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Abstract

In image editing employing diffusion models, it is crucial to preserve the
reconstruction quality of the original image while changing its style. Al-
though existing methods ensure reconstruction quality through optimiza-
tion, a drawback of these is the significant amount of time required for
optimization. In this paper, we propose negative-prompt inversion,
a method capable of achieving equivalent reconstruction solely through
forward propagation without optimization, thereby enabling much faster
editing processes. We experimentally demonstrate that the reconstruction
quality of our method is comparable to that of existing methods, allow-
ing for inversion at a resolution of 512 pixels and with 50 sampling steps
within approximately 5 seconds, which is more than 30 times faster than
null-text inversion. Reduction of the computation time by the proposed
method further allows us to use a larger number of sampling steps in diffu-
sion models to improve the reconstruction quality with a moderate increase
in computation time.
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Figure 1: Negative-prompt inversion. Comparison in reconstruction quality and time
between the proposed method (negative-prompt inversion; Ours), DDIM inversion (Song
et al., 2021a; Dhariwal & Nichol, 2021), and null-text inversion (Mokady et al., 2023).
The rightmost column shows the results of image editing obtained using prompt-to-
prompt (Hertz et al., 2023) with our reconstruction.

1 Introduction

Diffusion models (Ho et al., 2020) are known to yield high-quality results in the fields
of image generation (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b; Saharia
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et al., 2022; Dhariwal & Nichol, 2021; Rombach et al., 2022), video generation (Harvey
et al., 2022; Ho et al., 2022; Höppe et al., 2022; Blattmann et al., 2023), and text-to-
speech conversion (Chen et al., 2021a;b). Text-guided diffusion models (Kim et al., 2022)
are diffusion models conditional on given texts (“prompts”), which can generate data with
various modalities that fit well with the prompts. It is known that by strengthening the
text conditioning through classifier-guidance (Dhariwal & Nichol, 2021) or classifier-free
guidance (CFG) (Ho & Salimans, 2021), the fidelity to the text can be improved further. In
image editing using text-guided diffusion models, elements in images, such as objects and
styles, can be changed with high quality and diversity guided by text prompts.
In applications based on image editing methods, one must be able to generate images that
are of high fidelity to original images in the first place, including reproduction of their
details, and then one will be able to perform appropriate editing of images according to
the prompts therefrom. To achieve high-fidelity image generation, most existing research
exploits optimization of parameters such as model weights, text embeddings, and latent
variables, which results in high computational costs and memory usage.
In this paper, we propose a method that can obtain latent variables and text embeddings
yielding high-quality reconstruction of real images while using only forward computations.
Our method requires neither optimization nor backpropagation, enabling faster processing
and reducing memory usage. The proposed method is based on null-text inversion (Mokady
et al., 2023), which has the denoising diffusion implicit model (DDIM) inversion (Song
et al., 2021a; Dhariwal & Nichol, 2021) and CFG as its principal building blocks. Null-text
inversion improves the reconstruction accuracy by optimizing an embedding which is used
in CFG so that the diffusion process calculated by DDIM inversion aligns with the reverse
diffusion process calculated using CFG. We discovered that the optimal solution embedding
obtained by this method can be approximated by the embedding of the conditioning text
prompt, and that editing also works by using an embedding of a source prompt instead of
the optimal embedding.
Figure 1 shows a comparison between the proposed method and existing ones. Our method
generated high-quality reconstructions when a real image and a corresponding prompt were
given. DDIM inversion had noticeably lower reconstruction accuracy. Null-text inversion
achieved high-quality results, nearly indistinguishable from the input image, but required
more computation time. The proposed method, which we call negative-prompt inver-
sion, allows for computation at the same speed as DDIM inversion, while achieving accuracy
comparable to null-text inversion. Furthermore, combining our method with image editing
methods such as prompt-to-prompt (Hertz et al., 2023) allows fast single-image editing
(Editing).
We summarize our contributions as follows:

1. We propose a method for fast reconstruction of real images with diffusion models
without optimization.

2. We experimentally demonstrated that our method achieves visually equivalent re-
construction quality to existing methods while enabling a more than 30-fold increase
in processing speed.

3. Combining our method with existing image editing methods like prompt-to-prompt
allows fast real image editing.

2 Related work

Image editing by diffusion models. In the field of image editing using diffusion mod-
els such as Imagen (Saharia et al., 2022) and Stable Diffusion (Rombach et al., 2022),
Imagic (Kawar et al., 2023), UniTune (Valevski et al., 2023), and SINE (Zhang et al., 2023)
are models for editing compositional structures, as well as states and styles of objects, in a
single image. These methods ensure fidelity to original images via fine-tuning models and/or
text embeddings.
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Prompt-to-prompt (Hertz et al., 2023), another image editing methods based on diffusion
models, reconstructs original images via making use of null-text inversion. Null-text in-
version successfully reconstructs real images by optimizing the null-text embedding (the
embedding for unconditional prediction) at each prediction step. All these methods at-
tempt to reconstruct real images by incorporating an optimization process, which typically
takes several minutes for editing a single image.
Plug-and-Play (Tumanyan et al., 2023) edits a single image without optimization. It obtains
latent variables corresponding to the input image using DDIM inversion and reconstructs
it according to the edited prompt, inserting attention and feature maps to preserve image
structures. Our inversion method is independent of editing methods, allowing for the free-
dom to choose an editing method while maintaining a high-quality image structure regardless
of the editing method.

Image reconstruction by diffusion models. Textual Inversion (Gal et al., 2023a) and
DreamBooth (Ruiz et al., 2023) are methods that reconstruct common concepts from a
few real images by fine-tuning the model. On the other hand, ELITE (Wei et al., 2023)
and Encoder for Tuning (E4T) (Gal et al., 2023b) seek text embeddings that reconstruct
real images using an encoder. The former ones are aimed at concept acquisition, making
them difficult to reconstruct the original image with high fidelity. Although the latter ones
require less computation time compared with the former ones, the ease of editing operations
is limited, as the corresponding text is not explicitly obtained.
The proposed method realizes nearly the same reconstruction as null-text inversion, but
with only forward computation, enabling image editing in just a few seconds. By combining
our method with image editing methods such as prompt-to-prompt, it becomes possible to
achieve flexible and advanced editing using text prompts.

3 Method

3.1 Overview

In this section, we describe our method for obtaining latent variables and text embeddings
which reconstruct a real image using diffusion models without optimization. Our goal is
that when given a real image I and an appropriate prompt P , we calculate latent variables
(zt), where t is the index for the diffusion steps, in the reverse diffusion process so as to
reconstruct I.

3.2 DDIM inversion

A diffusion model has a forward diffusion process over diffusion steps from 0 to T (e.g.,
T = 1000 in Ho et al. (2020)), which degrades the representation z0 of an original sample
into a pure noise zT , and an associated reverse diffusion process, which generates z0 from
zT . In the training process, a latent variable zt for t ∈ {1, · · · , T} is calculated by adding
noise ε, and the model is trained to predict the noise ε from the latent variables zt. In
text-guided diffusion models, the model is further conditioned by an embedding C of a text
prompt P , which is obtained via a text encoder like CLIP (Radford et al., 2021). The loss
function is the mean squared error (MSE) between the predicted noise εθ and the actual
noise ε,

L(θ) = Et∼U(1,T ),ε∼N (0,I)‖ε− εθ(zt, t, C)‖22,
where U(1, T ) denotes the uniform distribution on the set {1, · · · , T}, and where N (µ,Σ)
denotes the multivariate Gaussian distribution with mean µ and covariance Σ.
Stable Diffusion (Rombach et al., 2022) considers diffusion processes in a latent space:
during the training process, a feature representation z0 is obtained by passing a sample
x0 through an encoder. In the inference stage, a sample x0 is generated by passing the
generated representation z0 through a decoder.
CFG is used to strengthen text conditioning. During the computation of the reverse diffusion
process, the null-text embedding ∅, which corresponds to the embedding of a null text “”,
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Figure 2: Illustration of our framework. (a) Image generation with CFG. A random
noise zT is sampled from a standard normal distribution N (0, I), then denoising zt with
CFG over diffusion steps from T to 1. CFG(C,∅) denotes that using a prompt embedding C
for conditional prediction and the null-text embedding ∅ for unconditional prediction. (b)
Image reconstruction with negative-prompt inversion. We replace the null-text embedding
∅ with the prompt embedding C in CFG. (c) Image editing with negative-prompt inversion.
We use the edited prompt embedding Cedit as the text condition and use the original prompt
embedding C instead of the null-text ∅ in CFG with an image editing method such as
prompt-to-prompt (P2P).

is used as a reference for unconditional prediction to enhance the conditioning:

ε̃θ(zt, t, C,∅) = εθ(zt, t,∅) + w (εθ(zt, t, C)− εθ(zt, t,∅)) , (1)

where the guidance scale w ≥ 0 controls strength of the condition.
In the inference phase, DDIM (Song et al., 2021a) calculates from the latent variable zt the
latent variable zt−1 via

zt−1 =

√
αt−1

αt
zt +

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
εθ(zt, t, C), (2)

where α := (α1, . . . , αT ) ∈ RT
≥0 are hyper-parameters to determine noise scales at T diffusion

steps. The forward process can be represented in terms of εθ(zt, t, C) by inverting the reverse
diffusion process (DDIM inversion) (Song et al., 2021a; Dhariwal & Nichol, 2021), as

zt+1 =

√
αt+1

αt
zt +

√
αt+1

(√
1

αt+1
− 1−

√
1

αt
− 1

)
εθ(zt, t, C). (3)

3.3 Null-text inversion

DDIM is known to work well: Given an original sample, by performing the forward process
starting from the representation z0 of the sample to obtain zT and then by inverting the
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forward process, one can reconstruct the original sample with high quality when we do not
use CFG (i.e., w = 1). However, since CFG is useful to strengthen the text conditioning,
it is necessary to reconstruct original samples well even when one uses CFG (i.e., w > 1).
Null-text inversion enables us to faithfully reconstruct given samples even when using CFG
by optimizing the null-text embedding ∅ at each diffusion step t.
First, we calculate the sequence of latent variables (z∗

t )t∈{1,··· ,T} from z0 via DDIM inver-
sion. Next, we do initialization with z̄T = z∗

T and ∅T = ∅. We then iteratively optimize
∅t for t = T to 1 as follows: At each diffusion step t, assuming that we have z̄t, one can
calculate zt−1 via DDIM (13) and CFG (1) with the null-text embedding ∅t as

zt−1(z̄t, t, C,∅t) =

√
αt−1

αt
z̄t +

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
ε̃θ(z̄t, t, C,∅t). (4)

Then, we optimize ∅t to minimize the MSE between the predicted zt−1(z̄t, t, C,∅t) and
z∗
t−1:

min
∅t

‖zt−1(z̄t, t, C,∅t)− z∗
t−1‖22,

with the initialization ∅t = ∅t+1. After several updates (e.g., 10 iterations), we fix ∅t and
set z̄t−1 = zt−1(z̄t, t, C,∅t). By performing the optimization at t = T, . . . , 1 sequentially,
we can reconstruct the original image with high quality even when using CFG with w > 1.

3.4 Negative-prompt inversion

The proposed method, negative-prompt inversion, utilizes the text prompt embeddings
C instead of the optimized null-text embeddings (∅t)t∈{1,...,T} in null-text inversion. As a
result, we can perform reconstruction with only forward computation without optimization,
significantly reducing computation time.
We now discuss how one can avoid optimization in our proposal, by more closely investigating
the process of null-text inversion. Let us assume, for the following argument by induction,
that at diffusion step t in null-text inversion one has z̄t that is close enough to z∗

t , so that
one can regard z̄t = z∗

t to hold. In null-text inversion, one obtains zt−1 from z̄t by moving
one diffusion step backward using (4). Recall that z∗

t was calculated from z∗
t−1 by moving

one diffusion step forward in the diffusion process using (3):

z∗
t =

√
αt

αt−1
z∗
t−1 +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
εθ(z

∗
t−1, t− 1, C).

As we have assumed z̄t = z∗
t , one can substitute the above into (4), yielding

z̄t−1 = z∗
t−1 +

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)(
ε̃θ(z̄t, t, C,∅t)− εθ(z

∗
t−1, t− 1, C)

)
. (5)

It implies that the discrepancy between z̄t−1 and z∗
t−1 in null-text inversion will be minimized

when the predicted noises are equal:

εθ(z
∗
t−1, t− 1, C) = ε̃θ(z̄t, t, C,∅t)

= wεθ(z̄t, t, C) + (1− w)εθ(z̄t, t,∅t)

If furthermore we are allowed to assume that the predicted noises at adjacent diffusion steps
are equal, i.e., εθ(z∗

t−1, t−1, C) = εθ(z
∗
t , t, C) = εθ(z̄t, t, C), then we can deduce that at the

optimum the conditional and unconditional predictions are equal:

εθ(z̄t, t, C) = εθ(z̄t, t,∅t) (6)

Therefore, the optimized ∅t can be approximated by the prompt embedding C, so that we
can discard the optimization of the null-text embedding ∅t in null-text inversion altogether,
simply by replacing the null-text embedding ∅t with C. See Appendix A for more detail
on a theoretical justification and empirical validation in practical settings. The argument
so far has the following two consequences:
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1. For reconstruction, letting ∅t = C amounts to not using CFG at all (since
ε̃θ(zt, t, C, C) = εθ(zt, t, C) holds for any w). The above argument can thus be
regarded as providing a justification to the empirically well-known observation that
DDIM works well without CFG.

2. For editing, optimizing ∅t in null-text inversion can be replaced by the simple
substitution ∅t = Csrc and C = Cedit during the sampling process, where Csrc and
Cedit denote an embedding of a source prompt and an edited prompt respectively.

Figure 2 illustrates our framework. (a) represents the image generation using CFG, while (b)
represents our proposal, negative-prompt inversion, which replaces the null-text embedding
with the input prompt embedding C. Additionally, in case of image editing like prompt-
to-prompt (P2P), we can set the embedding Cedit of edited prompt as the text condition
and set the original prompt embedding C as the negative-prompt embedding instead of the
null-text embedding, as shown in Fig. 2 (c).

4 Experiments

4.1 Setting

In this section, we evaluate the proposed method qualitatively and quantitatively. We exper-
imented it using Stable Diffusion v1.5 in Diffusers (von Platen et al., 2022) implemented
with PyTorch (Paszke et al., 2019). Our code used in the experiments is provided in SM.
Following Mokady et al. (2023), we used 100 images and captions, randomly selected from
validation data in COCO dataset (Lin et al., 2014), in our experiments. The images were
trimmed to make them square and resized to 512× 512. Unless otherwise specified, in both
DDIM inversion and sampling we set the number of the sampling steps to be 50 via using
the stride of 20 over the T = 1000 diffusion steps.
We compared our method with DDIM inversion followed by DDIM sampling with CFG
and null-text inversion, and evaluated its reconstruction quality by peak signal-to-noise
ratio (PSNR) and learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018),
whereas its editing quality by CLIP score (Radford et al., 2021). See Appendix B for our
setting of null-text inversion. The inference speed was measured on one NVIDIA RTX
A6000 connected to one AMD EPYC 7343 (16 cores, 3.2 GHz clockspeed).

4.2 Reconstruction

The left three columns of Table 1 shows PSNR, LPIPS, and inference time of reconstruction
by the three methods compared. In terms of PSNR (higher is better) and LPIPS (lower
is better), the reconstruction quality of the proposed method was slightly worse than that
of null-text inversion but far better than that of DDIM inversion. On the other hand, the
inference speed was 30 times as fast as null-text inversion. This remarkable acceleration
is achieved since the iterative optimization and backpropagation processing required for
null-text inversion are not necessary for our method.
In Figure 3, the left four columns display examples of reconstruction by the three methods.
DDIM inversion reconstructed images with noticeable differences from the input images,
such as object position and shape. In contrast, null-text inversion and negative-prompt
inversion (Ours) were capable of reconstructing images that are nearly identical to the
input images, and the proposed method achieved a high reconstruction quality comparable
to that of null-text inversion. See Appendix C.1 for additional reconstruction examples.
These results suggest that the proposed method can achieve reconstruction quality nearly
equivalent to null-text inversion, with a speedup of over 30 times. Additionally, we also
measured the memory usage of the three methods, and found that our method and DDIM
inversion used half as much memory as null-text inversion.
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Table 1: Evaluation of reconstruction/editing quality and speed in each method.
± represents 95% confidence intervals. Note that as DDIM inversion and ours perform the
same process, they are theoretically at the same speed.

Method PSNR↑ LPIPS↓ Speed (s) CLIP↑
Imagic 17.17 ± 0.66 0.356 ± 0.025 552.86 ± 0.16 22.99 ± 0.77
DDIM inversion 14.05 ± 0.34 0.528 ± 0.022 4.61 ± 0.03 25.10 ± 0.74
Null-text inversion 26.11 ± 0.81 0.075 ± 0.007 129.77 ± 2.97 24.07 ± 0.72
Ours 23.38 ± 0.66 0.160 ± 0.016 4.63 ± 0.02 23.77 ± 0.74

Prompt: "There is traffic passing by a large building"

Input DDIM Inv Null-text Inv Ours

building mountain

Ours + Editing

Prompt: "A yellow bird stands perched on a tree branch." yellow blue

Prompt: "A bicyclist waiting in the roadway until two horses pass." ~ in the snow

Figure 3: Evaluation of reconstructed images. The left 4 columns show the reconstruc-
tion results of each method, and the right column shows the image editing results using our
method and prompt-to-prompt. The editing prompts are described below the edited im-
ages, that were created by replacing words or adding new words to the original prompt.
Our method reconstructs input images as well as null-text inversion and edited images also
preserve the structure of the input images.

4.3 Editing

We next demonstrate the feasibility of editing real images by combining our inversion method
with existing image editing methods. Our method is independent of the image editing
approach and is principally compatible with any method that uses CFG, allowing for the
selection of an appropriate image editing method depending on the objective. Here, we
verify the effectiveness of our method for real-image editing using prompt-to-prompt (Hertz
et al., 2023) in the same manner as in Mokady et al. (2023).
The rightmost column of Table 1 shows CLIP scores of editing results by prompt-to-prompt
with the three methods compared. Taking account of the standard errors, one can see
that the proposed method and null-text inversion achieved almost the same CLIP scores.
Although the score of DDIM inversion was the best, by considering the scores in conjunction
with reconstruction quality, the editing quality of the proposed method was comparable to
null-text inversion. In addition, we also compared our method with Imagic (Kawar et al.,
2023) as another editing method, the editing quality of the proposed method was also
better than that of Imagic. For qualitative evaluation, the rightmost column of Fig. 3 shows
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Figure 4: Reconstruction quality and speed versus the number of sampling steps.
Higher PSNR is better (left), lower LPIPS is better (middle), and shorter execution time is
better (right). Shadings indicate 95% confidence intervals.

Number of sampling steps

Prompt: "A little girl sitting on a bed inside a room."

Input 20 50 100 200

Prompt: "a number of people walking on a side walk near a building"

Figure 5: Reconstructed images when changing the number of sampling steps.
The images become more similar to the input images as the number of sampling steps
increases.

examples of real-image editing via prompt-to-prompt using the proposed method. The
proposed method managed to maintain the composition while editing the image according to
the modified prompt, such as replacing the objects and changing the background. Additional
editing examples are provided in Appendices C.2 and C.3. These observations show that our
inversion method can be combined with editing methods like prompt-to-prompt to enable
rapid real-image editing.

4.4 Number of sampling steps

As the proposed method allows fast reconstruction/editing, one may be able to use a larger
number of sampling steps to further improve reconstruction quality, at the expense of re-
duced speed. To investigate the relationship between the number of sampling steps and
reconstruction quality, we measured the PSNR and LPIPS using five different sampling
steps: 20, 50, 100, 200, and 500.
Figure 4 shows PSNR, LPIPS, and speed versus the number of sampling steps by the three
methods. Although results with high enough quality were obtained with 50 sampling steps,
increasing the number of sampling steps further improved the reconstruction quality of the
proposed method, approaching that by null-text inversion. It should be noted that the total
execution time is roughly given by the product of the execution time per sampling step and
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the number of sampling steps so that even if the proposed inversion method is performed
with 500 sampling steps, it would still take less time than executing null-text inversion with
50 sampling steps thanks to the 30× speedup. In fact, Figure 4 right shows the time taken
for inversion; with 500 sampling steps, it took 46 seconds, which is approximately three
times faster than the null-text inversion with 50 sampling steps, which took 130 seconds.
We would like to note that in Fig. 4 right the execution time of null-text inversion was
not proportional to the number of sampling steps, since in our experimental setting the
early stopping employed in the null-text optimization was more effective as the number of
sampling steps became larger.
Figure 5 describes how the reconstructed image changed as the number of sampling steps
was increased. Even with a small number of sampling steps, such as 20, the input image’s
objects and composition were successfully reconstructed. Focusing on the finer details, for
example, the head of the bed and the desk in the first row, and the wall color and pipes
on the wall in the second row, we observe that the reconstruction quality improved as the
number of sampling steps was increased. This improvement is generally imperceptible at
first glance, suggesting that conventionally adopted numbers of sampling steps, such as
20 and 50 sampling steps, yield sufficiently satisfactory reconstruction results for practical
purposes.

5 Limitations

A limitation of the proposed method is that the average reconstruction quality does not
reach that of null-text inversion. As demonstrated in the previous section, the difference is
generally imperceptible at first glance; however, there were instances where our inversion
method failed significantly. For example, we observed that the proposed method tended
to fail in reconstructing persons. Such failures could be attributed to characteristics of
Stable Diffusion’s AutoEncoder, which struggles to reconstruct human faces. In such cases,
employing a more effective encoder-decoder pair may result in improvements. Moreover,
some failure cases were improved by increasing the number of sampling steps. Failure
images are presented in Appendix C.4.
Although failures in post-reconstruction image editing may occur, our inversion method is
independent of editing methods, making the related discussion beyond the scope of this
paper.

6 Conclusions

We have proposed negative-prompt inversion, which enables real-image inversion in diffusion
models without the need for optimization. Experimentally, it produced visually high-quality
reconstruction results comparable to inversion methods requiring optimization, while achiev-
ing a remarkable speed-up of over 30 times. Furthermore, we discovered that increasing the
number of sampling steps further improved the reconstruction quality while maintaining
faster computational time than existing methods.
On the basis of these results, our method provides a practical approach for real-image re-
construction. This utility excels in high-computational-cost scenarios, such as video editing,
where our method proves to be even more beneficial. Moreover, by parallelizing multiple
GPUs and optimizing the program, there is potential for our method to achieve higher
throughput and lower latency, where even the real-time processing would be possible. Al-
though the proposed approach reduces computational costs and is available to any user, it
does not encourage socially inappropriate use.

7 Reproducibility Statement

We provide the details of our method and experimental settings in the appendices to help
with reproducibility. In Appendix A, we provide the theoretical details of the derivation of
our method with empirical validation of the derivation. Appendix B provides the imple-
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mentation details of null-text inversion used in our experiments. Additionally, our code is
also made available in Supplemental Materials.
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A Justifying arguments

A.1 Theoretical consideration

In this appendix, we firstly provide a continuous-time description of DDPM and DDIM
processes. We start with the stochastic differential equation describing continuous-time
random diffusion of particles in a D-dimensional space:

dz = −γtz +
√
2γtdW , (7)

where W is the D-dimensional Wiener process and where γt > 0 is a deterministic and
integrable function of t. If one lets γt to be independent of t, then (7) describes what is
called the Ornstein-Urlenbech (OU) process, so that (7) can be regarded as a generalized
version of the OU process. The distribution pt(z) of the random particles following the
diffusion process (7) at time t is known to follow the Fokker-Planck equation

∂pt
∂t

= γt{∇(zpt) + ∆pt} (8)

The solution of (8) given the initial condition p0(z) = δ(z|t=0 − z0), i.e., all the random
particles are located at the position z0 at time 0, or equivalently, one starts the diffusion
process with a sample located at z0, is evaluated as

pt(z | z|t=0 = z0) = N (
√
αtz0, (1− αt)I) , (9)

where
αt := exp

(
−
∫ t

0

γs ds

)
. (10)

We also write it as
zt|z0 ∼ N (

√
αtz0, (1− αt)I) . (11)

Furthermore, for s ≤ t, the conditional distribution of the particles at time t conditional on
the particle located at zs at time s is given by

zt|zs
∼ N

(√
αt

αs
zs,

(
1− αt

αs

)
I

)
. (12)

Comparing these formulas with those in Ho et al. (2020, Section 2) reveals that discretizing
the above process in time will give us the formulation of DDPM.
Assuming that the Fokker-Planck equation (8) is given, the corresponding random process
is not unique, and there are several other random processes which are consistent with (8)
than the above generalized OU process (7). For example, we may take a specific time instant
t = T > 0 and require the particle position zT at time T given the initial position z0 at
time t = 0 to follow the Gaussian distribution

zT |z0 ∼ N (
√
αTz0, (1− αT )I) , (13)

and then determine the particle position zt at any time t ≥ 0 as

zt =

√
1− αt

1− αT
zT +

(
√
αt −

√
αT

1− αT

√
1− αt

)
z0. (14)

One can then confirm that the conditional distribution of the particle position zt at time
t conditional on z0 is given by N

(√
αtz0, (1− αt)I

)
, which demonstrates that the distri-

bution of the particles following the above process also satisfies the same Fokker-Planck
equation (8). One can furthermore show that discretizing the above process in time will
give us the formulation of DDIM (Song et al., 2021a).
When considering zt given z0 and zT , let dt := (zt −

√
αtz0)/

√
1− αt be the normalized

noise component in zt relative to √
αtz0. One can show, by rearranging terms in (14),

that dt = dT holds for any t. Letting d := dt due to the independence of dt on t, one
can furthermore show, via (13), that d given z0 follows the standard Gaussian distribution
N (0, I). In other words, given z0 and zT , the normalized noise component dt in DDIM
does not depend on t. Therefore, the diffusion paths in DDIM are straight half-lines {zt =
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√
αtz0+

√
1− αtd : t ≥ 0,d ∼ N (0, I)} starting from z0 with random velocity d ∼ N (0, I).

Assuming that zt is available, the model εθ(zt, t) attempts to estimate the velocity dt from
zt, which in turn yields an estimate f

(t)
θ (zt) := (zt −

√
1− αtεθ(zt, t))/

√
αt of z0, and then

one can use it to estimate zs for any s by plugging it into the equality dt = ds. Specifically,
zs is estimated via

zs =
√
αsz0 +

√
1− αs

zt −
√
αtz0√

1− αt

≈
√
αs

(
zt −

√
1− αtεθ(zt, t)√

αt

)
+
√
1− αsεθ(zt, t)

=

√
αs

αt
zt +

√
αs

(√
1− αs

αs
−
√

1− αt

αt

)
εθ(zt, t). (15)

When one takes s = t± 1, the above formula is reduced to

zt±1 ≈
√

αt±1

αt
zt +

√
αt±1

(√
1

αt±1
− 1−

√
1

αt
− 1

)
εθ(zt, t), (16)

which corresponds to (3) and (13) in the main text.
The argument presented so far is based on conditioning on sample z0, which is not justifiable
in the actual process of DDIM sampling where there exists more than one sample and where
the model does not look at z0. We thus extend the above argument via assuming z0 to be
generated according to a certain probability distribution p(z0). More concretely, we assume
z0 ∼ p(z0) and d ∼ N (0, I), which induces the diffusion path zt =

√
αtz0 +

√
1− αtd,

t ≥ 0, in DDIM according to the above discussion. Consequently, at position z and at time
t, the “velocity field” ε(z, t) to be learned by the model εθ(z, t) is not determined by a
single sample z0 but given by the posterior mean of d = (z−√

αtz0)/
√
1− αt with respect

to the posterior distribution of z0 given z, which is obtained from the prior distributions
z0 ∼ p(z0) and d ∼ N (0, I), as well as the likelihood p(z | z0,d) = δ(z−√

αtz0−
√
1− αtd).

Proposition 1. Assume z0 ∼ p(z0) and d ∼ N (0, I). Then the velocity field ε(z, t) in
DDIM at position z and at time t, which is to be learned by the model εθ(z, t), is given by

ε(z, t) =

〈
z−√

αtz0√
1−αt

pG

(
z−√

αtz0√
1−αt

)〉
z0〈

pG

(
z−√

αtz0√
1−αt

)〉
z0

, (17)

where
pG(d) =

1

(2π)D/2
e−‖d‖2

2/2 (18)

denotes the probability density function of the D-dimensional standard Gaussian distribution,
and where 〈·〉z0

denotes expectation with respect to z0 ∼ p(z0).

Proof. The joint distribution of z0 and z is given by

p(z0, z) =

∫
p(z | z0,d)p(z0)pG(d) dd

=

∫
δ(z −

√
αtz0 −

√
1− αtd)p(z0)pG(d) dd

= pG

(
z −√

αtz0√
1− αt

)
p(z0), (19)

from which the posterior distribution of z0 given z is obtained as

p(z0 | z) =
pG

(
z−√

αtz0√
1−αt

)
p(z0)〈

pG

(
z−√

αtz0√
1−αt

)〉
z0

(20)

The velocity ε(z, t) at z and t, to be learned by the model, is given by the posterior mean
of d = (z −√

αtz0)/
√
1− αt, which is represented as (17), proving the proposition.
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Despite its complex appearance, one can see that the velocity field ε(z, t) in (17) is contin-
uous in z and t > 0. This continuity implies that, for t, s > 0, when |αt − αs| and ‖z − z′‖
are small, one can expect ε(z, t) ≈ ε(z′, s) to hold.
In what follows, we provide a justifying argument for the proposed method, via extending
the argument so far by incorporating conditioning into the model. It is straightforward
to incorporate conditioning in the DDIM inversion formula (3) and the DDIM sampling
formula (13), by replacing the model εθ(zt, t) without conditioning with the conditional
model εθ(zt, t, C), where C is the prompt embedding. In various applications, on the other
hand, the reverse process using the DDIM sampling formula (3) is often combined with
CFG to strengthen the effects of the conditioning, where the conditional model εθ(zt, t, C)
is further replaced with

ε̃θ(zt, t, C,∅) = εθ(zt, t,∅) + w (εθ(zt, t, C)− εθ(zt, t,∅)) , (21)

where w ≥ 0 is the guidance scale, which controls the strength of the conditioning, and
where ∅ is the null-text embedding.
The first step of null-text inversion is to obtain z∗

t for t = 1, . . . , T by initializing z∗
0 = z0

and successively applying the forward process derived as the DDIM inversion formula:

z∗
t =

√
αt

αt−1
z∗
t−1 +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
εθ(z

∗
t−1, t− 1, C), (22)

where the model εθ(zt−1, t − 1) in (3) without conditioning has been replaced with the
conditional model εθ(z∗

t−1, t− 1, C).
Next, starting from z̄T = z∗

T , we calculate the reverse diffusion process to obtain z̄t in the
backward direction, while optimizing the null-text embedding ∅t at each diffusion step so
that z̄t well reproduces z∗

t . More specifically, for t = T, T − 1, . . . , 1, z̄t−1 is calculated via
combining the DDIM sampling (16) and CFG (21) as

z̄t−1 =

√
αt−1

αt
z̄t +

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
ε̃θ(z̄t, t, C,∅t). (23)

The null-text embedding ∅t is optimized to minimize the MSE between z∗
t−1 and z̄t−1 as

min
∅t

‖z∗
t−1 − z̄t−1‖22, (24)

where z̄t−1 is dependent on ∅t via (23). The following proposition shows that the choice
∅t = C does minimize the MSE between z∗

t−1 and z̄t−1 under an ideal situation.
Proposition 2. Assume that there is only one sample, and that the guidance scale w in
CFG is not equal to 1. For any t, if the model ε(z, t, C) is able to correctly predict the
velocity field and if z∗

t = z̄t holds true, then the difference between z∗
t−1 and z̄t−1 in null-text

inversion is made equal to zero if and only if εθ(z̄t, t,∅t) is equal to εθ(z̄t, t, C).

Proof. The difference between z∗
t−1 and z̄t−1 is expressed as

z∗
t−1 − z̄t−1 = z∗

t−1 −
√

αt−1

αt
z̄t −

√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
ε̃θ(z̄t, t, C,∅t)

= z∗
t−1 −

√
αt−1

αt
z∗
t −√

αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)
ε̃θ(z̄t, t, C,∅t)

=
√
αt−1

(√
1

αt−1
− 1−

√
1

αt
− 1

)(
εθ(z

∗
t−1, t− 1, C)− ε̃θ(z̄t, t, C,∅t)

)
.

(25)

In the second line of the above equation we used the assumption z∗
t = z̄t, and in the third

line we substituted (22) into z∗
t above.
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Figure 6: Similarity between the optimized null-text and the input prompt. (Left)
The mean L1 distance between predicted noises using the optimized null-text embedding and
the input prompt. (Right) The mean similarity between the optimized null-text embedding
and the input prompt. The solid line shows the similarity between the optimized null-text
and the input prompt. The dashed line shows the similarity between the optimized null-text
and the other prompts. The dotted line shows the similarity between the input prompt and
the other prompts. Initial represents the starting point of optimization, and optimization is
performed in the order indicated by the direction of the arrow in 50 sampling steps. Shaded
regions indicate 95% confidence intervals.

As described above, the model εθ(zt, t, C) attempts to estimate noise dt from zt, and the
assumption that the model correctly predicts the noise, together with the discussion at the
beginning of this section, implies that εθ(z

∗
t , t, C) = εθ(z

∗
t−1, t − 1, C) should hold. One

therefore has
εθ(z

∗
t−1, t− 1, C)− ε̃θ(z̄t, t, C,∅t) = εθ(z

∗
t , t, C)− ε̃θ(z̄t, t, C,∅t)

= εθ(z̄t, t, C)− ε̃θ(z̄t, t, C,∅t)

= (1− w) (εθ(z̄t, t, C)− εθ(z̄t, t,∅t)) . (26)
As we have assumed w 6= 1, z∗

t−1 − z̄t−1 is proportional to εθ(z̄t, t, C)− εθ(z̄t, t,∅t), and it
is made equal to zero if and only if εθ(z̄t, t, C) and εθ(z̄t, t,∅t) are equal.

Since we initialize z̄T = z∗
T at diffusion step T , recursive application of Proposition 2 shows,

under the ideal situation that the model has learned perfectly, that one will have z̄t = z∗
t for

all t via letting ∅t = C. In other words, one can regard that null-text inversion optimizes
the unconditional prediction to approach the conditional prediction at each diffusion step.
Under practical situations, one can no longer expect the equality εθ(z

∗
t , t, C) = εθ(z

∗
t−1, t−

1, C) to hold. One can still expect, however, that the above equality approximately holds:
One typically takes small timesteps so that αt−1 ≈ αt and z∗

t−1 ≈ z∗
t , so that the argument

given after Proposition 1 assures that the above equality holds approximately.

A.2 Empirical evaluations

The assumption of perfect learning of the model adopted in Proposition 2 in the previous
section is certainly too strong to be applied to practical situations. We have already dis-
cussed the issue of conditioning on z0 in the previous section. Another reason is that it is
almost always the case that the model learns only approximately. Accordingly, what one
can expect in practice would be that z̄t = z∗

t holds only approximately, which would then
make the validity of the optimality of ∅t = C in null-text inversion rather questionable. In
this section, we investigate empirically how good the prompt-text embedding C is compared
with the optimized null-text embedding ∅t, in terms of the noise prediction by the model,
as well as their representation in the embedding space. In the experiments in this section,
we used the same 100 image-prompt pairs from the COCO dataset as those used in the
experiments in the main text.
We first investigated how close the noise prediction εθ(zt, t,∅t) using the optimized null-
text embedding ∅t and the prediction εθ(zt, t, C) using the prompt embedding C are. More
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specifically, we performed null-text inversion, starting from z∗
T obtained via DDIM inversion

using the embedding C, and with the resulting sequences (z̄t)t∈{1,...,T} and (∅t)t∈{1,...,T}
we evaluated the L1 distance between εθ(z̄t, t,∅t) and εθ(z̄t, t, C). For comparison, we
also calculated the L1 distance between εθ(z̄t, t,∅t) and the noise prediction εθ(z̄t, t, C

′)
obtained using the embeddings C ′ of the prompts associated with images other than the
target image, as well as the L1 distance between εθ(z̄t, t, C) and εθ(z̄t, t, C

′). Figure 6
left shows the mean L1 distance of the predicted noises. The predicted noises using the
optimized embeddings (∅t)t∈{1,...,T} were closer to those using C than those using C ′, with
a smaller distance than the distance between the predicted noise using C and that using C ′.
One observes that the distance between the noise predictions using ∅t and C became larger
as t became smaller, which would be ascribed to the accumulation of optimization errors.
One can also notice that the distance between the noise predictions using (∅t)t∈{1,...,T}
and C were larger than that between those using C and C ′ near t = 0. Noise predictions
near t = 0, however, would have almost no impact on generated samples since they are
added at very small scales. The results suggest that the predicted noise εθ(z̄t, t,∅t) using
the optimized embedding ∅t in null-text inversion can be well approximated by the noise
prediction εθ(z̄t, t, C) using the embedding C of the input prompt in (6).
We next calculated the cosine similarity in the 768-dimensional embedding space between
the embeddings C for 100 prompts and optimized embeddings (∅t)t∈{1,...,T} for each image.
For each embedding sequence we took its average along the length of the sequence, and we
centered the resulting average 768-dimensional prompt embeddings by subtracting the mean
of 25,014 prompt embeddings, which are all the prompts included in the COCO validation
dataset, and took a mean of embeddings over all tokens included in each prompt as the
prompt embedding. Figure 6 right shows the mean cosine similarity. As t became smaller,
the similarity between the optimized null-text embedding (∅t) and the embedding C of
the given prompt became positive, whereas the similarity between (∅t) and embeddings C ′

of the prompts for images other than the target image, as well as that between C and C ′,
remained around zero. (We postulate that the small negative values of the similarity between
C and C ′ throughout the entire range of t are due to the bias induced from the centering.)
This suggests that, although the implicit “meaning” represented by the optimized null-text
embedding was almost orthogonal to the “meanings” of those of randomly-chosen prompts,
it was closer to the “meaning” represented by the input prompt embedding C in the region
distant from t = T , as can be observed by the larger values of similarity between the
optimized null-text embedding and the embedding of the input prompt (Optimized vs Input
prompt). In the region distant from t = T , except the region near t = 0, the model is thought
to generate detailed information about the image, which should be crucial in obtaining a
high-quality reconstruction, so that the higher values of similarity in this region would
suggest that embeddings that would be good in the sense of yielding a good reconstruction
are closer to the embedding C of the target prompt. In the large-t region, on the other hand,
the optimized null-text embedding (∅t) had small similarity with the embedding C of the
given prompt, which can be ascribed to the fact that the null-text optimization is initialized
with the same null-text embedding ∅, and is performed from t = T down to t = 1. Note
that, in the large-t region, the similarity values were around zero because early stopping in
optimizing ∅t was effective and optimization barely progressed.
From these results, we can say that the optimized embedding ∅t becomes semantically
similar to the input prompt embedding C as the optimization progresses. Therefore, it has
been confirmed that our inversion method approximates null-text inversion.

B Implementation details

In our experiments, for the null-text inversion, we used the same settings at 50 sampling
steps as those in the implementation available on the GitHub page of Mokady et al. (2023).
Optimization was performed with the Adam optimizer, and the learning rate was set to
reach 5 × 10−3 at the last sampling step, changing linearly by the factor of 10−4 with the
number of sampling steps. We further employed early stopping, and the threshold for early
stopping was increased linearly in the number of sampling steps from 10−5 by the factor of
2×10−5. We observed that when scheduling the learning rate and threshold with a function
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Figure 7: Comparison of LPIPS when calculation time is limited to less than 30 seconds.

of diffusion steps, the reconstruction quality was getting worse. See our code included in
SM for details for more detailed implementation settings of our experiments.

C Additional experimental results

C.1 Comparison of reconstructed images

Figure 7 shows a comparison of LPIPS between null-text inversion and our method when
the computation time is limited to less than 30 seconds. The number of sampling steps in
null-text inversion is 2, 5, and 10. LPIPS of null-text inversion below 10 sampling steps
is degraded, and our method outperforms it. To consider realistic processing times, the
reconstruction quality of our method is better than that of null-text inversion.
Figure 8 shows additional images reconstructed by the three methods compared. All the
results show that DDIM inversion produced reconstructions that were not similar to the
input images, while null-text inversion almost perfectly reconstructed the input images, and
that our method also yielded results which were close to the reconstructions by null-text
inversion.

C.2 Comparison of edited images using prompt-of-prompt

Figure 9 shows additional images edited by prompt-to-prompt. As can be seen, DDIM
inversion failed to perform editing while maintaining the details of the original images. On
the other hand, null-text inversion and the proposed method are both capable of editing
while maintaining details of the original images, including object replacement and style
changes.

C.3 Comparison of edited images using other editing methods

We demonstrate the advantage of the proposed method that it can be combined with vari-
ous editing methods. For this purpose, we performed editing experiments by combining the
proposal with other editing methods, SDEdit (Meng et al., 2022) and Plug-and-Play (Tu-
manyan et al., 2023). In SDEdit, a certain ratio t0 is used as a hyperparameter to add noise
to the sample z0, and the latent variable zt at the diffusion step t = t0 · T is obtained,
which is then reconstructed by tracing the inverse diffusion process. For image editing, z0 is
obtained from the original image and an edited prompt is used during the inverse diffusion
process calculation. We set the noisy sample zt calculated by DDIM inversion for null-text
inversion and our negative-prompt inversion since they assume starting the sampling from
zT calculated by DDIM inversion. In Plug-and-Play, the null-text is used as a prompt for
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Prompt: "there is a woman about to ski down a hill"

Input DDIM Inv Null-text Inv Ours

Prompt: "a few people running around some kind of animal"

Prompt: "A brightly colored flower vase sits in front of a wall map."

Prompt: "A black and brown doberman carries a frisbee."

Prompt: "A cat sits on top of a toilet bowl."

Figure 8: Additional results of reconstructed images by the three methods.
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Prompt: "A yellow bird stands perched on a tree branch."

A watercolor painting of ~

Input DDIM Inv Null-text Inv Ours

Prompt: "a few people running around some kind of animal"

animal statue

running sitting

Prompt: "A black and brown doberman carries a frisbee."

~ in the snow

doberman bear

Figure 9: Additional results of edited images by prompt-to-prompt combined with the three
methods.
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DDIM inversion. To combine the proposed method with it, we employ a prompt for the
original image instead of the null-text for DDIM inversion.
Figure 10 shows images edited by SDEdit. As can be observed, SDEdit could not reconstruct
the input images, while negative-prompt inversion and the proposed method were able to
reconstruct details of the input images and appropriately edit them as specified by the
prompts. Next, Figure 11 shows images edited by Plug-and-Play. Although the results of
the proposed method are not generally better, the first, second, and fourth rows show better
reconstruction quality and editing results in combination with the proposed method than
the original method.

C.4 Failure cases

Figure 12 shows failure cases of our method. In all the cases shown, our method failed
to reconstruct the images in 50 sampling steps, whereas null-text inversion successfully
reconstructed them. The first two rows show failures due to the disappearance of people,
where the objects were either reconstructed as non-human or as different persons. The
third and fourth rows show failures due to the color gradient being reconstructed as separate
objects, such as a single duck being reconstructed as scattered pieces, and a tree trunk being
reconstructed as a different object. The last row shows a failure due to the disappearance of a
tiny object, where one of the ski poles was missing. In the duck example, the reconstruction
quality improved by increasing the number of sampling steps.
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Edited Prompt: "A blue bird stands perched on atree branch."

t0 = 0.5

Input SDEdit + Null-text Inv + Ours

t0 = 0.6

t0 = 0.7

Edited Prompt: " A black and brown doberman carries a frisbee in the snow."

t0 = 0.5

t0 = 0.6

t0 = 0.7

Figure 10: Additional results of edited images by SDEdit combined with null-text inversion
or the proposed method.
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Prompt: "A yellow bird stands perched on a tree branch."

A watercolor painting of ~

Input Plug-and-Play + Ours

Prompt: "a few people running around some kind of animal"

animal statue

running sitting
Prompt: "A black and brown doberman carries a frisbee."

~ in the snow

doberman bear

Figure 11: Additional results of edited images by Plug-and-Play combined with the proposed
method.

23



Under review as a conference paper at ICLR 2024

Prompt: "A baby who is being held by a man."

Input Null-text Inv
Ours

(50 steps)
Ours

(200 steps)

Prompt: "an image of a woman about to eat a slice of cake"

Prompt: "The young ducks are following their mother down the sunny sidewalk.."

Prompt: "The four giraffes are standing next to a tree."

Prompt: "a person riding skis on a snowy slope"

Figure 12: Additional failure cases of our method.
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