
Three-modal guidance for symbolic music generation:
melody, structure, texture

Daniel Alexander Lucht
Bielefeld University

daniel.lucht@uni-bielefeld.de

David Leins
Bielefeld University
dleins@techfak.de

Dimitri von Rütte
ETH Zürich

dvruette@ethz.ch

Alexandra Moringen
University of Greifswald

alexandra.moringen@uni-greifswald.de

Abstract

The vision of this work is a flexible co-creation of music between a human and a
trained model that can be used with or without domain knowledge. Building upon
previous work, the transformer-based FIGARO framework, we propose a sym-
bolic music generation that takes up three separate guiding modalities: a melody,
structural piece description termed expert description, and music texture. Our ap-
proach aims to enable a composer to try out combinations of different melodies,
expert descriptions, and textures.
FIGARO is capable of generating music based on a structural expert description
generated with domain knowledge, and a learned representation of a music piece.
The description part of the input is generated for each bar and provides a multitude
of features, such as mean pitch, chords, note density, etc. The learned represen-
tation is generated for each bar as a whole. The main contribution of this work
is a more extensive modularisation of the input to the model, i.e. the concept
of explicit separation of the input into three above-mentioned distinct modalities
commonly used in music composition, and symbolic description of the musical
works: melody, domain knowledge-driven description of the piece, and texture
guiding the feel of the music. We demonstrate our preliminary results with a
novel model-based implementation of a piece, provided a melody, a bar-wise de-
scription, and a multi-track accompaniment.

1 Introduction

The vision of this work is a flexible co-creation of music between a human and a trained model that
can be performed with different input levels of domain knowledge, modularized and multifaceted
guidance. FIGARO [1], the foundation framework for this work, is a transformer-based symbolic
music generator that enables fine-grained control of the output. The main feature of the model is its
bar-wise and multifaceted control of the output. Previously developed advanced models for music
generation often offer global control that conditions the overall output, e.g. style of the generated
piece or text prompting (see also [2]). FIGARO implements fine-grained control by adding an extra
representation for the bar-wise structure (expert description) to a traditional input embedding of
the music piece into the generators’ input. FIGARO can be used without domain knowledge, as the
expert description can be generated from an input in MIDI format. Its other strengths are multi-track
support and multi-signature capabilities.

In order to generate a music sequence, FIGARO performs two main steps: embedding of the in-
put data, and the music token generation with the transformer. In the embedding step, FIGARO

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



performs a mapping of the input into a latent space using a trained VQ-VAE model [6] resulting
in a high-fidelity representation of the input. Complementary to this, it embeds a bar-wise expert
description of the piece derived with domain knowledge, to gain the second low-fidelity part of the
embedding vector. Such descriptions consist of specifications of e.g. time signature, chords, and
instruments. Its embedding is trained with reconstruction loss for the original sequence of notes.
The main contribution of this work is a more extensive modularisation of the input to the model, i.e.
the concept of explicit separation of the input into three above-mentioned distinct modalities com-
monly used in music composition, and symbolic description of the musical works: melody, domain
knowledge-driven expert description of the piece, and texture guiding the feel of the music. We
demonstrate our preliminary results with a novel model-based implementation of a piece, provided
a melody, a bar-wise description, and a multi-track accompaniment.

2 Methods

The input to the model is three-fold, the melody, the expert description (generated or hand-crafted),
and the accompaniment. An important step that precedes the training of the model is the separation
of the melody and the accompaniment for a given piece of music. In the further steps, integration of
the input, and generation of a new sequence, the main components of the method are: tokenization of
the input MIDI melody and accompaniment, learning to represent the token sequences through ap-
propriate embeddings, generation, and embedding for the expert description, and finally, the training
of the generative model itself.

2.1 Tokenization: MIDI to REMI+

MIDI (Musical Instrument Digital Interface) is the input format of our data. MIDI files consist of a
sequence of messages, with the most crucial ones being Note-On and Note-Off events, along with
note numbers, velocity, and program change events. Note-On and Note-Off events mark the exact
moments when a note begins and ends, respectively. Pitch is represented by note numbers ranging
from 0 to 127, with 60 corresponding to Middle C. Velocity indicates the intensity at which a note
is played, such as the force used to press a piano key or blow a trumpet. This value also ranges from
0 to 127. Instruments are selected with Program Change events, where the program number is an
integer between 0 and 127. A key feature of the MIDI format is its ability to encode messages across
16 independent channels, which is particularly useful for representing polyphonic music. To convert
MIDI in a format that is more suitable for processing with language models, MIDI is tokenized into
REMI+ format [1]. It is capable of representing multi-instrument and multi-signature pieces as a
sequence of tokens. REMI+ encodes notes as a tuple of their position, pitch, velocity, and duration.
Figure 2 shows an exemplary REMI+ sequence.

2.2 Input Melody and Accompaniment

In order to separate input MIDI files into melody and accompaniment we use MELODIA [3]. The
MELODIA algorithm is based on the creation and characterization of pitch contours, time contin-
uous sequences of pitch candidates grouped using auditory streaming cues [4]. After extracting
the pitch values with the MELODIA algorithm we use pitch contour segmentation [7] to retrieve
each MIDI note’s onset time, duration, and pitch value. The most important information that is lost
throughout this process however is each note’s instrument. To recover the complete note information
for the melody notes, we compare them with the original MIDI data. We use a threshold for start,
end, and pitch because the MELODIA algorithm and pitch contour segmentation produce approx-
imations rather than exact matches. A melody note can be played by multiple instruments at the
same time thus the comparison is done for each of the original’s instruments to preserve the poly-
phonic character of the melody. The notes that are not part of the melody get selected to form the
accompaniment. Figure 1 demonstrates an example of the separation of the input into the melody
and accompaniment. Each box resembles a MIDI note with the box’s width equalling the note’s
length and the number denoting the pitch. The colors indicate where each input note is placed in the
resulting melody and accompaniment. For this simple demonstration, we assume a pitch threshold
of 4 and no time threshold meaning that the notes’ start and end times have to match exactly the
pitches are allowed to have a deviation of 4. The second bar displays the information we retrieve
from the MELODIA algorithm and pitch contour segmentation which are pitch values and times,

2



Figure 1: An example for the computation of melody and accompaniment from multi-track MIDI
input with MELODIA.

however no instrument data. For the training we use existing combinations of melody and accom-
paniment, however, during generation, we are interested in using new combinations of both input
modalities.

2.3 Representation for Melody, Expert Description and Accompaniment

In this section, we describe how we convert the three input modalities into a format that can be
processed by the transformer.

Melody and Expert description Building upon the previous work [1], we use expert descriptions
to define the structure of the piece. An expert description can be either generated from a MIDI file
or written by hand. It describes the structure of a song bar-wise1. The low-fidelity features that the
expert description captures are time signature, note density, instruments, chords, and mean values
for pitch, velocity, and duration of the notes.

The expert description is designed as a front-end interaction channel between the artist and the
model. In this work, we extend the expert description used in [1] by adding the tokens correspond-
ing to the melody to it (see Figure 3). The resulting expert description does not only contain the
structural piece information but also the melodic component. The melody is only present in this
input and is excluded from all other inputs. Note that capturing every combination of a note’s values
(s. section 2.1) would significantly increase the vocabulary size as valid values for pitch and veloc-
ity reach from 0 to 127 according to the MIDI format specification and the duration has no clear
boundary. Therefore we decided to follow the present approach used to represent MIDI notes in the

1see an example of an expert description under this link
https://colab.research.google.com/drive/1UAKFkbPQTfkYMq1GxXfGZOJXOXU_svo6#scrollTo=
lYwuwTlezIDc

3

https://colab.research.google.com/drive/1UAKFkbPQTfkYMq1GxXfGZOJXOXU_svo6##scrollTo=lYwuwTlezIDc
https://colab.research.google.com/drive/1UAKFkbPQTfkYMq1GxXfGZOJXOXU_svo6##scrollTo=lYwuwTlezIDc


REMI+ Tokens

<bos>
Bar 1 TimeSignature 3 /4
Pos 0 Tempo 120
Pos 0 Chord C : min
Pos 0 Instrument Drums Pitch 36 Vel 90 Dur 0
Pos 0 Instrument Piano Pitch 64 Vel 85 Dur 4
Pos 4 Instrument Piano Pitch 66 Vel 85 Dur 4
Bar 2 TimeSignature 3 /4
Pos 0 Tempo 120
. . .
<eos>

Figure 2: An example of a music piece in REMI+ format (example taken from [1]).

Expert description with notes as single tokens

<Bar_1> <Time Signature_4/4> <Note Density_1> <Mean Pitch_15>
<Mean Velocity_19> <Mean Duration_32>
<Instrument_Acoustic Grand Piano> <Chord_C:maj> <Chord_G:maj>
<Melody Instrument_Acoustic Grand Piano> <Melody Instrument_Clarinet>
<Melody Note_53;56;384> <Melody Note_55;56;168>
<Melody Note_54;56;192> <Melody Note_53;48;408>

Figure 3: An example of an extended expert description for one bar where the numbers at each
melody note token correspond to pitch, velocity and duration, resp.

REMI+ format and used quantization for velocity and duration and kept the whole range of possible
pitch values. This results in a total vocabulary size increase from 960 to 246080 tokens.

Despite this large increase in vocabulary size the concise representation of notes as a single token
enables the model to keep a lower amount of tokens in each bar which is beneficial for the model’s
small context size of 256 tokens.

An alternative modeling approach that we used in our experiments represents the notes’ pitches,
velocities, durations, and instruments using REMI+ tokens with position tokens before each note,
denoting the notes’ order with ascending integers (see Figure4). This reduces the total vocabulary
size to 1456 tokens but increases the number of tokens per bar respectively. However, it also enables
the representation of polyphonic melodies because instruments are assigned to notes individually
instead of being declared for the entire melody beforehand.

Accompaniment The music piece without the melody forms the accompaniment. It is currently
used to represent the texture of the piece, complementing the structural representation provided
in the expert description, and by the melody. Like in the previous work [1], the embedding for
the accompaniment tokens is trained/generated with the VQ-VAE (Vector Quantized-Variational
AutoEncoder) [6]. Other than in previous work, only the accompaniment and not the whole piece
is encoded in this component. This part of the embedding is termed the learned description and
represents high fidelity features of the input.

Both embeddings The accompaniment and the extended expert description are concatenated for
training and generation.

2.4 Dataset

For our preliminary experiments, we used a subset of LakhMIDI set - ”Clean MIDI” [8] - which
contains 15887 files. The full LakhMIDI set contains a small amount of invalid or corrupt files

4



Expert description with notes as multiple tokens

<Bar_1> <Time Signature_4/4> <Note Density_1> <Mean Pitch_15>
<Mean Velocity_19> <Mean Duration_32>
<Instrument_Acoustic Grand Piano> <Chord_C:maj> <Chord_G:maj>
<Pos_0> <Instrument_Clarinet> <Pitch_53> <Vel_56> <Dur_384>
<Pos_1> <Instrument_Clarinet> <Pitch_55> <Vel_56> <Dur_168>
<Pos_2> <Instrument_Acoustic Grand Piano> <Pitch_54> <Vel_56> <Dur_192>

Figure 4: An example of an extended expert description for one bar with each melody note’s pitch,
velocity, and duration being encoded as separate tokens.

impacting the quality of the extracted melodies [9]. Thus we decided to use the subset instead of the
full set as in [1].

3 Experimental Results

For our preliminary experiments, we trained the VQ-VAE and the transformer-based generator on
the above-mentioned dataset. In our first experiment (see Table 1) we used songs from the dataset as
a source for input descriptions and measured the difference between input and output pieces using
the metrics from previous work [1].

Model I F1 C F1 TS Acc ND P MOA V MOA D MOA CHR GRO
Original 0.952 0.598 0.996 0.210 0.840 0.771 0.755 0.803 0.860

Tuple Notes 0.877 0.394 0.986 0.413 0.712 0.644 0.555 0.679 0.683
REMI+ Notes 0.936 0.448 0.994 0.311 0.779 0.769 0.687 0.751 0.680

Table 1: Comparison of the models using the generated results conditioned on input descriptions
using the metrics described in [1]. Models are ”Original” (the previous FIGARO), ”Tuple Notes”
representing notes as single tokens) and ”REMI+ Notes” (representing a single note as multiple
tokens, very similar to REMI+). Metric names (from left to right) represent F1 scores for instruments
and chords, accuracy of time signature, note density NRMSE, MOA of pitch, velocity and duration,
and cosine similarity for chroma and groove.

The results clearly show that our second approach outperforms the first in every metric except GRO.
Overall its scores lie below the original FIGARO model.

In a second experiment, we assigned the melodies and accompaniments computed from the dataset
arbitrarily to each other to evaluate how the model variants perform on data they have not been
trained on. This experiment’s results (see Table 2) underline the first experiment’s findings.

Model I F1 C F1 TS Acc ND P MOA V MOA D MOA CHR GRO
Tuple Notes 0.669 0.176 0.981 1.06 0.519 0.420 0.317 0.425 0.336

REMI+ Notes 0.736 0.229 0.993 0.823 0.596 0.533 0.454 0.523 0.340
Table 2: Comparison of combinations of melodies and accompaniments.

We provide examples of generated MIDI files in the supplementary material here.

4 Conclusion

In this work, we have performed a preliminary test of the pipeline that envisions a three-fold guid-
ance of music generation with melody, structural description, and accompaniment. To this end, we
have tested two representations of melody as tokens containing a combination of pitch, velocity, and
duration. Building upon this baseline, in our future work we will explore other representations of
the melody and test alternative methods of melody extraction. In the long run, we are interested in
exploring, how to integrate the resulting framework as a building block into raw audio generation.

5

https://anonymous.4open.science/r/figaro_melody_examples/


References
[1] FIGARO: Controllable Music Generation using Learned and Expert Features. Dimitri von Rütte,

Luca Biggio, Yannic Kilcher, Thomas Hofmann, ICML, 2023

[2] Motifs, Phrases, and Beyond: The Modelling of Structure in Symbolic Music Generation. Ke-
shav Bhandari, Simon Colton, Artificial Intelligence in Music, Sound, Art and Design, 2024

[3] MELODIA project: https://github.com/justinsalamon/audio_to_midi_melodia

[4] Melody Extraction from Polyphonic Music Signals using Pitch Contour Characteristics. J.
Salamon and E. Gómez, IEEE Transactions on Audio, Speech and Language Processing,
20(6):1759-1770, Aug. 2012.

[5] https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

[6] Neural Discrete Representation Learning. Aaron van den Oord, Oriol Vinyals, Koray
Kavukcuoglu, Neurips 2017

[7] Signal processing for melody transcription. Rodger J. Mcnab, Lloyd A. Smith, Ian Witten in
Proc. Proc. 19th Australasian Computer Science Conf., 1996

[8] Learning-Based Methods for Comparing Sequences, with Applications to Audio-to-MIDI
Alignment and Matching. Colin Raffel. PhD Thesis, 2016.

[9] https://colinraffel.com/projects/lmd/#get

[10] https://github.com/mdeff/fma

6

https://github.com/justinsalamon/audio_to_midi_melodia
https://colinraffel.com/projects/lmd/#get
https://github.com/mdeff/fma

	Introduction
	Methods
	Tokenization: MIDI to REMI+
	Input Melody and Accompaniment
	Representation for Melody, Expert Description and Accompaniment
	Dataset

	Experimental Results
	Conclusion

