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ABSTRACT

Generative model inversion attacks (MIAs) have garnered increasing attention for
their ability to reconstruct synthetic samples that closely resemble private training
data, exposing significant privacy risks in machine learning models. The suc-
cess of generative MIAs is primarily attributed to image priors learned by gen-
erative adversarial networks (GANs) on public auxiliary data, which help con-
strain the optimization space during the inversion process. However, GAN-based
generative MIAs still face limitations, particularly regarding the instability dur-
ing model inversion optimization and the fidelity of reconstructed samples, indi-
cating substantial room for improvement. In this paper, we address these chal-
lenges by exploring generative MIAs based on diffusion models, which offer su-
perior generative performance compared to GANs. Specifically, we replace the
GAN generator in existing generative MIAs with a single-step generator distilled
from pretrained diffusion models, constraining the search space to the manifold
of the generator during the inversion process. In addition, we leverage genera-
tive model inversion techniques to investigate privacy leakage issues in widely
used large-scale multimodal models, particularly CLIP, highlighting the inher-
ent privacy risks in these models. Our extensive experiments demonstrate that
single-step diffusion models-based MIAs significantly outperform their GAN-
based counterparts, achieving substantial improvements in traditional metrics and
greatly enhancing the visual fidelity of reconstructed samples. This research un-
covers privacy vulnerabilities in CLIP models and opens new research directions
in generative MIAs. Our source code is available at this anonymous repository:
https://anonymous.4open.science/r/DDMI-F967/.

1 INTRODUCTION

As machine learning (ML) models advance and become increasingly integrated into critical do-
mains such as healthcare diagnostics (Richens et al., 2020), intelligent finance (Rundo et al., 2019),
and biometric authentication (Jain & Nandakumar, 2012), concerns about data privacy have grown.
These models, particularly deep neural networks (DNNs), rely on sensitive datasets for training,
making them appealing targets for adversarial attacks. One emerging threat is model inversion at-
tacks (MIAs) (Fredrikson et al., 2014), a category of privacy attack, in which adversaries reconstruct
samples to expose sensitive information from the private training data (e.g., personally identifiable
images) by analyzing the model’s outputs. This poses a significant risk to user privacy and security.

Earlier studies (Fredrikson et al., 2015) framed MIAs as an optimization problem in the raw input
space, aiming to reconstruct private data by adjusting synthetic inputs to maximize the likelihood of
a specific class. This method was based on the assumption that strong correlations were established
between inputs and model outputs during the training process. While this approach proved effective
for simpler ML models, it was insufficient for DNNs trained on high-dimensional data, such as facial
recognition models. In such cases, optimizing in the input space becomes highly complex and often
ill-posed, leading to the generation of unrealistic features that lack semantic relevance.

To address this challenge, Zhang et al. (2020) proposed a novel approach called generative model
inversion attacks (GMI), which enhances the inversion process by learning a meaningful image prior
from public auxiliary data using generative adversarial networks (GANs) (panel (a) of Fig. 2). This
ensures that the synthetic data generated during the attack resides on a realistic image manifold
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(a) Unstable optimization (b) Low visual fidelity

Figure 1: Limitations in GAN-based generative MIAs. “Ours” refers to LOMMA (GMI) based
on single-step diffusion models (Sec.3.3). (a) The attack accuracy improves in SOTA GAN-based
MIAs as the number of optimization iterations increases. However, consistent fluctuations indicate
instability in the optimization process. (b) Visualization of reconstructed images produced by SOTA
GAN-based MIAs reveal low visual fidelity, leading to suboptimal inversion performance. The k-
nearest neighbors distance (KNN Dist) for each image is shown in the top-right corner of the image.
For detailed setups and additional results of the motivating experiments, refer to Appx. C.6.

(panel (c) of Fig. 2). This method has sparked significant advancements in GAN-based genera-
tive MIAs (Zhang et al., 2020; Chen et al., 2021; Wang et al., 2021a; Struppek et al., 2022; Yuan
et al., 2023; Nguyen et al., 2023), allowing for more accurate reconstruction of samples that closely
resemble the original private training data, thus driving substantial progress in this field.

While GAN-based MIAs outperform traditional methods, they still suffer from instability during
model inversion (cf. Fig.1(a)) and lower fidelity in reconstructed samples (cf. Fig.1(b)), resulting
in suboptimal performance. These issues stem from inherent flaws in GANs. Specifically, the ad-
versarial training framework is difficult to optimize and prone to mode collapse without precise hy-
perparameter tuning and regularization (Brock, 2019). Moreover, GANs capture less data diversity
than advanced likelihood-based models (Razavi et al., 2019; Song et al., 2021). Hence, generative
models with more stable training and better mode coverage are better suited for MIA tasks.

To overcome these challenges, we propose exploring generative MIAs based on diffusion models
(DMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021; Karras
et al., 2022), which offer superior generative performance over GANs. However, our analysis reveals
that traditional multi-step diffusion models are not directly applicable to MIAs (Sec. 3.2). This is
because the iterative refinement process in reverse diffusion introduces significant computational
and memory overhead, and additionally leads to the accumulation of numerical errors, resulting in
inaccurate latent codes that ultimately reduce the effectiveness of the attack.

Building on recent advances in distilling diffusion models (Salimans & Ho, 2022; Luo et al., 2024;
Yin et al., 2024; Zhou et al., 2024), which enable the distillation of a pretrained diffusion model
into a single-step generator, we propose a novel framework for generative MIAs, termed diffusion
distillation MIAs (DDMI). DDMI, like traditional GAN-based generative MIAs, includes two stages:
1⃝ We pretrain a multi-step diffusion model on public auxiliary datasets and apply Score identity

Distillation (SiD) (Zhou et al., 2024) to create a high-performance single-step generator (cf. panel
(b) of Fig. 2). 2⃝ This single-step generator is utilized to guide the model inversion optimization
process, ensuring it remains within a meaningful image manifold (cf. panel (c) of Fig. 2).

Moreover, we extend generative MIA techniques, traditionally applied to classification models, to
explore privacy risks in Contrastive Language–Image Pre-training (CLIP) models (Radford et al.,
2021), a widely adopted multimodal model (cf. panel (d) of Fig. 2). Specifically, by crafting prompts
like “A photo of <NAME>.” and using model inversion optimization to maximize cosine similarity
between text and image features, we are able to generate images that align closely with the given
text prompt. This adaptation reveals the privacy vulnerabilities of multimodal models and provides
insights into the extent of potential privacy leakage in such models.
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Our contributions and findings are summarized as follows:

• We identify key limitations in GAN-based generative MIAs (Zhang et al., 2020; Chen et al.,
2021; Nguyen et al., 2023) (Sec. 3.1) and propose a novel model inversion framework,
termed the diffusion distillation MIAs (DDMI) (Sec. 3.3), which addresses these challenges
and lays the foundation for future advancements in generative MIAs.

• To the best of our knowledge, we are the first to leverage generative MIAs to explore privacy
leakage in CLIP models (Sec. 2.1), expanding the scope of MIAs to large-scale multimodal
models and revealing serious privacy vulnerabilities within these models.

• Extensive experiments demonstrate that DDMI significantly outperforms SOTA GAN-
based MIAs in both white-box and black-box settings (Sec. 4). These results underscore
the urgent need for robust defense mechanisms to protect sensitive information in both
traditional classification models and complex multimodal models like CLIP.

2 PROBLEM SETUP AND PRELIMINARY

2.1 GENERATIVE MODEL INVERSION ATTACKS

Problem Setup. Let the input space be X ⊂ RdX and the private label space be Ypri = {1, . . . , C}.
The target model, Mc : X → [0, 1]

C , is a classifier trained on a private datasetDpri, sampled from the
private data distribution ppri(x, y). In MIAs, for a specific class y ∈ Ypri, the goal is to reconstruct
synthetic samples that reveal sensitive information about the private training data for that class,
exploiting only access to the target model Mc. In this setting, the adversary can query Mc and has
general knowledge of the private data domain, but no direct access to specific details of Dpri.

MIAs are typically framed as an optimization problem (Fredrikson et al., 2015), where for a given
class y, the objective is to find a sample x that maximizes the likelihood of Mc for y. However,
inverting DNNs trained on high-dimensional data, such as facial recognition models, is complex
and often ill-posed, which can generate unrealistic features without semantic meaning. To address
this challenge, Zhang et al. (2020) proposed using GANs to learn image priors that regularize the
inversion process. They introduced GAN-based generative MIAs, consisting of two stages:

1⃝ Learning Image Priors with Generative Models. In this stage, a GAN is employed to learn
image priors from public auxiliary datasets Dpub, which share the same data domain as Dpri, but
have disjoint label spaces, i.e., Ypub ∩ Ypri = ∅. For brevity, we focus on approaches involving only
the GAN model, following the original GAN formulation (Goodfellow et al., 2014).1 Specifically,
this process uses the generator’s implicit distribution, pg , to estimate the public auxiliary data dis-
tribution, ppub. The generator, G: Z → X , maps input noise z ∈ Z to an generated image xg . The
discriminator, D: X → R, outputs the probability that an image x comes from ppub rather than pg .
The goal of D is accurately distinguish G(z) from xreal, while the goal of G is to fool D into making
mistakes. This is framed as a two-player minimax game:

min
G

max
D
LGAN(G,D) = Ex∼ppub [logD(x)] + Ez∼p(z)[log (1−D(G(z))]. (1)

2⃝ Model Inversion Optimization. In the second stage, the goal is to solve an optimization problem
in the well-trained generator’s latent space to obtain an optimal synthetic sample, x∗ = G(z∗), that
resembles private data for a specific class y. This is formulated as:

z∗ = argmin
z

Lid(z; y,Mc,G) + λLprior(z). (2)

Here,Lid(·) denotes the the identity loss (e.g., cross-entropy loss− logPMc(y|G(z))), whileLprior(·)
serves as a regularizer on the latent code z, with λ controlling the balance between the two losses.

Extend Generative MIAs to CLIP Models. MIAs typically aim to reconstruct samples that re-
semble private training data in classification models, which is straightforward for models trained on

1Some MIA approaches (Chen et al., 2021; Yuan et al., 2023) utilize the target model Mc to generate
pseudo-labels for Dpub, better exploiting the private information encoded in Mc.
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simple datasets, such as frontal face images. However, CLIP models (Radford et al., 2021), trained
on complex datasets containing partial/full-body images and diverse scenes with multiple objects,
pose a challenge for generative MIAs, as they struggle to accurately recover training images. There-
fore, for MIAs targeting CLIP models, the focus shifts to exploring potential privacy leakage and
assessing how much sensitive information, such as facial features, can be inferred or reconstructed.

CLIP consists of an image encoder Mimg and a text encoder Mtext to extract features from images and
text, respectively. It is trained using a contrastive loss to align corresponding image-text pairs while
minimizing the similarities between unrelated pairs in the same batch. To explore privacy leakage
in CLIP models, we focus on reconstructing facial images used during training. We design a prompt
p (e.g., “A photo of <NAME>.”) and optimize the following objective to invert the facial data:

z∗ = argmin
z

Lid(Mimg(G(z)),Mtext(p)) + λLprior(z), (3)

where Lid(·) measures the semantic similarity between image and text features, typically using
cosine similarity as the default metric for comparison.

2.2 SCORE IDENTITY DISTILLATION

Since we employ single-step diffusion-based generators as a superior alternative to GANs for gen-
erative MIAs, this section introduces Score identity Distillation (SiD) (Zhou et al., 2024), a state-of-
the-art, data-free distillation method. Unlike approaches that require access to training data, SiD re-
lies solely on a pretrained diffusion model, making it ideal for MIAs by leveraging readily available
models. SiD distills a student model pθ(xg) from a pretrained diffusion model, enabling single-step
sample generation. The generator, denoted as G(·;θ) : Z → X , is a DNN parameterized by θ that
maps noise z ∼ p(z) to the generated data xg . Let pdata(x0) represent the real data distribution,
and pθ(xg) the generated data distribution. Their marginals under the forward diffusion process are
semi-implicit distributions (Yin & Zhou, 2018), which are intractable and expressed as follows:

pdata(xt) =
∫
q(xt | x0)pdata(x0) dx0, pθ(xt) =

∫
q(xt | xg)pθ(xg) dxg,

where q(xt |x0) = N (atx0, σ
2
t I) is the forward diffusion transition kernel, with at ∈ [0, 1] scaling

the initial data x0 and σt controlling the noise level added at each time step t.

MESM loss. A pretrained diffusion model provides a score network Sϕ, parameterized by ϕ, which
estimates the true data score at any time point t of the forward diffusion process as:

∇xt ln pdata(xt) ≈ −Sϕ(xt) := σ−2
t (xt − atfϕ(xt, t)) = σ−1

t ϵϕ(xt),

where fϕ(xt, t) is the functional approximation of E[x0 |xt] and ϵϕ(xt) predicts the Gaussian noise
in xt. The model-based explicit score matching (MESM) distillation loss is defined as:

LSiD(θ) = Ext∼pθ(xt)[∥Sϕ(xt)−∇xt ln pθ(xt)∥22], (4)
which is a type of Fisher divergence. The core concept is that if there is alignment between pdata(xt)
and pθ(xt) at any given t, as quantified by statistical distances like the Jensen–Shannon diver-
gence, KL divergence, or the Fisher divergence employed here, then this implies an alignment
between pdata(x0) and pθ(xg) (Wang et al., 2023). Since ∇xt

ln pθ(xt) is unknown, we sim-
ilarly assume there exists an optimal denoising network defined as: fψ∗(xt, t) = E[xg |xt] =
(xt + σ2

t∇xt
ln pθ(xt))/at. Substituting this into the MESM loss in Eq. (4), the loss becomes:

LSiD(θ) = Ext∼pθ(xt)[∥atσ
−2
t (fϕ(xt, t)− fψ∗(xt, t)∥22]. (5)

While the MESM loss is intractable to compute analytically, SiD develops a practical solution based
on three score related identities that alternates between the estimation of ψ∗ and the optimization
of θ, driving the student model to closely match the behavior of the pretrained diffusion model. By
effectively minimizing the discrepancy between the pretrained and estimated denoising networks,
SiD enables the student model to generate high-quality samples in a single step, achieving efficient
performance while maintaining fidelity to the original diffusion process.

2.3 RELATED WORK

The problems investigated in this paper are closely related to prior research on GAN-based genera-
tive MIAs, privacy attacks on multimodal CLIP models, and diffusion model distillation approaches.
A detailed introduction of these related works is deferred to Appx. A.
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Figure 2: Overview of traditional GAN-based MIA framework vs. diffusion distillation MIA
(DDMI) framework. Panel (a): In the traditional GAN-based MIAs, Stage-1 involves training a
GAN model. Panel (b): In diffusion distillation MIAs, Stage-1 consists of two steps: first, pretrain-
ing a multi-step diffusion model, followed by distilling it into a single-step generator. Panel (c):
Generative classifier inversion. Panel (d): Generative CLIP inversion.

3 SINGLE-STEP DIFFUSION MODELS FOR GENERATIVE MIAS

This section presents our novel model inversion framework, i.e., diffusion distillation MIAs (DDMI).
First, we present and discuss the motivation behind our approach (Sec. 3.1). Next, we explain in
detail why multi-step diffusion models are unsuitable for generative MIAs (Sec. 3.1). Then, we
introduce the general framework of DDMI (Sec. 3.3). Finally, we apply DDMI to two types of ML
models: traditional classification models and multimodal CLIP models (Sec. 3.4).

3.1 MOTIVATION: LIMITATIONS OF GAN-BASED GENERATIVE MIAS

While SOTA generative MIAs (Chen et al., 2021; Yuan et al., 2023; Nguyen et al., 2023) have
demonstrated impressive performance in reconstructing samples that closely resemble private train-
ing data, thereby potentially exposing sensitive information, our empirical observations reveal sev-
eral key limitations in these methods. The primary issues are the instability of the optimization
process during model inversion (cf. Fig. 1(a)) and the low fidelity of the reconstructed samples (cf.
Fig. 1(b)). This instability often prevents convergence to a desirable local optimum, resulting in
suboptimal inversion performance. Additionally, the low fidelity of the reconstructed samples limits
their ability to accurately capture fine-grained sensitive features from the private training data.

We attribute these limitations to inherent flaws in GANs. Specifically, the two-player minimax game
outlined in Eq. (1) is notoriously difficult to optimize and prone to collapse without careful selection
of hyperparameters and regularization techniques (Miyato et al., 2018; Brock, 2019). Moreover,
GANs struggle to capture data diversity as effectively as SOTA likelihood-based models (Razavi
et al., 2019; Song et al., 2021), making them less suitable for generative MIAs. Consequently, gen-
erative models with more stable training procedures and better mode coverage are more appropriate
for MIA tasks. To address these issues, we propose exploring generative MIAs based on diffusion
models (Ho et al., 2020; Karras et al., 2022), which offer superior generative performance compared
to GANs. In particular, diffusion models offer more stable training and better capture data diversity.

3.2 WHY MULTI-STEP DIFFUSION MODELS FALL SHORT FOR GENERATIVE MIAS

Although generative MIAs based on diffusion models offer a promising approach, directly applying
multi-step diffusion models presents significant challenges associated with the image generation
(denoted as Process (6a)) and latent code update processes (Process (6b)), as outlined below:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Image Generation (Z → X ):z = xT
fϕ(xT ,T )−−−−−−→xT−1−→ · · ·

fϕ(x1,1)−−−−−→x0, (6a)

Latent Code Update (X → Z):z = xT

∂xT−1
∂xT←−−−−xT−1←− · · ·

∂x0
∂x1←−−x0, (6b)

Challenge-1: High Computational and Memory Overhead. In diffusion models, Process (6a) in-
volves solving an ordinary differential equation (ODE) numerically. This process gradually denoises
an initial random noise z to generate a coherent and high-quality sample x0. However, this proce-
dure is computationally intensive, requiring a considerable number of function evaluations (NFEs).
For instance, in EDM (Karras et al., 2022), generating a 64 × 64 FFHQ image requires 79 NFEs
to achieve a good performance. Additionally, in Process (6b), gradient backpropagation requires
storing derivatives at each step. For example, using the commonly employed Euler’s method, one
need store ∂xt

∂xt+1
∝ ∂f(xt;t)

∂xt+1
(t = 0, · · · , T − 1), resulting in significant memory overhead.

Challenge-2: Accumulation of Numerical Errors Leading to Inaccurate Latent Code. In Pro-
cess (6a), each step of the numerical solver introduces truncation errors that accumulate over the
course of T steps. Furthermore, these errors can propagate through Process (6b), causing inaccura-
cies in the correspondence between the latent code and the image. Consequently, this can lead to a
suboptimal or inaccurate latent code during the update, potentially degrading inversion performance.

3.3 LEVERAGING DISTILLED SINGLE-STEP DIFFUSION MODELS FOR MODEL INVERSION

Building on recent advancements in the distillation of diffusion models (Salimans & Ho, 2022; Luo
et al., 2024; Yin et al., 2024; Zhou et al., 2024), which enable the compression of knowledge from a
pretrained diffusion model into a more efficient single-step generator, we propose a novel framework
for generative MIAs. This framework, termed diffusion distillation MIAs (DDMI), follows a similar
structure to traditional GAN-based generative MIAs, with two primary stages:

1⃝ Learning Image Priors with Diffusion Models.

This stage consists of two critical steps:

• Step-1: Pretrain a Multi-Step Diffusion Model. Initially, a multi-step diffusion model is
pretrained using public auxiliary datasetsDpub, which learns to generate high-quality image
samples by reversing the noise corruption process, following a denoising objective:

min
ϕ
LDM(ϕ) = Ex∼ppub,n∼N (0,σ2

t I), t
∥fϕ(atx+ n, t)− x∥22. (7)

• Step-2: Distill the Multi-Step Diffusion Model into a Single-Step Generator. After pre-
training, the multi-step diffusion model fϕ is distilled into a single-step generator, denoted
as Gθ. This is achieved by minimizing a distillation loss function as follows:

min
θ
Ldistill(θ; fϕ). (8)

This distillation process preserves learned image priors while significantly reducing com-
putational complexity. In the context of inverting classifiers, to fully exploit the private
information encoded within the target model Mc, we can generate pseudo-labels to the
public dataset Dpub using Mc. Step-1 then becomes training a conditional diffusion model
fϕ(·; y). In Step-2, an inversion-specific distillation process can be designed as follows:
minθ Ldistill(θ; fϕ) + Lid(z; y,Mc,Gθ(·; y)). In practice, we first apply SiD, then perform
further distillation with the identity loss to finalize the process.

2⃝ Model Inversion Optimization with the Distilled Generator.

With the distilled single-step generator Gθ, we perform model inversion. Given a well-trained target
model M, we conduct model inversion by constraining the optimization process to the latent space
of the distilled generator. The optimization objective is formulated as follows:

z∗ = argmin
z

Lid(z;M,Gθ) + λLprior(z), (9)
This approach allows for effective recovery of input data with greater computational efficiency,
leveraging the distilled knowledge of the generator.

6
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3.4 APPLICATIONS OF DDMI: CLASSIFICATION AND MULTIMODAL MODELS

In our implementation, we utilize Score identity Distillation (SiD), a state-of-the-art approach that
enables a single-step generator Gθ to potentially surpass the performance of the original pretrained
diffusion model fϕ. While the SiD loss (Eq. (5)) is a theoretical formulation that cannot be esti-
mated analytically, we employ an approximation to optimize over the latent code z as the prior loss,
ensuring that Gθ(z) remains within the image manifold learned by fϕ. We apply DDMI to both
traditional classification models and multimodal CLIP models, as detailed below.

Diffusion distillation MIAs on classification models. When the target model M represents a stan-
dard classification model Mc, Eq. (9) is instantiated as follows:

z∗ = argmin
z

Lid(z; y,Mc,Gθ) + λLSiD(z), (10)

where Lid(·) can be implemented with various losses, including cross-entropy loss (Zhang et al.,
2020; Chen et al., 2021), Poincaré loss (Struppek et al., 2022), max-margin loss (Yuan et al., 2023),
or logit maximization loss (Nguyen et al., 2023), as used in existing literature.

Diffusion distillation MIAs on CLIP models. When M represents a multimodal CLIP model that
consists of an image encoder Mimg and a text encoder Mtext, Eq. (9) is expressed as:

z∗ = argmin
z

Lid(Mimg(Gθ(z)),Mtext(p)) + λLSiD(z), (11)

whereLid(·) is implemented as cosine similarity (Radford et al., 2021), which measures the semantic
similarity between image and text features. Algorithmic details of DDMI are deferred to Appx. B.

4 EXPERIMENTS

We compare single-step diffusion model (SDM)-based MIAs (i.e., DDMI) with SOTA GAN-based
methods for classifier inversion on real-world facial recognition tasks, specifically targeting low-
resolution (64× 64) images. Despite promising results from traditional metrics, these attacks often
suffer from poor visual fidelity in the reconstructions. Our evaluation includes GMI (Zhang et al.,
2020), LOMMA (Nguyen et al., 2023), and PLG-MI (Yuan et al., 2023) in the white-box setting, as
well as BREP-MI (Kahla et al., 2022) in the black-box setting. For CLIP inversion, the objective
is to infer and reconstruct facial images in large-scale training data. In this initial exploration of
generative CLIP inversion, we use SDM and pretrained StyleGAN (Karras et al., 2020) as image
priors, compared to the input space optimization baseline, CLIPInversion (Kazemi et al., 2024).

4.1 EXPERIMENTAL SETUP

This section briefly introduces the experimental setups. For further details, please refer to Appx. C.

Datasets and models. For classifier inversion, we follow the standard MIA literature, utilizing the
CelebA (Liu et al., 2015), and FFHQ (Karras et al., 2019) datasets. We train VGG16 (Simonyan
& Zisserman, 2015) and face.evoLVe (Wang et al., 2021b) as target models. For CLIP inversion,
we evaluate using the FaceScrub dataset (Ng & Winkler, 2014), which is a subset of the LAION-
400M dataset (Schuhmann et al., 2021), used to train open-source CLIP models. We perform model
inversion on multiple CLIP models using three image feature extractors: ViT-B/16, ViT-B/32, and
ViT-L/14 (Dosovitskiy et al., 2021). The text encoder architecture for all CLIP models remains
consistent with the original CLIP paper. Training details of these models are provided in Appx. C.2.
A summary of attack methods, target models, and datasets used is shown in Tab. 4.

Evaluation Metrics. To evaluate the performance of MIAs, we assess whether the reconstructed
images reveal private information about the target identity. Following prior work, we conducted
both qualitative and quantitative evaluations. For qualitative analysis, we visually inspected the
reconstructed images. For quantitative evaluation, we adopted the following metrics from the liter-
ature (Zhang et al., 2020), including top-1 accuracy (Acc@1), top-5 accuracy (Acc@5), K-Nearest
Neighbors Distance (KNN Dist), and Fréchet inception distance (FID). Further details on these and
additional metrics are provided in Appx. C.4, with attack parameters detailed in Appx. C.5.
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Table 1: Comparison with GMI and LOMMA (GMI) in low-resolution tasks. Dpri = CelebA, gen-
erative models are trained on Dpub = CelebA or FFHQ. The symbol ↓ (or ↑) indicates smaller (or
larger) values are preferred, and the green numbers represent the performance improvement.

CelebA FFHQ
Target Model Method Acc@1↑ Acc@5↑ KNN Dist ↓ FID↓ Acc@1↑ Acc@5↑ KNN Dist ↓ FID↓

VGG16

GMI 18.28 39.13 1717.40 53.04 9.08 24.07 1806.10 43.06
w/ SDM (ours) 21.85↑3.57 43.77↓4.64 1674.15↓43.25 41.51↓11.53 13.70↑4.62 31.45↑7.38 1736.01↓70.09 42.83↓0.23

LOMMA (GMI) 73.72 92.21 1316.63 48.87 54.39 79.44 1437.09 38.40
w/ SDM (ours) 82.97↑9.25 94.39↑2.18 1233.82↓82.81 25.78↓23.09 65.19↑10.80 87.10↑7.66 1391.85↓45.24 34.00↓4.40

face.evoLVe

GMI 26.39 50.97 1645.10 54.48 12.46 30.08 1772.59 45.90
w/ SDM (ours) 27.89↑1.50 51.62↑0.65 1629.20↓15.90 41.15↓13.33 17.24↑4.78 36.51↑6.43 1711.84↓60.75 45.32↓0.58

LOMMA (GMI) 80.21 94.79 1270.79 50.38 62.77 85.15 1406.75 42.47
w/ SDM (ours) 86.71↑6.50 95.14↑0.35 1209.17↓61.62 25.93↓24.45 71.23↑8.46 90.17↑5.02 1368.14↓38.61 35.04↓7.43

4.2 MAIN RESULTS

Detailed evaluations for classifier inversion and CLIP inversion are provided in Secs. 4.2.1 and 4.2.2.

4.2.1 CLASSIFIER INVERSION

In the main experiments, our approach (i.e., w/ SDM) refers to replacing the GAN-based MIA frame-
work with the SDM-based framework, while keeping the identity loss unchanged during model in-
version. Additional results, including evaluations against SOTA inversion defenses, comparisons in
the black-box setting, and experiments with additional evaluation metrics, are provided in Appx. D.

Comparison with GAN-based MIAs without using the target model in prior learning. For each
baseline setup, we present results using SDM. As shown in Tab. 1, DDMI consistently outperforms
baseline white-box attacks, validating its effectiveness. Specifically, integrating SDM with the base-
line setup significantly improves attack accuracy. The KNN feature distance further confirms that
our method reconstructs samples that closely resemble the private training data. Additionally, qual-
itative results demonstrate a substantial reduction in FID, indicating improved visual quality in the
reconstructed samples. Despite the distribution shift between the private training dataset (CelebA)
and the public auxiliary dataset (FFHQ), our method maintains strong inversion performance. Qual-
itative examples of the reconstructed samples are presented in Figs. 5 and 6 in Appx. D.3.

Comparison with GAN-based MIAs incorporating the target model in prior learning (i.e.,
PLG-MI). In this setup, we combine the diffusion distillation loss with the identity loss, following
the inversion-specific distillation approach outlined in Sec. 3.3, which enables the model to learn
identity-wise priors. The results, presented in Tab. 3, demonstrate that our inversion-specific method
outperforms SOTA PLG-MI in terms of attack accuracy and KNN distance metrics, as well as in FID
score. Qualitative examples of reconstructed samples are shown in Fig. 7 in Appx D.3.

Despite strong metrics, visual inspection reveals that the reconstructed samples do not fully align
with the high scores of both methods, particularly the baseline. We hypothesize that methods relying
on the target model for pseudo-labeling public datasets depend heavily on its discriminative power.
A more robust target model could improve visual quality by better identifying public samples resem-
bling private data. This suggests that traditional metrics, especially attack accuracy, may not fully
capture inversion success in some cases, highlighting the need for more reliable evaluation methods.

4.2.2 CLIP INVERSION

For CLIP model inversion, our approach leverages image priors learned by SDM or pretrained Style-
GAN models. We compare this approach with CLIPInversion, introduced by (Kazemi et al., 2024),
which utilizes direct input space optimization for inversion. To evaluate the effectiveness of our
method, we perform inversion using the simple prompt “A photo of <NAME>.” The effect of more
detailed prompt designs on the inversion performance is reserved for the ablation study.

Comparison with CLIPInversion baseline. The results in Tab. 2 show that our approach outper-
forms the baseline by reconstructing semantically meaningful images (top panel of Fig. 3), primarily
due to the integration of generative priors during inversion optimization. However, inversion per-
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Table 2: Model inversion performance comparison on CLIP models with different image encoders.
Dpri = FaceScrub (a subset of LAION-400M), generative models are trained on Dpub = FFHQ.

Target Model Method Acc@1↑ Acc@5↑ KNN Dist↓

ViT-B/32
CLIPInversion 5.94 20.63 1.0058
w/ SDM 7.35 20.65 0.9596
w/ StyleGAN 6.50 19.80 0.9727

ViT-B/16
CLIPInversion 2.50 13.13 0.9962
w/ SDM 6.65 18.80 0.9536
w/ StyleGAN 8.70 22.60 0.9146

ViT-L/14
CLIPInversion 5.63 10.94 1.1018
w/ SDM 6.45 16.65 0.9099
w/ StyleGAN 7.95 21.05 0.8829

Figure 3: Visualization of reconstructed samples from CLIPInversion and generative CLIP
inversion on the ViT-L/14 image encoder. Top: The first row shows private images, the second
row displays images reconstructed by baseline, and the third and fourth rows present images re-
constructed using generative inversion via SDM and StyleGAN (referred to as SGAN). Bottom:
Reconstructed images of well-known figures, from left to right: Geoffrey Hinton, Yoshua Bengio,
Yann LeCun, Bill Gates, Elon Musk, Taylor Swift, Lionel Messi, and Stephen Curry.

formance on CLIP models, based on traditional metrics, is notably lower compared to classifier
inversion settings. Nonetheless, our experiments reveal a crucial phenomenon: as model capability
increases, the risk of privacy leakage also rises. This trend aligns with findings in classifier inver-
sion, where similar conclusions have been observed and theoretically proven. Specifically, models
with stronger predictive power tend to be more vulnerable to inversion attacks (Zhang et al., 2020).

As for the suboptimal inversion performance, we hypothesize it is due to the relatively low presence
of FaceScrub celebrity images in the CLIP’s large-scale training dataset. Therefore, CLIP models
may not effectively learn their discriminative features. To further explore potential privacy risks, we
reconstructed images of more well-known celebrities, assuming their higher frequency in CLIP’s
training data. The examples are shown in bottom panel of Fig. 3, demonstrating that these recon-
structions closely resemble the celebrities, highlighting privacy vulnerabilities in CLIP models.
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Table 3: Comparison with PLG-MI in low-
resolution tasks. Dpri = CelebA, conditional gen-
erative models are trained on Dpub = FFHQ.

Target Model Method Acc@1↑ KNN Dist↓ FID↓

VGG16 PLG-MI 86.37 1283.21 37.30
DDMI 88.37 1261.57 26.41

face.evoLVe PLG-MI 93.83 1210.88 34.59
DDMI 95.56 1184.36 30.80 Figure 4: Ablation study. Left: Impact of prior

loss. Right: Impact of prompt detail level.

In future work, we plan to expand the dataset by collecting images of globally recognized celebrities,
extending beyond the existing FaceScrub dataset. Since images of these celebrities are more likely
to appear frequently in training datasets, this expansion would provide a more diverse and represen-
tative foundation for evaluation. This approach aims to enhance the accuracy of our assessments and
enable a deeper investigation into the privacy leakage risks posed by CLIP models.

Comparison between SDM-based and StyleGAN-based generative CLIP inversion. For image
priors, we used a pretrained StyleGAN model on the 1024 × 1024 FFHQ dataset and a single-step
diffusion generator distilled from a 256 × 256 latent diffusion model trained on the same dataset.
The SDM-based method showed worse inversion performance both quantitatively and qualitatively
compared to the StyleGAN-based one. Because diffusion models struggle to match StyleGAN’s
generative performance at 256 × 256 or higher resolutions of FFHQ (Dao et al., 2023). In our
experiments, the FID for the SDM is 3.85, while the FID for the pretrained StyleGAN is 2.84.

4.3 ABLATION STUDY

In this section, we present ablation studies to further investigate DDMI’s performance in both clas-
sifier inversion and CLIP inversion tasks. Further discussions are available in Appx. E.

Prior loss. We examine the effect of applying or omitting the prior loss on DDMI’s inversion
performance. The prior loss is designed to constrain the reconstructed samples within the learned
image manifold. As shown in the left panel of Fig. 4, adding the prior loss increases the KNN
feature distance. This occurs because the label sets of the public and private datasets do not overlap,
meaning the private data is likely located in low-density regions of the public data distribution. The
prior loss tends to constrain the reconstructed samples to the high-density regions of the public data
distribution to improve visual quality, which in turn affects the model inversion performance.

More detailed templates. The prompts used in CLIP inversion are critical, as detailed and struc-
tured text prompts enable the text encoder to generate more accurate features of the target. These
text features directly influence the image optimization process. We used a more complex prompt: “A
close-up portrait of <Name> with <hair>, <eye>, <lip>, and <face shape>, emphasizing
their <facial characteristic> and <appearance>.” We averaged the KNN distance for
40 celebrities from the FaceScrub dataset, and the results are presented in the right panel of Fig. 4,
indicating that more detailed prompts can improve inversion performance for MIAs on CLIP.

5 CONCLUSION

In this research, we identified key limitations in GAN-based generative MIAs and addressed them
by proposing a novel framework based on single-step diffusion models, which we term diffusion
distillation MIAs (DDMI). Notably, to the best of our knowledge, this is also the first study to
investigate generative model inversion attacks on CLIP models, a previously uninvestigated area.
Through extensive experimentation, we demonstrate that our approach not only improves traditional
performance metrics but also significantly enhances the visual fidelity of reconstructed samples. Our
findings further highlight the urgent need for robust and effective privacy-preserving mechanisms
during model training, particularly for CLIP models, a largely underexplored area.
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ETHICS STATEMENT

In this paper, we introduce a novel model inversion framework, DDMI, to enhance the effectiveness
of generative MIAs. Additionally, we extend generative MIAs to CLIP models, offering significant
advancements and new opportunities for future research. From a societal perspective, our work
sheds light on critical privacy risks in machine learning models that could potentially expose sensi-
tive training data if exploited. By identifying these vulnerabilities, we seek to raise awareness and
drive the development of robust defense strategies and privacy-preserving techniques, which are cru-
cial for safeguarding machine learning systems. While there is a risk of misuse, the overall benefit
of increasing awareness and reinforcing security measures far outweighs these concerns.
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A RELATED WORK

Model Inversion Attacks on Classification Models. Zhang et al. (2020) introduced GAN-based
generative MIAs, significantly advancing the field. Recent innovations build upon this framework,
with some focusing on GAN training. For instance, Chen et al. (2021) developed an inversion-
specific GAN, while Yuan et al. (2023) proposed pseudo label-guided MIAs using conditional GANs
to more effectively extract knowledge from public datasets. Other works have focused on improving
optimization techniques, such as Wang et al. (2021a); Struppek et al. (2022); Kahla et al. (2022),
which developed advanced inversion loss functions, and Han et al. (2023); An et al. (2022); Kahla
et al. (2022), which explored alternative gradient-based strategies for black-box settings.

Inference Attacks on CLIP Models. The CLIP model advances multimodal learning by integrat-
ing image and text encoders into a shared embedding space for semantic similarity (Radford et al.,
2021). Hintersdorf et al. (2024) explored personal membership leakage by querying the model with
both images and text. Ko et al. (2023) used cosine similarity between visual and textual features
for membership inference under a weak supervision framework, while Li et al. (2024) extend mem-
bership inference attack using only text queries. Kazemi et al. (2024) examined CLIP’s ability to
blend concepts and detect potential gender biases. In this paper, In this paper, we leverage generative
MIAs to investigate privacy leakage issues of CLIP models.

Distilled Diffusion Models. Diffusion models have received significant attention for generating
high-quality images through iterative noise refinement, though their multi-step process can be com-
putationally inefficient. To address this limitation, researchers have explored methods to distill the
reverse diffusion chain into more efficient processes. Salimans & Ho (2022) pioneered the concept
of progressive distillation, aiming to reduce the number of steps without sacrificing generation qual-
ity. Song et al. (2023) introduced consistency models, improving output consistency along the ODE
trajectory. Recent advancements (Luo et al., 2024; Yin et al., 2024; Zhou et al., 2024) have success-
fully distilled single-step generators, significantly reducing generation costs while often approaching
or even surpassing the performance of the original pretrained diffusion models.

B THE ALGORITHMIC REALIZATION OF SDM-MI

This section provides the algorithmic implementation of DDMI (cf. Alg. 1), particularly focusing
on its application to both traditional classification and multimodal CLIP models.

C EXPERIMENTAL DETAILS

C.1 HARD- AND SOFTWARE DETAILS

For MIAs focusing on low-resolution facial recognition tasks, we conducted experiments on Ora-
cle Linux Server 8.10, equipped with NVIDIA Tesla V100-PCIE-32GB GPUs. The configuration
included CUDA 11.6, Python 3.8.0, and PyTorch 1.12.1. In our experiments with MIAs target-
ing multimodal CLIP models, we experimented on on the same server configuration, leveraging
NVIDIA Ampere A100-80G GPUs with CUDA 11.7, Python 3.9.18, and PyTorch 1.13.1.

C.2 TARGET MODELS

To train the target models on CelebA images with a resolution of 64 × 64, we used the
training script provided at https://github.com/sutd-visual-computing-group/
Re-thinking_MI. These models were trained for 50 epochs using the SGD optimizer, with
an initial learning rate of 10−2, a momentum of 0.9, and a weight decay of 10−4. The batch size
was set to 64. The learning rate decay schedule is model-specific; please refer to the script for
detailed information. The CLIP models used in our experiments are pretrained models on the 400
million-image LAION-400M dataset.
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Algorithm 1 Diffusion Distillation Model Inversion Attacks
Input: Target model M, public auxiliary dataset Dpub, and the set of identity set to be reconstructed
C.

1: # Stage-1. Learning Image Priors with Diffusion Models
2: Pretrain a multi-step diffusion model fϕ using Eq. (7);
3: Distill the multi-step diffusion model fϕ into a single-step generator Gθ, using Eq. (8);
4: # Stage-2. Model Inversion Optimization with the Distilled

Generator
5: reconstructed samples = [];
6: if M is a classifier then
7: for each target identity y in C do
8: Initialize latent codes: Z = {zi | zi ∈ Z, i = 1, . . . , N};
9: Obtain optimized latent codes Ẑ using Eq. (9);

10: Generate reconstructed samples: Drec = {x̂ = Gθ(ẑ) | ẑ ∈ Ẑ};
11: reconstructed samples += Drec;
12: end for
13: else if M is a CLIP model then
14: for each target identity y in C do
15: Design a prompt p with target identity y;
16: Initialize latent codes: Z = {zi | zi ∈ Z, i = 1, . . . , N};
17: Obtain optimized latent codes Ẑ using Eq. (11);
18: Generate reconstructed samples: Drec = {x̂ = Gθ(ẑ) | ẑ ∈ Ẑ};
19: reconstructed samples += Drec;
20: end for
21: end if
22: Output: reconstructed samples.

C.3 EVALUATION MODELS

In the low-resolution classifier inversion setting, where classifiers are trained on the 64 × 64 reso-
lution CelebA dataset, we use an evaluation model available for download at https://github.
com/sutd-visual-computing-group/Re-thinking_MI. This model is derived from
the face.evoLVe model (Wang et al., 2021b), incorporating a modified ResNet-50 backbone, and
achieves a reported test accuracy of 95.88%. For detailed information regarding the training process
and implementation specifics, please refer to Zhang et al. (2020).

For CLIP inversion, we train Inception-v3 evaluation models following the code and guidelines
available at https://github.com/LukasStruppek/Plug-and-Play-Attacks. For
specific training details, please refer to (Struppek et al., 2022). These models achieve test accuracy
of 96.53% on the FaceScrub dataset. Additionally, we utilize the pretrained FaceNet model (Schroff
et al., 2015), available at https://github.com/timesler/facenet-pytorch, to com-
pute K-nearest neighbors distances, which provide a measure of similarity between training samples
and reconstructed samples in the facial recognition tasks.

C.4 EVALUATION METRICS

Attack Accuracy (Attack Acc). Following previous work (Zhang et al., 2020), we use an evaluation
model (typically one with better generalization ability than the target model) trained on the same
dataset to assess the reconstructed images (see Tab. 4). This model serves as a proxy for human
judgment. Attack accuracy is measured by the percentage of predictions that correctly match the
target identity, with top-1 (Acc@1) and top-5 (Acc@5) accuracy as the primary metrics.

K-Nearest Neighbors Distance (KNN Dist). KNN Distance measures the l2 distance between the
reconstructed images and their nearest neighbors in the target model’s training data within the em-
bedding space. This metric reflects the visual similarity between the reconstructed images and the
original training data. For MIAs targeting low-resolution tasks, we compute KNN Dist using the
penultimate layer of the evaluation model. In the context of CLIP inversion, we utilize the penulti-
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Table 4: A summary of experimental setups.

Scenario Type MIAs Private Dataset Public Dataset Target Model Evaluation Model

Classification White-box
GMI /
LOMMA

CelebA
CelebA /
FFHQ

VGG16 /
face.evoLVe

face.evoLVe

Label-only BREP-MI CelebA CelebA VGG16 face.evoLVe

Multimodal White-box CLIPInversion
FaceScrub /

(LAION-400M)
FFHQ

ViT-B/32
Pretrained FaceNetViT-B/16

ViT-L/14

mate layer of a pretrained FaceNet (Schroff et al., 2015), with A smaller KNN distance indicates a
higher degree of similarity between the reconstructed images and the training set.

Fréchet Inception Distance (FID). FID is a standard metric for evaluating the similarity between
generated and real data distributions. It calculates the distance between the feature representations
of real and generated images using an Inception network. We compute the FID score between
all reconstructed images and the private dataset. A lower FID score indicates a closer alignment
between the two distributions, reflecting higher visual quality and realism in the generated samples.

Precision & Recall (Kynkäänniemi et al., 2019), Density & Coverage (Naeem et al., 2020). We
calculate these four metrics on a per-class basis to assess sample diversity. While diversity is not
crucial for MIA success, as the adversary’s primary goal may not be to capture the full range of
private data, it still provides useful reference points:

• Precision measures the proportion of generated samples that are realistic and closely match
the distribution of real data. In other words, it quantitatively assesses the quality of the
generated images by evaluating how closely they resemble the true data distribution.

• Recall evaluates the generative model’s ability to cover the entire data distribution. It
comprehensively measures how well the model captures the full diversity of the real data,
ensuring that it generates a wide variety of samples from the target distribution.

• Density refines the concept of precision by measuring how closely generated samples clus-
ter around real data. A higher density score indicates that the generated samples are more
tightly clustered around real data points, reflecting their closeness in feature space.

• Coverage complements density by measuring how well generated samples span the real
data distribution, indicating the model’s ability to capture data diversity, particularly
whether it generates samples from underrepresented regions of the distribution.

C.5 ATTACK PARAMETERS

For the white-box attacks, we inverted 100 identities, generating 100 reconstructed samples for each
identity. In the experiments for GMI and LOMMA (GMI), model inversion optimization was run for
1, 000 iterations for the baseline and 300 iterations for DDMI. For the PLG-MI experiments, model
inversion optimization ran for 100 iterations for both the baseline and DDMI.

For the label-only attack (BREP-MI), we generated 10 samples per identity for 50 identities from
the CelebA dataset, with the number of sampling points set to 64. During optimization, the initial
radius was set to 2, with an expansion coefficient of 1.2 to explore a wider range of radius values.
The maximum number of optimization steps was set to 1, 000.

For attacks on CLIP, we generated 20 samples per experiment across 100 identities from the Face-
Scrub dataset. For the baseline CLIPInversion, the samples were optimized over 2, 000 iterations
with a learning rate of 0.1. The image size started at 64× 64, scaling up at the 900-th and 1, 800-th
iterations. All other hyperparameters were kept at their default values. In our generative CLIPIn-
version setup, we utilized a 1, 024 × 1, 024 pretrained StyleGAN model on the FFHQ dataset for
the StyleGAN-based approach, and a 256× 256 single-step diffusion generator distilled from a pre-
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Table 5: Comparison with BREP-MI (black-box setting) in low-resolution tasks. The target model
M = VGG16 is trained onDpri = CelebA. Generative models are trained onDpub = CelebA or FFHQ.
The symbol ↓ (or ↑) indicates smaller (or larger) values are preferred, and green numbers represent
improvements with SDM.

CelebA FFHQ
Method Acc@1↑ Acc@5↑ KNN Dist↓ FID↓ Acc@1↑ Acc@5↑ KNN Dist↓ FID↓

BREP-MI 48.00 78.00 1128.53 54.15 24.00 53.00 1269.80 56.47
w/ SDM (ours) 53.00↑5.00 81.00↑3.00 1015.83↓112.70 47.55↓6.60 25.00↑1.00 55.00↑2.00 1194.68↓75.12 54.48↓1.99

trained latent diffusion model. We optimized for 300 iterations, resizing the generated images to
224× 224 for evaluation.

C.6 EXPERIMENTAL DETAILS FOR FIG. 1

We present the experiment details for generating Fig. 1. In the motivation experiments, we detail
the experimental setup used to generate the presented results. In our motivation experiments, we
investigate two primary challenges of SOTA GAN-based MIAs: unstable optimization and low
image fidelity. To examine the unstable optimization issue, we visualize the top-1 attack accuracy
as the number of optimization iterations increases. To assess the limitation of low image fidelity, we
visualize the fidelity of generated images measured by KNN distance. Unless otherwise specified,
all other hyperparameters for each attack setup remain consistent with those outlined in Appx. C.5.

In Fig. 1(a), we compare the top-1 attack accuracy of our SDM-based LOMMA (GMI) with
LOMMA (GMI), and KEDMI as the number of optimization iterations increases in the low-
resolution setting. For all attack setups, the target model is VGG16 trained on the CelebA dataset,
and we use the FFHQ dataset to learn prior knowledge. The evaluation model employed is
face.evoLve also trained on the CelebA dataset. We optimize 400 iterations in the SDM-based
setup and 1, 000 iterations in the other setups. Attack accuracy is recorded every 20 optimization
iteration across all three attack setups.

In Fig. 1(b), we assess the visual fidelity limitations of images generated by SOTA GAN-based
MIAs, specifically LOMMA (GMI), KEDMI, and PLG-MI, and compare their results to those pro-
duced by our SDM-based LOMMA (GMI) approach. For optimization, we perform 300 iterations
for the SDM-based setup, 1, 200 iterations for KEDMI and LOMMA (GMI), and 600 iterations for
PLG-MI. We employ VGG16 and face.evoLve, both trained on the CelebA dataset, as the target and
evaluation models, respectively. Additionally, we use the CelebA dataset as the public dataset to
learn prior knowledge. For each attack setup, we select 1 of the 10 nearest neighbor images that ex-
hibits the best visual fidelity as the final result and annotate the corresponding KNN distance relative
to the private training data in the top right corner of the image.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL MAIN RESULTS

Comparison with label-only classifier inversion. In this setting, we use the SOTA label-only
BREP-MI (Kahla et al., 2022) as the baseline for comparison. Kahla et al. (2022) introduce a
boundary-repelling algorithm to search for representative samples by estimating the direction to-
wards the target class’s centroid using the predicted labels of the target model over a sphere. The
quantitative results are presented in Tab. 5, with additional results in Tab. 9, and visualizations in
Fig. 8. Across all evaluation metrics, our SDM-based BREP-MI consistently achieves better MI
performance compared to the baseline, generating images with more representative features of the
target class. Due to the more powerful capabilities of SDM, the generated images exhibit greater
fidelity. These quantitative and visual results demonstrate that SDM-based BREP-MI effectively
finds the optimal radius with fine granularity, outperforming the baseline method.

Attacks Against SOTA model inversion defense methods. We extended our evaluation to in-
clude state-of-the-art model inversion defense methods, such as BiDO-HSIC (Peng et al., 2022),
NegLS (Struppek et al., 2024), and TL-DMI (Ho et al., 2024), comparing the baseline LOM (GMI)
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Table 6: Model inversion performance against state-of-the-art defense methods. The target model
M = VGG16 is trained on Dpri = CelebA, generative models are trained on Dpub = CelebA.

Method
LOM (GMI) LOM (GMI) w/ SDM

Acc@1↑ Acc@5↑ KNN Dist↓ FID↓ Acc@1↑ Acc@5↑ KNN Dist↓ FID↓

No Def. 63.48 86.07 1413.70 47.07 67.31 83.39 1382.15 44.86

w/ TL-DMI 37.77 64.54 1568.78 49.51 43.21 64.19 1555.60 26.52
w/ NegLS 24.88 51.73 1529.21 41.97 34.80 61.06 1517.75 183.41
w/ BiDO-HSIC 46.49 71.63 1535.47 46.24 40.08 60.65 1627.17 42.20

approach with our SDM-based LOM (GMI) method. The results, summarized in Tab. 6, show that
the SDM-based approach outperforms the baseline across several metrics. Specifically, under TL-
DMI, our method achieves better attack accuracy, KNN distance, and FID. Against NegLS, we ob-
served improvements in attack accuracy and KNN distance, while for BiDO-HSIC, the SDM-based
method demonstrated superior FID scores.

However, with NegLS, while attack accuracy improved, the FID score was lower compared to the
baseline, and visual inspection revealed that the SDM-based approach generated distorted images
with reduced visual quality. In contrast, under BiDO-HSIC, the SDM-based method produced more
visually representative images, despite the attack accuracy and KNN distance being lower than the
baseline, while still achieving an improved FID score. The inconsistency between visual quality
and traditional metrics suggests that attack accuracy may not be a reliable indicator in some cases.
Thus, more robust evaluation metrics are needed to better assess model inversion performance and
reconcile discrepancies between visual and quantitative results.

D.2 EXPERIMENTAL RESULTS WITH ADDITIONAL EVALUATION METRICS

We compare additional metrics—precision, recall, density, and coverage—as a supplement to the
conventional metrics discussed in the main results section, providing further context. Although
diversity is not the primary objective of MIAs, these metrics offer useful insights. The comparison
with GMI and LOMMA (GMI) is shown in Tab 7, with PLG-MI in Tab 8, and BREP-MI in Tab 9.

D.3 VISUALIZATION OF RECONSTRUCTED IMAGES

In this section, we present qualitative evidence to highlight the effectiveness of DDMI. For the white-
box setting, Fig. 5 shows a visual comparison of reconstructed images from VGG16 and face.evoLVe
models, both trained on the CelebA private dataset, with image priors learned from CelebA. Simi-
larly, Fig. 6 provides a comparison of reconstructed images from VGG16 and face.evoLVe trained
on the CelebA private dataset, but with image priors learned from the FFHQ dataset. Additionally,
Fig. 7 displays a visual comparison of reconstructed images from the same models, with FFHQ as
the source of image priors. For the black-box BREP-MI comparison, the visual results are provided
in Fig. 8. In this case, the target model is VGG16 trained on the CelebA private dataset, while the
image priors are learned from either the CelebA public dataset or the FFHQ dataset.

E DISCUSSION

Limitation. One key limitation we found is the much higher dimensionality of the latent space in
diffusion models compared to traditional GANs. In contrast to GANs, where the latent space is
typically low-dimensional, the latent space in diffusion models matches the input space dimensions,
creating challenges in extending DDMI to black-box attack methods like RLB-MI (Han et al., 2023)
and BREP-MI (Kahla et al., 2022), which rely on black-box optimization.

For RLB-MI, the agent typically interacts with a DCGAN, which operates in a low-dimensional la-
tent space (e.g., 100 dimensions). This smaller latent space facilitates more efficient exploration and
optimization within the Markov decision process (MDP). However, when DCGAN is replaced with
a diffusion model, the latent space expands to much higher dimensions (e.g., 64×64×3), making it
far more challenging for the agent to navigate and optimize within the MDP framework. Similarly,
in BREP-MI, the challenge lies in identifying initial latent codes that generate images classified into
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Table 7: Additional metrics used to evaluate inversion performance with GMI and LOMMA (GMI).
The target model M = VGG16 or face.evoLVe, trained onDpri = CelebA. Besides, generative models
are trained on Dpub = CelebA or FFHQ.

CelebA FFHQ
Target Model Method Precision↑ Recall↑ Density↑ Coverage↑ Precision↑ Recall↑ Density↑ Coverage↑

VGG16

GMI 0.0182 0.0041 0.1607 0.1244 0.0205 0.0051 0.1474 0.1065
w/ SDM 0.0783 0.0568 0.6137 0.3027 0.0754 0.0575 0.5948 0.3003

LOMMA (GMI) 0.0246 0.0082 0.2535 0.1516 0.0244 0.0032 0.2186 0.1346
w/ SDM 0.0861 0.0575 1.0196 0.4833 0.0894 0.0695 1.0026 0.5069

face.evoLVe

GMI 0.0182 0.0041 0.1607 0.1244 0.0205 0.0051 0.1474 0.1065
w/ SDM 0.0783 0.0568 0.6137 0.3027 0.0754 0.0575 0.5948 0.3003

LOMMA (GMI) 0.0246 0.0082 0.2535 0.1516 0.0244 0.0032 0.2186 0.1346
w/ SDM 0.0861 0.0575 1.0196 0.4833 0.0894 0.0695 1.0026 0.5069

Table 8: Additional metrics used to evaluate inversion performance with PLG-MI on different target
models trained on Dpri = CelebA. Besides, conditional generative models are trained on Dpub =
FFHQ.

VGG16 face.evoLVe
Method Precision↑ Recall↑ Density↑ Coverage↑ Precision↑ Recall↑ Density↑ Coverage↑

PLG 0.0535 0.0010 0.8374 0.2733 0.0536 0.0453 0.7817 0.2960
w/ SDM (ours) 0.0631 0.1377 0.6630 0.3377 0.0608 0.1813 0.6141 0.3230

Table 9: Additional metrics used to evaluate inversion performance with BREP-MI. The target
model M = VGG16 trained on Dpri = CelebA. Besides, generative models are trained on Dpub =
CelebA or FFHQ.

CelebA FFHQ
Method Precision↑ Recall↑ Coverage↑ Density↑ Precision↑ Recall↑ Coverage↑ Density↑

BREP-MI 0.0302 0.0140 0.0286 0.0435 0.0484 0.0496 0.0337 0.0563
w/ SDM (ours) 0.1216 0.0806 0.0868 0.1487 0.0728 0.0971 0.0365 0.0668

the target class. When a distribution gap exists between the public dataset used for prior knowledge
and the private dataset being attacked, generating accurate initial latent codes becomes challenging.

What are the potential future research directions?

• Extending DDMI to Black-Box Settings: Addressing the limitation we identified, an
important future research direction would be to extend DDMI to black-box settings. This
would enable the method to work in more restricted environments where access to the
internal parameters of models is limited.

• Inversion-Specific Distillation: A key challenge during diffusion distillation is effectively
utilizing information from the target classifier. Exploring ways to more fully integrate this
information into the distillation process remains an important area of research.

• Generative CLIP Inversion: As the first work to extend generative MIAs to CLIP models,
several open questions remain. A key challenge is the evaluation, where collecting images
of celebrities who are highly represented in the training data of open-source CLIP models,
such as the LAION-400M dataset, is essential for accurately assessing the privacy leakage
risks in CLIP. Moreover, future work should investigate how to more effectively utilize text
data, model structure, and intermediate outputs during the inversion process.

• Robust Privacy-Preserving Mechanisms for CLIP Models: Our findings emphasize the
pressing need for robust and effective privacy-preserving techniques during model train-
ing, especially for CLIP models, which remain largely underexplored in terms of privacy
vulnerabilities. Addressing this gap would be crucial in developing safer models.
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• Improving Evaluation Metrics for Model Inversion Attacks: We observed that the pri-
mary evaluation metric for MIAs, attack accuracy, does not always accurately reflect in-
version success. Hence, developing more reliable metrics that capture the discriminative
semantic information present in the samples is another important direction for future work.
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Figure 5: Visual comparison with GMI and LOMMA (GMI). We illustrate reconstructed samples
for ten identities in Dpri = CelebA, generative models are trained on Dpub = CelebA. The target
model M = VGG16 or face.evoLVe.
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Figure 6: Visual comparison with GMI and LOMMA (GMI). We illustrate reconstructed samples
for ten identities inDpri = CelebA, generative models are trained onDpub = FFHQ. The target model
M = VGG16 or face.evoLVe.

Figure 7: Visual comparison with PLG-MI. We illustrate reconstructed samples for ten identities in
Dpri = CelebA, conditional generative models are trained on Dpub = FFHQ. The target model M =
VGG16 or face.evoLVe.
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Figure 8: Visual comparison with BREP-MI. We illustrate reconstructed samples for ten identities
in Dpri = CelebA, generative models are trained on Dpub = CelebA or FFHQ. The target model M =
VGG16.

24


	Introduction
	Problem Setup and Preliminary
	Generative Model Inversion Attacks
	Score identity Distillation
	Related work

	Single-step Diffusion Models for Generative MIAs
	Motivation: Limitations of GAN-based Generative MIAs
	Why Multi-Step Diffusion Models Fall Short for Generative MIAs
	Leveraging Distilled Single-Step Diffusion Models for Model Inversion
	Applications of DDMI: Classification and Multimodal Models

	Experiments
	Experimental Setup
	Main Results
	Classifier Inversion
	CLIP Inversion

	Ablation Study

	Conclusion
	 Appendix
	Related Work
	The Algorithmic Realization of SDM-MI
	Experimental Details
	Hard- and Software Details
	Target Models
	Evaluation Models
	Evaluation Metrics
	Attack Parameters
	Experimental Details for Fig. 1

	Additional Experimental Results
	Additional Main Results
	Experimental Results with Additional Evaluation Metrics
	Visualization of Reconstructed Images

	Discussion


