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ABSTRACT
Graph contrastive learning has shown significant promise in un-

supervised scenarios. Many techniques endeavor to maximize the

mutual information between two perturbed graphs, but challenges

arise when the data augmentation alters the graph’s informative

attributes, leading to potential noise positive pairs. While recent

approaches have tried addressing this issue, they have shortcom-

ings in guaranteeing effective data augmentation or incurring high

computational costs. Only a few researches try to do data augmen-

tation in encoder’s latent space. With the help of full-attention

graph transformers we may get a wider encoder’s latent space to

do data augmentation, while using full-attention graph transform-

ers still causes some problems like noise information. This paper

introduces GACL (Graph Attention Contrastive Learning), a novel

model that integrates the full-attention transformer with a message-

passing-based graph neural network as the encoder. To avoid noise

information with full-attention, GACL introduces a modification to

the full-attention. Our GACL model uniquely addresses challenges

posed by full-attention and offers an innovative data augmenta-

tion strategy. Finally, we establish the concept of effective mutual

information and validate the effectiveness of full-attention data aug-

mentation. Empirical evaluations confirm GACL’s superior perfor-

mance, cementing its position as a state-of-the-art(SOTA) solution

in the field of graph contrastive learning. The anonymous code is

available on https://anonymous.4open.science/r/GACLAnno-C424.

CCS CONCEPTS
• Computing methodologies→ Learning latent representa-
tions; Unsupervised learning; • Information systems → Data
mining.

KEYWORDS
Graph Representation Learning; GraphContrastive Learning; Graph

Transformer; Information Theory.

ACM Reference Format:
AnonymousAuthor(s). 2018. Full-AttentionDrivenGraphContrastive Learn-

ing: with Effective Mutual Information Insight. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation emai (Con-
ference acronym ’XX). ACM, New York, NY, USA, 9 pages. https://doi.org/

XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Figure 1: This figure shows an example of ineffective positive
pair. Graph A is phenol and Graph B is benzene. Obviously,
Graph A and Graph B have completely different chemical
properties and different labels. However, after data augmen-
tation, we may augment the phenol to be benzene. We treat
such kind of data augmentation as ineffective positive pair.

1 INTRODUCTION
Graph supervised learning, which requires an extensive amount

of labels and consequently, costing a significant labour effort. To

address this challenge, graph contrastive learning [25], as a repre-

sentative of self-supervised learning approaches [16, 35], has seen

rapid development in recent years [24, 34, 40, 41], marking a new

milestone in graph self-supervised tasks. This approach primarily

draws inspiration from contrastive learning paradigms in computer

vision [4, 10]. By utilizing data augmentation, it creates a new posi-

tive sample for each graph, thereby obtaining two perspectives of

the graph, and then maximizes the mutual information between

these perspectives to learn graph representations [15].

For instance, GraphCL [41] employs node dropping, edge per-

turbation, attribute masking or subgraph to perturb the original

graph, resulting in two augmented versions of the graph. It then

aims to maximize the mutual information shared between these

two perturbed graphs. However, there are inherent issues with this

methodology. Perturbing the original graph can potentially alter its

informative attributes. As illustrated in Figure 1, although graph A

has undergone data augmentation, it is evident that such augmen-

tation may be ineffective or even detrimental. Consequently, the

mutual information of this positive example can be perceived as

noise. If the mutual information being maximized resembles the

case shown in Figure 1, the effectiveness of contrastive learning

would be significantly compromised. Several efforts have been ini-

tiated to tackle this issue. Some researches try to avoid the issue by

manual trial [41] or automated search [40] or neighbourhood at-

tributes guidance [24], while it’s still hard to avoid such pairs. Some

other researches[44] rely on domain-specific knowledge to avoid

the issue, while introducing a considerable amount of prior knowl-

edge, limiting its versatility. SimGRACE [34] creatively employs

a perturbation encoder for a straightforward data augmentation

scheme, avoiding such issues by augmenting data in encoder’s la-

tent space, while it’s still lack of a theoretical analysis. We may

introduce Graph Transformer to expand the encoder’s latent space

to achieve better performance and do some theoretical analysis for

the latent space data augmentation.
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On another note, these models often assume the perfection of

encoders during their analysis [27], yet message-passing-based

graph neural networks have their own set of challenges, such

as over-smoothing and over-squashing [2, 28]. Thus, arises the

question: can we enhance contrastive learning’s performance by

boosting the encoder’s expressive capabilities? Graph Transform-

ers [5, 13, 21, 32, 39], an emerging and promising model, offers a

potential solution. Recently, a few studies have focused on con-

trastive learning around Graph Transformers. They use [7, 31, 42]

sparse or hierarchical graph transformer for contrastive learning.

However, these works have not adopted full-attention; they have

incorporated the graph structure into attention to varying degrees,

leading to the expansion of latent space not as much as expected.

In fact, integrating full-attention in contrastive learning doesn’t

necessarily enhance the encoder’s expressive capability, as in graph

structures, the significance of neighbour nodes usually outweighs

distant nodes. This typically necessitates a vast amount of graph

labels. In label-deprived scenarios, full-attention itself might intro-

duce ineffective positive sample pairs. We may need to transform

the full-attention part to avoid its noise introduced by irrelevant

nodes.

Our solution. To address the aforementioned challenges, we in-

troduce our model, GACL(Graph Attention Contrastive Learning).

Inspired by GraphGPS [20], we incorporate the full-attention trans-

former, which works in tandem with the message-passing-based

graph neural network, serving as the encoder. In this way, we can

get a wider encoder’s latent space to do data augmentation in avoid

of the ineffective positive samples on original graphs. Furthermore,

by introducing a noise modification to the full-attention, we mit-

igate the potential of introducing ineffective positive pairs, thus

enhancing the encoder’s expressive capability. Concurrently, we uti-

lize the noise-modified full-attention as a way of data augmentation.

This approach offers a simple yet universal method of data aug-

mentation while minimizing the likelihood of obtaining ineffective

positive pairs. As depicted in Figure 1, our analysis revolves around

the effectiveness of positive sample pairs. Thus, we introduce the

concept of effective mutual information. The mutual information

between positive sample pairs in Figure 1 is not considered effec-

tive mutual information; instead, it is deemed as ineffective mutual

information. Building on this concept, we analyze the mutual in-

formation gains brought about by integrating the full-attention

transformer, substantiating the ability of GACL to enhance model

expressiveness. Simultaneously, viewing full-attention as a form

of data augmentation, we validate the efficacy of full-attention

data augmentation in contrastive learning by analyzing its reduc-

tion in ineffective mutual information, emphasizing its minimized

introduction of noisy positive pairs.

Our study pioneers the integration of the full-attention trans-

former into contrastive learning. It addresses potential challenges

posed by full-attention and positions it as a straightforward and ef-

fective data augmentation strategy. We delineate our contributions

in three main points:

• We bolster the expressive capacity of the contrastive learning

encoder by introducing the full-attention transformer. By lever-

aging the contrastive learning framework, we counteract the

effects imposed on the full-attention transformer in unlabeled

contrastive learning scenarios.

• We present a solution to the issue of ineffective information in

the full-attention transformer, advocating for its use as a simple

yet effective data augmentation technique. Furthermore, we es-

tablish the concept of effective mutual information and, within its

purview, validate the effectiveness of full-attention data augmen-

tation. Our discourse on effective mutual information also high-

lights potential future directions to enhance graph contrastive

learning performance.

• Extensive experiments over various datasets demonstrate the

exceptional performance of our GACL model, surpassing other

baseline models in its efficacy, achieving state-of-the-art (SOTA)

performance.

2 RELATEDWORK
2.1 Graph representation learning
Graph embedding techniques, as cited in references [19, 26], have

proven their capability in deriving latent representations of a graph

that maintain the graph’s structure. However, in more recent devel-

opments, graph neural networks (GNNs) [12, 29, 37], highlighted

in studies, have ascended as the leading methodologies for graph

representation learning. Their rising prominence can be attributed

to their adeptness at encapsulating both the individual node in-

formation and the overarching graph structures. This is achieved

through an ingenious mechanism that amalgamates neighborhood

data using a message-passing framework. For readers keen on delv-

ing deeper into the intricacies of GNNs, surveys are available in

references [3, 33].

2.2 Graph contrastive learning
Contrastive learning has emerged as a powerful approach in repre-

sentation learning by optimizing the similarity between augmented

views of data. This paradigm has shown significant potential, es-

pecially in the context of graph data where the manner of data

augmentation plays a pivotal role. Historically, unsupervised graph

representation techniques, such as DeepWalk [19] and node2vec

[6], have capitalized on a contrastive framework. These methods

underscore the similarities derived from random walks on graphs

and often utilize Noise-Contrastive Estimation (NCE) [8] to model

the probabilities of node co-occurrence pairs. However, while these

methods have laid the groundwork, they possess inherent limita-

tions, including sensitivity to hyperparameter settings [6, 19].

In recent advancements, Graph Neural Networks (GNNs) have

been employed as sophisticated encoders, leading to a myriad of

novel approaches. For instance, DGI [30] integrates GNN with

contrastive learning, emphasizing the maximization of mutual in-

formation [11] between global graph-level and local node-level

embeddings. Taking cues from SimCLR [4], GraphCL [41] employs

graph-level data augmentations but necessitates manual tuning,

whereas JOAO [40] automates the augmentation selection process

in GraphCL, albeit at a high computational cost.

A pertinent challenge lies in ensuring that random perturba-

tions during data augmentation do not compromise the quality of

the augmented views. MVGRL [9] offers an innovative approach,
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advocating for the learning of both node- and graph-level repre-

sentations. This is achieved by contrasting node representations

with augmented graph summary representations following node

diffusion. Several other methods, such as GRACE [43] and Infogcl

[36], have been formulated to ensure the retention of critical graph

information during augmentation. They leverage node centrality

and information-aware representation models, respectively. GCA

[44] endeavors to bolster semantic information preservation and

finetune data augmentation techniques. Still, there remains the

perennial challenge of designing adaptable and efficient data aug-

mentations suitable for diverse graph structures. SimGRACE [34]

presents a unique perspective by perturbing model parameters,

thus obviating the need for input data augmentation altogether.

ENGAGE [24] proposes a guided data augmentation using local

embedding explanation.

With regrad to the recent contrastive learning on Graph Trans-

former, SGTC [42] integrates the sparse graph transformer for

contrastive learning, while HEAL [7] employs a hierarchical graph

transformer for protein function prediction, and TCL [31] intro-

duces a graph transformer for dynamic graph modeling.

3 PRELIMINARIES
In this subsection, we introduce some preliminary concepts and

notations that will be essential for our exposition throughout the

paper.

An attributed graph, denoted by 𝐺 = (𝑉 , 𝐸), comprises:

• A set𝑉 representing nodes. Each node 𝑣 ∈ 𝑉 can have an at-

tribute vector 𝑋𝑣 ∈ R𝐹 , where 𝐹 denotes the dimensionality

of the attribute space.

• A set 𝐸 ⊆ 𝑉 ×𝑉 representing edges.

We often use a matrix 𝐴 to represent the adjacency matrix.

In many cases, the graph𝐺 should also belong to a class, named

label 𝑌 . If it does not have, we can assume it belonging to the latent

class [22]. That means, each graph should have its label whether

it’s obvious or not.

Information entropy [23], often simply referred to as entropy,

quantifies the amount of uncertainty or unpredictability associated

with a random variable, typically a source of information.

In its most basic form, the entropy 𝐻 (𝑋 ) of a discrete random

variable 𝑋 with possible values 𝑥1, 𝑥2, ..., 𝑥𝑛 and corresponding

probabilities 𝑝(𝑥1), 𝑝(𝑥2), ..., 𝑝(𝑥𝑛) is given by:

𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=1

𝑝(𝑥𝑖 ) log𝑝(𝑥𝑖 )

For two random variables 𝑋 and 𝑌 with a joint distribution p(x, y),

their joint entropy 𝐻 (𝑋,𝑌 ) is defined as:

𝐻 (𝑋,𝑌 ) = −
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝(𝑥,𝑦) log𝑝(𝑥,𝑦)

Joint entropy quantifies the uncertainty or information content of

the joint distribution of 𝑋 and 𝑌 . When we describe the common

information of the two variables, we often use mutual information.

For variables 𝑋 and 𝑌 , their mutual information 𝐼 (𝑋 ;𝑌 ) is:

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 )

4 METHODOLOGY
In this section, we delve deep into the intricacies of our model,

GACL. An overview of the model’s architecture is depicted in Fig-

ure 2. We will then focus on the aspects related to ’effective mutual

information’, providing a theoretical justification for the enhance-

ments of our GACL model and the efficacy of its data augmentation

technique. Guided by the theory of effective mutual information,

we will subsequently explore potential future developments in the

contrastive learning loss function.

4.1 GACL
As illustrated in Figure 2, in comparison to typical contrastive

learning encoders, our model prominently features the integration

of the full-attention transformer module. Drawing inspiration from

GraphGPS [20], we have combined the full-attention transformer

with the message-passing graph neural network, but we do not

use any positional encoding for the sake of fairness compared to

other models. The adjacency matrix information of the graph is

exclusively utilized in the message-passing graph neural network,

while the full-attention module, aimed at enhancing the encoder’s

capability, is fed only with node encoding information. However, it

is important to note that the mere integration of the full-attention

transformermodule into the encoder does not necessarily guarantee

an enhancement in the model’s expressive capacity, as supported

by experiments discussed in section 5.3. Given that nodes in a graph

typically relymore on their neighboring nodes, there aren’t always a

significant number of effective long-range node connections. What

truly influences the effectiveness of full-attention is the proportion

of useful information within the attention details.

In light of this, we introduce a noise matrix into the full-attention

mechanism. The elements of the noise matrix are composed by {0,

1} or {0, -1} or {1, -1}. The size of the noise matrix is the same

as attention. Since it’s challenging to pinpoint which attention

weights are genuinely effective, the noise matrix adopts a random

distribution, formulated as:

𝑁𝑜𝑖𝑠𝑒𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = [N · 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝑘

)]𝑉 , (1)

where N is the noise matrix, and 𝑄,𝐾,𝑉 is query, key and value

of the transformer. The attention matrix undergoes element-wise

multiplication with the noise matrix. As an example, with the noise

matrix composed by {0, 1}, each element has possibility 𝑝 to be 1.

We refer to the representation processed through the noise ma-

trix as the positive sample. This representation, in conjunction with

the representation that has not undergone noise matrix processing,

forms a positive pair, thereby fulfilling the data augmentation re-

quirement in contrastive learning. It is imperative to note that we

do not undertake any structural modifications on the original graph,

so we avoid semantic changes caused by structural modifications.

Instead, our method focuses on processing the attention with the

noise matrix. To provide a more intuitive understanding, consider

the analogy of applying data augmentations to the primary graph.

Within the framework of the full-attention matrix, there’s an in-

herent presumption that all nodes are interconnected, depicting a

fully-connected graph. Introducing noise into this attention matrix
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Figure 2: This figure shows our model GACL. In our model, we use MPNN like GCN or GIN to encode the adjacency matrix
information. We add a full-attention part which will involve unnecessary information. To both enhance the encoder and work
as the data augmentation part, we propose an attention noise matrix and explain why it works theoretically.

can be likened to edge permutations within such a fully-connected

graph.

For our contrastive learning loss, we employ the InfoNCE loss,

which plays a pivotal role in augmenting the proportion of effective

information within the attention. We will talk about it in section 4.3.

In Section 4.2, we will formally introduce the definition of effective

mutual information along with its associated formulas, and Section

4.3 will be dedicated to a detailed analysis of the efficacy and roles

of the various modules within our model.

This elaboration aims to present the model’s techniques and

rationale, making it appropriate for inclusion in a scholarly article.

4.2 Effective mutual information
As previously discussed, effective mutual information plays a piv-

otal role in contrastive learning. In this subsection, we will delve

into the concept of effective mutual information mentioned earlier

and provide its formal definition. First, we present the definition of

effective mutual events.

Definition 1. (effective events) In the realm of contrastive learn-
ing, the goal is to encapsulate information approaching 𝐼 (𝐺 ;𝑌 ). Given
an event set 𝐸 with associated information entropy 𝐻 (𝐸), where
𝐻 (𝐸) = 𝐼 (𝐺 ;𝑌 ), If event 𝑥 ∈ 𝐸, it is deemed an effective event, and 𝐸
is named an effective event set.

In this definition, 𝐻 (𝐸) = 𝐼 (𝐺 ;𝑌 ) means that, for any subset

𝑆 ⊆ 𝐸, 𝐻 (𝑆) < 𝐼 (𝐺,𝑌 ) holds true. Conversely, for any super-set

𝐸 ⊆ 𝑆 , 𝐻 (𝑆) > 𝐼 (𝐺,𝑌 ) holds true, too.

This definition tells uswhen the information of the event is useful

in fact. Here the set 𝐸 may be abstract now. In fact, it comes along

with the actual label and the distribution of the whole dataset. The

same as the definition of effective events, we can give a definition

of the effective entropy.

Definition 2. (effective entropy) Given an event 𝑠 ∈ 𝑆 and an
effective event set 𝐸, the entropy of events in the intersection 𝑠 ∈ 𝑆 ∩𝐸
is termed the effective entropy 𝐻𝑒 (𝑆). We have similar definition for
the the ineffective entropy 𝐻𝑛(𝑆).

Contrastive learning learned from two differing views. The view

can also be seen as an event. We present the definition of effective

mutual information.

Definition 3. (effective mutual information) Let 𝑢 and 𝑣 denote
two views. 𝑢 belongs to a view set 𝑈 and 𝑣 belongs to 𝑉 . 𝐸 is an
effective event set. Only when both 𝑢 ∈ 𝐸 and 𝑣 ∈ 𝐸 are effective
views, this part of the mutual information of𝑈 and 𝑉 is termed the
effective mutual information, 𝐼𝑒 (𝑈 ;𝑉 ), formulated as:

𝐼𝑒 (𝑈 ;𝑉 ) = 𝐻𝑒 (𝑈 ) + 𝐻𝑒 (𝑉 ) − 𝐻𝑒 (𝑈 ;𝑉 ), (2)

𝐼𝑒 (𝑈 ;𝑉 ) =
∑︁

𝑣∈𝑉∩𝐸

∑︁
𝑢∈𝑈∩𝐸

𝑝(𝑢, 𝑣)𝑙𝑜𝑔
𝑝(𝑢, 𝑣)

𝑝(𝑣)𝑝(𝑢)
. (3)

All other mutual information contributions are classified as ’in-

effective’ or ’noise’, denoted 𝐼𝑛(𝑈 ;𝑉 ). From this definition, we can

understand the two parts of the mutual information in contrastive

learning, the effective mutual information 𝐼𝑒 and the ineffective

mutual information 𝐼𝑛 . That is to say,

𝐼 (𝑈 ;𝑉 ) = 𝐼𝑒 (𝑈 ;𝑉 ) + 𝐼𝑛(𝑈 ;𝑉 ) (4)
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Figure 3: This figure shows the relationship between two
views 𝑈 , 𝑉 and their mutual information, effective and inef-
fective mutual information.

We describe it vividly in figure 3.

Correspondingly, the ineffective mutual information splits into

three components:

𝐼𝑛(𝑈 ;𝑉 ) =
∑︁

𝑣∈𝑉 −𝐸

∑︁
𝑢∈𝑈∩𝐸

𝑝(𝑢, 𝑣)𝑙𝑜𝑔
𝑝(𝑢, 𝑣)

𝑝(𝑣)𝑝(𝑢)

+

∑︁
𝑣∈𝑉∩𝐸

∑︁
𝑢∈𝑈 −𝐸

𝑝(𝑢, 𝑣)𝑙𝑜𝑔
𝑝(𝑢, 𝑣)

𝑝(𝑣)𝑝(𝑢)

+

∑︁
𝑣∈𝑉 −𝐸

∑︁
𝑢∈𝑈 −𝐸

𝑝(𝑢, 𝑣)𝑙𝑜𝑔
𝑝(𝑢, 𝑣)

𝑝(𝑣)𝑝(𝑢)
(5)

As we defined before, the effective mutual information is which

actually works in the mutual information between the two views.

In fact, what truly affects the final outcomes of views 𝑢 and 𝑣 is

whether the effective mutual information 𝐼𝑒 (𝑈 ;𝑉 ) is sufficient and

whether the ineffective mutual information 𝐼𝑛(𝑈 ;𝑉 ) is minimized.

Intuitively, we can consider the effective mutual information as

the correlation between the graph and the labels, while the ineffec-

tive mutual information represents some shared noise information

between the views.

4.3 Analysis of GACL
In this subsection, drawing upon the theoretical framework pre-

sented in Section 4.2, wewill analyze the effectiveness of the various

components of the GACL model introduced in Section 4.1. We will

analyze it in three parts soon.

Firstly, we will prove that combining full-attention transformer

does increase the mutual information between two views.

Theorem 1. For contrastive learning, combiningwith full-attention
transformer will improve the expressive ability of the message-passing
graph neural network, if the noise of the full-attention transformer is
low.

Proof. For the original graph 𝐺 , after data augmentation, we

will get two views 𝐺𝑢 and 𝐺𝑣 . Use 𝑀() to denote the message-

passing part of the network, 𝑇 () to denote the full-attention trans-

former part of the network. When combining the two encoders

together, we have:

𝐼 (𝑈 ;𝑉 ) =𝐼 (𝑀(𝐺𝑢 ),𝑇 (𝐺𝑢 );𝑀(𝐺𝑣 ),𝑇 (𝐺𝑣 ))

=𝐼 (𝑀(𝐺𝑢 ), 𝑀(𝐺𝑣 )) + 𝐼 (𝑀(𝐺𝑢 );𝑇 (𝐺𝑣 )|𝑀(𝐺𝑣 ))+

𝐼 (𝑀(𝐺𝑣 );𝑇 (𝐺𝑢 )|𝑀(𝐺𝑢 )) + 𝐼 (𝑇 (𝐺𝑢 );𝑇 (𝐺𝑣 )|𝑀(𝐺𝑢 ), 𝑀(𝐺𝑣 ))

≥𝐼 (𝑀(𝐺𝑢 ), 𝑀(𝐺𝑣 )). (6)

The above formula holds since the mutual information should al-

ways be greater or equal than zero. To dissect the sources of this

accruedmutual information, we identify three primary contributors:

𝐼 (𝑀(𝐺𝑢 );𝑇 (𝐺𝑣 )|𝑀(𝐺𝑣 )), its symmetric counterpart 𝐼 (𝑀(𝐺𝑣 );𝑇 (𝐺𝑢 )|
𝑀(𝐺𝑢 )), and 𝐼 (𝑇 (𝐺𝑢 );𝑇 (𝐺𝑣 )|𝑀(𝐺𝑢 ), 𝑀(𝐺𝑣 )). Given the omission of

the positional encoding and the total different latent represen-

tation between 𝑀() and 𝑇 (), the primary contribution to mutual

information arises from the attention mechanisms in 𝑇 (), that is

𝐼 (𝑇 (𝐺𝑢 );𝑇 (𝐺𝑣 )|𝑀(𝐺𝑢 ), 𝑀(𝐺𝑣 )).

If the noise of the full-attention transformer is low, that means

𝐻𝑒 (𝑇 (𝐺 ))

𝐻 (𝑇 (𝐺 ))
is high, thus

𝐼𝑒 (𝑇 (𝐺𝑢 );𝑇 (𝐺𝑣 ))

𝐼 (𝑇 (𝐺𝑢 );𝑇 (𝐺𝑣 )
is high. So the growing part of

the mutual information helps improve the expressive ability of the

message-passing graph neural network by increasing the effective

mutual information between the two views.

□

From this theorem, we know that the key point is to denoise

the full-attention part. We use attention noise matrix in our GACL.

In GACL, the representation with attention noise matrix is the

positive pair with the original representation. We consider their

mutual information.

Theorem 2. The attention noise matrix {0,1} will decrease the
ineffective mutual information brought by the full-attention part in
graph contrastive learning.

Proof. To simplify the representation, we use 𝐴 to denote the

full-attention part and 𝑝 to denote the possibility of each element

in attention noise matrix to be 1. We have:

𝐼𝑛(𝐴;N · 𝐴)
=𝐻𝑛(𝐴) + 𝐻𝑛(N · 𝐴) − 𝐻𝑛(𝐴,N · 𝐴)
=𝐻𝑛(𝐴) + 𝐻𝑛(N · 𝐴) − 𝐻𝑛(𝐴) − 𝐻𝑛(N · 𝐴|𝐴)
=𝐻𝑛(N · 𝐴) − 𝐻𝑛(N · 𝐴|𝐴)
= − (1 − 𝑝) × log

2
(1 − 𝑝) + 𝑝 × 𝐻𝑛(𝐴) − 𝐻𝑛(N)

=𝑝 × 𝐻𝑛(𝐴) + (1 − 𝑝) × log
2
(

1

1 − 𝑝 ) − 1

<𝐻𝑛(𝐴). (7)

Since 𝐻𝑛(𝐴) is the original mutual information brought by the full-

attention part, the ineffective mutual information between the two

views decreases. □

In this theorem, we get to know that the ineffective mutual

information between two views decreases by the attention noise

matrix. However, the effective mutual information get decreased at

the same time.

In our GACL, we use InfoNCE loss to recover the effective mutual

information brought by the full-attention part.

Theorem 3. InfoNCE loss helps recover the effective mutual in-
formation with attention noise matrix brought by the full-attention
part.
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Proof. Since no modifications are done to the original graph 𝐺 ,

𝐺𝑢 is 𝐺𝑣 in fact. Denoting N ·𝑇 (𝐺) as 𝑇 ′
(𝐺), we have:

𝐼𝑒 (𝑇 (𝐺𝑢 );𝑇 (𝐺𝑣 )|𝑀(𝐺𝑢 ), 𝑀(𝐺𝑣 ))

=𝐼𝑒 (𝑇 (𝐺);N ·𝑇 (𝐺)|𝑀(𝐺))

=𝐻𝑒 (𝑇 (𝐺)|𝑀(𝐺)) − 𝐻𝑒 (𝑇 (𝐺)|𝑇 ′
(𝐺), 𝑀(𝐺)). (8)

Next we will omit𝐺 for convenience. Since 𝐻𝑒 (𝑇 (𝐺)|𝑀(𝐺)) doesn’t

have any changes, and

𝐻𝑒 (𝑇 |𝑇 ′, 𝑀)

=

∑︁
𝑡 ′∈𝑇 ′∩𝐸

∑︁
𝑚∈𝑀∩𝐸

𝑃 (𝑡 ′,𝑚)𝐻 (𝑇 |𝑇 ′
= 𝑡 ′, 𝑀 =𝑚)

= −
∑︁

𝑡 ′∈𝑇 ′∩𝐸

∑︁
𝑚∈𝑀∩𝐸

𝑃 (𝑡 ′,𝑚)

∑︁
𝑡 ∈𝑇∩𝐸

𝑃 (𝑡 |𝑡 ′,𝑚) log 𝑃 (𝑡 |𝑡 ′,𝑚), (9)

thus recovering the effective mutual information equals to increas-

ing the probability of 𝑃 (𝑡 |𝑡 ′,𝑚).

Fundamentally, the InfoNCE loss facilitates the estimation of the

lower bound of mutual information concerning the positive pairs.

Let’s consider 𝑈 and 𝑉 as positive views. The essence of what the

InfoNCE loss optimizes can be depicted as:

𝑃 (𝑢 |𝑣) = exp(𝑠(𝑢, 𝑣))∑
𝑢∈𝑈 exp(𝑠(𝑢, 𝑣))

. (10)

Through optimizing 𝑃 (𝑢 |𝑣), we optimize 𝑃 (𝑡,𝑚 |𝑡 ′,𝑚), that is 𝑃 (𝑡 |𝑡 ′,𝑚).

With this assist from contrastive loss, 𝐼𝑒 (𝑇 ;𝑇
′ |𝑀) undergoes opti-

mization. Given that 𝐼 (𝑇 ;𝑇 ′ |𝑀) is constrained by the probability

𝑝 intrinsic to the noise matrix, the mutual information ratio of

𝐼 (𝑇 ;𝑇 ′ |𝑀) is set on an upward trajectory with the incorporation of

contrastive learning. That is to say, infoNCE loss helps recover the

effective mutual information with attention noise matrix brought

by the full-attention part.

□

From the proof, we can conclude that the possibility 𝑝 of the

attention matrix, which reduces the ineffective mutual information

of the full-attention, also limits the upper bound of the effective

mutual information.

4.4 Further discussion about effective mutual
information

Proceeding from section 4.3, it’s imperative to engage in a deeper

exploration of the nexus between contrastive loss and effective

mutual information. Within the contours of contrastive learning,

it’s axiomatic that the two views ought to form positive pairs. Yet,

a singular focus on positive pairs obscures our understanding of

what truly encapsulates ’effectiveness’, primarily because the term

’effective’ often orbits around tangible or latent labels. This brings

us to the observation that in contrastive learning, negative pairs

are typically characterized by divergent tangible or latent labels.

Through this lens, effective mutual information invariably has ties

not just to the positive pairs but spans its influence to the negative

pairs as well. This leads us to the following proposition:

Proposition 4. For the ineffective mutual information 𝐼𝑛(𝑈 ;𝑉 ),
it’s all the union of all the mutual information among the original
one, the positive one and the negatives. That is to say,

𝐼𝑛(𝑈 ;𝑉 ) = lim

𝑐𝑎𝑟𝑑(𝑁 )→+∞
∀𝑖 ∈ 𝑁,

∑︁
𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑖 ) (11)

𝑁 refers to the set of negative samples.

From Definition 3.1, it’s established that effective events con-

tribute to the information entropy present in the mutual informa-

tion between the graph and the label, 𝐼 (𝐺 ;𝑌 ). This implies that

the latent label of a graph 𝐺 is distinct. If another graph does not

have the same label as 𝐺 , it shouldn’t share equivalent mutual in-

formation with 𝐺 ’s positive pair. Thus, 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑖 )where 𝑖 ∈ 𝑁 )

would be a fragment of ineffective mutual information and wouldn’t

contribute to 𝐼 (𝐺 ;𝑌 ).

As the set of negative pairs approaches infinity, it provides an

extensive ineffective set of negative pairs, ensuring ineffective mu-

tual information is accounted for. The residual mutual information

between 𝐼 (𝑈 ;𝑉 ) then becomes 𝐼𝑒 (𝑈 ;𝑉 ). Alternatively viewed, if

effective events feature in 𝐼𝑒 (𝑈 ;𝑉 ), the label’s information is dis-

tinctive enough to exclude other contrasting examples.

With this elucidation, the approach to gauge the effective mutual

information between positive pairs is now clearer, leading to a re-

fined objective for contrastive learning. First, it’s crucial to augment

the mutual information shared among positive pairs. Secondly, the

effective portion of this shared mutual information should domi-

nate, thereby sidelining the ineffective information unrelated to the

latent label.

Yet, the estimation of 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔) remains an intricate puzzle.

To offer a perspective:

𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔) = 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ) − 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 |𝑉𝑛𝑒𝑔) (12)

𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 |𝑉𝑛𝑒𝑔) =
∑︁

𝑢,𝑣𝑝 ,𝑣𝑛

𝑝(𝑢, 𝑣𝑝 , 𝑣𝑛) log
𝑝(𝑣𝑛)𝑝(𝑢, 𝑣𝑝 |𝑣𝑛)
𝑝(𝑢 |𝑣𝑛)𝑝(𝑣𝑝 |𝑣𝑛)

(13)

To curtail 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔), the term 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 |𝑉𝑛𝑒𝑔) must be max-

imized, particularly the ratio

𝑝(𝑣𝑛 )𝑝(𝑢,𝑣𝑝 |𝑣𝑛 )
𝑝(𝑢 |𝑣𝑛 )𝑝(𝑣𝑝 |𝑣𝑛 ) . Unlike the straight-

forward cosine similarity between two variables, quantifying the

intersection of three elements is a convoluted endeavor warranting

further exploration.

We can also employ mutual information between two elements

to approximate 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔). As stated, the aim is to diminish

this. Evidently:

𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔) ≤ 𝐼 (𝑈 ;𝑉𝑛𝑒𝑔) + 𝐼 (𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔) (14)

Thus, tominimize 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔), we can target the upper bound

𝐼 (𝑈 ;𝑉𝑛𝑒𝑔) + 𝐼 (𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔).

Incorporating the foundational goal of maximizing 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ),

an optimal strategy would be to magnify 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ) − 𝐼 (𝑈 ;𝑉𝑛𝑒𝑔) −
𝐼 (𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔). This approach synergizes the dual objectives of con-

trastive learning: enhancing both the mutual and effective mutual

information amid positive pairs.

5 EXPERIMENTS
In this section, our primary aim is to evaluate the performance of

our model, GACL.

5.1 Experimental Setup
Datasets.We utilize six datasets from the benchmark TUDataset

[17] for our experiments. These datasets encompass graph data
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Input Method MUTAG NCI1 PTC-MR PROTEINS COLLAB IMDB-B Rank(↓)
GCN 85.6 ± 5.8 80.2 ± 2.0 - 74.9 ± 3.3 79.0 ± 1.8 70.4 ± 3.4

A,X,Y

GIN 89.4 ± 5.6 82.7 ± 1.7 - 76.2 ± 2.8 80.2 ± 1.9 75.1 ± 5.1

node2vec 72.6 ± 10.2 54.9 ± 1.6 58.6 ± 8.0 57.5 ± 3.6 56.1 ± 0.2 50.2 ± 0.9 9.3

sub2vec 61.1 ± 15.9 52.8 ± 1.5 60.0 ± 6.4 53.0 ± 5.6 - 55.3 ± 1.5 9.6

graph2vec 83.2 ± 9.3 73.2 ± 1.8 60.2 ± 6.9 73.3 ± 2.1 - 71.1 ± 0.5 7.6

InfoGraph 89.0 ± 1.1 76.2 ± 1.0 61.7 ± 1.4 74.4 ± 0.3 70.7 ± 1.1 73.0 ± 0.9 4.7

GraphCL 86.8 ± 1.3 77.9 ± 0.4 61.3 ± 2.1 74.4 ± 0.5 71.4 ± 1.1 71.1 ± 0.4 6.2

JOAO 87.4 ± 1.0 78.1 ± 0.5 - 74.6 ± 0.4 69.5 ± 0.4 70.2 ± 3.1 7

AutoGCL 88.6 ± 1.1 82.0 ± 0.3 - 75.8 ± 0.4 70.1 ± 0.7 73.3 ± 0.4 3.6

iGCL 89.8 ± 1.2 82.7 ± 0.4 - 74.8 ± 0.5 72.0 ± 0.8 72.6 ± 0.6 3.2

SimGRACE 89.0 ± 1.3 79.1 ± 0.4 - 75.4 ± 0.1 71.7 ± 0.8 71.3 ± 0.7 4.2

EG-simCLR - 83.0 ± 0.2 61.5 ± 2.4 75.4 ± 0.7 76.6 ± 1.3 71.8 ± 1.3 3

A,X

GACL 90.1 ± 0.8 83.3 ± 0.4 62.6 ± 1.9 75.5 ± 0.7 77.8 ± 0.8 72.6 ± 1.0 1.5
Table 1: Results for graph classification tasks. Our GACL model consistently demonstrates superior or comparable performance
across various datasets relative to other cutting-edge methods. This underscores GACL’s robustness and efficiency. To derive
the positive pair from the anchor point, instead of using original data augmentation, we multiply the attention matrix with a
noise matrix.

sourced from diverse domains. Specifically, MUTAG, NCI1, PTC-

MR, and PROTEINS are associated with small molecules and bioin-

formatics, whereas COLLAB and IMDB-BINARY pertain to social

networks. Detailed specifications of these datasets can be found in

Table 1.

Graphs Classes Avg. Nodes Avg. Edges Data Source

MUTAG 188 2 17.93 19.79 Small molecules

NCI1 4110 2 29.87 32.3 Small molecules

PTC-MR 344 2 14.29 14.69 Small molecules

PROTEINS 1113 2 39.06 72.82 Bioinformatics

COLLAB 5000 3 74.49 2457.78 Social networks

IMDB-BINARY 1000 2 19.77 96.53 Social networks

Table 2: Summary of datasets

Evalution Protocols. To evaluate the efficacy of our GACLmodel’s

graph-level unsupervised learning representations, we adopted

protocols established by prior research [25, 41]. Themodel is trained

using the entire dataset to acquire graph representations, which

are subsequently fed into a downstream SVM classifier for 10-fold

cross-validation. Evaluation is conducted every 10 epochs, with

the best evaluation epoch chosen as the final result, aligning our

method with the [25] approach. Each experiment is reiterated ten

times, with the average being reported as the final score.

Compared Baselines. Our GACL model is benchmarked against

various methodologies, encompassing supervised methods such as

GCN and GIN. Additionally, we have incorporated comparisons

with state-of-the-art graph self-supervised learning techniques,

including node2vec [6], sub2vec [1], graph2vec [18], Infograph [25],

GraphCL [41], JOAO [40], AutoGCL [38], iGCL [14], simGRACE

[34], and EG-simCLR [24].

Training environment.All experimentswere executed on a server

equipped with an Intel(R) Xeon(R) Platinum 8358P CPU, an A40

48GB GPU, and 80 GB of RAM. It should be noted that results might

exhibit minor variations across different training environments.

5.2 Performance evaluation
Graph classification tasks were performed on the aforementioned

six benchmark datasets. For GACL, GCN [12] was employed as the

message-passing neural network encoder. In terms of the trans-

former encoder, we opted for the full-attention mechanism and

refrained from employing any positional or structural encoding

during the encoding of the original graph data. The outcomes are

illustrated in Table 2. Scores denoted by ’-’ indicate unavailability

in their respective publications. Our GACL model’s average rank

stands at 1.5, outperforming all other methods. For the majority

of datasets, our model surpassed the performance of leading-edge

methodologies, highlighting the robustness and versatility of GACL.

Importantly, our data augmentation process preserves the integrity

of the original graph, thus ensuring the generalizability of GACL.

5.3 Analysis of the Attention Noise Matrix
In assessing the efficacy of our attention noise matrix, we con-

trasted its performance with GraphCL paired with a full-attention

transformer. GraphCL primarily employs techniques like node drop-

ping, edge permutation, and subgraphing for data augmentation.

We retain its data augmentation strategy and integrate it with a

full-attention transformer in a manner akin to our GACL encoder.

The results of this comparison are depicted in Figure 5.

Figure 4 illustrates that the mere addition of a full-attention

transformer to the message-passing graph neural network does

not markedly enhance performance. Notably, performance metrics

for the PTC-MR and PROTEINS datasets even decline due to the

incorporation of noisy mutual information in the full-attention

matrix. Our GACL model, augmented by the attention noise matrix,

consistently surpasses traditional data augmentation, irrespective

of whether the encoder solely uses the message-passing graph

neural network or is paired with a full-attention transformer.

In another experiment centered on the noise matrix in NCI1, we

initially varied the probabilities 𝑝 of the noise matrix to assess its

influence. Subsequently, we incorporated alternative noise matrices
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Figure 4: Comparison of performance between GraphCL,
GraphCL equipped with full-attention transformer, and our
GACL model.
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Figure 5: Performance variations on the NCI1 dataset as a
function of the increasing probability 𝑝 associated with the
attention noise matrix.

like -1,0 and -1,1 for a comparative analysis. The outcomes of this

exercise are presented in Figure 6 and Table 7.

Figure 5 clearly demonstrates that as the probability linked with

the attention noise matrix escalates, there’s a corresponding im-

provement in performance. This is especially evident when the

probability 𝑝 ranges between 0.4 and 0.5. For the NCI1 dataset,

given its inherent data sparsity, the noise within the full-attention

matrix might be pronounced, necessitating a higher probability for

the attention noise matrix to effectively negate the effects of the

noisy mutual information.

From Figure 6, it’s evident that certain noise matrix, like {-1,

0}, exert minimal influence on performance by reducing the noise

mutual information, even there is a few performance increase. The

impact of the {-1, 1} noise matrix on noise mutual information is a lit-

tle difficult and uncertain, resulting slight decrease in performance.

It can not denoise the attention matrix well.
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Figure 6: Performance variations on the NCI1 dataset when
using different attention noise matrix.
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Figure 7: Performance when using different contrastive loss.

5.4 Negative sample based loss
As we mentioned is section 4.4, according to the formula 12, we

simply conduct an experiment about the loss 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 )−𝐼 (𝑈 ;𝑉𝑛𝑒𝑔)−
𝐼 (𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔). The results are shown in Figure 7.

From this figure, we can see that simply minimize the upper

bound of 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔) may not help a lot in most datasets. We

need to find a more concrete way to minimize 𝐼 (𝑈 ;𝑉𝑝𝑜𝑠 ;𝑉𝑛𝑒𝑔).

That’s our future direction.

6 CONCLUSIONS
In this paper, we introduce that our GACL model integrates a full-

attention transformer into the encoder component of graph con-

trastive learning, leading to the expansion of encoder’s latent space

effectively. We introduce a theoretical framework grounded in ef-

fective mutual information. Under the guidance of the theoretical

framework, we address the noise information introduced by full-

attention. Concurrently, we employ the full-attention component

as a universal data augmentation strategy in avoid of the complex

and ineffective data augmentation to the graph structure. Empiri-

cally, GACL surpasses other baseline models, achieving state-of-the-

art(SOTA) performance. At last, we derive insights for the possible

direction of enhancing the efficiency of graph contrastive learning.
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