{\mathbf{h}}_v^{(t)} + \mathbf{b}^{(t)}, \quad (34)$$

1105 and describe how to compute $\mathbf{D}(\mathbf{h}^{(t-1),\text{Lin}})$ from $\tilde{\mathbf{D}}^{(t-1)}$, followed by the computation of $\mathbf{D}^{(t)}$
 1106 from $\mathbf{D}(\mathbf{h}^{(t-1),\text{Lin}})$.
 1107

1108 First, since the update in Equation 34 is affine, we can drop the bias term and get:

$$\mathbf{D}(\mathbf{h}^{(t-1),\text{Lin}})[v, \mathbf{u}, i, \alpha] = \sum_{i'} \mathbf{W}_{i,i'}^{(t)} \cdot \tilde{\mathbf{D}}^{(t-1)}[v, \mathbf{u}, i', \alpha]. \quad (35)$$

1109 Second, notice that

$$\mathbf{h}_v^{(t)} = \sigma(\mathbf{h}_v^{(t-1),\text{Lin}}). \quad (36)$$

1110 We can use the Faà di Bruno’s formula (see e.g. (Hardy, 2006)) which generalizes the chain
 1111 rule to higher-order derivatives, for our last step. Faà di Bruno’s formula states that for a
 1112 pair of functions $g : \mathbb{R}^n \rightarrow \mathbb{R}$, $f : \mathbb{R} \rightarrow \mathbb{R}$, $y = g(x_1, \dots, x_n)$ the following holds, regardless of
 1113 whether the variables x_1, \dots, x_n are all distinct, identical, or grouped into distinguishable
 1114 categories of indistinguishable variables:
 1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

⁷We slightly abuse notation by using d to denote both the input feature dimension and other quantities; the meaning should be clear from context.

1134

$$\frac{\partial^n}{\partial x_1 \cdots \partial x_n} f(y) = \sum_{\pi \in \Pi} f^{(|\pi|)}(y) \cdot \prod_{B \in \pi} \frac{\partial^{|B|} y}{\prod_{j \in B} \partial x_j} \quad (37)$$

1138 where:

1139

- Π denotes the collection of all partitions of the index set $\{1, \dots, n\}$,
- The notation $B \in \pi$ indicates that B is one of the subsets (or "blocks") in the partition π ,
- For any set A , the notation $|A|$ represents its cardinality. In particular, $|\pi|$ is the number of blocks in the partition, and $|B|$ is the number of elements in the block B .

1140 Equations 36 and 37 Imply that we are able to compute $\mathbf{D}^{(t)}[v, \mathbf{u}, \dots]$ based only on
1141 $\mathbf{D}(\mathbf{h}^{(t-1), \text{Lin}})[v, \mathbf{u}, \dots]$ and the derivatives of σ at the point $\mathbf{h}_v^{(t-1), \text{Lin}}$. Combining this
1142 update with Equation 35 results in a way to compute $\mathbf{D}^{(t)}$ from $\tilde{\mathbf{D}}^{(t-1)}$.

1143 Importantly, the update above computes each entry of $\mathbf{D}^{(t)}[v, \mathbf{u}, \dots]$ using only the cor-
1144 responding entries of $\tilde{\mathbf{D}}^{(t-1)}[v, \mathbf{u}, \dots]$, i.e., those associated with the same node tuple
1145 (v, \mathbf{u}) . Moreover, from Equations 35 and 37, it follows that if $\tilde{\mathbf{D}}^{(t-1)}[v, \mathbf{u}, \dots] = \mathbf{0}$,
1146 then $\mathbf{D}^{(t)}[v, \mathbf{u}, \dots] = \mathbf{0}$ as well. This implies that like $\tilde{\mathbf{D}}^{(t-1)}$ the number of non-zero
1147 entries in each $\mathbf{D}^{(t)}[v, \dots]$ is also bounded by $O(\min\{d \cdot s_{t-1}, n^k\})$. Consequently, the
1148 update—performed only over the non-zero entries of $\tilde{\mathbf{D}}^{(t-1)}$ —has a runtime complexity of
1149 $O(n \cdot \min\{d \cdot s_{t-1}, n^k\})$.

1150 **Computing \mathbf{D}^{out} from $\mathbf{D}^{(T)}$.**

1151

1152 Recall that

1153

$$\mathbf{h}^{\text{out}} = \text{AGG}_{\text{fin}} \left(\left\{ \mathbf{h}_v^{(T)} \mid v \in V(\mathcal{G}) \right\} \right), \quad (38)$$

1154 where AGG_{fin} denotes the final aggregation over node embeddings. This operation can be
1155 treated analogously to the node update step: For most common MPNNs, it decomposes into
1156 a linear aggregation followed by an MLP. Consequently, the derivative tensor \mathbf{D}^{out} can be
1157 computed from $\mathbf{D}^{(T)}$ using the same primitives described above.

1158

Algorithm 1 Efficient Computation of Derivative Tensors

1159 **Require:** Graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, base GIN \mathcal{M} with T layers

1160 1: $\mathbf{h}^{(0)} \leftarrow \mathbf{X}$ ▷ node feature init.
1161 2: $\mathbf{D}^{(0)} \leftarrow \mathbf{D}(\mathbf{X})$ ▷ deriv. init through Eq 30.
1162 3: **for** $t = 1$ to T **do**
1163 4: $\tilde{\mathbf{h}}_v^{(t-1)} \leftarrow \mathbf{h}_v^{(t-1)} \oplus \left(\sum_{v' \in \mathcal{N}(v)} b_{v',v} \mathbf{h}_{v'}^{(t-1)} \right)$ ▷ linear node agg.
1164 5: $\tilde{\mathbf{D}}^{(t-1)}[v, \dots] \leftarrow \mathbf{D}^{(t-1)}[v, \dots] \oplus \left(\sum_{v' \in \mathcal{N}(v)} b_{v',v} \mathbf{D}^{(t-1)}[v', \dots] \right)$ ▷ deriv. agg.
1165 6: $\mathbf{h}_v^{(t)} = \text{MLP}^{(t-1)}(\tilde{\mathbf{h}}_v^{(t-1)})_v$ ▷ DeepSet update
1166 7: $\mathbf{D}^{(t)}[v, \dots] = \text{get-der}(\text{MLP}^{(t-1)}, \tilde{\mathbf{D}}^{(t-1)}[v, \dots], \tilde{\mathbf{h}}_v^{(t-1)})$ ▷ deriv. DeepSet update.
1167 8: **end for**
1168 $\mathbf{D}^{\text{out}} = \text{get-out-der}(\mathbf{D}^{(T)})$ ▷ extract output deriv.
1169 9: **return** $\mathbf{D}^{(T)}, \mathbf{D}^{\text{out}}$

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

E EXTENDED THEORETICAL ANALYSIS
E.1 DEFINITIONS

Before delving into the proofs, we begin by formally defining several key concepts used throughout the analysis:

1188
 1189 **Definition E.1** (Analytic Function). A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be *analytic* at
 1190 $\mathbf{x}_0 \in \mathbb{R}^n$ if for some $R \in \mathbb{R}^n$ it holds that for all $|X| < R$:

$$1191 \quad 1192 \quad 1193 \quad 1194 \quad f(\mathbf{x}) = \sum_{|\boldsymbol{\alpha}|=0}^{\infty} \frac{1}{\boldsymbol{\alpha}!} \partial^{\boldsymbol{\alpha}} f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)^{\boldsymbol{\alpha}} \quad (39)$$

1195 where $\boldsymbol{\alpha} \in \mathbb{N}^n$ and we use the following notation:

- 1196 • $|\boldsymbol{\alpha}| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$,
- 1197 • $\boldsymbol{\alpha}! = \alpha_1! \cdot \alpha_2! \cdots \alpha_n!$,
- 1198 • $(\mathbf{x})^{\boldsymbol{\alpha}} = (x_1)^{\alpha_1} \cdot (x_2)^{\alpha_2} \cdots (x_n)^{\alpha_n}$
- 1199 • $\partial^{\boldsymbol{\alpha}} f(\mathbf{a}) = \frac{\partial^{|\boldsymbol{\alpha}|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}} \Big|_{\mathbf{x}=\mathbf{a}}$.

1200 The largest such R is called the radius of convergence. A function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is analytic
 1201 if all functions f_1, \dots, f_m are analytic.

1202 **Definition E.2** (k -OSAN). A k -OSAN model Ψ consists of a base MPNN \mathcal{M} that produces
 1203 updated node features (as opposed to directly outputting a graph-level prediction), followed
 1204 by a downstream MPNN \mathcal{T} that aggregates these features to produce a final graph-level
 1205 output. Given an input graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, the output $\Psi(\mathcal{G})$ is computed in four stages:

1206 **Step 1:** Construct a bag of subgraphs $\mathcal{B}_{\mathcal{G}} = \{\mathcal{S}_{\mathbf{u}} \mid \mathbf{u} \in V^k(\mathcal{G})\}$ each of the form $\mathcal{S}_{\mathbf{u}} =$
 1207 $(\mathbf{A}, \mathbf{X} \oplus \mathbf{e}^{\mathbf{u}})$. Here $\mathbf{e}^{\mathbf{u}} \in \mathbb{R}^{n \times k}$ is a "node marking"⁸ feature matrix assigning a unique
 1208 identifier to each node u_1, \dots, u_k . That is:

$$1209 \quad 1210 \quad 1211 \quad \mathbf{e}_{v,j}^{\mathbf{u}} = \begin{cases} 1 & v = u_j \\ 0 & \text{else.} \end{cases} \quad (40)$$

1212 **Step 2:**

1213 Compute the $(k+1)$ -node indexed tensor:

$$1214 \quad 1215 \quad 1216 \quad \mathbf{H}[v, \mathbf{u}] = \mathcal{M}(\mathcal{S}_{\mathbf{u}})_v \quad (41)$$

1217 **Step 3:** use a set aggregation function to produce new node features:

$$1218 \quad 1219 \quad 1220 \quad \mathbf{h}_v^{\text{sub}} = \text{AGG}(\{\mathbf{H}[v, \mathbf{u}] \mid \mathbf{u} \in V^k(\mathcal{G})\}). \quad (42)$$

1221 **Step 4:** Compute the final output through:

$$1222 \quad 1223 \quad 1224 \quad \Psi(\mathcal{G}) = \mathcal{T}(\mathbf{A}, \mathbf{h}^{\text{sub}}). \quad (43)$$

1225 For $k = 1$, k -OSAN are also referred to as DS-GNNs.

1226 **Definition E.3** (Random Walk Structural Encoding). For a graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, the Random
 1227 Walk Structural Encoding (RWSE) with L number of steps is defined as

$$1228 \quad 1229 \quad 1230 \quad \mathbf{h}^{\text{rwse}} = \bigoplus_{l=1}^L \text{diag}(\tilde{\mathbf{A}}^l), \quad (44)$$

1231 where $\tilde{\mathbf{A}} = \mathbf{A} \cdot \text{Diag}(\deg(u_1)^{-1}, \dots, \deg(u_n)^{-1})$ is the row-normalized adjacency matrix,
 1232 $\text{diag}(\cdot)$ denotes the vector of diagonal entries of a matrix, and $\text{Diag}(\mathbf{v})$ denotes the diagonal
 1233 matrix with vector \mathbf{v} on its diagonal.

1234
 1235
 1236
 1237 ⁸Although alternative methods for initializing node features in subgraphs have been proposed,
 1238 they offer the same expressive power. We therefore focus on the simple approach used here.

1242 E.2 PROOFS
12431244 **Theorem 4.1.** We begin by formally stating and proving Theorem 4.1, splitting it into [two](#)
1245 [Theorem-corollary pairs](#).1246 **Theorem E.4** (k -HOD-GNN is as expressive as k -OSAN). *Let $\{\mathcal{G}^i = (\mathbf{A}^i, \mathbf{X}^i) \mid i \in [l]\}$ be a*
1247 *finite set of graphs, and let Ψ be a k -OSAN model. for any $\epsilon > 0$, there exists a k -HOD-GNN*
1248 *model Φ such that for each $i \in [l]$*

1249
$$|\Psi(\mathcal{G}_i) - \Phi(\mathcal{G}_i)| < \epsilon. \quad (45)$$

1250

1251 **Corollary E.5.** *There exist non-isomorphic graphs that are indistinguishable by the folklore*
1252 *k -WL test but are distinguishable by k -HOD-GNN. Additionally, k -HOD-GNN is able to*
1253 *compute the homomorphism count of k -apex forest graphs.*1254 *Proof.* We begin the proof by making a few simplifying assumptions on Ψ , which we can do
1255 without loss of generality. We begin by assuming that all activation functions used in \mathcal{M} ,
1256 the base MPNN of Ψ , are analytic with infinite radius of convergence (e.g., $\exp(x)$, $\sin(x)$).
1257 This assumption can be made without loss of generality: Since MLPs with non-polynomial
1258 analytic activations are universal approximators, each MLP in \mathcal{M} can be replaced with one
1259 using an analytic activation function that approximates the original to arbitrary precision.
1260 Furthermore, since the composition of analytic functions with infinite convergence radius
1261 remains analytic with infinite convergence radius, it follows that \mathcal{M} —as a composition of
1262 affine transformations and activation functions—is itself analytic.1263 Secondly, we assume that the final node representations produced by \mathcal{M} are one-dimensional.
1264 This assumption can be made without loss of generality: we can append a final MLP to
1265 \mathcal{M} that compresses each node’s feature vector to a scalar, and prepend an MLP to the
1266 downstream network \mathcal{T} that reconstructs the original feature dimension. This effectively
1267 amounts to inserting an autoencoder, where the encoder is a final pointwise update in \mathcal{M}
1268 and the decoder is an initial pointwise update in \mathcal{T} . Since this architecture can approximate
1269 the original architecture to arbitrary precision, we may assume without loss of generality
1270 that \mathcal{M} produces 1-dimensional node embeddings.1271 Additionally, we can assume the input node feature matrices $\mathbf{X}^i, i \in [l]$ are also all 1-
1272 dimensional. This follows from the same argument as above.1273 Finally, we consider k -HOD-GNN models that only use the node derivative tensor $\mathbf{D}^{(T)}$,
1274 which we use to extract node features through an IGN encoder \mathbf{U} , and disregard \mathbf{D}^{out} .

1275 We prove the theorem in three steps

1276 1. We show that an intermediate representation of $\mathbf{U}(\mathbf{D}^{(T)})$ can encode the tensor $\mathbf{H}_{v,u}$
1277 that is produced at stage (2) of the forward pass of Ψ (see Definition E.2). ⁹
1278 2. we show that $\mathbf{U}(\mathbf{D}^{(T)})$ can approximate the node feature matrix \mathbf{h}^{sub} produced at
1279 stage (3) of the forward pass of Ψ .
1280 3. We show Φ can approximate Ψ to finite precision.1281 **Step 1** For each k -tuple of nodes $\mathbf{u} \in V^k(\mathcal{G}^i)$ and matrix $\mathbf{Y} \in \mathbb{R}^{k \times k}$, we define the node
1282 feature matrix $\text{broad}_{\mathbf{u}}(\mathbf{Y}) \in \mathbb{R}^{n \times k}$ (here we abuse notation and not include the graph index
1283 i by

1284
$$\text{broad}_{\mathbf{u}}(\mathbf{Y})_{v,i} = \begin{cases} y_{j,i} & v = \mathbf{u}_j \\ 0 & \text{else.} \end{cases} \quad (46)$$

1285

1286 Additionally, for each node $v \in \mathcal{G}^i$, we define $f_{v,\mathbf{u}}^i : \mathbb{R}^{k \times k} \rightarrow \mathbb{R}$

1287
$$f_{v,\mathbf{u}}^i(\mathbf{Y}) = \mathcal{M}(\mathbf{A}, \mathbf{X} \oplus \text{broad}_{\mathbf{u}}(\mathbf{Y})). \quad (47)$$

1288

1289 ⁹In cases where \mathbf{u} has repeated entries $\mathbf{u}_{j_1} = \mathbf{u}_{j_2}$, we only consider values of \mathbf{Y} for which
1290 $\mathbf{Y}_{j_1,:} = \mathbf{Y}_{j_2,:}$.

1296 Finally, define $\mathbf{Y}^{\mathbf{u}} \in \mathbb{R}^{k \times k}$ by

$$1297 \quad \mathbf{Y}_{i,j}^{\mathbf{u}} = \mathbf{e}_{u_i,j}^{\mathbf{u}}. \quad (48)$$

1298 where $\mathbf{e}^{\mathbf{u}}$ is the node marking node feature matrix introduced in Definition E.2 (That is,
1299 $\text{broad}_{\mathbf{u}}(\mathbf{Y}^{\mathbf{u}}) = \mathbf{e}^{\mathbf{u}}$).

1300 First, it is easy to see that

$$1302 \quad f_{v,\mathbf{u}}^i(\mathbf{Y}^{\mathbf{u}}) = \mathcal{M}(\mathcal{S}_{\mathbf{u}}^i)_v = \mathbf{H}^i[v, \mathbf{u}], \quad (49)$$

1303 where $\mathcal{S}_{\mathbf{u}}^i$ and $\mathbf{H}^i[v, \mathbf{u}]$ are introduced in Definition E.2.

1305 Second, as \mathcal{M} is analytic with infinite convergence radius, the functions $f_{v,\mathbf{u}}^i$ are all analytic
1306 with infinite convergence radii, and so

$$1307 \quad f_{v,\mathbf{u}}^i(\mathbf{Y}^{\mathbf{u}}) = \sum_{|\boldsymbol{\alpha}|=0}^{\infty} \frac{1}{\boldsymbol{\alpha}!} \partial^{\boldsymbol{\alpha}} f^i(\mathbf{0})(\mathbf{Y}^{\mathbf{u}})^{\boldsymbol{\alpha}}. \quad (50)$$

1310 Here, $\boldsymbol{\alpha} \in \{0, \dots, m-1\}^{k \times k}$ and $(\mathbf{Y}^{\mathbf{u}})^{\boldsymbol{\alpha}} = \prod (\mathbf{Y}_{j_1,j_2}^{\mathbf{u}})^{\alpha_{j_1,j_2}}$. Since we are concerned with a
1311 finite number of graphs, for any $\epsilon > 0$ we can choose an integer I such that for all graphs \mathcal{G}^i
1312 and all $v \in V(\mathcal{G}^i)$, $\mathbf{u} \in V^k(\mathcal{G}^i)$ it holds that:

$$1314 \quad |f_{v,\mathbf{u}}^i(\mathbf{Y}^{\mathbf{u}}) - \sum_{|\boldsymbol{\alpha}|=0}^I \frac{1}{\boldsymbol{\alpha}!} \partial^{\boldsymbol{\alpha}} f_{v,\mathbf{u}}^i(\mathbf{0})(\mathbf{Y}^{\mathbf{u}})^{\boldsymbol{\alpha}}| < \epsilon. \quad (51)$$

1317 Defining

$$1319 \quad \tilde{\mathbf{H}}^i[v, \mathbf{u}] = \sum_{|\boldsymbol{\alpha}|=0}^I \frac{1}{\boldsymbol{\alpha}!} \partial^{\boldsymbol{\alpha}} f_{v,\mathbf{u}}^i(\mathbf{0})(\mathbf{Y}^{\mathbf{u}})^{\boldsymbol{\alpha}}, \quad (52)$$

1322 we get that

$$1323 \quad \tilde{\mathbf{H}}^i \approx \mathbf{H}^i \quad (53)$$

1324 Additionally, from the definition of $f_{v,\mathbf{u}}^i$ it holds that the derivatives of $f_{v,\mathbf{u}}^i$ at zero correspond
1325 to the entries of the k -indexed derivative tensor of \mathcal{G}^i , denoted by $\mathbf{D}^{(T),i}$ ¹⁰, that is

$$1328 \quad \partial^{\boldsymbol{\alpha}} f_{v,\mathbf{u}}^i(\mathbf{0}) = \mathbf{D}^{(T),i}[v, \mathbf{u}, \boldsymbol{\alpha}], \quad (54)$$

1329 where we only take derivatives with respect to the last k feature dimensions, which correspond
1330 to the "marking vectors"

1331 Moreover, let t be a function such that $t(v, \mathbf{u}, \boldsymbol{\alpha})$ encodes the derivative pattern associated
1332 with the index tuple $(v, \mathbf{u}, \boldsymbol{\alpha})$. That is, t satisfies:

$$1334 \quad t(v_1, \mathbf{u}_1, \boldsymbol{\alpha}_1) = t(v_2, \mathbf{u}_2, \boldsymbol{\alpha}_2) \Leftrightarrow \boldsymbol{\alpha}_1 = \boldsymbol{\alpha}_2; \text{ and } \exists \sigma \in S_n \text{ such that } v_1 = \sigma(v_2), \mathbf{u}_1 = \sigma(\mathbf{u}_2), \quad (55)$$

1335 where S_n is the symmetric group on n elements. The value of $\frac{1}{\boldsymbol{\alpha}!} (\mathbf{Y}^{\mathbf{u}})^{\boldsymbol{\alpha}}$ is determined entirely
1336 by $t(v, \mathbf{u}, \boldsymbol{\alpha})$, and thus can be recovered from it.

1338 This implies that the DeepSet encoder $\mathbf{U}^{\text{ds-node}}$ defined in Equation 20 in Appendix C.1, can
1339 have an intermediate layer L such that

$$1341 \quad L(\mathbf{D}^{(T),i}) = \tilde{\mathbf{H}}^i. \quad (56)$$

1343 Here L simply multiples each entry $\mathbf{D}^{(T),i}[v, \mathbf{u}, \boldsymbol{\alpha}]$ by $\frac{1}{\boldsymbol{\alpha}!} (\mathbf{Y}^{\mathbf{u}})^{\boldsymbol{\alpha}}$, followed by summing over the
1344 $\boldsymbol{\alpha}$ indices. Thus, by Equations 53 and 56, choosing \mathcal{M} as the base MPNN of a k -HOD-GNN
1345 model allows us to approximate each \mathbf{H}^i to arbitrary precision using its derivatives. Note
1346 that since the DeepSet encoder is a restricted instance of a $(k+1)$ -IGN encoder, it can
1347 achieve the same effect.

1348
1349 ¹⁰here we abuse notation and omit the subscript k in \mathbf{D}_k .

1350
 1351 **Step 2** Equation 42 shows that the node features $\mathbf{h}_v^{\text{sub},i}$ are constructed by applying a
 1352 set-wise aggregation function over the set $\{\mathbf{H}^i[v, \mathbf{u}] \mid \mathbf{u} \in V^k(\mathcal{G}^i)\}$. Any continuous set-wise
 1353 aggregation function can be approximated to arbitrary precision by a DeepSet architecture
 1354 (Zaheer et al., 2017) (see Segol & Lipman (2019) for proof). Moreover, any DeepSet
 1355 model applied in parallel over the first index of a k -indexed node tensor can be exactly
 1356 implemented by a k -IGN, since each layer in such a model consists of a linear equivariant
 1357 transformation followed by a pointwise nonlinearity. Thus, we can construct our encoder
 1358 \mathbf{U} to first approximate the mapping $\mathbf{D}^i \rightarrow \tilde{\mathbf{H}}^i$ as an intermediate representation, and then
 1359 approximate the subsequent mapping $\tilde{\mathbf{H}}^i \rightarrow \mathbf{h}^{\text{sub},i}$. Since both approximations can be made
 1360 to arbitrary precision, this completes the proof of the claim in Step 2.

1361 **Step 3** The final forward step—applying a downstream GNN to the updated node features to
 1362 produce a graph-level representation—is identical in both OSAN and HOD-GNN. Therefore,
 1363 by choosing the downstream GNN in the k -HOD-GNN model to match that of Ψ , the proof
 1364 is complete. \square

1365
 1366 Using Theorem E.4 we now prove corollary E.5

1367 *Proof of corollary E.5.* It was shown by Qian et al. (2022) that k -OSAN models can dis-
 1368 tinguish between graphs that are indistinguishable by the k -WL test. As Theorem E.4
 1369 establishes that our method can approximate any k -OSAN model to arbitrary precision, it
 1370 follows that k -HOD-GNN can do the same. Similarly, Zhang et al. (2024b) showed that
 1371 k -OSAN models can compute homomorphism counts of k -apex forests—graphs in which
 1372 the removal of at most k nodes yields a forest. Therefore, by Theorem E.4, Corollary E.5
 1373 follows. \square

1374
 1375
 1376
 1377 **Theorem E.6** $((k+2)\text{-IGNs are as expressive as } k\text{-HOD-GNN})$. *Let Φ be a k -HOD-GNN
 1378 model and let $\mathcal{G}, \mathcal{G}'$ be a pair of graphs such that*

$$\Phi(\mathcal{G}) \neq \Phi(\mathcal{G}'). \quad (57)$$

1379
 1380 *There exists a $(k+2)$ -IGN model Ψ such that:*

$$\Psi(\mathcal{G}) \neq \Psi(\mathcal{G}'). \quad (58)$$

1381 **Corollary E.7.** *k -HOD-GNN is unable to distinguish any pair of $(k+1)$ -FWL indistin-
 1382 guishable graphs.*

1383
 1384
 1385 *Proof.* First, recall that the k -HOD GNN $HOD - GNN$ is composed of a base MPNN \mathcal{M} ,
 1386 a downstream MPNN \mathcal{T} , a $(k+1)$ -IGN encoder \mathbf{U}^{node} and a k -IGN encoder \mathbf{U}^{out} , all of
 1387 which are less expressive than the $(k+2)$ -IGN architecture. Thus, it is enough to show that
 1388 $(k+2)$ -IGN is able to simulate the efficient derivative algorithm presented in Appendix D,
 1389 to compute the k -order derivative tensors $\mathbf{D}^{(T)}$ and $\mathbf{D}^{(\text{out})}$. We now show how $(k+2)$ -IGN
 1390 is able to simulate each step of this algorithm.

1391
 1392
 1393
 1394 Before we begin, recall that a $(k+2)$ -IGN operates on tensors $\mathbf{T} \in \mathbb{R}^{n^{k+2} \times d}$ where d is
 1395 called "the feature dimension". As the derivative tenors are of the form $\mathbf{D} \in \mathbb{R}^{n^{k+1} \times d' \times m^{d \times k}}$
 1396 we slightly change the notation for the tensors T which $(k+2)$ -IGN operates on to $\mathbf{T} \in \mathbb{R}^{n^{k+2} \times d_1, \dots, d_r}$ allowing multiple feature dimensions. We stress this is only a notation
 1397 convenience, as we can transform T back to a single feature dimension simply by "flattening"
 1398 the different feature dimensions. Thus, for the rest of the proof, similarly to definition C.1
 1399 we assume T is indexed by $T[\mathbf{u}, i, \boldsymbol{\alpha}]$ where $\mathbf{u} = (u_1, \dots, u_{k+2}) \in V(\mathcal{G})^{k+2}$, $i \in [d]$, $\boldsymbol{\alpha} =$
 1400 $(\alpha_{j_1, j_2})_{d, k} \in \{0, \dots, m-1\}^{d \times k}$ and $|\boldsymbol{\alpha}| = \sum \alpha_{j_1, j_2}$.

1401
 1402
 1403 Throughout the proof, tensor representations corresponding to $\mathcal{G}, \mathcal{G}'$ will be denoted by \mathbf{T}, \mathbf{T}'
 1404 respectively.

1404 **Step 1: Computing $\mathbf{D}^{(0)}$.**

1405 For an input graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ Recall that:

1406 Since $\mathbf{h}^{(0)} = \mathbf{X}$, we have:

$$1409 \quad \mathbf{D}^{(0)}[v, \mathbf{u}, i, \boldsymbol{\alpha}] = \begin{cases} 1 & \text{if } \exists s \text{ s.t. } v = \mathbf{u}_s, \boldsymbol{\alpha}_{s,i} = 1, \sum_{s' \neq s, j \in [d]} \boldsymbol{\alpha}_{s',j} = 0 \\ 0 & \text{otherwise.} \end{cases} \quad (59)$$

1412 The initial tensor $\mathbf{T}^{(0)}$ used by a $(k+2)$ -IGN is such that $T[\mathbf{u}, \dots] = T[\mathbf{v}, \dots]$ if and only
1413 if the map $v_i \rightarrow u_i$ is a graph isomorphism on the subgraphs of \mathcal{G} induced by \mathbf{v} and \mathbf{u}
1414 respectively.

1415 In addition, one of the core operations of $(k+2)$ -IGNs allows it to apply a "pointwise" linear
1416 layer followed by an activation on any entry $\mathbf{T}[\mathbf{u}, \dots]$ of the tensor \mathbf{T} simultaneously. That
1417 is, using $(k+2)$ -IGN layers we can update the tensor \mathbf{T} via $\text{MLP}(\mathbf{T}[\mathbf{u}, \dots]) \rightarrow \mathbf{T}'[\mathbf{u}, \dots]$ (See
1418 Maron et al. (2019); Frasca et al. (2022) for more details).

1419 Define

$$1422 \quad S_1 = \{\mathbf{T}^{(0)}[\mathbf{u}, \dots] | u_1 = u_2\} \cup \{\mathbf{T}'^{(0)}[\mathbf{u}, \dots] | u_1 = u_2\}. \quad (60)$$

$$1424 \quad S_2 = \{\mathbf{T}^{(0)}[\mathbf{u}, \dots] | u_1 \in \mathcal{N}_G(u_2)\} \cup \{\mathbf{T}'^{(0)}[\mathbf{u}, \dots] | u_1 \in \mathcal{N}_{G'}(u_2)\}. \quad (61)$$

$$1427 \quad S_3 = \{\mathbf{T}^{(0)}[\mathbf{u}, \dots] | u_1 \notin (\mathcal{N}_G(u_2) \cup \{u_2\})\} \cup \{\mathbf{T}'^{(0)}[\mathbf{u}, \dots] | u_1 \notin (\mathcal{N}_{G'}(u_2) \cup \{u_2\})\}. \quad (62)$$

1428 Here $\mathcal{N}(\cdot)$ is the neighborhood of a node.

1430 From the definition of the initial tensor $\mathbf{T}^{(0)}$ above, S_1, S_2, S_3 all have pairwise empty
1431 intersections. Thus, we can define an MLP such that $\forall \mathbf{x} \in S_1$

$$1433 \quad \text{MLP}(\mathbf{x})[i, \boldsymbol{\alpha}] = \begin{cases} 1 & \text{if } \exists s \text{ s.t. } \boldsymbol{\alpha}_{s,i} = 1, \sum_{s' \neq s, j \in [d]} \boldsymbol{\alpha}_{s',j} = 0 \\ 0 & \text{otherwise,} \end{cases} \quad (63)$$

1436 $\forall \mathbf{x} \in S_2$:

$$1437 \quad \text{MLP}(\mathbf{x})[i, \boldsymbol{\alpha}] = 1, \quad (64)$$

1439 and $\forall \mathbf{x} \in S_3$:

$$1440 \quad \text{MLP}(\mathbf{x})[i, \boldsymbol{\alpha}] = 0. \quad (65)$$

1442 by updating $\mathbf{T}[\mathbf{u}, \dots] = \text{MLP}(\mathbf{T}^{(0)}[\mathbf{u}, \dots])$, $\mathbf{T}'[\mathbf{u}, \dots] = \text{MLP}(\mathbf{T}'^{(0)}[\mathbf{u}, \dots])$ we now get:

$$1444 \quad \mathbf{T}[u_1, \dots, u_{k+1}, u_{k+1}, \dots] = \mathbf{D}^{(0)}[u_2, \dots, u_{k+2}, \dots] \quad (66)$$

1446 and for $u_1 \neq u_2$:

$$1448 \quad \mathbf{T}[u_1, u_2, \dots, u_{k+2}, \dots] = \mathbf{A}_{u_1, u_2}. \quad (67)$$

1450 Thus \mathbf{T} now stores both the information of the tensor $\mathbf{D}^{(0)}$ and the adjacency \mathbf{A} .

1451 **Step 2: Computing $\tilde{\mathbf{D}}^{(t-1)}$ from $\mathbf{D}^{(t-1)}$.**

1453 For simplicity assume the base MPNN used in k -HOD-GNN is a GIN architecture (the proof
1454 can be easily generalized to the general case)

1455 Recall from Appendix D that

$$1457 \quad \tilde{\mathbf{D}}^{(t-1)}[u, \dots] = \mathbf{D}^{(t-1)}[u, \dots] (1 + \epsilon) \sum_{u' \in \mathcal{N}(u)} \mathbf{D}^{(t-1)}[u', \dots]. \quad (68)$$

1458 This amounts to constructing a "flattened" node feature vector $\mathbf{D}_{\text{flat}} \in \mathbb{R}^{n \times \tilde{d}}$ defined by
 1459
 1460

$$\mathbf{D}_{\text{flat}}[u] = \mathbf{D}^{(t-1)}[u, \dots].\text{flatten}() \quad (69)$$

1461 and performing standard message passing on it.
 1462

1463 We can follow a similar path, defining a "flattened" matrix $\mathbf{T}_{\text{flat}} \in \mathbb{R}^{n^2 \times \tilde{d}}$ defined by
 1464

$$\mathbf{T}_{\text{flat}}[u_1, u_2] = \mathbf{T}[u_1, u_2, \dots].\text{flatten}() \quad (70)$$

1465 and then use $(k+2)$ -IGN layer to perform 2-IGN updates on \mathbf{T}_{flat} . From equation 67
 1466 the tensor \mathbf{T} retains the adjacency information of the input graph. Following arguments
 1467 presented in Maron et al. (2019) a 2-IGN layer can simulate message passing. Thus, we are
 1468 able to compute $\tilde{\mathbf{D}}^{(t-1)}$, completing the step.
 1469

1470 **Step 3: Computing $\mathbf{D}^{(t)}$ from $\tilde{\mathbf{D}}^{(t-1)}$.** As shown in Appendix D, $\mathbf{D}^{(t)}$ can be computed
 1471 from $\tilde{\mathbf{D}}^{(t-1)}$ by a point-wise update. That is, there exists a continuous function f which
 1472 depends on the choice of the activation and weights of the base MPNN \mathcal{M} such that
 1473

$$\mathbf{D}^{(t)}[u, i, \alpha] = f(\tilde{\mathbf{D}}^{(t-1)}[u, i, \alpha]). \quad (71)$$

1474 We can thus choose an MLP which approximates f to finite precision and update our tensors
 1475 \mathbf{T}, \mathbf{T}' according to $\mathbf{T}[u, \dots] = \text{MLP}(\mathbf{T}^{\text{[}}[u, \dots])$, $\mathbf{T}'[u, \dots] = \text{MLP}(\mathbf{T}'^{\text{[}}[u, \dots])$. This finishes
 1476 the current step.
 1477

1478 Iteratively updating the tensors \mathbf{T} and \mathbf{T}' according to steps 1-3, we reach final tensors such
 1479 that
 1480

$$\mathbf{T}[u_2, u_2, \dots, u_{k+2}, \dots] = \mathbf{D}^{(T)}[u_2, \dots, u_{k+2}, \dots] \quad (72)$$

$$\mathbf{T}'[u_2, u_2, \dots, u_{k+2}, \dots] = \mathbf{D}'^{(T)}[u_2, \dots, u_{k+2}, \dots] \quad (73)$$

1481 a $(k+2)$ -IGN can then apply a projection $P : \mathbb{R}^{n^{k+2} \times d_1, \dots, d_k} \rightarrow \mathbb{R}^{n^{k+1} \times d_1, \dots, d_k}$
 1482 defined by
 1483

$$P(T)[u_1, u_2, \dots, u_{k+2}, \dots] = T[u_2, u_2, \dots, u_{k+2}, \dots] = \mathbf{D}^{(T)}[u_2, \dots, u_{k+2}, \dots]. \quad (74)$$

1484 Thus a $(k+2)$ -IGN can recover $\mathbf{D}^{(T)}$.
 1485

1486 **Step 4: Computing \mathbf{D}^{out} from $\mathbf{D}^{(T)}$.** For most common MPNNs, this step decomposes
 1487 into a linear aggregation (which can be handled exactly like step 2) followed by an MLP
 1488 (which is equivalent to the update of step 3). Consequently, the derivative tensor \mathbf{D}^{out} can
 1489 be computed from $\mathbf{D}^{(T)}$ using the same primitives described above.
 1490

□

1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501 *Proof of corollary E.7.* Recall that the $(k+1)$ -FWL has equivalent expressive power to the
 1502 $(k+2)$ -oblivious WL test (see Morris et al. (2023)). In addition, as shown in Geerts (2020);
 1503 Azizian & Lelarge (2020); Maron et al. (2019), $(k+2)$ -IGNs have the same expressive power
 1504 as the $(K+2)$ oblivious WL test. This together with Theorem E.6 completes the proof. □
 1505

1506 **Theorem 4.3.** We now formally state and prove Theorem 4.3
 1507

1508 **Theorem E.8** (HOD-GNN is strictly more expressive than RWSE+MPNN). *For any MPNN*
 1509 *\mathcal{T} augmented with random walk structural encodings (see Definition E.3), there exists a*
 1510 *1-HOD-GNN model Φ that uses ReLU activations and only first-order derivatives such that,*
 1511 *for every graph \mathcal{G} , it holds that*

$$\mathcal{T}(\mathcal{G}) = \Phi(\mathcal{G}). \quad (75)$$

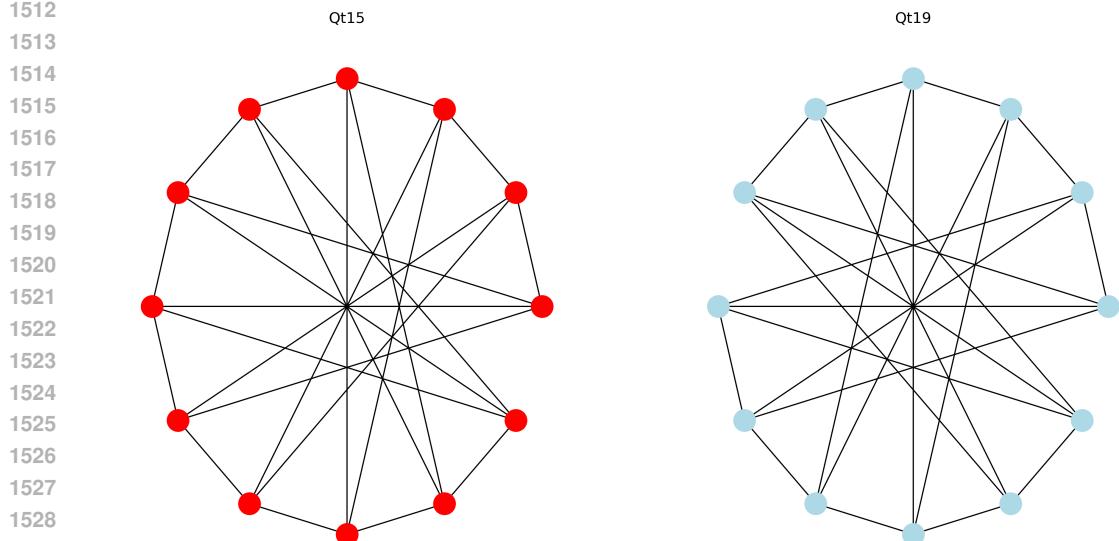


Figure 2: Two quartic vertex-transitive graphs that cannot be distinguished by MPNNs augmented with RWSE, but can be distinguished using HOD-GNN.

Moreover, there exist a pair of graphs \mathcal{G}^1 and \mathcal{G}^2 such that for every RWSE-augmented MPNN \mathcal{T} ,

$$\mathcal{T}(\mathcal{G}^1) = \mathcal{T}(\mathcal{G}^2), \quad (76)$$

yet there exists a 1-HOD-GNN model Φ , using ReLU activations and only first-order derivatives, such that

$$\Phi(\mathcal{G}^1) \neq \Phi(\mathcal{G}^2). \quad (77)$$

Proof. To prove the first part of the theorem for RSWE with L number of steps, we begin with a simple preprocessing step. For each input graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ with node feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, we define an extended feature matrix $\bar{\mathbf{X}} = \mathbf{X} \oplus \mathbf{1}_L \in \mathbb{R}^{n \times (d+L)}$ by padding \mathbf{X} with a constant vector of length L and value 1. We then pass $\bar{\mathbf{X}}$ to the HOD-GNN model instead of the original \mathbf{X} .

It is now sufficient to construct a base MPNN \mathcal{M} with T layers such that:

1. The first d coordinates of each final node embedding satisfy $\mathbf{h}_{v,0:d-1}^{(T)} = \mathbf{X}_v$, i.e., the original features are preserved.
2. The first-order derivatives of the remaining L coordinates (i.e., for indices $l = d, \dots, d+L-1$) satisfy:

$$\frac{\partial \mathbf{h}_{v,l}^{(T)}}{\partial \bar{\mathbf{X}}_{v,l}} = \tilde{\mathbf{A}}_{v,v}^l, \quad (78)$$

where $\tilde{\mathbf{A}}$ is the row-normalized adjacency matrix (see Definition E.3).

If the above conditions hold, we can choose an MLP such that

$$\mathbf{h}_v^{\text{der}} = \text{MLP} \left(\mathbf{h}_v^{(T)} \oplus \mathbf{U}^{(T)}(\mathbf{D}^{(T)})_v \oplus \mathbf{U}^{\text{out}}(\mathbf{D}^{\text{out}}) \right) = \mathbf{X}_v \oplus \mathbf{h}_v^{\text{rwse}} \quad (79)$$

and choose our downstream model to be exactly \mathcal{T} thus satisfying Equation 76.

We now construct an MPNN \mathcal{M} that satisfies both of the conditions above.

1566 For each layer $t = 0, \dots, T - 1$, we define the update rule of \mathcal{M} to act separately on two parts
 1567 of the node feature vector: the first $d + t$ coordinates and the remaining $T - t$ coordinates.
 1568 Specifically:

1569

1570
$$\mathbf{h}_{v,0:d+t-1}^{(t+1)} = \mathbf{h}_{v,0:d+t-1}^{(t)}, \quad (80)$$

1572

1573
$$\mathbf{h}_{v,d+t:T-1}^{(t+1)} = \text{ReLU} \left(\frac{1}{\deg(v)} \sum_{u \in \mathcal{N}(v)} \mathbf{h}_{u,d+t:T-1}^{(t)} \right). \quad (81)$$

1576

1577 We set the number of layers in \mathcal{M} to be $T = L$, where L is the number of random walk steps
 1578 used in the original RWSE encoding.

1579

1580 First, the proposed update rule is straightforward to implement within the MPNN framework
 1581 defined by Equation 1, as it follows a standard message-passing structure.

1582 Second, Equation 80 guarantees that the first d coordinates of each node's feature vector
 1583 remain unchanged throughout the layers, thereby satisfying condition (1).

1584 Finally, Equations 80 and 81 together imply that for all $t = 0, \dots, T - 1$, it holds that

1585

1586
$$\mathbf{h}_{v,t}^{(T)} = \tilde{A}^t \cdot \mathbf{1}_T. \quad (82)$$

1587 This implies that

1589

1590
$$\frac{\partial \mathbf{h}_{v,t}^{(T)}}{\partial \tilde{\mathbf{X}}_{v,t}} = \tilde{A}_{v,v}^t \quad (83)$$

1592

1593 and so condition (2) holds, completing the first part of the proof.

1594

1595 For the second part of the proof, following the notation of (Read & Wilson, 1998), let \mathcal{G}_1 and
 1596 \mathcal{G}_2 denote the quartic vertex-transitive graphs Qt15 and Qt19, respectively (see Figure 2)
 1597 with all initial node features equal to $\mathbf{1}_2 \in \mathbb{R}^2$. Here, "vertex-transitive" means that for any
 1598 pair of nodes, there exists a graph automorphism mapping one to the other, and "quartic"
 1599 indicates that the graphs are 4-regular. This pair of graphs was shown in (Southern et al.,
 1600 2025) to be indistinguishable by MPNNs augmented with RWSE. Therefore, to conclude the
 1601 proof, it suffices to construct an HOD-GNN model that can distinguish between them.

1601

1602 We define the base MPNN \mathcal{M} to consist of two layers, specified as follows. The first layer
 1603 performs standard neighbor aggregation:

1604

1605
$$\mathbf{h}_v^{(1)} = \text{ReLU} \left(\sum_{u \in \mathcal{N}(v)} \mathbf{h}_u^{(0)} \right). \quad (84)$$

1606

1607 In the second layer, the first coordinate of each node feature is preserved, while the second
 1608 coordinate is updated via another aggregation step. That is

1609

1610
$$\mathbf{h}_{v,0}^{(2)} = \mathbf{h}_{v,0}^{(1)}, \quad (85)$$

1611

1612

1613

1614

1615

1616

1617

1618

1619

1619
$$\mathbf{h}_{v,1}^{(2)} = \text{ReLU} \left(\sum_{u \in \mathcal{N}(v)} \mathbf{h}_{u,1}^{(1)} \right). \quad (86)$$

from the same argument as the first part of the proof, we get that for \mathcal{M} , it holds that

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

$$\frac{\partial \mathbf{h}_{v,l}^{(2)}}{\partial \mathbf{X}_{u,l}} = \mathbf{A}_{v,u}^l, \quad (87)$$

Note that for a pair of nodes u, v , we have $\mathbf{A}_{u,v} = 1$ and $\mathbf{A}_{u,v}^2 = 0$ if and only if $u \in \mathcal{N}(v)$ and, for all $u' \in \mathcal{N}(v)$, it holds that $u \notin \mathcal{N}(u')$ —that is, there is no path of length exactly 2 from u to v . A straightforward computation shows that no such node pairs exist in \mathcal{G}^1 , whereas several such pairs appear in \mathcal{G}^2 . Thus, the set of off-diagonal derivative vectors $\{\mathbf{D}^{(2),2}[u, v, 1, :] \mid u \neq v \in V(\mathcal{G}^2)\}$ contains values that do not appear in the corresponding set $\{\mathbf{D}^{(2),1}[u, v, 1, :] \mid u \neq v \in V(\mathcal{G}^1)\}$.

We define the node derivative encoder \mathbf{U}^{node} as a 2-IGN model that operates in two steps. First, it constructs a filtered tensor $\bar{\mathbf{D}}$ by zeroing out all entries of $\mathbf{D}^{(2)}$ that are not off-diagonal or are farther than $\epsilon = \frac{1}{4}$ from the vector $(1, 0)$. Then, it performs row-wise summation over $\bar{\mathbf{D}}$ to produce node features:

$$\mathbf{U}^{\text{node}}(\mathbf{D}^{(2)})_v = \sum_{u \in V(\mathcal{G})} \bar{\mathbf{D}}[v, u]. \quad (88)$$

It follows that $\mathbf{U}^{\text{node}}(\mathbf{D}^{(2),1}) = \mathbf{0}$, while $\mathbf{U}^{\text{node}}(\mathbf{D}^{(2),2}) \neq \mathbf{0}$. Therefore, when these vectors are passed to the downstream MPNN, it will be able to distinguish between the two graphs, completing the proof. \square

Computational complexity.

We now prove Propositions 4.4 and 4.5, which analyze the time and space complexity of HOD-GNN.

Proof. Recall that in Appendix D, we have defined the derivative sparsity of a node v of an input graph \mathcal{G} at layer t of the base MPNN, as

$$s_{v,t} = \left| \{(\mathbf{u}, i, \boldsymbol{\alpha}) \mid \mathbf{D}^{(t)}[v, \mathbf{u}, i, \boldsymbol{\alpha}] \neq 0\} \right|, \quad (89)$$

and the maximal derivative sparsity at layer t is

$$s_t = \min_{v \in V(\mathcal{G})} s_{v,t}. \quad (90)$$

the tensor $\mathbf{D}^{(t)}$ has memory complexity of $O(n \cdot s_t)$ as it can be stored using sparse matrix representations. Algorithm 1 for efficient derivative computation iteratively computes $\mathbf{D}^{(t)}$ using $\mathbf{D}^{(t-1)}$ and finally computes \mathbf{D}^{out} from $\mathbf{D}^{(T)}$. We now prove by induction that for an input graph \mathcal{G} with maximal degree d^{11} , there exists a constant C which depends on the maximal number of derivatives, the input node feature dimension, and the dimension of $\mathbf{h}^{(t)}$, all of which are hyperparameters, such that

$$s_t < C \cdot \min\{d^{k \cdot t}, n^k\}. \quad (91)$$

We additionally show that $\mathbf{D}^{(t)}$ can be constructed from $\mathbf{D}^{(t-1)}$ in time complexity of $O(d \cdot n \cdot \min\{d^{k \cdot (t-1)}, n^k\})$

To begin, as we saw in Appendix D,

$$\mathbf{D}^{(0)}[v, \mathbf{u}, i, \mathbf{j}, \boldsymbol{\alpha}] = \begin{cases} 1 & \text{if } \exists s \text{ s.t. } v = \mathbf{u}_s, i = \mathbf{j}_s, \boldsymbol{\alpha}_s = 1, \sum_{s' \neq s} \boldsymbol{\alpha}_{s'} = 0 \\ 0 & \text{otherwise,} \end{cases} \quad (92)$$

and so $s_{v,0} < C = m^k \cdot l^{k+1}$ where m is the maximal derivative degree, and l is the dimension of the input node features. Now assuming Equation 91 holds for $t-1$, in Appendix D we saw that $\mathbf{D}^{(t)}$ can be computed from $\mathbf{D}^{(t-1)}$ in time complexity of $O(d \cdot n \cdot s_{t-1}) = O(d \cdot n \cdot \min\{d^{k \cdot (t-1)}, n^k\})$, secondly, we saw that $s_t = O(\min\{d \cdot s_{t-1}, n^k\}) = O(\min\{d^{k \cdot t}, n^k\})$ completing the induction. As the memory complexity of storing $\mathbf{D}^{(t)}$ is

¹¹We slightly abuse notation by using d to denote the maximal degree as it usually denotes the input feature dimension, we denote this quantity as l for this discussion.

1674 $O(n \cdot s_t) = O(n \cdot \min\{d^{k \cdot t}, n^k\})$ this proves Proposition 4.4. Recall now that we have seen
 1675 in the proof of theorem E.4 that k-HOD-GNN is able to achieve the same expressivity as
 1676 k-OSAN by disregarding \mathbf{D}^{out} and choosing the encoder \mathbf{U}^{node} to be
 1677

$$\mathbf{U}^{\text{ds-node}}(\mathbf{D}^{(T)})_v = \text{DeepSet}(\{\mathbf{D}^{(T)}[v, \mathbf{u}, i, \boldsymbol{\alpha}] \mid \mathbf{u} \in V^k(\mathcal{G}), i \in [d'], \in [d]^k, \boldsymbol{\alpha} \in [m]^k\}). \quad (93)$$

1680 This encoder can leverage the sparsity of $\mathbf{D}^{(T)}$, having runtime complexity of $O(n \cdot s_T) =$
 1681 $O(n \cdot \min\{n^k, d^{k \cdot T}\})$, completing the proof of proposition 4.5. \square
 1682

F ADDITIONAL PROPOSITIONS

1687 In this section, we present three additional propositions which further explore the exact
 1688 expressivity gains obtained from using derivative signals.
 1689

1690 The first proposition shows that even when using only output-level derivatives, 1-HOD-GNN
 1691 is still fairly expressive.
 1692

Proposition F.1. *Even when setting $\mathbf{U}^{\text{node}} = 0$, 1-HOD-GNN is still as expressive as the DS-WL for node based policies test defined in Bevilacqua et al. (2021).*

1695 *Proof.* We begin by recalling the definition of the DS-WL test. Consider two graphs
 1696 $\mathcal{G}_1 = (\mathbf{A}_1, \mathbf{X}_1)$ and $\mathcal{G}_2 = (\mathbf{A}_2, \mathbf{X}_2)$. For each graph, the DS-WL test constructs a bag of
 1697 node-marked subgraphs, where each subgraph is obtained by appending a unique mark to
 1698 the feature of exactly one node. Formally, for $i \in \{1, 2\}$,

$$\mathcal{B}_i = \{\mathcal{S}_{i,v} \mid v \in V(\mathcal{G}_i)\}, \quad (94)$$

1700 where each marked subgraph is defined as

$$\mathcal{S}_{i,v} = (\mathbf{A}_i, \mathbf{X}_i \oplus e_v), \quad (95)$$

1703 with e_v denoting a one-hot indicator applied to node v .
 1704

The DS-WL test then applies the WL refinement procedure independently to each marked
 1705 subgraph $\mathcal{S}_{i,v}$ until convergence, and assigns it a final color
 1706

$$c_{\mathcal{S}} = \text{WL}(\mathcal{S}). \quad (96)$$

1707 This produces, for each graph, a multiset of resulting WL colors:
 1708

$$C_i = \{c_{\mathcal{S}} \mid \mathcal{S} \in \mathcal{B}_i\}, \quad i \in \{1, 2\}. \quad (97)$$

1710 Finally, DS-WL declares \mathcal{G}_1 and \mathcal{G}_2 to be **non-isomorphic** if and only if $C_1 \neq C_2$. If the
 1711 two multisets coincide, the test does not distinguish the graphs.
 1712

As shown in Morris et al. (2019), for any finite collection of graphs there exists an MPNN \mathcal{M}
 1713 whose output is equivalent to the WL coloring. In particular,
 1714

$$\mathcal{M}(\mathcal{S}) = \mathcal{M}(\mathcal{S}') \iff c_{\mathcal{S}} = c_{\mathcal{S}'}, \quad (98)$$

1716 for any marked subgraphs \mathcal{S} and \mathcal{S}' .
 1717

Consequently, \mathcal{G}_1 and \mathcal{G}_2 are separated by the DS-WL test if and only if there exists an
 1718 MPNN such that
 1719

$$\{\mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_1\} \neq \{\mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_2\}. \quad (99)$$

1720 As previously discussed, we may assume without loss of generality that the activation function
 1721 used by \mathcal{M} is analytic. Indeed, if this is not the case, the MLP components of \mathcal{M} can be
 1722 approximated to arbitrary precision by MLPs employing an analytic activation function.
 1723

1724 For every node $v \in V(\mathcal{G}_i)$, define the scalar function
 1725

$$f_v^i(x) = \mathcal{M}(\mathbf{A}_i, \mathbf{X}_i \oplus x e_v), \quad (100)$$

1726 where $x \in \mathbb{R}$.
 1727

We note the following properties:

1728 1. $f_v^i(1) = \mathcal{M}(\mathcal{S}_{i,v})$ by definition of the marked subgraph $\mathcal{S}_{i,v}$.
 1729

1730 2. For every $j \in \mathbb{N}$,

$$1731 \quad \frac{\partial^j}{\partial x^j} f_v^i(x) \Big|_{x=0} = \frac{\partial^j}{\partial \mathbf{X}_v^j} \mathcal{M}(\mathcal{S}_{i,v}), \quad (101)$$

1733 since the perturbation x only modifies the feature at node v .

1735 3. Each f_v^i is analytic, as \mathcal{M} is a composition of linear transformations and analytic
 1736 activation functions.

1737 Since analytic functions are uniquely determined by their derivatives at a point, we obtain
 1738 that for any pair of nodes $v \in V(\mathcal{G}_1)$ and $u \in V(\mathcal{G}_2)$,

$$1740 \quad \left(\frac{\partial^j}{\partial \mathbf{X}_v^j} \mathcal{M}(\mathcal{S}_{1,v}) = \frac{\partial^j}{\partial \mathbf{X}_u^j} \mathcal{M}(\mathcal{S}_{2,u}) \text{ for all } j \in \mathbb{N} \right) \implies \mathcal{M}(\mathcal{S}_{1,v}) = \mathcal{M}(\mathcal{S}_{2,u}). \quad (102)$$

1743 Therefore, if $\mathcal{M}(\mathcal{S}_{1,v}) \neq \mathcal{M}(\mathcal{S}_{2,u})$, analyticity implies that there exists some integer m such
 1744 that

$$1745 \quad \frac{\partial^m}{\partial \mathbf{X}_v^m} \mathcal{M}(\mathcal{S}_{1,v}) \neq \frac{\partial^m}{\partial \mathbf{X}_u^m} \mathcal{M}(\mathcal{S}_{2,u}), \quad (103)$$

1747 and consequently

$$1748 \quad \mathbf{D}^{\text{out}}(\mathcal{S}_{1,v}) \neq \mathbf{D}^{\text{out}}(\mathcal{S}_{2,u}). \quad (104)$$

1749 Hence,

$$1750 \quad \{ \mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_1 \} \neq \{ \mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_2 \} \quad (105)$$

1751 can hold only if

$$1752 \quad \{ \mathbf{D}^{\text{out}}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_1 \} \neq \{ \mathbf{D}^{\text{out}}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_2 \}. \quad (106)$$

1754 Finally, by choosing the encoder \mathbf{U}^{out} to be a fully expressive multiset function (e.g.,
 1755 DeepSets Zaheer et al. (2017)), 1-HOD-GNN is able to distinguish \mathcal{G}_1 from \mathcal{G}_2 using only
 1756 the derivative tensor \mathbf{D}^{out} . This completes the proof. □

1759 The following proposition analyses the expressive power of edge-HOD-GNN.

1761 **Proposition F.2.** *edge-HOD-GNN is as expressive as the DS-WL for edge based policies test*
 1762 *defined in Bevilacqua et al. (2021), and can thus separate pairs of 2-FWL indistinguishable*
 1763 *graphs.*

1764 *Proof.* The proof of this proposition follows the same argument as the previous one; we
 1765 include it here for completeness. For brevity, for the rest of this prove we refer to the
 1766 edge-marking WL test simply as the WL test, and the edge-derivative tensor simply as the
 1767 derivative tensor, denoted by \mathbf{D}^{out} . We begin by recalling the definition of the DS-WL test
 1768 with edge marking. Consider two graphs $\mathcal{G}_1 = (\mathbf{A}_1, \mathbf{X}_1, \mathbf{E}_1)$ and $\mathcal{G}_2 = (\mathbf{A}_2, \mathbf{X}_2, \mathbf{E}_2)$ where
 1769 $\mathbf{E}_1, \mathbf{E}_2$ represent edge feature matrices. For each graph, the DS-WL test constructs a bag of
 1770 edge-marked subgraphs, where each subgraph is obtained by appending a unique mark to
 1771 the feature of exactly one edge. Formally, for $i \in \{1, 2\}$,

$$1772 \quad \mathcal{B}_i = \{ \mathcal{S}_{i,e} \mid e \in E(\mathcal{G}_i) \}, \quad (107)$$

1773 where each marked subgraph is defined as

$$1775 \quad \mathcal{S}_{i,e} = (\mathbf{A}_i, \mathbf{X}_i, \mathbf{E}_i \oplus \mathbf{e}_e), \quad (108)$$

1776 with \mathbf{e}_e denoting a one-hot indicator applied to edge e .

1777 The DS-WL test then applies the WL refinement procedure independently to each marked
 1778 subgraph $\mathcal{S}_{i,e}$ until convergence, and assigns it a final color

$$1779 \quad c_{\mathcal{S}} = \text{WL}(\mathcal{S}). \quad (109)$$

1781 This produces, for each graph, a multi-set of resulting WL colors:

$$1780 \quad C_i = \{ c_{\mathcal{S}} \mid \mathcal{S} \in \mathcal{B}_i \}, \quad i \in \{1, 2\}. \quad (110)$$

Finally, DS-WL declares \mathcal{G}_1 and \mathcal{G}_2 to be **non-isomorphic** if and only if $C_1 \neq C_2$. If the two multi-sets coincide, the test does not distinguish the graphs.

As shown in Morris et al. (2019), for any finite collection of graphs there exists an MPNN \mathcal{M} whose output is equivalent to the WL coloring. In particular,

$$\mathcal{M}(\mathcal{S}) = \mathcal{M}(\mathcal{S}') \iff c_{\mathcal{S}} = c_{\mathcal{S}'}, \quad (111)$$

for any marked subgraphs \mathcal{S} and \mathcal{S}' .

Consequently, \mathcal{G}_1 and \mathcal{G}_2 are separated by the DS-WL test if and only if there exists an MPNN such that

$$\{ \mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_1 \} \neq \{ \mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_2 \}. \quad (112)$$

As previously discussed, we may assume without loss of generality that the activation function used by \mathcal{M} is analytic. Indeed, if this is not the case, the MLP components of \mathcal{M} can be approximated to arbitrary precision by MLPs employing an analytic activation function.

For every edge $e \in E(\mathcal{G}_i)$, define the scalar function

$$f_e^i(x) = \mathcal{M}(\mathbf{A}_i, \mathbf{X}_i, \mathbf{E}_i \oplus x \cdot \mathbf{e}_v), \quad (113)$$

where $x \in \mathbb{R}$.

We note the following properties:

1. $f_e^i(1) = \mathcal{M}(\mathcal{S}_{i,e})$ by definition of the marked subgraph $\mathcal{S}_{i,e}$.

2. For every $j \in \mathbb{N}$,

$$\frac{\partial^j}{\partial x^j} f_e^i(x) \Big|_{x=0} = \frac{\partial^j}{\partial \mathbf{E}_e^j} \mathcal{M}(\mathcal{S}_{i,e}), \quad (114)$$

since the perturbation x only modifies the feature at edge e .

3. Each f_e^i is analytic, as \mathcal{M} is a composition of linear transformations and analytic activation functions.

Since analytic functions are uniquely determined by their derivatives at a point, we obtain that for any pair of edges $e_i \in E(\mathcal{G}_i)$ $i \in [2]$,

$$\left(\frac{\partial^j}{\partial \mathbf{E}_{e_1}^j} \mathcal{M}(\mathcal{S}_{1,e_1}) = \frac{\partial^j}{\partial \mathbf{E}_{e_2}^j} \mathcal{M}(\mathcal{S}_{2,e_2}) \text{ for all } j \in \mathbb{N} \right) \implies \mathcal{M}(\mathcal{S}_{1,e_1}) = \mathcal{M}(\mathcal{S}_{2,e_2}). \quad (115)$$

Therefore, if $\mathcal{M}(\mathcal{S}_{1,e_1}) \neq \mathcal{M}(\mathcal{S}_{2,e_2})$, analyticity implies that there exists some integer m such that

$$\frac{\partial^m}{\partial \mathbf{E}_{e_1}^m} \mathcal{M}(\mathcal{S}_{1,e_1}) \neq \frac{\partial^m}{\partial \mathbf{E}_{e_2}^m} \mathcal{M}(\mathcal{S}_{2,e_2}), \quad (116)$$

and consequently

$$\mathbf{D}^{\text{out}}(\mathcal{S}_{1,e_1}) \neq \mathbf{D}^{\text{out}}(\mathcal{S}_{2,e_2}). \quad (117)$$

Hence,

$$\{ \mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_1 \} \neq \{ \mathcal{M}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_2 \} \quad (118)$$

can hold only if

$$\{ \mathbf{D}^{\text{out}}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_1 \} \neq \{ \mathbf{D}^{\text{out}}(\mathcal{S}) \mid \mathcal{S} \in \mathcal{B}_2 \}. \quad (119)$$

Finally, by choosing the encoder $\mathbf{U}_{\text{edge}}^{\text{out}}$ to be a fully expressive multiset function (e.g., DeepSets Zaheer et al. (2017)), edge-HOD-GNN is able to distinguish \mathcal{G}_1 from \mathcal{G}_2 using only the edge derivative tensor \mathbf{D}^{out} . The edge marking WL test was shown in Bevilacqua et al. (2021) to be able to separate 2-FWL indistinguishable graphs. This completes the proof. \square

Finally, the next proposition shows that for a fixed base MPNN \mathcal{M} , increasing the hyperparameter m (Definition 3.1), which specifies the highest derivative order used by HOD-GNN, strictly improves expressivity.

1836 **Proposition F.3.** *For any $m \in \mathbb{N}$, there exist choices of the base MPNN \mathcal{M} such that a
 1837 1-HOD-GNN using \mathcal{M} with hyper-parameter m is unable to count the number of triangles of
 1838 a given input graph, while a k -HOD-GNN using \mathcal{M} with $m + 1$ can.*

1839 *Proof.* Let $m \in \mathbb{N}$. We define the base message-passing network \mathcal{M}_m as follows.

1840 Consider an input graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, where $\mathbf{X} \in \mathbb{R}^n$ is a node-feature matrix with scalar
 1841 features.

1842 **Initialization.** We define the first hidden representation by a node-wise MLP update
 1843 (which ignores all neighbors):

$$1844 \quad \mathbf{h}_v^{(1)} := \frac{\mathbf{X}_v^{m+1}}{(m+1)!}. \quad (120)$$

1845 This update depends only on \mathbf{X}_v and is therefore realizable by a local node transformation.

1846 **Message passing.** For $t \in \{2, 3, 4\}$, we define

$$1847 \quad \mathbf{h}^{(t)} := \mathbf{A} \mathbf{h}^{(t-1)}, \quad \text{i.e.,} \quad \mathbf{h}_v^{(t)} = \sum_{u \in N(v)} \mathbf{h}_u^{(t-1)}. \quad (121)$$

1848 Each update is realizable by a standard MPNN aggregation step without applying a post-
 1849 aggregation MLP.

1850 **Readout.** The global output of \mathcal{M}_m is defined by summing the final node representations:

$$1851 \quad \mathbf{h}^{\text{out}} := \sum_{v \in V} \mathbf{h}_v^{(4)}. \quad (122)$$

1852 Thus, \mathcal{M}_m is a message-passing neural network consisting of one node-wise MLP layer
 1853 followed by three pure aggregation layers, and a final sum readout.

1854 As a consequence of the chain rule, all partial derivatives of both $\mathbf{h}^{(4)}$ and \mathbf{h}^{out} of order at
 1855 most m vanish. Therefore, a 1-HOD-GNN model restricted to the hyperparameter m has
 1856 expressive power equivalent to a standard MPNN, and in particular it cannot count triangles.

1857 Moreover, we have

$$1858 \quad \frac{\partial^{m+1} \mathbf{h}_v^{(4)}}{\partial \mathbf{X}_v^{m+1}} = (\mathbf{A}^3)_{v,v}. \quad (123)$$

1859 Hence, a 1-HOD-GNN model with hyperparameter $m + 1$ can exploit this derivative to
 1860 compute

$$1861 \quad \sum_v \frac{(\mathbf{A}^3)_{v,v}}{6}, \quad (124)$$

1862 which equals the number of triangles in the input graph \mathcal{G} . This completes the proof. □

1863 G EXPERIMENTAL DETAILS

1864 In this section, we provide details on the experimental validation described and discussed in
 1865 Section 5.

1866 G.1 ARCHITECTURE

1867 In all of our experiments, we have used a 1-HOD-GNN architecture. We now describe its
 1868 components in detail.

1869 **Base MPNN.** In all experiments, we use a GIN (Xu et al., 2018) architecture as the base
 1870 MPNN—described in Equation 9 (Section 3)—due to its simplicity and maximal expressivity.
 1871 All MLPs used in the node updates are two layers deep and employ ReLU activations.

1890 We extract first-order derivatives from the base MPNN, which—by Theorem 4.3—yields
 1891 greater expressivity than MPNNs augmented with RWSE. After computing the final node
 1892 representations $\mathbf{h}^{(T)}$, we apply a residual connection by aggregating all intermediate layers:
 1893

$$1894 \quad \mathbf{h}^{(T)} \leftarrow \bigoplus_{t=1}^T \frac{\mathbf{h}^{(t)}}{t!}. \quad (125)$$

1895 where normalizing in $t!$ helped stabilize training.
 1896

1897 **Derivative Encoding.**

1898 For simplicity, we ignore the output derivatives of the base MPNN and use only the final
 1899 node-wise derivative tensor $\mathbf{D}^{(T)}$. The encoder \mathbf{U}^{node} is implemented as a lightweight, efficient
 1900 module that applies a pointwise MLP to the diagonal entries of $\mathbf{D}^{(T)}$:
 1901

$$1902 \quad \mathbf{U}^{\text{node}}(\mathbf{D}^{(T)})_v = \text{MLP} \left(\mathbf{D}^{(T)}[v, v, \dots] \right). \quad (126)$$

1903 **Downstream GNN.**

1904 For simplicity and to isolate the effects of HOD-GNN, we restrict our experiments to MPNNs
 1905 as downstream architectures—We use GIN for all experiments but peptieds func in which
 1906 we used a GCN (Kipf & Welling, 2016). All MLPs used in the node updates are two layers
 1907 deep with ReLU activations. The final MLP head also uses ReLU activations and consists of
 1908 1 to 3 layers, following the default settings from Southern et al. (2025), without tuning. In
 1909 experiments with parameter budgets, we adjust only the hidden dimension to fit within the
 1910 limit, selecting the largest value that satisfies the constraint.
 1911

1912 **Initialization.** We initialize the base MPNN such that all categorical feature embeddings
 1913 are set to the constant vector $\mathbf{1}$, all MLP weights are initialized to the identity, and the ϵ
 1914 parameters in the GIN update (Equation 9) are set to -1 . This initialization is motivated by
 1915 the proof of Theorem 4.3; following a similar line of reasoning, it implies that the diagonal of
 1916 the derivative tensor $\mathbf{D}^{(T)}[v, v, \dots]$ corresponds exactly to the centrality encoding proposed
 1917 in Southern et al. (2025).
 1918

1919 **Optimization.** We use separate learning rates for the base and downstream MPNNs. For
 1920 the downstream MPNN, we adopt the learning rates used in Southern et al. (2025), while
 1921 for the base MPNN, we fine-tune by selecting either the same rate or one-tenth of it.
 1922

1923 **G.2 EXPERIMENTS**

1924 We provide below the details of the datasets and hyperparameter configurations used in our
 1925 experiments. Our method is implemented using PyTorch (Paszke et al., 2019) and PyTorch
 1926 Geometric (Fey & Lenssen, 2019), and is based on code provided in Southern et al. (2025)
 1927 and Rampášek et al. (2022). Test performance is evaluated at the epoch achieving the best
 1928 validation score and is averaged over four runs with different random seeds. We optimize
 1929 all models using AdamW (Loshchilov & Hutter, 2017), with a linear learning rate warm-up
 1930 followed by cosine decay. We track experiments and perform hyperparameter optimization
 1931 using the Weights and Biases platform. All experiments were conducted on a single NVIDIA
 1932 A100-SXM4-40GB GPU.
 1933

1934 **OGB datasets.** We evaluate on three molecular property prediction benchmarks from the
 1935 OGB suite (Hu et al., 2020b): MOLHIV, MOLBACE, and MOLTOX21. These datasets
 1936 share a standardized node and edge featurization capturing chemophysical properties. We
 1937 adopt the challenging scaffold split proposed in (Hu et al., 2020a). To prevent memory
 1938 issues, we use a batch size of 128 for MOLHIV and 32 for the remaining datasets. All
 1939 Downstream models use a hidden dimension of 300, consistent with prior work (Hu et al.,
 1940 2020a; Bevilacqua et al., 2024). We sweep over several architectural choices, including the
 1941 hidden dimension of the Base MPNN $k = 8, 10, \dots, 30, 32$, the initial learning rate of the
 1942 Base MPNN $k = 0.001, 0.0001$, and the dropout rate $k = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5$. The
 1943 number of layers in the base MPNN was selected to match the positional encoding step used
 1944 in the corresponding experiment from Southern et al. (2025). Hyperparameter tuning was
 1945 performed on the validation set using four random seeds. Results are reported at the test

1944 epoch corresponding to the best validation performance. All models were trained for 100
 1945 epochs. The final parameters used for each experiment are reported in table 3
 1946

1947 **Zinc** The ZINC dataset (Dwivedi et al., 2023) includes 12k molecular graphs of commercially
 1948 available chemical compounds, with the task of predicting molecular solubility. We follow the
 1949 predefined dataset splits and report the Mean Absolute Error (MAE) as both the loss and
 1950 evaluation metric. Our downstream MPNN for this task includes 6 message-passing layers
 1951 and 3 readout layers, with a hidden size of 120 and no dropout. We use a batch size of 32
 1952 and train for 2000 epochs. We performed a small sweep over the depth of the base MNPNN
 1953 $k = 10, 12, 14, 16, 18, 20$ and the hidden dimension $k = 30, 35, \dots, 80$. The hidden dimension
 1954 of the downstream MPNN was chose as 120 to meet the $500k$ parameter constraint. The
 1955 final hyperparameters are listed in Table 4.

1956 **Peptides** Peptides-func and Peptides-struct, introduced by Dwivedi et al. (2022), consist of
 1957 graphs representing atomic peptides. Peptides-func is a multi-label classification benchmark
 1958 with 10 nonexclusive peptide function labels, while Peptides-struct is a regression task
 1959 involving 11 different structural attributes derived from 3D conformations.

1960 For both datasets, we adopt the hyperparameter setup proposed by Tönshoff et al. (2023)
 1961 for the downstream GNN, which has a parameter budget under 500k and where they use 250
 1962 epochs. We set the number of message-passing layers in our base MPNN with the positional
 1963 encoding steps to be 20, aligned with the number of steps used for the random-walk structural
 1964 encoding. The only tuned component is the learning rate of the base MPNN. The final
 1965 configurations are summarized in Table 5.

1966 **Key empirical findings.** Across all benchmarks, HOD-GNN is highly competitive and
 1967 *the only architecture that consistently ranks within the top two model tiers*. Additionally,
 1968 the strong performance of HOD-GNN on the large-scale Peptides datasets—where full-bag
 1969 Subgraph GNNs are generally unable to run—shows its ability to scale effectively. Notably,
 1970 the base MPNNs in HOD-GNN are often significantly deeper and narrower than those
 1971 in typical GNNs. For instance, on the OGB datasets, the base MPNNs use 17-20 layers
 1972 with hidden dimensions as low as 16-32. Despite their compact size, these base MPNNs
 1973 yield notable performance gains over standard GINE, suggesting potential robustness to
 1974 oversquashing. Moreover, the fact that they are significantly deeper than typical MPNNs
 1975 further suggests that HOD-GNN may help mitigate oversmoothing, a hypothesis we leave
 1976 for future work.

Table 3: Best-performing hyperparameters for each OGB dataset.

Hyperparameter	MOLHIV	MOLBACE	MOLTOX21
Downstream model			
#Layers	2	8	10
#Readout Layers	1	3	3
Hidden Dimension	300	300	300
Dropout	0.0	0.5	0.3
Learning Rate	0.0001	0.0001	0.001
Base MPNN			
#Layers	16	20	20
Hidden Dimension	16	16	16
Dropout	0.2	0.5	0.2
Learning Rate	0.0001	0.0001	0.0001
#Parameters	450,848	1,723,448	2,165,782

H ADDITIONAL EXPERIMENTS

H.1 SUBSTRUCTURE COUNTING

1995 We adopt the synthetic node-level subgraph counting experiment used in Huang et al.
 1996 (2022); Yan et al. (2024). The dataset consists of 5,000 graphs generated from a mixture of
 1997 distributions (see Zhao et al. (2022) for more details), with a train/validation/test split of
 0.3/0.2/0.5. The task is node-level regression: predicting the number of substructures such

Table 4: Best-performing hyperparameters for the ZINC dataset.

Hyperparameter	ZINC
Downstream model	
#Layers	6
#Readout Layers	3
Hidden Dimension	120
Dropout	0.0
Learning Rate	0.001
Base MPNN	
#Layers	12
Hidden Dimension	75
Dropout	0.0
Learning Rate	0.0001
#Parameters	498,144

Table 5: Best-performing hyperparameters for the Peptides-func and Peptides-struct datasets.

Hyperparameter	Peptides-func	Peptides-struct
Downstream model		
#Layers	6	10
#Readout Layers	3	3
Hidden Dimension	234	143
Dropout	0.1	0.2
Learning Rate	0.001	0.001
Base MPNN		
#Layers	20	20
Hidden Dimension	8	8
Dropout	0.1	0.2
Learning Rate	0.0001	0.001
#Parameters	498,806	493,849

as 3-cycles, 4-cycles, 5-cycles, 6-cycles, tailed triangles, chordal cycles, 4-cliques and 4-paths, where continuous outputs approximate discrete counts. We report the normalized MAE for each baseline, and highlight cases where the error falls below 0.001, since in these instances rounding the predictions yields exact counts.

For training, we use the AdamW optimizer with an initial learning rate of 0.001, a cosine scheduler with warmup, and train for 5,00 epochs. The batch size is set to 128. We compare HOD-GNN against both positional/structural encoding methods (MPNN+RWSE (Dwivedi et al., 2021), GPS+RWSE (Rampášek et al., 2022), HyMN (Southern et al., 2025)) and node-based subgraph GNNs (GNN-AK+ (Zhao et al., 2022), Nested GNN (Zhang & Li, 2021), ID-GNN (You et al., 2021), HyMN (Southern et al., 2025)).

To examine the role of activation functions, we evaluate HOD-GNN with the non-analytic ReLU and the analytic SiLU. The results, summarized in Table 6, are consistent with our theory. In line with Theorem 4.1, HOD-GNN achieves performance comparable to or surpassing other subgraph GNNs. Furthermore, consistent with Theorem 4.3, we observe that analytic activations enhance expressivity, while even with non-analytic ReLU, HOD-GNN still outperforms encoding-based methods.

H.2 GRAPH SEPARATION ABILITY OF k -HOD-GNN

To further evaluate the expressive power of k -HOD-GNN and to empirically validate Theorem 4.1, we experimented with both 1-HOD-GNN and 2-HOD-GNN on the family of regular graph pairs from the BREC benchmark (Wang & Zhang, 2024). This dataset contains 140 pairs of regular graphs: 50 pairs that are distinguishable by 3-WL but not by 2-WL, and 90 pairs that remain indistinguishable even under 3-WL. We follow the exact training and evaluation procedures proposed in Wang & Zhang (2024).

Table 6: Normalized MAE results on the counting subgraphs dataset. Cells below 0.01 are highlighted in yellow.

Method	3-Cycle	4-Cycle	5-Cycle	6-Cycle	Tailed Tri.	Chordal Cycle	4-Clique	4-Path
MPNN	0.3515	0.2742	0.2088	0.1555	0.3631	0.3114	0.1645	0.1592
MPNN+RWSE	0.0645	0.0264	0.0746	0.0578	0.0505	0.1008	0.0905	0.0217
GPS+RWSE	0.0185	0.0433	0.0472	0.0551	0.0446	0.0974	0.0836	0.0284
HyMN	0.0384	0.0933	0.1350	0.0936	0.0084	0.0746	0.0680	0.0120
GNN-AK+	0.0004	0.0040	0.0133	0.0238	0.0043	0.0112	0.0049	0.0075
HOD-GNN + ReLU	0.0012	0.0046	0.0210	0.0380	0.0083	0.0510	0.0293	0.0081
HOD-GNN + SiLU	0.0008	0.0042	0.0068	0.0222	0.0066	0.0195	0.0055	0.0069

Table 7: Results on separation of pairs of regular graphs from the BREC dataset.

Model	Regular Graphs Number	Regular Graphs Accuracy
3-WL	50	35.7%
NGNN	48	34.3%
DE+NGNN	50	35.7%
DS-GNN	48	34.3%
DSS-GNN	48	34.3%
SUN	50	35.7%
SSWL_P	50	35.7%
GNN-AK	50	35.7%
KP-GNN	106	75.7%
I ² -GNN	100	71.4%
OSAN	8	5.7%
1-HOD GNN	47	33.5%
2-HOD GNN	84	60.0%

Table 7 reports the separation performance of our models alongside several subgraph-based GNNs. As shown, 2-HOD-GNN successfully distinguishes 34/90 of the 3-WL-indistinguishable pairs, placing it among the top-performing models and providing strong empirical support for the theoretical advantage predicted in Theorem 4.1.

Furthermore, 1-HOD-GNN obtains accuracy comparable to DS-GNN on the same benchmark, aligning with Theorem 4.1 for the $k = 1$ case and reinforcing that, without accessing higher-order derivatives, the model behaves similarly to standard MPNNs.

H.3 ABLATION ON DERIVATIVE ORDER

To assess the impact of higher-order derivatives on HOD-GNN’s expressive power, we conduct an ablation study on the most challenging substructure counting task: 6-cycle prediction, which consistently yields the highest MAE. Specifically, we evaluate models restricted to derivatives of order at most k , for $k = 0, \dots, 4$. The results, presented in Table 8, demonstrate that increasing the maximal derivative order consistently improves MAE, with performance saturating at $k = 4$. All experiments use the analytic SiLU activation function. We hypothesize that the observed saturation arises because higher-order derivatives of SiLU rapidly diminish toward zero, limiting the additional expressive gain.

Table 8: Effect of maximal derivative order on 6-Cycle MAE.

Maximal derivative order	6-Cycle MAE
0	0.1555
1	0.0275
2	0.0223
3	0.0221
4	0.0231

H.4 STABILITY ANALYSIS

We evaluate the stability of HOD-GNN both in terms of training dynamics and the behavior of the derivative tensor norm. Across all tasks, we consistently observe smooth and stable

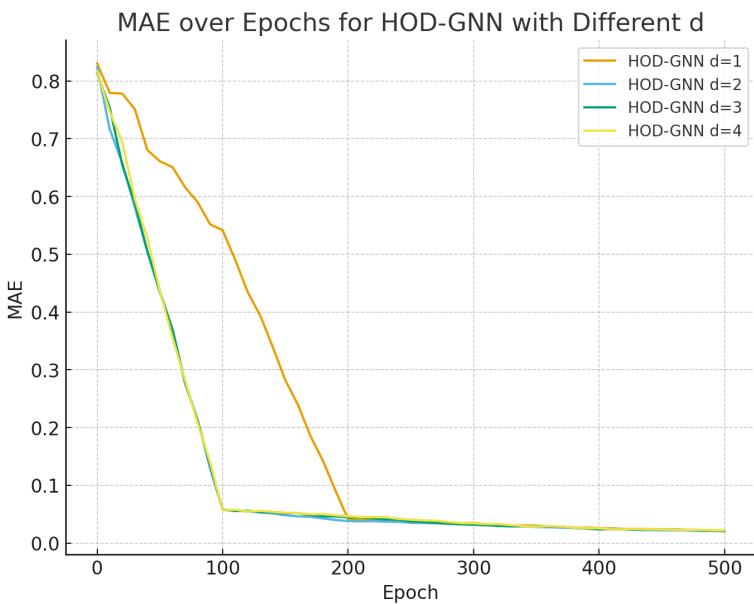


Figure 3: The training loss of HOD-GNN with maximal derivative $d \in \{1, 2, 3, 4\}$ on the 6-cycle counting task.

loss curves, even when incorporating higher-order derivatives. To further assess stability, we conduct two dedicated experiments.

Training Loss Dynamics. We examine convergence behavior on the 6-cycle subgraph counting task by varying the maximum derivative order $d \in \{1, 2, 3, 4\}$. Figure 3 shows the training loss curves, showing consistent and reliable convergence across all derivative orders.

Norm of the Derivative Tensor. We additionally assess the stability of the derivative tensors used by HOD-GNN. We compute the norm of the derivative tensor during training on the MOLBACE dataset. Following standard practice (Higham, 2002), we report the relative norm: the ratio between the derivative tensor norm and the final node feature norm of the base MPNN. Figure 4 shows that the relative norm consistently remains significantly lower than that of the node features throughout training, confirming that HOD-GNN operates in a well-conditioned regime.

H.5 ANALYSIS OF GENERALIZATION BEHAVIOR OF HOD-GNN

Recent studies (Franks et al., 2024; Maskey et al., 2025; Carrasco et al., 2025) have raised concerns about the generalization ability of highly expressive GNNs, showing that performance can degrade when a model becomes “too expressive.” These findings suggest that GNNs often generalize best when they have just the right capacity, a balance influenced both by architectural expressivity and by parameter scale (e.g., overly wide hidden dimensions can also harm generalization).

Motivated by these observations, we examine train-test gaps for HOD-GNN on the OGB datasets MOLHIV and MOLTOX21 (Table 9). HOD-GNN exhibits moderate gaps that are smaller than those of (i) less expressive architectures such as GCN and GIN, (ii) models of comparable expressivity such as DSS-GNN (ND), and (iii) more expressive variants such as DSS-GNN (ED). These findings indicate that HOD-GNN displays strong generalization. Baseline values are taken from Bevilacqua et al. (2021).

We propose two hypotheses as to why HOD-GNN generalizes well, informed by recent literature:

1. **Compact parameterization enabled by higher-order derivatives.** Across our experiments, the base MPNN within HOD-GNN consistently performs best with small

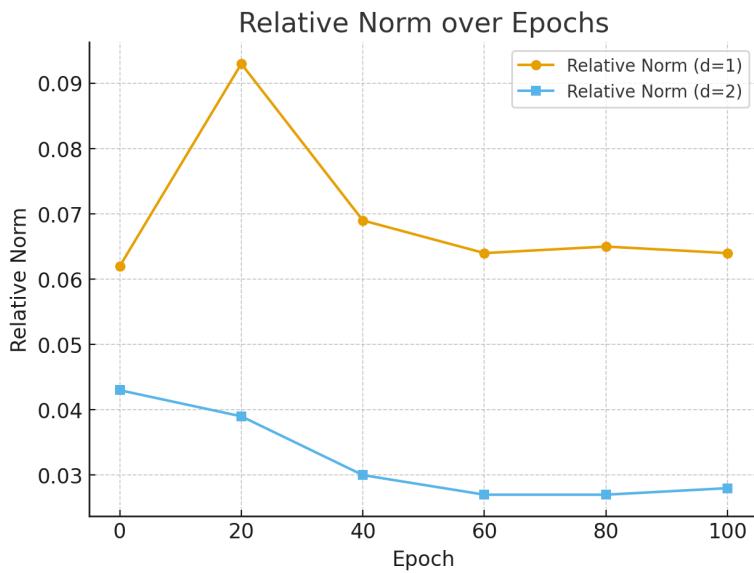


Figure 4: The relative norm of the derivative tensor with maximal derivative $d \in \{1, 2\}$ with respect to the norm of the final node feature matrix of the base MPNN on the MOLBACE dataset.

Table 9: Comparison of model train-test performance gap on MOLHIV and MOLTOX21.

Method	MOLHIV Train AUC	MOLHIV Test AUC	Gap-MOLHIV	MOLTOX21 Train AUC	MOLTOX21 Test AUC	Gap-MOLTOX21
GCN	88.65 ± 2.19	76.06 ± 0.97	12.59	92.06 ± 1.81	75.29 ± 0.69	16.77
GIN	88.64 ± 2.54	75.58 ± 1.40	13.06	93.06 ± 0.88	74.91 ± 0.51	18.15
DSS-GNN (ED)	91.71 ± 3.50	76.43 ± 2.12	15.28	92.38 ± 1.57	75.12 ± 0.50	17.26
DSS-GNN (ND)	89.70 ± 3.20	76.19 ± 0.96	13.51	91.23 ± 2.15	75.34 ± 1.21	15.89
HOD-GNN	88.15 ± 0.51	80.86 ± 0.52	7.29	93.73 ± 1.09	77.99 ± 0.71	15.74

hidden dimensions (8–32), resulting in models with relatively few parameters, thus aligning well with the "just the right capacity" approach mentioned above. We hypothesize that higher-order derivatives enrich these compact representations, effectively increasing expressive power without increasing model size, thereby supporting better generalization.

2. Principled initialization that recovers RWSE. The constructive proof following Theorem 4.2 gives an explicit initialization for HOD-GNN’s derivative features that exactly matches Random Walk Structural Encodings (RWSE) - a widely used structural prior known to improve expressivity without overfitting. This suggests an alternative view of HOD-GNN:

- At the beginning of training, the derivative-informed features remain close to RWSE, maintaining well known baseline behavior.
- When the task benefits from additional capacity, the model can naturally move beyond RWSE and leverage higher-order derivative information.

This yields a natural "just expressive enough" bias: HOD-GNN begins from a well-understood RWSE baseline and increases expressivity only when the data requires it.

We view further investigation of HOD-GNN’s generalization properties as a promising direction for future work.

H.6 COMPARISON OF RUNTIME AND MEMORY USAGE AGAINST SUBGRAPH GNNs

In section 5 we show that HOD-GNN is able to scale to the Peptides datasets, which are unreachable for full-bag subgraph GNNs on standard hardware, as stated in Southern et al. (2025); Bar-Shalom et al. (2023). To further demonstrate the scalability of HOD-GNN, we benchmark its runtime and memory usage against subgraph-based GNNs on the MOLHIV dataset. Since the choice of subgraph selection policy is the primary factor determining the asymptotic complexity of subgraph GNNs (Bevilacqua et al., 2021), we evaluate a range of policies using the default parameters from the original work. For subgraph GNNs, we adopt

2214
2215 Table 10: Runtime and memory comparison on the MOLHIV dataset. HOD-GNN demon-
2216 strates both improved memory efficiency and competitive runtime.
2217

GNN	GPU Memory (MiB)	Training Time / Epoch (s)	Test Time / Epoch (s)
edge-deletion	32,944	62.13	5.70
node-deletion	29,826	58.80	4.01
ego-nets	25,104	53.16	3.07
ego-nets+	25,211	54.19	3.20
HOD-GNN	12,964	53.34	2.28

2223 Table 11: MAE comparison of different GNN architectures on ZINC-12K.
2224

GNN	MAE
GCN	0.321 ± 0.009
HOD-GNN + GCN	0.080 ± 0.006
GIN	0.163 ± 0.004
HOD-GNN + GIN	0.066 ± 0.003
GPS	0.070 ± 0.004
HOD-GNN + GPS	0.064 ± 0.002

2233 the hyperparameters reported in Bevilacqua et al. (2021) for MOLHIV. For HOD-GNN, we
2234 use the same hyperparameters as in Section 5, detailed in Appendix G.
2235

2236 **Results.** Table 10 reports GPU memory usage and per-epoch training and test runtimes.
2237 HOD-GNN achieves improvements in memory efficiency, requiring less than half the GPU
2238 memory compared to subgraph GNNs. In terms of runtime, HOD-GNN is faster than edge-
2239 deletion and node-deletion policies, while achieving comparable training time to ego-nets
2240 and ego-nets+. Notably, ego-net policies are known to be less expressive (Bevilacqua et al.,
2241 2021), highlighting that HOD-GNN achieves both efficiency and expressivity.

2242 **Discussion.** The improvements primarily stem from the analytic computation of higher-
2243 order derivatives in HOD-GNN, which avoids the costly enumeration of subgraphs. While
2244 these advantages already translate to lower memory usage and faster runtimes in practice,
2245 we emphasize that HOD-GNN’s scalability potential is not yet fully realized. In particular, it
2246 relies on efficient sparse matrix multiplications, which are currently suboptimally implemented
2247 in popular GNN libraries such as PyTorch Geometric. We therefore anticipate that further
2248 optimization of sparse kernels would amplify the scalability benefits of HOD-GNN.
2249

2250 H.7 ABLATION ON BACKBONE GNN

2251 In most experiments, we employ GIN (Xu et al., 2018) as the backbone of HOD-GNN. A key
2252 advantage of our approach, however, is its compatibility with any message-passing backbone.
2253 To assess the effect of backbone choice, we evaluate HOD-GNN on the ZINC dataset using
2254 GCN, GIN, and GPS as base architectures. The results, summarized in Table 11, demonstrate
2255 that HOD-GNN consistently improves upon its backbone across all settings. Among the
2256 tested architectures, GPS achieves the strongest performance, followed by GIN, with GCN
2257 ranking third—reflecting its lower expressivity relative to the other backbones.
2258

2259 I ETHICS STATEMENT

2260 This paper advances the theoretical and empirical study of graph neural networks through
2261 derivative-based architectures. Our experiments are conducted exclusively on widely used,
2262 publicly available benchmark datasets (ZINC, OGB, and Peptides molecular tasks), which
2263 contain no personally identifiable or sensitive information. We believe our work does not
2264 raise immediate ethical concerns. Nevertheless, we acknowledge that improvements in graph
2265 representation learning may be applied to sensitive domains (e.g., biological or social network
2266 data). We encourage responsible use of our methods in accordance with the ICLR Code of
2267 Ethics.
2268

2268 J REPRODUCIBILITY STATEMENT
22692270 We have taken several steps to ensure reproducibility. All datasets used are standard bench-
2271 marks with clearly defined splits. A detailed description of architectures, hyperparameters,
2272 and training settings as well as full proofs of the theoretical results appear in the Appendix.
2273 Additionally, anonymized source code is provided as supplementary material and will be
2274 released publicly upon publication. Together, these resources should allow researchers to
2275 fully reproduce our experimental and theoretical results.
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321