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Abstract—We introduce Vysics, a vision-and-physics frame-
work for building an expressive geometry and dynamics model
of a rigid body, using a seconds-long RGBD video and robot
proprioception. While the computer vision community has built
powerful visual 3D perception algorithms, cluttered environments
can limit visibility of objects of interest. However, observed mo-
tion of partially occluded objects can imply physical interactions
took place, such as robot or environment contacts. Inferred con-
tacts supplement the visible geometry with “physible” geometry,
which best explains the observed object motion through physics.
Vysics uses a vision-based tracking and reconstruction method,
BundleSDF, to estimate the trajectory and visible geometry from
an RGBD video, and an odometry-based model learning method,
Physics Learning Library (PLL), to infer the “physible” geometry
from the trajectory through implicit contact dynamics optimiza-
tion. The visible and “physible” geometries jointly optimize the
object’s signed distance function (SDF). Vysics does not require
pretraining, nor tactile or force sensors. Compared to vision-
only, Vysics yields object models with higher geometric accuracy
and better dynamics prediction in experiments where the object
interacts with the robot and environment under heavy occlusion.
Project page: https://vysics-vision-and-physics.github.io/

I. INTRODUCTION

Robots will encounter a vast array of different objects in in-
the-wild manipulation. While some might be recognized from
an existing database, others will require physical interaction
to be understood on the spot. Dexterous manipulation of
these objects will benefit from the ability to rapidly identify
properties: geometry is most critical, but inertial properties are
also valuable for predicting motion, particularly under force.

Rapid modeling requires combining all available informa-
tion in a unified fashion. This work presents Vysics, which
leverages recent results from visual tracking and object recon-
struction [41] combined with contact-implicit model learning
[7, 34] via the shared connection of object geometry. Vi-
sual information is limited by occlusions, but contact, which
typically occurs on occluded faces of objects, provides a
secondary source of information: “physible” geometry. How-
ever, estimating geometry through contact-rich interactions is
nontrivial [4, 33]. Our approach embraces the multi-modal
nature of the dynamics [6, 34], starting by feeding it visually-
estimated trajectories from RGBD data, then fusing visually-
observed with physically-inferred geometry. Vysics automat-
ically generates a Unified Robotics Description File (URDF)
with learned geometry that matches or outperforms vision-
based approaches, in addition to other critical simulation
parameters like inertia, with only seconds of data.

Fig. 1: Vision-based shape reconstruction (e.g. BundleSDF
[41]) is limited by occlusion. Fusing vision and contact-rich
physics, Vysics recovers occluded geometry through object
interactions with the robot and environment. Shape (green)
and end effector (yellow) projections show the interaction.

II. RELATED WORK

Vysics is situated on rich histories of vision-based shape
reconstruction, vision-based pose estimation, and trajectory-
based dynamics model learning. Approaches combining vision
and physics are newer and fewer but provide interesting
alternatives with similar motivations. Here is a brief summary.

Vision-based geometry reconstruction and completion is
a longstanding computer vision task. Classical reconstruction
methods [8, 39, 29] leave occluded regions unresolved. Po-
tentially offering a solution to fill in unseen gaps, learned
completion methods take many forms, e.g. non-exhaustively
[13, 30, 12, 45, 27, 44, 21]. We compare to several learned
shape completion methods in our results, and Vysics consis-
tently outperforms them by discerning physics as a secondary
source of geometric information, instead of pretraining.

A common assumption in robotic manipulation is access to
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Fig. 2: Detailed Vysics diagram. Blue arrows denote vision-based information flow through BundleSDF [41], and green for
PLL [7, 34]. Purple arrows indicate unifying connections to factor both vision and contact-rich physics into geometry learning.

vision-based object pose estimation. Many methods require
the 3D model of the target object to facilitate the pose estimate
[24, 23, 32], impractical in novel scenarios. Others do not
require geometry models beforehand [42, 9, 38] but can be
susceptible to long-term drift. Limiting to in-category objects
can boost pose accuracy [26, 15, 10] but limits generalization.
A new and exciting approach is to perform simultaneous
tracking and shape reconstruction [47, 22, 41, 37], which
has the benefit that maintaining a geometry estimate can
improve novel object pose estimation and vice versa [36, 40].

Provided trajectories, trajectory-based dynamics model
learning methods reason about physics. Differentiable sim-
ulators [25, 20, 14] have pushed advancements though can
struggle in contact-rich settings [4, 6]. While high-stiffness
dynamics generally are a challenge for system identification
[33], creative strategies can efficiently find inertial parameters
[16], contact parameters [34], or both [7]. While Vysics is not
the first to use physics as a prior for vision-based shape
reconstruction, other works assume objects are statically
stable [31, 2], require tactile measurements and pretraining
[43], or do not learn anything beyond geometry [1, 35].

III. APPROACH

Fig. 2 illustrates Vysics from input RGBD videos and robot
states (left) to URDF output (right). Its core components
are BundleSDF [41] for vision-based tracking and shape
reconstruction, and PLL [7, 34] for physics-inspired dynamics
learning. BundleSDF and PLL both train on and generate
results from only the measurements provided or inferred by
their per-instance input data, suitable for immediate applica-
tion when a robot encounters and needs to model an object.
Beyond systems integration insights, our main contribution lies
in how Vysics incorporates these two powerful tools together
to supervise each other and output an object dynamics model,
featuring geometry informed by both vision and contact.

Referring to the labeled arrows in Fig. 2, BundleSDF
estimates the object trajectory (b) and initial shape estimate (c)
from masked input RGBD images (a). The object trajectories
are converted (e) to an inertial reference frame, where the table
surface (d) identified in the depth images is on a known plane.

From these, PLL detects “physible” geometry by inferring
contact events in the observed dynamics, subject to supervision
from BundleSDF (f) to encourage consistency with the visible
geometry. Lastly, BundleSDF runs again, fusing both the visi-
ble (a) and “physible” data (i) into a geometry consistent with
both. The final output of Vysics inherits the physics-supervised
inertial parameters (g) and jointly-supervised geometry (j),
exported as a URDF which can be simulated.

A. Supervising Contact-Based Geometry with Vision

PLL [7, 34] represents geometry as a deep support function
(DSF) [17], an input-convex, homogeneous deep neural net-
work [3]. A DSF takes as input a unit vector and outputs the
scalar distance the geometry extends in that direction [5]. The
gradient of a DSF with respect to its input is (almost always
[17]) the 3D point on the object geometry that extends furthest
in the queried input direction. Mathematically, for an object
whose surface (or volume) is represented by the set S, a DSF
yields the following output and gradient,

DSF(n̂) = max
si∈S

si · n̂, ∇n̂DSF (n̂) = argmax
si∈S

si · n̂ =: s.

(1)

Fig. 3 exemplifies a queried normal direction n̂, its correspond-
ing support point s, and their implications for an SDF.

Fig. 3: A 2D depiction of the physical meaning of a DSF (1)
and its SDF implications. Green points have exact SDF values
and are subject to (3), and the q example’s signed distance can
be lower-bounded by the supporting hyperplane as in (4).



The visible geometry V can supervise PLL’s DSF. For each
vision-estimated surface point sv ∈ V , we wish to penalize
the distance from the nearest physics-estimated surface point
sp predicted by the DSF. The exact closest sp from the DSF
is not straightforward to obtain, so we approximate it by
sampling many querying vectors n̂p and selecting the one with
∇DSF(n̂p′

) = sp closest to sv . The approximation is up to
the angular resolution of the unit vector samples. We use the
following as the vision-based supervision during PLL training:

Lbsdf =
1

|V|
∑
sv∈V

∥∥∥∇DSF(n̂p′
)− sv

∥∥∥ . (2)

B. Supervising Vision-Based Geometry with Contact

BundleSDF [41] represents geometry as a signed distance
function (SDF), where any 3D point p relative to a geometry
can be queried, and the scalar signed distance d away to
the nearest surface point is returned: SDF(p) = d. Vysics
incorporates physics into the SDF regression via contact-based
loss terms. PLL’s DSF yields a set of ∇DSF input/output
pairs, {(n̂p, sp)}, of which we retain only those with PLL-
hypothesized contact force above a threshold. The filtered set,
P , is the “physible” geometry PLL outputs. Given one pair
(n̂p, sp), any point on the ray r⃗ from sp pointing in direction
n̂p, lying a distance l ∈ [0,∞) from s, has a signed distance
of l (see Fig. 3). Extending the possible range for l to go
negative, i.e. l ∈ [−ϵ,∞), means points with l < 0 are not
guaranteed to be correct but encourage SDF zero-crossings,
effecting change at the learned surface. Our support point
loss encourages SDF consistency around “physible” points:

Lsp = (SDF(sp + ln̂p)− l)
2 (3)

On this ray, (3) imposes strong supervision on the SDF net-
work, though only local to areas near PLL-inferred contacts.
However, as depicted in Fig. 3, any point q can have its signed
distance minimum-bounded based on a support direction/point
pair (n̂, s). Consider a pair (n̂p, sp) ∈ P: its supporting
hyperplane implies that the signed distance at sv

′
can be lower-

bounded by the distance from sv to the supporting hyperplane.
Thus, we introduce a hyperplane-constrained loss valid for
any sv

′ ∈ R3,

Lhc = min
(
0, SDF(sv

′
)− (sv

′
− sp) · n̂p

)2

. (4)

While sv
′

may be sampled arbitrarily, we sample them around
a cylindrical neighborhood of the support points in practice.

In comparison to the dense visible points, “physible” points
are sparser and can be located far away from the set of visible
points. With the assumption that the robot is interacting with
a single object at a time, we add a bias convexity loss term to
encourage the estimated shape to be convex when no observed
RGBD data signals otherwise. This helps the sparse contact
points attach to the visible shape in the SDF regression.

IV. EXPERIMENTS AND RESULTS

We consider a new dataset of 30Hz RealSense D455 RGBD
videos of and joint states from a teleoperated Franka Emika

Method bakingbox bottle egg milk oatly styrofoam toblerone all

3DSGrasp [30] 3.83 2.80 3.78 3.15 2.51 2.66 2.77 3.06
IPoD [46] 3.25 1.80 2.16 2.37 2.73 1.93 1.97 2.47
V-PRISM [44] 3.52 2.47 2.31 3.33 2.30 2.54 2.48 2.80
OctMAE [21] 3.11 2.22 1.52 2.93 2.13 2.00 2.36 2.45

BundleSDF [41] 3.84 2.65 3.70 3.17 2.45 2.55 2.44 2.98
Vysics (ours) 1.83 1.36 1.05 1.53 1.25 1.45 1.02 1.45

TABLE I: Average chamfer distance (unit: cm) of shape com-
pletion baselines compared with BundleSDF and our method.

(a) RGB input (b) OpenLRM [19, 18]

(c) One-2-3-45++ [28] (d) TriplaneGaussian [48]

Fig. 4: A qualitative example of generative single-view recon-
struction on an occluded RGB image of the egg object.

Panda arm with a spherical end effector interacting with one
of seven everyday objects repeatedly on a flat table surface.
There are substantial visual occlusions preventing the camera
from directly seeing much of the object geometry. Ground
truth object meshes are used only for evaluation. The end-
effector pose commands by the teleoperator are also included
for the dynamics prediction evaluation.

The object masks are semi-automatically generated from
manual masks on the first frame using XMem [11]. For every
object, we collected multiple, roughly 10-second sessions of
the robot arm interacting with the object with its spherical
end effector, varying in starting configurations, occlusions, and
interactions. The number of sessions per object vary, since we
exclude any in which BundleSDF lost track of the object. We
use PLL to learn geometry and inertia, fixing the pair-wise
friction coefficients to a reasonable value for all experiments.

A. Geometry Results

Table I presents the quantitative results of shape completion
models in chamfer distance, averaged per object and over all
objects, compared with BundleSDF and Vysics. Under severe
occlusion, while the shape completion models can achieve
similar or slightly lower chamfer distance than pure vision-
based reconstruction, BundleSDF, they fall behind Vysics by a
large margin, showing that the data-driven completion models
are not as successful as Vysics at filling in the missing pieces.
Qualitative results of the single-view 3D generation models
are shown in Fig. 4. We find that these generative models
typically assume an unobstructed view of the object and do
not generate a complete shape when given a partially occluded
view. Therefore, these models are not evaluated quantitatively.

We compare Vysics and BundleSDF in detail, as neither
requires any pretraining. Fig. 5 shows the quantitative re-



Fig. 5: The quantitative comparison of the geometric recon-
struction accuracy. Each dot is one session. The results of the
same session from different methods are connected by a gray
line. ↑ means higher is better. ↓ means lower is better.

sults in terms of the surface-based metric, chamfer distance,
and the volume-based metric, IoU. Vysics substantially and
consistently improves the geometric accuracy in both metrics
over BundleSDF. Qualitative comparisons are shown in Fig.
1. BundleSDF misses a significant portion of the objects in its
geometry estimates, while our method recovers the occluded
geometries so that the robot arm’s interactions with the objects
can explain the observed object trajectory.

B. Dynamics Prediction Results

We further use dynamics predictions to show that the
geometry estimated by our method better explains the observed
trajectory. Fig. 6 compares Vysics against the vision-only
baseline, physics-only baseline, and a baseline featuring a
simulation with the ground truth geometry. As expected, the
ground truth geometry simulations maintained more accurate
dynamics predictions for the longest. We point out that even
this baseline is imperfect, despite using essentially perfect
geometry, due to inaccurate modeling assumptions such as
object rigidity and the divergent nature of the dynamics in
many of our robot interactions. Vysics and PLL perform
closely to this baseline, though Vysics is moderately worse
in orientation divergence. While most of the dynamics perfor-
mance by PLL is retained in Vysics, it is unsurprising to see a

Fig. 6: For quantifying dynamics prediction performance, we
compare how far into an open-loop rollout the predicted pose
stays within 10cm of position error and within 45 degrees
of rotational error from the BundleSDF tracked poses. We
normalize the y-axis to the length of the trajectory. An
example interpretation from the right plot (the orange dashed
lines): 60% into the predicted trajectory, approximately half of
the BundleSDF dynamics predictions diverged in orientation
compared to 30% of the Vysics dynamics predictions and 10%
of the ground truth geometry and PLL predictions.

slight performance drop, given PLL optimizes only for physics
accuracy while Vysics balances with visual objectives. The
vision-only baseline is the least performant in both position
and orientation rollout accuracy.

V. CONCLUSION AND LIMITATIONS

Vysics enables robots to construct high-fidelity dynamics
models of novel objects, identified from vision and proprio-
ception, in the face of contact-rich interactions and extremely
little data. This is the first step toward unifying vision-based
geometry estimation with contact dynamics. Future work
might replace teleoperated data collection with autonomous,
active exploration or the integration of these learned models
with planning and control to accomplish some desired task.

A considerable limitation of our current implementation is
that it often cannot recover from poor pose estimates. In our
experience, this is accentuated by our occlusion-rife, contact-
rich dataset. We find shorter video lengths usually result in
more consistent pose tracking, but at odds with the benefits of
more data for dynamics parameter regression. The geometry
supervision from PLL during BundleSDF’s second run might
help it perform better pose estimation. In this case, we could
cyclically repeat our BundleSDF-PLL process until both shape
and trajectories converge. Future versions of Vysics may
consider posing a single joint learning problem that performs
pose estimation and dynamics model building simultaneously.
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