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ABSTRACT

Under mild conditions on the network initialization we derive a power series ex-
pansion for the Neural Tangent Kernel (NTK) of arbitrarily deep feedforward net-
works in the infinite width limit. We provide expressions for the coefficients of
this power series which depend on both the Hermite coefficients of the activation
function as well as the depth of the network. We observe faster decay of the Her-
mite coefficients leads to faster decay in the NTK coefficients and explore the role
of depth. Using this series, first we relate the effective rank of the NTK to the
effective rank of the input-data Gram. Second, for data drawn uniformly on the
sphere we study the eigenvalues of the NTK, analyzing the impact of the choice
of activation function. Finally, for generic data and activation functions with suf-
ficiently fast Hermite coefficient decay, we derive an asymptotic upper bound on
the spectrum of the NTK.

1 INTRODUCTION

Neural networks currently dominate modern artificial intelligence, however, despite their empiri-
cal success establishing a principled theoretical foundation for them remains an active challenge.
The key difficulties are that neural networks induce nonconvex optimization objectives (Sontag &
Sussmann, 1989) and typically operate in an overparameterized regime which precludes classical
statistical learning theory (Anthony & Bartlett, 2002). The persistent success of overparameterized
models tuned via non-convex optimization suggests that the relationship between the parameteriza-
tion, optimization, and generalization is more sophisticated than that which can be addressed using
classical theory.

A recent breakthrough on understanding the success of overparameterized networks was established
through the Neural Tangent Kernel (NTK) (Jacot et al., 2018). In the infinite width limit the opti-
mization dynamics are described entirely by the NTK and the parameterization behaves like a linear
model (Lee et al., 2019). In this regime explicit guarantees for the optimization and generalization
can be obtained (Du et al., 2019a;b; Arora et al., 2019a; Allen-Zhu et al., 2019; Zou et al., 2020).
While one must be judicious when extrapolating insights from the NTK to finite width networks
(Lee et al., 2020), the NTK remains one of the most promising avenues for understanding deep
learning on a principled basis.

The spectrum of the NTK is fundamental to both the optimization and generalization of wide net-
works. In particular, bounding the smallest eigenvalue of the NTK Gram matrix is a staple tech-
nique for establishing convergence guarantees for the optimization (Du et al., 2019a;b; Oymak &
Soltanolkotabi, 2020). Furthermore, the full spectrum of the NTK Gram matrix governs the dynam-
ics of the empirical risk (Arora et al., 2019b), and the eigenvalues of the associated integral operator
characterize the dynamics of the generalization error outside the training set (Bowman & Montu-
far, 2022; Bowman & Montúfar, 2022). Moreover, the decay rate of the generalization error for
Gaussian process regression using the NTK can be characterized by the decay rate of the spectrum
(Caponnetto & De Vito, 2007; Cui et al., 2021; Jin et al., 2022).
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The importance of the spectrum of the NTK has led to a variety of efforts to characterize its structure
via random matrix theory and other tools (Yang & Salman, 2019; Fan & Wang, 2020). There is a
broader body of work studying the closely related Conjugate Kernel, Fisher Information Matrix, and
Hessian (Poole et al., 2016; Pennington & Worah, 2017; 2018; Louart et al., 2018; Karakida et al.,
2020). These results often require complex random matrix theory or operate in a regime where the
input dimension is sent to infinity. By contrast, using a just a power series expansion we are able to
characterize a variety of attributes of the spectrum for fixed input dimension and recover key results
from prior work.

1.1 CONTRIBUTIONS

In Theorem 3.1 we derive coefficients for the power series expansion of the NTK under unit variance
initialization, see Assumption 2. Consequently we are able to derive insights into the NTK spectrum,
notably concerning the outlier eigenvalues as well as the asymptotic decay.

• In Theorem 4.1 and Observation 4.2 we demonstrate that the largest eigenvalue λ1(K) of the NTK
takes up an Ω(1) proportion of the trace and that there are O(1) outlier eigenvalues of the same
order as λ1(K).

• In Theorem 4.3 and Theorem 4.5 we show that the effective rank Tr(K)/λ1(K) of the NTK is
upper bounded by a constant multiple of the effective rank Tr(XXT )/λ1(XXT ) of the input data
Gram matrix for both infinite and finite width networks.

• In Corollary 4.7 and Theorem 4.8 we characterize the asymptotic behavior of the NTK spectrum
for both uniform and nonuniform data distributions on the sphere.

1.2 RELATED WORK

Neural Tangent Kernel (NTK): the NTK was introduced by Jacot et al. (2018), who demonstrated
that in the infinite width limit neural network optimization is described via a kernel gradient descent.
As a consequence, when the network is polynomially wide in the number of samples, global conver-
gence guarantees for gradient descent can be obtained (Du et al., 2019a;b; Allen-Zhu et al., 2019;
Zou & Gu, 2019; Lee et al., 2019; Zou et al., 2020; Oymak & Soltanolkotabi, 2020; Nguyen &
Mondelli, 2020; Nguyen, 2021). Furthermore, the connection between infinite width networks and
Gaussian processes, which traces back to Neal (1996), has been reinvigorated in light of the NTK.
Recent investigations include Lee et al. (2018); de G. Matthews et al. (2018); Novak et al. (2019).

Analysis of NTK Spectrum: theoretical analysis of the NTK spectrum via random matrix theory
was investigated by Yang & Salman (2019); Fan & Wang (2020) in the high dimensional limit. Ve-
likanov & Yarotsky (2021) demonstrated that for ReLU networks the spectrum of the NTK integral
operator asymptotically follows a power law, which is consistent with our results for the uniform
data distribution. Basri et al. (2019) calculated the NTK spectrum for shallow ReLU networks un-
der the uniform distribution, which was then expanded to the nonuniform case by Basri et al. (2020).
Geifman et al. (2022) analyzed the spectrum of the conjugate kernel and NTK for convolutional net-
works with ReLU activations whose pixels are uniformly distributed on the sphere. Geifman et al.
(2020); Bietti & Bach (2021); Chen & Xu (2021) analyzed the reproducing kernel Hilbert spaces of
the NTK for ReLU networks and the Laplace kernel via the decay rate of the spectrum of the kernel.
In contrast to previous works, we are able to address the spectrum in the finite dimensional setting
and characterize the impact of different activation functions on it.

Hermite Expansion: Daniely et al. (2016) used Hermite expansion to the study the expressivity of
the Conjugate Kernel. Simon et al. (2022) used this technique to demonstrate that any dot product
kernel can be realized by the NTK or Conjugate Kernel of a shallow, zero bias network. Oymak &
Soltanolkotabi (2020) use Hermite expansion to study the NTK and establish a quantitative bound
on the smallest eigenvalue for shallow networks. This approach was incorporated by Nguyen &
Mondelli (2020) to handle convergence for deep networks, with sharp bounds on the smallest NTK
eigenvalue for deep ReLU networks provided by Nguyen et al. (2021). The Hermite approach was
utilized by Panigrahi et al. (2020) to analyze the smallest NTK eigenvalue of shallow networks un-
der various activations. Finally, in a concurrent work Han et al. (2022) use Hermite expansions
to develop a principled and efficient polynomial based approximation algorithm for the NTK and
CNTK. In contrast to the aforementioned works, here we employ the Hermite expansion to charac-
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terize both the outlier and asymptotic portions of the spectrum for both shallow and deep networks
under general activations.

2 PRELIMINARIES

For our notation, lower case letters, e.g., x, y, denote scalars, lower case bold characters, e.g., x,y
are for vectors, and upper case bold characters, e.g., X,Y, are for matrices. For natural numbers
k1, k2 ∈ N we let [k1] = {1, . . . , k1} and [k2, k1] = {k2, . . . , k1}. If k2 > k1 then [k2, k1] is
the empty set. We use ‖·‖p to denote the p-norm of the matrix or vector in question and as default
use ‖·‖ as the operator or 2-norm respectively. We use 1m×n ∈ Rm×n to denote the matrix with
all entries equal to one. We define δp=c to take the value 1 if p = c and be zero otherwise. We
will frequently overload scalar functions φ : R → R by applying them elementwise to vectors and
matrices. The entry in the ith row and jth column of a matrix we access using the notation [X]ij .
The Hadamard or entrywise product of two matrices X,Y ∈ Rm×n we denote X�Y as is standard.
The pth Hadamard power we denote X�p and define it as the Hadamard product of X with itself p
times,

X�p := X�X� · · · �X.

Given a Hermitian or symmetric matrix X ∈ Rn×n, we adopt the convention that λi(X) denotes
the ith largest eigenvalue,

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

Finally, for a square matrix X ∈ Rn×n we let Tr(X) =
∑n
i=1[X]ii denote the trace.

2.1 HERMITE EXPANSION

We say that a function f : R→ R is square integrable with respect to the standard Gaussian measure
γ(z) = 1√

2π
e−z

2/2 if EX∼N (0,1)[f(X)2] < ∞. We denote by L2(R, γ) the space of all such
functions. The normalized probabilist’s Hermite polynomials are defined as

hk(x) =
(−1)

k
ex

2/2

√
k!

dk

dxk
e−x

2/2, k = 0, 1, . . .

and form a complete orthonormal basis in L2(R, γ) (O’Donnell, 2014, §11). The Hermite ex-
pansion of a function φ ∈ L2(R, γ) is given by φ(x) =

∑∞
k=0 µk(φ)hk(x), where µk(φ) =

EX∼N (0,1)[φ(X)hk(X)] is the kth normalized probabilist’s Hermite coefficient of φ.

2.2 NTK PARAMETRIZATION

In what follows, for n, d ∈ N let X ∈ Rn×d denote a matrix which stores n points in Rd row-wise.
Unless otherwise stated, we assume d ≤ n and denote the ith row of Xn as xi. In this work we
consider fully-connected neural networks of the form f (L+1) : Rd → R with L ∈ N hidden layers
and a linear output layer. For a given input vector x ∈ Rd, the activation f (l) and preactivation g(l)

at each layer l ∈ [L+ 1] are defined via the following recurrence relations,

g(1)(x) = γwW
(1)x + γbb

(1), f (1)(x) = φ
(
g(1)(x)

)
,

g(l)(x) =
σw√
ml−1

W(l)f (l−1)(x) + σbb
(l), f (l)(x) = φ

(
g(l)(x)

)
, ∀l ∈ [2, L],

g(L+1)(x) =
σw√
mL

W(L+1)f (L)(x), f (L+1)(x) = g(L+1)(x).

(1)

The parameters W(l) ∈ Rml×ml−1 and b(l) ∈ Rml are the weight matrix and bias vector at the lth
layer respectively, m0 = d, mL+1 = 1, and φ : R → R is the activation function applied element-
wise. The variables γw, σw ∈ R>0 and γb, σb ∈ R≥0 correspond to weight and bias hyperparameters
respectively. Let θl ∈ Rp denote a vector storing the network parameters (W(h),b(h))lh=1 up to
and including the lth layer. The Neural Tangent Kernel (Jacot et al., 2018) Θ̃(l) : Rd × Rd → R
associated with f (l) at layer l ∈ [L+ 1] is defined as

Θ̃(l)(x,y) := 〈∇θlf (l)(x),∇θlf (l)(y)〉. (2)
We will mostly study the NTK under the following standard assumptions.
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Assumption 1. NTK initialization.

1. At initialization all network parameters are distributed asN (0, 1) and are mutually independent.

2. The activation function satisfies φ ∈ L2(R, γ), is differentiable almost everywhere and its deriva-
tive, which we denote φ′, also satisfies φ′ ∈ L2(R, γ).

3. The widths are sent to infinity in sequence, m1 →∞,m2 →∞, . . . ,mL →∞.

Under Assumption 1, for any l ∈ [L+1], Θ̃(l)(x,y) converges in probability to a deterministic limit
Θ(l) : Rd × Rd → R (Jacot et al., 2018) and the network behaves like a kernelized linear predictor
during training; see, e.g., Arora et al. (2019b); Lee et al. (2019); Woodworth et al. (2020). Given
access to the rows (xi)

n
i=1 of X the NTK matrix at layer l ∈ [L + 1], which we denote Kl, is the

n× n matrix with entries defined as

[Kl]ij =
1

n
Θ(l)(xi,xj), ∀(i, j) ∈ [n]× [n]. (3)

3 EXPRESSING THE NTK AS A POWER SERIES

The following assumption allows us to study a power series for the NTK of deep networks and
with general activation functions. We remark that power series for the NTK of deep networks
with positive homogeneous activation functions, namely ReLU, have been studied in prior works
Han et al. (2022); Chen & Xu (2021); Bietti & Bach (2021); Geifman et al. (2022). We further
remark that while these works focus on the asymptotics of the NTK spectrum we also study the
large eigenvalues.
Assumption 2. The hyperparameters of the network satisfy γ2

w+γ2
b = 1, σ2

wEZ∼N (0,1)[φ(Z)2] ≤ 1

and σ2
b = 1− σ2

wEZ∼N (0,1)[φ(Z)2]. The data is normalized so that ‖xi‖ = 1 for all i ∈ [n].

Recall under Assumption 1 that the preactivations of the network are centered Gaussian processes
(Neal, 1996; Lee et al., 2018). Assumption 2 ensures the preactivation of each neuron has unit
variance and thus is reminiscent of the LeCun et al. (2012), Glorot & Bengio (2010) and He et al.
(2015) initializations, which are designed to avoid vanishing and exploding gradients. We refer
the reader to Appendix A.3 for a thorough discussion. Under Assumption 2 we will show it is
possible to write the NTK not only as a dot-product kernel but also as an analytic power series on
[−1, 1] and derive expressions for the coefficients. In order to state this result recall, given a function
f ∈ L2(R, γ), that the pth normalized probabilist’s Hermite coefficient of f is denoted µp(f), we
refer the reader to Appendix A.4 for an overview of the Hermite polynomials and their properties.
Furthermore, letting ā = (aj)

∞
j=0 denote a sequence of real numbers, then for any p, k ∈ Z≥0 we

define

F (p, k, ā) =


1, k = 0 and p = 0,

0, k = 0 and p ≥ 1,∑
(ji)∈J (p,k)

∏k
i=1 aji , k ≥ 1 and p ≥ 0,

(4)

where

J (p, k) :=
{

(ji)i∈[k] : ji ≥ 0 ∀i ∈ [k],

k∑
i=1

ji = p
}

for all p ∈ Z≥0, k ∈ N.

Here J (p, k) is the set of all k-tuples of nonnegative integers which sum to p and F (p, k, ā) is
therefore the sum of all ordered products of k elements of ā whose indices sum to p. We are now
ready to state the key result of this section, Theorem 3.1, whose proof is provided in Appendix B.1.
Theorem 3.1. Under Assumptions 1 and 2, for all l ∈ [L+ 1]

nKl =

∞∑
p=0

κp,l
(
XXT

)�p
. (5)

The series for each entry n[Kl]ij converges absolutely and the coefficients κp,l are nonnegative and
can be evaluated using the recurrence relationships

κp,l =

{
δp=0γ

2
b + δp=1γ

2
w, l = 1,

αp,l +
∑p
q=0 κq,l−1υp−q,l, l ∈ [2, L+ 1],

(6)
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where

αp,l =

{
σ2
wµ

2
p(φ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3,
(7)

and

υp,l =

{
σ2
wµ

2
p(φ
′), l = 2,∑∞

k=0 υk,2F (p, k, ᾱl−1), l ≥ 3,
(8)

are likewise nonnegative for all p ∈ Z≥0 and l ∈ [2, L+ 1].

As already remarked, power series for the NTK have been studied in previous works, however, to the
best of our knowledge Theorem 3.1 is the first to explicitly express the coefficients at a layer in terms
of the coefficients of previous layers. To compute the coefficients of the NTK as per Theorem 3.1,
the Hermite coefficients of both φ and φ′ are required. Under Assumption 3 below, which has
minimal impact on the generality of our results, this calculation can be simplified. In short, under
Assumption 3 υp,2 = (p + 1)αp+1,2 and therefore only the Hermite coefficients of φ are required.
We refer the reader to Lemma B.3 in Appendix B.2 for further details.
Assumption 3. The activation function φ : R → R is absolutely continuous on [−a, a] for all
a > 0, differentiable almost everywhere, and is polynomially bounded, i.e., |φ(x)| = O(|x|β) for
some β > 0. Further, the derivative φ′ : R→ R satisfies φ′ ∈ L2(R, γ).

We remark that ReLU, Tanh, Sigmoid, Softplus and many other commonly used activation functions
satisfy Assumption 3. In order to understand the relationship between the Hermite coefficients of
the activation function and the coefficients of the NTK, we first consider the simple two-layer case
with L = 1 hidden layers. From Theorem 3.1

κp,2 = σ2
w(1 + γ2

wp)µ
2
p(φ) + σ2

wγ
2
b (1 + p)µ2

p+1(φ) + δp=0σ
2
b . (9)

As per Table 1, a general trend we observe across all activation functions is that the first few coeffi-
cients account for the large majority of the total NTK coefficient series.

Table 1: Percentage of
∑∞
p=0 κp,2 accounted for by the first T + 1 NTK coefficients assuming

γ2
w = 1, γ2

b = 0, σ2
w = 1 and σ2

b = 1− E[φ(Z)2].

T = 0 1 2 3 4 5
ReLU 43.944 77.277 93.192 93.192 95.403 95.403
Tanh 41.362 91.468 91.468 97.487 97.487 99.090
Sigmoid 91.557 99.729 99.729 99.977 99.977 99.997
Gaussian 95.834 95.834 98.729 98.729 99.634 99.634

However, the asymptotic rate of decay of the NTK coefficients varies significantly by activation
function, due to the varying behavior of their tails. In Lemma 3.2 we choose ReLU, Tanh and
Gaussian as prototypical examples of activations functions with growing, constant, and decaying
tails respectively, and analyze the corresponding NTK coefficients in the two layer setting. For
typographical ease we denote the zero mean Gaussian density function with variance σ2 as ωσ(z) :=

(1/
√

2πσ2) exp
(
−z2/(2σ2)

)
.

Lemma 3.2. Under Assumptions 1 and 2,

1. if φ(z) = ReLU(z), then κp,2 = δ(γb>0)∪(p even)Θ(p−3/2),

2. if φ(z) = Tanh(z), then κp,2 = O
(

exp
(
−π
√
p−1
2

))
,

3. if φ(z) = ωσ(z), then κp,2 = δ(γb>0)∪(p even)Θ(p1/2(σ2 + 1)−p).

The trend we observe from Lemma 3.2 is that activation functions whose Hermite coefficients decay
quickly, such as ωσ , result in a faster decay of the NTK coefficients. We remark that analyzing the
rates of decay for l ≥ 3 is challenging due to the calculation of F (p, k, ᾱl−1) (4). In Appendix B.4
we provide preliminary results in this direction, upper bounding, in a very specific setting, the decay
of the NTK coefficients for depths l ≥ 2. Finally, we briefly pause here to highlight the potential for
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using a truncation of (5) in order to perform efficient numerical approximation of the infinite width
NTK. We remark that this idea is also addressed in a concurrent work by Han et al. (2022), albeit
under a somewhat different set of assumptions 1. As per our observations thus far that the coefficients
of the NTK power series (5) typically decay quite rapidly, one might consider approximating Θ(l)

by computing just the first few terms in each series of (5). Figure 2 in Appendix B.3 displays the
absolute error between the truncated ReLU NTK and the analytical expression for the ReLU NTK,
which is also defined in Appendix B.3. Letting ρ denote the input correlation then the key takeaway
is that while for |ρ| close to one the approximation is poor, for |ρ| < 0.5, which is arguably more
realistic for real-world data, with just 50 coefficients machine level precision can be achieved. We
refer the interested reader to Appendix B.3 for a proper discussion.

4 ANALYZING THE SPECTRUM OF THE NTK VIA ITS POWER SERIES

In this section, we consider a general kernel matrix power series of the form nK =∑∞
p=0 cp(XXT )�p where {cp}∞p=0 are coefficients and X is the data matrix. According to Theo-

rem 3.1, the coefficients of the NTK power series (5) are always nonnegative, thus we only consider
the case where cp are nonnegative. We will also consider the kernel function power series, which we
denote as K(x1, x2) =

∑∞
p=0 cp〈x1, x2〉p. Later on we will analyze the spectrum of kernel matrix

K and kernel function K.

4.1 ANALYSIS OF THE UPPER SPECTRUM AND EFFECTIVE RANK

In this section we analyze the upper part of the spectrum of the NTK, corresponding to the large
eigenvalues, using the power series given in Theorem 3.1. Our first result concerns the effective rank
(Huang et al., 2022) of the NTK. Given a positive semidefinite matrix A ∈ Rn×n we define the
effective rank of A to be

eff(A) =
Tr(A)

λ1(A)
.

The effective rank quantifies how many eigenvalues are on the order of the largest eigenvalue. This
follows from the Markov-like inequality

|{p : λp(A) ≥ cλ1(A)}| ≤ c−1eff(A) (10)

and the eigenvalue bound
λp(A)

λ1(A)
≤ eff(A)

p
.

Our first result is that the effective rank of the NTK can be bounded in terms of a ratio involving
the power series coefficients. As we are assuming the data is normalized so that ‖xi‖ = 1 for all
i ∈ [n], then observe by the linearity of the trace

Tr(nK) =

∞∑
p=0

cpTr((XXT )�p) = n

∞∑
p=0

cp,

where we have used the fact that Tr((XXT )�p) = n for all p ∈ N. On the other hand,

λ1(nK) ≥ λ1(c0(XXT )0) = λ1(c01n×n) = nc0.

Combining these two results we get the following theorem.

Theorem 4.1. Assume that we have a kernel Gram matrix K of the form nK =
∑∞
p=0 cp(XXT )�p

where c0 6= 0. Furthermore, assume the input data xi are normalized so that ‖xi‖ = 1 for all
i ∈ [n]. Then

eff(K) ≤
∑∞
p=0 cp

c0
.

1In particular, in Han et al. (2022) the authors focus on homogeneous activation functions and allow the
data to lie off the sphere. By contrast, we require the data to lie on the sphere but can handle non-homogeneous
activation functions in the deep setting.
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By Theorem 3.1 c0 6= 0 provided the network has biases or the activation function has nonzero
Gaussian expectation (i.e., µ0(φ) 6= 0). Thus we have that the effective rank of K is bounded by an
O(1) quantity. In the case of ReLU for example, as evidenced by Table 1, the effective rank will be
roughly 2.3 for a shallow network. By contrast, a well-conditioned matrix would have an effective
rank that is Ω(n). Combining Theorem 4.1 and the Markov-type bound (10) we make the following
important observation.
Observation 4.2. The largest eigenvalue λ1(K) of the NTK takes up an Ω(1) fraction of the entire
trace and there are O(1) eigenvalues on the same order of magnitude as λ1(K), where the O(1)
and Ω(1) notation are with respect to the parameter n.

While the constant term c01n×n in the kernel leads to a significant outlier in the spectrum of K, it
is rather uninformative beyond this. What interests us is how the structure of the data X manifests
in the spectrum of the kernel matrix K. For this reason we will examine the centered kernel matrix
K̃ := K− c0

n 1n×n. By a very similar argument as before we get the following result.

Theorem 4.3. Assume that we have a kernel Gram matrix K of the form nK =
∑∞
p=0 cp(XXT )�p

where c1 6= 0. Furthermore, assume the input data xi are normalized so that ‖xi‖ = 1 for all
i ∈ [n]. Then the centered kernel K̃ := K− c0

n 1n×n satisfies

eff(K̃) ≤ eff(XXT )

∑∞
p=1 cp

c1
.

Thus we have that the effective rank of the centered kernel K̃ is upper bounded by a constant multiple
of the effective rank of the input data Gram XXT . Furthermore, we can take the ratio

∑∞
p=1 cp

c1
as

a measure of how much the NTK inherits the behavior of the linear kernel XXT : in particular, if
the input data gram has low effective rank and this ratio is moderate then we may conclude that the
centered NTK must also have low effective rank. Again from Table 1, in the shallow setting we see
that this ratio tends to be small for many of the common activations, for example, for ReLU it is
roughly 1.3. To summarize then from Theorem 4.3 we make the important observation.
Observation 4.4. Whenever the input data are approximately low rank, the centered kernel matrix
K̃ = K− c0

n 1n×n is also approximately low rank.

It turns out that this phenomenon also holds for finite-width networks at initialization. Consider the
shallow model

m∑
`=1

a`φ(〈w`,x〉),

where x ∈ Rd and w` ∈ Rd, a` ∈ R for all ` ∈ [m]. The following theorem demonstrates that
when the width m is linear in the number of samples n then eff(K) is upper bounded by a constant
multiple of eff(XXT ).
Theorem 4.5. Assume φ(x) = ReLU(x) and n ≥ d. Fix ε > 0 small. Suppose that w1, . . . ,wm ∼
N(0, ν2

1Id) i.i.d. and a1, . . . , am ∼ N(0, ν2
2). Set M = maxi∈[n] ‖xi‖2, and let

Σ := Ew∼N(0,ν2
1I)

[φ(Xw)φ(wTXT )].

Then
m = Ω

(
max(λ1(Σ)−2, 1) max(n, log(1/ε))

)
, ν1 = O(1/M

√
m)

suffices to ensure that, with probability at least 1−ε over the sampling of the parameter initialization,

eff(K) ≤ C · eff(XXT ),

where C > 0 is an absolute constant.

Many works consider the model where the outer layer weights are fixed and have constant magnitude
and only the inner layer weights are trained. This is the setting considered by Xie et al. (2017), Arora
et al. (2019a), Du et al. (2019b), Oymak et al. (2019), Li et al. (2020), and Oymak & Soltanolkotabi
(2020). In this setting we can reduce the dependence on the width m to only be logarithmic in
the number of samples n, and we have an accompanying lower bound. See Theorem C.5 in the
Appendix C.2.3 for details.
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In Figure 1 we empirically validate our theory by computing the spectrum of the NTK on both
Caltech101 (Li et al., 2022) and isotropic Gaussian data for feedforward networks. We use the
functorch2 module in PyTorch (Paszke et al., 2019) using an algorithmic approach inspired by
Novak et al. (2022). As per Theorem 4.1 and Observation 4.2, we observe all network architectures
exhibit a dominant outlier eigenvalue due to the nonzero constant coefficient in the power series.
Furthermore, this dominant outlier becomes more pronounced with depth, as can be observed if one
carries out the calculations described in Theorem 3.1. Additionally, this outlier is most pronounced
for ReLU, as the combination of its Gaussian mean plus bias term is the largest out of the activa-
tions considered here. As predicted by Theorem 4.3, Observation 4.4 and Theorem 4.5, we observe
real-world data, which has a skewed spectrum and hence a low effective rank, results in the spec-
trum of the NTK being skewed. By contrast, isotropic Gaussian data has a flat spectrum, and as a
result beyond the outlier the decay of eigenvalues of the NTK is more gradual. These observations
support the claim that the NTK inherits its spectral structure from the data. We also observe that
the spectrum for Tanh is closer to the linear activation relative to ReLU: intuitively this should not
be surprising as close to the origin Tanh is well approximated by the identity. Our theory provides
a formal explanation for this observation, indeed, the power series coefficients for Tanh networks
decay quickly relative to ReLU. We provide further experimental results in Appendix C.3, including
for CNNs where we observe the same trends. We note that the effective rank has implications for the
generalization error. The Rademacher complexity of a kernel method (and hence the NTK model)
within a parameter ball is determined by its its trace (Bartlett & Mendelson, 2002). Since for the
NTK λ1(K) = O(1), lower effective rank implies smaller trace and hence limited complexity.

Figure 1: (Feedforward NTK Spectrum) We plot the normalized eigenvalues λp/λ1 of the NTK
Gram matrix K and the data Gram matrix XXT for Caltech101 and isotropic Gaussian datasets. To
compute the NTK we randomly initialize feedforward networks of depths 2 and 5 with width 500.
We use the standard parameterization and Pytorch’s default Kaiming uniform initialization in order
to better connect our results with what is used in practice. We consider a batch size of n = 200 and
plot the first 100 eigenvalues. The thick part of each curve corresponds to the mean across 10 trials,
while the transparent part corresponds to the 95% confidence interval

4.2 ANALYSIS OF THE LOWER SPECTRUM

In this section, we analyze the lower part of the spectrum using the power series. We first an-
alyze the kernel function K which we recall is a dot-product kernel of the form K(x1, x2) =∑∞
p=0 cp〈x1, x2〉p. Assuming the training data is uniformly distributed on a hypersphere it was

shown by Basri et al. (2019); Bietti & Mairal (2019) that the eigenfunctions of K are the spherical

2https://pytorch.org/functorch/stable/notebooks/neural tangent kernels.html
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harmonics. Azevedo & Menegatto (2015) gave the eigenvalues of the kernelK in terms of the power
series coefficients.
Theorem 4.6. [Azevedo & Menegatto (2015)] Let Γ denote the gamma function. Suppose that the
training data are uniformly sampled from the unit hypersphere Sd, d ≥ 2. If the dot-product kernel
function has the expansion K(x1, x2) =

∑∞
p=0 cp〈x1, x2〉p where cp ≥ 0, then the eigenvalue of

every spherical harmonic of frequency k is given by

λk =
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2 )

Γ(p− k + 1)Γ(p−k+1
2 + k + d/2)

.

A proof of Theorem 4.6 is provided in Appendix C.4 for the reader’s convenience. This theorem
connects the coefficients cp of the kernel power series with the eigenvalues λk of the kernel. In
particular, given a specific decay rate for the coefficients cp one may derive the decay rate of λk: for
example, Scetbon & Harchaoui (2021) examined the decay rate of λk if cp admits a polynomial de-
cay or exponential decay. The following Corollary summarizes the decay rates of λk corresponding
to two layer networks with different activations.
Corollary 4.7. Under the same setting as in Theorem 4.6,

1. if cp = Θ(p−a) where a ≥ 1, then λk = Θ(k−d−2a+2),

2. if cp = δ(p even)Θ(p−a), then λk = δ(k even)Θ(k−d−2a+2),

3. if cp = O
(
exp

(
−a√p

))
, then λk = O

(
k−d+1/2 exp

(
−a
√
k
))

,

4. if cp = Θ(p1/2a−p), then λk = O
(
k−d+1a−k

)
and λk = Ω

(
k−d/2+12−ka−k

)
.

In addition to recovering existing results for ReLU networks Basri et al. (2019); Velikanov & Yarot-
sky (2021); Geifman et al. (2020); Bietti & Bach (2021), Corollary 4.7 also provides the decay rates
for two-layer networks with Tanh and Gaussian activations. As faster eigenvalue decay implies a
smaller RKHS Corollary 4.7 shows using ReLU results in a larger RKHS relative to Tanh or Gaus-
sian activations. Numerics for Corollary 4.7 are provided in Figure 4 in Appendix C.3. Finally, in
Theorem 4.8 we relate a kernel’s power series to its spectral decay for arbitrary data distributions.
Theorem 4.8 (Informal). Let the rows of X ∈ Rn×d be arbitrary points on the unit sphere. Consider
the kernel matrix nK =

∑∞
p=0 cp

(
XXT

)�p
and let r(n) ≤ d denote the rank of XXT . Then

1. if cp = O(p−α) with α > r(n) + 1 for all n ∈ Z≥0 then λn(K) = O
(
n−

α−1
r(n)

)
,

2. if cp = O(e−α
√
p) then λn(K) = O

(
n

1
2r(n) exp

(
−α′n

1
2r(n)

))
for any α′ < α2−1/2r(n),

3. if cp = O(e−αp) then λn(K) = O
(

exp
(
−α′n

1
r(n)

))
for any α′ < α2−1/2r(n).

Although the presence of the factor 1/r(n) in the exponents of n in these bounds is a weakness,
Theorem 4.8 still illustrates how, in a highly general setting, the asymptotic decay of the coefficients
of the power series ensures a certain asymptotic decay in the eigenvalues of the kernel matrix. A
formal version of this result is provided in Appendix C.5 along with further discussion.

5 CONCLUSION

Using a power series expansion we derived a number of insights into both the outliers as well as the
asymptotic decay of the spectrum of the NTK, in particular highlighting the role of the activation
function. We performed our analysis without recourse to a high dimensional limit or the use of
random matrix theory. Interesting avenues for future work include better analyzing the role of
depth as well as characterizing the outlier eigenvalues and spectrum as a whole for networks with
convolutional, residual or transformer layers.
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Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient BackProp, pp.
9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. URL https://doi.org/10.
1007/978-3-642-35289-8_3.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
B1EA-M-0Z.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/0d1a9651497a38d8b1c3871c84528bd4-Paper.pdf.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 15156–15172. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
ad086f59924fffe0773f8d0ca22ea712-Paper.pdf.

Li, Andreeto, Ranzato, and Perona. Caltech 101, Apr 2022.

12

https://openreview.net/forum?id=gthKzdymDu2
https://proceedings.mlr.press/v9/glorot10a.html
https://openreview.net/forum?id=yLilJ1vZgMe
https://doi.org/10.1137/20m1387821
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://openreview.net/forum?id=KeI9E-gsoB
https://doi.org/10.1088/1742-5468/abc62e
https://doi.org/10.1088/1742-5468/abc62e
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z
https://proceedings.neurips.cc/paper/2019/file/0d1a9651497a38d8b1c3871c84528bd4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0d1a9651497a38d8b1c3871c84528bd4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ad086f59924fffe0773f8d0ca22ea712-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ad086f59924fffe0773f8d0ca22ea712-Paper.pdf


Published as a conference paper at ICLR 2023

Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 4313–4324. PMLR, 2020. URL https://
proceedings.mlr.press/v108/li20j.html.

Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural networks.
The Annals of Applied Probability, 28(2):1190–1248, 2018. URL https://www.jstor.
org/stable/26542333.

Dmytro Mishkin and Jiri Matas. All you need is a good init. In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.06422.

M. Murray, V. Abrol, and J. Tanner. Activation function design for deep networks: lin-
earity and effective initialisation. Applied and Computational Harmonic Analysis, 59:117–
154, 2022. URL https://www.sciencedirect.com/science/article/pii/
S1063520321001111. Special Issue on Harmonic Analysis and Machine Learning.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996.

Quynh Nguyen. On the proof of global convergence of gradient descent for deep relu networks
with linear widths. In Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 8056–8062. PMLR, 2021. URL
https://proceedings.mlr.press/v139/nguyen21a.html.

Quynh Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer fol-
lowed by pyramidal topology. In Advances in Neural Information Processing Systems, volume 33,
pp. 11961–11972. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/8abfe8ac9ec214d68541fcb888c0b4c3-Paper.pdf.

Quynh Nguyen, Marco Mondelli, and Guido Montúfar. Tight bounds on the smallest eigenvalue
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APPENDIX

The appendix is organized as follows.

• Appendix A gives background material on Gaussan kernels, NTK, unit variance intitialization,
and Hermite polynomial expansions.

• Appendix B provides details for Section 3.

• Appendix C provides details for Section 4.

A BACKGROUND MATERIAL

A.1 GAUSSIAN KERNEL

Observe by construction that the flattened collection of preactivations at the first layer (g(1)(xi))
n
i=1

form a centered Gaussian process, with the covariance between the αth and βth neuron being de-
scribed by

Σ(1)
αβ

(xi,xj) := E[g(1)
α (xi)g

(1)
β (xj)] = δα=β

(
γ2
wx

T
i xj + γ2

b

)
.

Under the Assumption 1, the preactivations at each layer l ∈ [L + 1] converge also in distribution
to centered Gaussian processes (Neal, 1996; Lee et al., 2018). We remark that the sequential width
limit condition of Assumption 1 is not necessary for this behavior, for example the same result can
be derived in the setting where the widths of the network are sent to infinity simultaneously under
certain conditions on the activation function (de G. Matthews et al., 2018). However, as our interests
lie in analyzing the limit rather than the conditions for convergence to said limit, for simplicity we
consider only the sequential width limit. As per Lee et al. (2018, Eq. 4), the covariance between the
preactivations of the αth and βth neurons at layer l ≥ 2 for any input pair x,y ∈ R are described by
the following kernel,

Σ(l)
αβ

(x,y) := E[g(l)
α (x)g

(l)
β (y)]

= δα=β

(
σ2
wEg(l−1)∼GP(0,Σl−1)[φ(g(l−1)

α (x))φ(g
(l−1)
β (y))] + σ2

b

)
.

We refer to this kernel as the Gaussian kernel. As each neuron is identically distributed and the
covariance between pairs of neurons is 0 unless α = β, moving forward we drop the subscript and
discuss only the covariance between the preactivations of an arbitrary neuron given two inputs. As
per the discussion by Lee et al. (2018, Section 2.3), the expectations involved in the computation
of these Gaussian kernels can be computed with respect to a bivariate Gaussian distribution, whose
covariance matrix has three distinct entries: the variance of a preactivation of x at the previous
layer, Σ(l−1)(x,x), the variance of a preactivation of y at the previous layer, Σ(l)(y,y), and the
covariance between preactivations of x and y, Σ(l−1)(x,y). Therefore the Gaussian kernel, or
covariance function, and its derivative, which we will require later for our analysis of the NTK, can
be computed via the the following recurrence relations, see for instance (Lee et al., 2018; Jacot et al.,
2018; Arora et al., 2019b; Nguyen et al., 2021),

Σ(1)(x,y) = γ2
wx

Tx + γ2
b ,

A(l)(x,y) =

[
Σ(l−1)(x,x) Σ(l−1)(x,y)
Σ(l−1)(y,x) Σ(l−1)(x,x)

]
Σ(l)(x,y) = σ2

wE(B1,B2)∼N (0,A(l)(x,y))[φ(B1)φ(B2)] + σ2
b ,

Σ̇(l)(x,y) = σ2
wE(B1,B2)∼N (0,A(l)(x,y)) [φ′(B1)φ′(B2)] .

(11)

A.2 NEURAL TANGENT KERNEL (NTK)

As discussed in the Section 1, under Assumption 1 Θ̃(l) converges in probability to a deterministic
limit, which we denote Θ(l). This deterministic limit kernel can be expressed in terms of the Gaus-
sian kernels and their derivatives from Section A.1 via the following recurrence relationships (Jacot
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et al., 2018, Theorem 1),

Θ(1)(x,y) = Σ(1)(x,y),

Θ(l)(x,y) = Θ(l−1)(x,y)Σ̇(l)(x,y) + Σ(l)(x,y)

= Σ(l)(x,y) +

l−1∑
h=1

Σ(h)(x,y)

(
l∏

h′=h+1

Σ̇(h′)(x,y)

)
∀l ∈ [2, L+ 1].

(12)

A useful expression for the NTK matrix, which is a straightforward extension and generalization of
Nguyen et al. (2021, Lemma 3.1), is provided in Lemma A.1 below.

Lemma A.1. (Based on Nguyen et al. 2021, Lemma 3.1) Under Assumption 1, a sequence of positive
semidefinite matrices (Gl)

L+1
l=1 in Rn×n, and the related sequence (Ġl)

L+1
l=2 also in Rn×n, can be

constructed via the following recurrence relationships,

G1 = γ2
wXXT + γ2

b 1n×n,

G2 = σ2
wEw∼N (0,Id)[φ(Xw)φ(Xw)T ] + σ2

b1n×n,

Ġ2 = σ2
wEw∼N (0,In)[φ

′(Xw)φ′(Xw)T ],

Gl = σ2
wEw∼N (0,In)[φ(

√
Gl−1w)φ(

√
Gl−1w)T ] + σ2

b1n×n, l ∈ [3, L+ 1],

Ġl = σ2
wEw∼N (0,In)[φ

′(
√
Gl−1w)φ′(

√
Gl−1w)T ], l ∈ [3, L+ 1].

(13)

The sequence of NTK matrices (Kl)
L+1
l=1 can in turn be written using the following recurrence rela-

tionship,
nK1 = G1,

nKl = Gl + nKl−1 � Ġl

= Gl +

l−1∑
i=1

(
Gi �

(
�lj=i+1Ġj

))
.

(14)

Proof. For the sequence (Gl)
L+1
l=1 it suffices to prove for any i, j ∈ [n] and l ∈ [L+ 1] that

[Gl]i,j = Σ(l)(xi,xj)

and Gl is positive semi-definite. We proceed by induction, considering the base case l = 1 and
comparing (13) with (11) then it is evident that

[G1]i,j = Σ(1)(xi,xj).

In addition, G1 is also clearly positive semi-definite as for any u ∈ Rn

uTG1u = γ2
w

∥∥XTu
∥∥2

+ γ2
b

∥∥∥1Tnu
∥∥∥2

≥ 0.

We now assume the induction hypothesis is true for Gl−1. We will need to distinguish slightly
between two cases, l = 2 and l ∈ [3, L + 1]. The proof of the induction step in either case is
identical. To this end, and for notational ease, let V = X, w ∼ N (0, Id) when l = 2, and
V =

√
Gl−1, w ∼ N (0, In) for l ∈ [3, L + 1]. In either case we let vi denote the ith row of V.

For any i, j ∈ [n]

[Gl]ij = σ2
wEw[φ(vTi w)φ(vTj w)] + σ2

b .

Now letB1 = vTi w,B2 = vTj w and observe for any α1, α2 ∈ R that α1B1+α2B2 =
∑n
k (α1vik+

α2vjk)wk ∼ N (0, ‖α1vi + α2vj‖2). Therefore the joint distribution of (B1, B2) is a mean 0
bivariate normal distribution. Denoting the covariance matrix of this distribution as Ã ∈ R2×2, then
[Gl]ij can be expressed as

[Gl]ij = σ2
wE(B1,B2)∼Ã[φ(B1)φ(B2)] + σ2

b .
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To prove [Gl]i,j = Σ(l) it therefore suffices to show that Ã = A(l) as per (11). This follows by the
induction hypothesis as

E[B2
1 ] = vTi vi = [Gl−1]ii = Σ(l−1)(xi,xi),

E[B2
2 ] = vTj vj = [Gl−1]jj = Σ(l−1)(xj ,xj),

E[B1B2] = vTi vj = [Gl−1]ij = Σ(l−1)(xi,xj).

Finally, Gl is positive semi-definite as long as Ew[φ(Vw)φ(Vw)T ] is positive semi-definite. Let
M(w) = φ(Vw) ∈ Rn×n and observe for any w that M(w)M(w)T is positive semi-definite.
Therefore Ew[M(w)M(w)T ] must also be positive semi-definite. Thus the inductive step is com-
plete and we may conclude for l ∈ [L+ 1] that

[Gl]i,j = Σ(l)(xi,xj). (15)

For the proof of the expression for the sequence (Ġl)
L+1
l=2 it suffices to prove for any i, j ∈ [n] and

l ∈ [L+ 1] that
[Ġl]i,j = Σ̇(l)(xi,xj).

By comparing (13) with (11) this follows immediately from (15). Therefore with (13) proven (14)
follows from (12).

A.3 UNIT VARIANCE INITIALIZATION

The initialization scheme for a neural network, particularly a deep neural network, needs to be
designed with some care in order to avoid either vanishing or exploding gradients during training
Glorot & Bengio (2010); He et al. (2015); Mishkin & Matas (2016); LeCun et al. (2012). Some
of the most popular initialization strategies used in practice today, in particular LeCun et al. (2012)
and Glorot & Bengio (2010) initialization, first model the preactivations of the network as Gaussian
random variables and then select the network hyperparameters in order that the variance of these
idealized preactivations is fixed at one. Under Assumption 1 this idealized model on the preactiva-
tions is actually realized and if we additionally assume the conditions of Assumption 2 hold then
likewise the variance of the preactivations at every layer will be fixed at one. To this end, and as in
Poole et al. (2016); Murray et al. (2022), consider the function V : R≥0 → R≥0 defined as

V (q) = σ2
wEZ∼N (0,1)

[
φ (
√
qZ)

2
]

+ σ2
b . (16)

Noting that V is another expression for Σ(l)(x,x), derived via a change of variables as per Poole
et al. (2016), the sequence of variances (Σ(l)(x,x))Ll=2 can therefore be generated as follows,

Σ(l)(x,x) = V (Σ(l−1)(x,x)). (17)

The linear correlation ρ(l) : Rd ×Rd → [−1, 1] between the preactivations of two inputs x,y ∈ Rd
we define as

ρ(l)(x,y) =
Σ(l)(x,y)√

Σ(l)(x,x)Σ(l)(y,y)
. (18)

Assuming Σ(l)(x,x) = Σ(l)(y,y) = 1 for all l ∈ [L + 1], then ρ(l)(x,y) = Σ(l)(x,y). Again
as in Murray et al. (2022) and analogous to (16), with Z1, Z2 ∼ N (0, 1) independent, U1 := Z1,
U2(ρ) := (ρZ1 +

√
1− ρ2Z2) 3 we define the correlation function R : [−1, 1]→ [−1, 1] as

R(ρ) = σ2
wE[φ(U1)φ(U2(ρ))] + σ2

b . (19)

Noting under these assumptions that R is equivalent to Σ(l)(x,y), the sequence of correlations
(ρ(l)(x,y))Ll=2 can thus be generated as

ρ(l)(x,y) = R(ρ(l−1)(x,y)).

As observed in Poole et al. (2016); Schoenholz et al. (2017), R(1) = V (1) = 1, hence ρ = 1 is a
fixed point of R. We remark that as all preactivations are distributed as N (0, 1), then a correlation

3We remark that U1, U2 are dependent and identically distributed as U1, U2 ∼ N (0, 1).
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of one between preactivations implies they are equal. The stability of the fixed point ρ = 1 is of
particular significance in the context of initializing deep neural networks successfully. Under mild
conditions on the activation function one can compute the derivative of R, see e.g., Poole et al.
(2016); Schoenholz et al. (2017); Murray et al. (2022), as follows,

R′(ρ) = σ2
wE[φ′(U1)φ′(U2(ρ))]. (20)

Observe that the expression for Σ̇(l) and R′ are equivalent via a change of variables (Poole et al.,
2016), and therefore the sequence of correlation derivatives may be computed as

Σ̇(l)(x,y) = R′(ρ(l)(x,y)).

With the relevant background material now in place we are in a position to prove Lemma A.2.
Lemma A.2. Under Assumptions 1 and 2 and defining χ = σ2

wEZ∼N (0,1)[φ
′(Z)2] ∈ R>0, then for

all i, j ∈ [n], l ∈ [L+ 1]

• [Gn,l]ij ∈ [−1, 1] and [Gn,l]ii = 1,

• [Ġn,l]ij ∈ [−χ, χ] and [Ġn,l]ii = χ.

Furthermore, the NTK is a dot product kernel, meaning Θ(xi,xj) can be written as a function of
the inner product between the two inputs, Θ(xTi xj).

Proof. Recall from Lemma A.1 and its proof that for any l ∈ [L + 1], i, j ∈ [n] [Gn,l]ij =

Σ(l)(xi,xj) and [Ġn,l]ij = Σ̇(l)(xi,xj). We first prove by induction Σ(l)(xi,xi) = 1 for all
l ∈ [L+ 1]. The base case l = 1 follows as

Σ(1)(x,x) = γ2
wx

Tx + γ2
b = γ2

w + γ2
b = 1.

Assume the induction hypothesis is true for layer l− 1. With Z ∼ N (0, 1), then from (16) and (17)

Σ(l)(x,x) = V (Σ(l−1)(x,x))

= σ2
wE
[
φ2

(√
Σ(l−1)(x,x)Z

)]
+ σ2

b

= σ2
wE
[
φ2 (Z)

]
+ σ2

b

= 1,

thus the inductive step is complete. As an immediate consequence it follows that [Gl]ii = 1. Also,
for any i, j ∈ [n] and l ∈ [L+ 1],

Σ(l)(xi,xj) = ρ(l)(xi,xj) = R(ρ(l−1)(xi,xj)) = R(...R(R(xTi xj))).

Thus we can consider Σ(l) as a univariate function of the input correlation Σ : [−1, 1] → [−1, 1]
and also conclude that [Gl]ij ∈ [−1, 1]. Furthermore,

Σ̇(l)(xi,xj) = R′(ρ(l)(xi,xj)) = R′(R(...R(R(xTi xj)))),

which likewise implies Σ̇ is a dot product kernel. Recall now the random variables introduced to
define R: Z1, Z2 ∼ N (0, 1) are independent and U1 = Z1, U2 = (ρZ1 +

√
1− ρ2Z2). Observe

U1, U2 are dependent but identically distributed as U1, U2 ∼ N (0, 1). For any ρ ∈ [−1, 1] then
applying the Cauchy-Schwarz inequality gives

|R′(ρ)|2 = σ4
w |E[φ′(U1)φ′(U2)]|2 ≤ σ4

wE[φ′(U1)2]E[φ′(U2)2] = σ4
wE[φ′(U1)2]2 = |R′(1)|2.

As a result, under the assumptions of the lemma Σ̇(l) : [−1, 1] → [−χ, χ] and Σ̇(l)(xi,xi) = χ.
From this it immediately follows that [Ġl]ij ∈ [−χ, χ] and [Ġl]ii = χ as claimed. Finally, as
Σ : [−1, 1] → [−1, 1] and Σ̇ : [−1, 1] → [−χ, χ] are dot product kernels, then from (12) the NTK
must also be a dot product kernel and furthermore a univariate function of the pairwise correlation
of its input arguments.

The following corollary, which follows immediately from Lemma A.2 and (14), characterizes the
trace of the NTK matrix in terms of the trace of the input gram.
Corollary A.3. Under the same conditions as Lemma A.2, suppose φ and σ2

w are chosen such that
χ = 1. Then

Tr(Kn,l) = l. (21)
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A.4 HERMITE EXPANSIONS

We say that a function f : R → R is square integrable w.r.t. the standard Gaussian measure γ =

e−x
2/2/
√

2π if Ex∼N (0,1)[f(x)2] < ∞. We denote by L2(R, γ) the space of all such functions.
The probabilist’s Hermite polynomials are given by

Hk(x) = (−1)
k
ex

2/2 d
k

dxk
e−x

2/2, k = 0, 1, . . . .

The first three Hermite polynomials are H0(x) = 1, H1(x) = x, H2(x) = (x2 − 1). Let
hk(x) = Hk(x)√

k!
denote the normalized probabilist’s Hermite polynomials. The normalized Hermite

polynomials form a complete orthonormal basis in L2(R, γ) (O’Donnell, 2014, §11): in all that
follows, whenever we reference the Hermite polynomials, we will be referring to the normalized
Hermite polynomials. The Hermite expansion of a function φ ∈ L2(R, γ) is given by

φ(x) =

∞∑
k=0

µk(φ)hk(x), (22)

where
µk(φ) = EX∼N (0,1)[φ(X)hk(X)] (23)

is the kth normalized probabilist’s Hermite coefficient of φ. In what follows we shall make use of
the following identities.

∀k ≥ 1, h′k(x) =
√
khk−1(x), (24)

∀k ≥ 1, xhk(x) =
√
k + 1hk+1(x) +

√
khk−1(x). (25)

hk(0) =

{
0, if k is odd

1√
k!

(−1)
k
2 (k − 1)!! if k is even ,

where k!! =

{
1, k ≤ 0
k · (k − 2) · · · 5 · 3 · 1, k > 0 odd
k · (k − 2) · · · 6 · 4 · 2, k > 0 even .

(26)

We also remark that the more commonly encountered physicist’s Hermite polynomials, which we
denote H̃k, are related to the normalized probablist’s polynomials as follows,

hk(z) =
2−k/2H̃k(z/

√
2)√

k!
.

The Hermite expansion of the activation function deployed will play a key role in determining the
coefficients of the NTK power series. In particular, the Hermite coefficients of ReLU are as follows.

Lemma A.4. Daniely et al. (2016) For φ(z) = max{0, z} the Hermite coefficients are given by

µk(φ) =


1/
√

2π, k = 0,

1/2, k = 1,

(k − 3)!!/
√

2πk!, k even and k ≥ 2,

0, k odd and k > 3.

(27)

B EXPRESSING THE NTK AS A POWER SERIES

B.1 DERIVING A POWER SERIES FOR THE NTK

We will require the following minor adaptation of Nguyen & Mondelli (2020, Lemma D.2). We
remark this result was first stated for ReLU and Softplus activations in the work of Oymak &
Soltanolkotabi (2020, Lemma H.2).
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Lemma B.1. For arbitrary n, d ∈ N, let A ∈ Rn×d. For i ∈ [n], we denote the ith row of A as ai,
and further assume that ‖ai‖ = 1. Let φ : R→ R satisfy φ ∈ L2(R, γ) and define

M = Ew∼N (0,In)[φ(Aw)φ(Aw)T ] ∈ Rn×n.

Then the matrix series

SK =

K∑
k=0

µ2
k(φ)

(
AAT

)�k
converges uniformly to M as K →∞.

The proof of Lemma B.1 follows exactly as in (Nguyen & Mondelli, 2020, Lemma D.2), and is in
fact slightly simpler due to the fact we assume the rows of A are unit length and w ∼ N (0, Id)
instead of

√
d and w ∼ N (0, 1

d Id) respectively. For the ease of the reader, we now recall the
following definitions, which are also stated in Section 3. Letting ᾱl := (αp,l)

∞
p=0 denote a sequence

of real coefficients, then

F (p, k, ᾱl) :=


1 k = 0 and p = 0,

0 k = 0 and p ≥ 1,∑
(ji)∈J (p,k)

∏k
i=1 αji,l k ≥ 1 and p ≥ 0,

(28)

where

J (p, k) := {(ji)i∈[k] : ji ≥ 0 ∀i ∈ [k],

k∑
i=1

ji = p}

for all p ∈ Z≥0, k ∈ Z≥1.

We are now ready to derive power series for elements of (Gl))
L+1
l=1 and (Ġl))

L+1
l=2 .

Lemma B.2. Under Assumptions 1 and 2, for all l ∈ [2, L+ 1]

Gl =

∞∑
k=0

αk,l(XXT )�k, (29)

where the series for each element [Gl]ij converges absolutely and the coefficients αp,l are nonnega-
tive. The coefficients of the series (29) for all p ∈ Z≥0 can be expressed via the following recurrence
relationship,

αp,l =

{
σ2
wµ

2
p(φ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3.
(30)

Furthermore,

Ġl =

∞∑
k=0

υk,l(XXT )�k, (31)

where likewise the series for each entry [Ġl]ij converges absolutely and the coefficients υp,l for all
p ∈ Z≥0 are nonnegative and can be expressed via the following recurrence relationship,

υp,l =

{
σ2
wµ

2
p(φ
′), l = 2,∑∞

k=0 υk,2F (p, k, ᾱl−1), l ≥ 3.
(32)

Proof. We start by proving (29) and (30). Proceeding by induction, consider the base case l = 2.
From Lemma A.1

G2 = σ2
wEw∼N (0,Id)[φ(Xw)φ(Xw)T ] + σ2

b1n×n.
By the assumptions of the lemma, the conditions of Lemma B.1 are satisfied and therefore

G2 = σ2
w

∞∑
k=0

µ2
k(φ)

(
XXT

)�k
+ σ2

b1n×n

= α0,21n×n +

∞∑
k=1

αk,2
(
XXT

)�k
.
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Observe the coefficients (αk,2)k∈Z≥0
are nonnegative. Therefore, for any i, j ∈ [n] using

Lemma A.2 the series for [Gl]ij satisfies
∞∑
k=0

|αk,2|
∣∣〈xi,xj〉k∣∣ ≤ ∞∑

k=0

αk,2〈xi,xi〉k = [Gl]ii = 1 (33)

and so must be absolutely convergent. With the base case proved we proceed to assume the inductive
hypothesis holds for arbitrary Gl with l ∈ [2, L]. Observe

Gl+1 = σ2
wEw∼N (0,In)[φ(Aw)φ(Aw)T ] + σ2

b1n×n,

where A is a matrix square root of Gl, meaning Gl = AA. Recall from Lemma A.1 that Gl is
also symmetric and positive semi-definite, therefore we may additionally assume, without loss of
generality, that A ∈ Rn×n is symmetric, which conveniently implies Gn,l = AAT . Under the
assumptions of the lemma the conditions for Lemma A.2 are satisfied and as a result [Gn,l]ii =
‖ai‖ = 1 for all i ∈ [n], where we recall ai denotes the ith row of A. Therefore we may again apply
Lemma A.1,

Gl+1 = σ2
w

∞∑
k=0

µ2
k(φ)

(
AAT

)�k
+ σ2

b1n×n

= (σ2
wµ

2
0(φ) + σ2

b )1n×n + σ2
w

∞∑
k=1

µ2
k(φ) (Gn,l)

�k

= (σ2
wµ

2
0(φ) + σ2

b )1n×n + σ2
w

∞∑
k=1

µ2
k(φ)

( ∞∑
m=0

αm,l(XXT )�m

)�k
,

where the final equality follows from the inductive hypothesis. For any pair of indices i, j ∈ [n]

[Gl+1]ij = (σ2
wµ

2
0(φ) + σ2

b ) + σ2
w

∞∑
k=1

µ2
k(φ)

( ∞∑
m=0

αm,l〈xi,xj〉m
)k

.

By the induction hypothesis, for any i, j ∈ [n] the series
∑∞
m=0 αm,l〈xi,xj〉m is absolutely conver-

gent. Therefore, from the Cauchy product of power series and for any k ∈ Z≥0 we have( ∞∑
m=0

αm,l〈xi,xj〉m
)k

=

∞∑
p=0

F (p, k, ᾱl)〈xi,xj〉p, (34)

where F (p, k, ᾱl) is defined in (4). By definition, F (p, k, ᾱl) is a sum of products of positive
coefficients, and therefore |F (p, k, ᾱl)| = F (p, k, ᾱl). In addition, recall again by Assumption 2
and Lemma A.2 that [Gl]ii = 1. As a result, for any k ∈ Z≥0, as |〈xi,xj〉| ≤ 1

∞∑
p=0

|F (p, k, ᾱl)〈xi,xj〉p| ≤

( ∞∑
m=0

αm,l

)k
= [Gn,l]ii = 1 (35)

and therefore the series
∑∞
p=0 F (p, k, ᾱl)〈xi,xj〉p converges absolutely. Recalling from the proof

of the base case that the series
∑∞
p=1 αp,2 is absolutely convergent and has only nonnegative ele-

ments, we may therefore interchange the order of summation in the following,

[Gl+1]ij = (σ2
wµ

2
0(φ) + σ2

b ) + σ2
w

∞∑
k=1

µ2
k(φ)

( ∞∑
p=0

F (p, k, ᾱl)〈xi,xj〉p
)

= α0,2 +

∞∑
k=1

αk,2

( ∞∑
p=0

F (p, k, ᾱl)〈xi,xj〉p
)

= α0,2 +

∞∑
p=0

( ∞∑
k=1

αk,2F (p, k, ᾱl)

)
〈xi,xj〉p.
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Recalling the definition of F (p, k, l) in (4), in particular F (0, 0, ᾱl) = 1 and F (p, 0, ᾱl) = 0 for
p ∈ Z≥1, then

[Gl+1]ij =

(
α0,2 +

∞∑
k=1

αk,2F (0, k, ᾱl)

)
〈xi,xj〉0 +

∞∑
p=1

( ∞∑
k=1

αk,2F (p, k, ᾱl)

)
〈xi,xj〉p

=

( ∞∑
k=0

αk,2F (0, k, ᾱl)

)
〈xi,xj〉0 +

∞∑
p=1

( ∞∑
k=0

αk,2F (p, k, ᾱl)

)
〈xi,xj〉p

=

∞∑
p=0

( ∞∑
k=0

αk,2F (p, k, ᾱl)

)
〈xi,xj〉p

=

∞∑
p=0

αp,l+1〈xi,xj〉p.

As the indices i, j ∈ [n] were arbitrary we conclude that

Gl+1 =

∞∑
p=0

αp,l+1

(
XXT

)�p

as claimed. In addition, by inspection and using the induction hypothesis it is clear that the coeffi-
cients (αp,l+1)∞p=0 are nonnegative. Therefore, by an argument identical to (33), the series for each
entry of [Gl+1]ij is absolutely convergent. This concludes the proof of (29) and (30).

We now turn our attention to proving the (31) and (32). Under the assumptions of the lemma the
conditions for Lemmas A.1 and B.1 are satisfied and therefore for the base case l = 2

Ġ2 = σ2
wEw∼N (0,In)[φ

′(Xw)φ′(Xw)T ]

= σ2
w

∞∑
k=0

µ2
k(φ′)

(
XXT

)�k
=

∞∑
k=0

υk,2
(
XXT

)�k
.

By inspection the coefficients (υp,2)∞p=0 are nonnegative and as a result by an argument again iden-
tical to (33) the series for each entry of [Ġ2]ij is absolutely convergent. For l ∈ [2, L], from (29)
and its proof there is a matrix A ∈ Rn×n such that Gl = AAT . Again applying Lemma B.1

Ġn,l+1 = σ2
wEw∼N (0,In)[φ

′(Aw)φ′(Aw)T ]

= σ2
w

∞∑
k=0

µ2
k(φ′)

(
AAT

)�k
=

∞∑
k=0

υk,2 (Gn,l)
�k

=

∞∑
k=0

υk,2

( ∞∑
p=0

αp,l
(
XXT

)�p)�k
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Analyzing now an arbitrary entry [Ġl+1]ij , by substituting in the power series expression for Gl

from (29) and using (34) we have

[Ġl+1]ij =

∞∑
k=0

υk,2

( ∞∑
p=0

αp,l〈xi,xj〉p
)k

=

∞∑
k=0

υk,2

( ∞∑
p=0

F (p, k, ᾱl)〈xi,xj〉p
)

=

∞∑
p=0

( ∞∑
k=0

υk,2F (p, k, ᾱl)

)
〈xi,xj〉p

=

∞∑
p=0

υp,l+1〈xi,xj〉p.

Note that exchanging the order of summation in the third equality above is justified as
for any k ∈ Z≥0 by (35) we have

∑∞
p=0 F (p, k, ᾱl)|〈xi,xj〉|p ≤ 1 and therefore∑∞

k=0

∑∞
p=0 υk,2F (p, k, ᾱl)〈xi,xj〉p converges absolutely. As the indices i, j ∈ [n] were arbitrary

we conclude that

Ġl+1 =

∞∑
p=0

υp,l+1

(
XXT

)�p
as claimed. Finally, by inspection the coefficients (υp,l+1)∞p=0 are nonnegative, therefore, and again
by an argument identical to (33), the series for each entry of [Ġn,l+1]ij is absolutely convergent.
This concludes the proof.

We are now prove the key result of Section 3.

Theorem 3.1. Under Assumptions 1 and 2, for all l ∈ [L+ 1]

nKl =

∞∑
p=0

κp,l
(
XXT

)�p
. (5)

The series for each entry n[Kl]ij converges absolutely and the coefficients κp,l are nonnegative and
can be evaluated using the recurrence relationships

κp,l =

{
δp=0γ

2
b + δp=1γ

2
w, l = 1,

αp,l +
∑p
q=0 κq,l−1υp−q,l, l ∈ [2, L+ 1],

(6)

where

αp,l =

{
σ2
wµ

2
p(φ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3,
(7)

and

υp,l =

{
σ2
wµ

2
p(φ
′), l = 2,∑∞

k=0 υk,2F (p, k, ᾱl−1), l ≥ 3,
(8)

are likewise nonnegative for all p ∈ Z≥0 and l ∈ [2, L+ 1].

Proof. We proceed by induction. The base case l = 1 follows trivially from Lemma A.1. We
therefore assume the induction hypothesis holds for an arbitrary l − 1 ∈ [1, L]. From (14) and
Lemma B.2

nKl = Gl + nKl−1 � Ġl

=

( ∞∑
p=0

αp,l
(
XXT

)�p)
+

(
n

∞∑
q=0

κq,l−1

(
XXT

)�q)�( ∞∑
w=0

υw,l
(
XXT

)�w)
.
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Therefore, for arbitrary i, j ∈ [n]

[nKl]ij =

∞∑
p=0

αp,l〈xi,xj〉p +

(
n

∞∑
q=0

κq,l−1〈xi,xj〉q
)( ∞∑

w=0

υw,l〈xi,xj〉w
)
.

Observe n
∑∞
q=0 κq,l−1〈xi,xj〉q = Θ(l−1)(xi,xj) and therefore the series must converge due to the

convergence of the NTK. Furthermore,
∑∞
w=0 υw,l〈xi,xj〉w = [Ġn,l]ij and therefore is absolutely

convergent by Lemma B.2. As a result, by Merten’s Theorem the product of these two series is equal
to their Cauchy product. Therefore

[nKl]ij =

∞∑
p=0

αp,l〈xi,xj〉p +

∞∑
p=0

(
p∑
q=0

κq,l−1υp−q,l

)
〈xi,xj〉p

=

∞∑
p=0

(
αp,l +

p∑
q=0

κq,l−1υp−q,l

)
〈xi,xj〉p

=

∞∑
p=0

κp,l〈xi,xj〉p,

from which the (5) immediately follows.

B.2 ANALYZING THE COEFFICIENTS OF THE NTK POWER SERIES

In this section we study the coefficients of the NTK power series stated in Theorem 3.1. Our first
observation is that, under additional assumptions on the activation function φ, the recurrence rela-
tionship (6) can be simplified in order to depend only on the Hermite expansion of φ.
Lemma B.3. Under Assumption 3 the Hermite coefficients of φ′ satisfy

µk(φ′) =
√
k + 1µk+1(φ)

for all k ∈ Z≥0.

Proof. Note for each n ∈ N as φ is absolutely continuous on [−n, n] it is differentiable a.e. on
[−n, n]. It follows by the countable additivity of the Lebesgue measure that φ is differentiable a.e.
on R. Furthermore, as φ is polynomially bounded we have φ ∈ L2(R, e−x2/2/

√
2π). Fix a > 0.

Since φ is absolutely continuous on [−a, a] it is of bounded variation on [−a, a]. Also note that
hk(x)e−x

2/2 is of bounded variation on [−a, a] due to having a bounded derivative. Thus we have
by Lebesgue-Stieltjes integration-by-parts (see e.g. Folland 1999, Chapter 3)∫ a

−a
φ′(x)hk(x)e−x

2/2dx

= φ(a)hk(a)e−a
2/2 − φ(−a)hk(−a)e−a

2/2 +

∫ a

−a
φ(x)[xhk(x)− h′k(x)]e−x

2/2dx

= φ(a)hk(a)e−a
2/2 − φ(−a)hk(−a)e−a

2/2 +

∫ a

−a
φ(x)
√
k + 1hk+1(x)e−x

2/2dx,

where in the last line above we have used the fact that (24) and (25) imply that xhk(x) − h′k(x) =√
k + 1hk+1(x). Thus we have shown∫ a

−a
φ′(x)hk(x)e−x

2/2dx

= φ(a)hk(a)e−a
2/2 − φ(−a)hk(−a)e−a

2/2 +

∫ a

−a
φ(x)
√
k + 1hk+1(x)e−x

2/2dx.

We note that since |φ(x)hk(x)| = O(|x|β+k) we have that as a → ∞ the first two terms above
vanish. Thus by sending a→∞ we have∫ ∞

−∞
φ′(x)hk(x)e−x

2/2dx =

∫ ∞
−∞

√
k + 1φ(x)hk+1(x)e−x

2/2dx.

After dividing by
√

2π we get the desired result.
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In particular, under Assumption 3, and as highlighted by Corollary B.4, which follows directly from
Lemmas B.2 and B.3, the NTK coefficients can be computed only using the Hermite coefficients
of φ.

Corollary B.4. Under Assumptions 1, 2 and 3, for all p ∈ Z≥0

υp,l =

{
(p+ 1)αp+1,2, l = 2,∑∞
k=0 υk,2F (p, k, ᾱl−1), l ≥ 3.

(36)

With these results in place we proceed to analyze the decay of the coefficients of the NTK for depth
two networks. As stated in the main text, the decay of the NTK coefficients depends on the decay of
the Hermite coefficients of the activation function deployed. This in turn is strongly influenced by
the behavior of the tails of the activation function. To this end we roughly group activation functions
into three categories: growing tails, flat or constant tails and finally decaying tails. Analyzing each
of these groups in full generality is beyond the scope of this paper, we therefore instead study the
behavior of ReLU, Tanh and Gaussian activation functions, being prototypical and practically used
examples of each of these three groups respectively. We remark that these three activation functions
satisfy Assumption 3. For typographical ease we let ωσ(z) := (1/

√
2πσ2) exp

(
−z2/(2σ2)

)
denote

the Gaussian activation function with variance σ2.

Lemma B.5. Under Assumptions 1 and 2,

1. if φ(z) = ReLU(z), then κp,2 = δ(γb>0)∪(p even)Θ(p−3/2),

2. if φ(z) = Tanh(z), then κp,2 = O
(

exp
(
−π
√
p−1
2

))
,

3. if φ(z) = ωσ(z), then κp,2 = δ(γb>0)∪(p even)Θ(p1/2(σ2 + 1)−p).

Proof. Recall (9),

κp,2 = σ2
w(1 + γ2

wp)µ
2
p(φ) + σ2

wγ
2
b (1 + p)µ2

p+1(φ) + δp=0σ
2
b .

In order to bound κp,2 we proceed by using Lemma A.4 to bound the square of the Hermite co-
efficients. We start with ReLU. Note Lemma A.4 actually provides precise expressions for the
Hermite coefficients of ReLU, however, these are not immediately easy to interpret. Observe from
Lemma A.4 that above index p = 2 all odd indexed Hermite coefficients are 0. It therefore suffices
to bound the even indexed terms, given by

µp(ReLU) =
1√
2π

(p− 3)!!√
p!

.

Observe from (26) that for p even

hp(0) = (−1)p/2
(p− 1)!!√

p!
,

therefore

µp(ReLU) =
1√
2π

(p− 3)!!√
p!

=
1√
2π

|hp(0)|
p− 1

.

Analyzing now |hp(0)|,

(p− 1)!!√
p!

=

∏p/2
i=1(2i− 1)√∏p/2
i=1(2i− 1)2i

=

√√√√∏p/2
i=1(2i− 1)∏p/2

i=1 2i
=

√
(p− 1)!!

p!!
.

Here, the expression inside the square root is referred to in the literature as the Wallis ratio, for which
the following lower and upper bounds are available Kazarinoff (1956),√

1

π(p+ 0.5)
<

(p− 1)!!

p!!
<

√
1

π(p+ 0.25)
. (37)
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As a result
|hp(0)| = Θ(p−1/4)

and therefore

µp(ReLU) =

{
Θ(p−5/4), p even,
0, p odd.

As (p+ 1)−3/2 = Θ(p−3/2), then from (9)

κp,2 = Θ((pµ2
p(ReLU) + δγb>0(p+ 1)µ2

p+1(ReLU)))

= Θ((δp evenp
−3/2 + δ(p odd)∩(γb>0)(p+ 1)−3/2))

= Θ
(
δ(p even)∪((p odd)∩(γb>0))p

−3/2
)

= δ(p even)∪(γb>0)Θ
(
p−3/2

)
as claimed in item 1.

We now proceed to analyze φ(z) = Tanh(z). From Panigrahi et al. (2020, Corollary F.7.1)

µp(Tanh
′) = O

(
exp

(
−
π
√
p

4

))
.

As Tanh satisfies the conditions of Lemma B.3

µp(Tanh) = p−1/2µp−1(Tanh′) = O
(
p−1/2 exp

(
−π
√
p− 1

4

))
.

Therefore the result claimed in item 2. follows as

κp,2 = O((pµ2
p(Tanh) + (p+ 1)µ2

p+1(Tanh)))

= O
(

exp

(
−π
√
p− 1

2

)
+ exp

(
−
π
√
p

2

))
= O

(
exp

(
−π
√
p− 1

2

))
.

Finally, we now consider φ(z) = ωσ(z) where ωσ(z) is the density function ofN (0, σ2). Similar to
ReLU, analytic expressions for the Hermite coefficients of ωσ(z) are known (see e.g., Davis, 2021,
Theorem 2.9),

µ2
p(ωσ) =

{
p!

((p/2)!)22p2π(σ2+1)p+1 , p even,
0, p odd.

For p even
(p/2)! = p!!2−p/2.

Therefore
p!

(p/2)!(p/2)!
= 2p

p!

p!!p!!
= 2p

(p− 1)!!

p!!
.

As a result, for p even and using (37), it follows that

µ2
p(ωσ) =

(σ2 + 1)−(p+1)

2π

(p− 1)!!

p!!
= Θ(p−1/2(σ2 + 1)−p).

Finally, since (p+ 1)1/2(σ2 + 1)−p−1 = Θ(p1/2(σ2 + 1)−p), then from (9)

κp,2 = Θ((pµ2
p(ωσ) + δγb>0(p+ 1)µ2

p+1(ωσ)))

= Θ
(
δ(p even)∪((p odd)∩(γb>0))p

1/2(σ2 + 1)−p
)

= δ(p even)∪(γb>0)Θ
(
p1/2(σ2 + 1)−p

)
as claimed in item 3.
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B.3 NUMERICAL APPROXIMATION VIA A TRUNCATED NTK POWER SERIES AND
INTERPRETATION OF FIGURE 2

Currently, computing the infinite width NTK requires either a) explicit evaluation of the Gaussian
integrals highlighted in (13), b) numerical approximation of these same integrals such as in Lee
et al. (2018), or c) approximation via a sufficiently wide yet still finite width network, see for in-
stance Engel et al. (2022); Novak et al. (2022). These Gaussian integrals (13) can be solved solved
analytically only for a minority of activation functions, notably ReLU as discussed for example by
Arora et al. (2019b), while the numerical integration and finite width approximation approaches are
relatively computationally expensive. The truncated NTK power series we define as analogous to
(5) but with the series involved being computed only up to the T th element. Once the top T coeffi-
cients are computed, then for any input correlation the NTK can be approximated by evaluating the
corresponding finite degree T polynomial.
Definition B.6. For an arbitrary pair x,y ∈ Sd−1 let ρ = xTy denote their linear correlation.
Under Assumptions 1, 2 and 3, for all l ∈ [2, L + 1] the T -truncated NTK power series Θ̂

(l)
T :

[−1, 1]→ R is defined as

Θ
(l)
T (ρ) =

T∑
p=0

κ̂p,lρ
p. (38)

and whose coefficients are defined via the following recurrence relation,

κ̂p,l =

{
δp=0γ

2
b + δp=1γ

2
w, l = 1,

α̂p,l +
∑p
q=0 κ̂q,l−1υ̂p−q,l, l ∈ [2, L+ 1].

(39)

Here, with ¯̂αl−1 = (α̂p,l−1)Tp=0,

α̂p,l :=

{
σ2
wµ

2
p(φ) + δp=0σ

2
b , l = 2,∑T

k=0 α̂k,2F (p, k, ¯̂αl−1), l ≥ 3
(40)

and

υ̂p,l :=

{√
p+ 1α̂p+1,2, l = 2,∑T
k=0

√
k + 1α̂p+1,2F (p, k, ¯̂αl), l ≥ 3.

(41)

In order to analyze the performance and potential of the truncated NTK for numerical approximation,
we compute it for ReLU and compare it with its analytical expression Arora et al. (2019b). To recall
this result, let

R(ρ) :=

√
1− ρ2 + ρ · arcsin(ρ)

π
+
ρ

2
,

R′(ρ) :=
arcsin(ρ)

π
+

1

2
.

Under Assumptions 1 and 2, with φ(z) = ReLU(z), γ2
w = 1, σ2

w = 2, σ2
b = γ2

b = 0, x,y ∈ Sd and
ρ1 := xTy, then Θ1(x,y) = ρ and for all l ∈ [2, L+ 1]

ρl = R(ρl−1),

Θl(x,y) = ρl + ρl−1R
′(ρl−1).

(42)

Turning our attention to Figure 2, we observe particularly for input correlations |ρ| ≈ 0.5 and
below then the truncated ReLU NTK power series achieves machine level precision. For |ρ| ≈ 1
higher order coefficients play a more significant role. As the truncated ReLU NTK power series
approximates these coefficients less well the overall approximation of the ReLU NTK is worse. We
remark also that negative correlations have a smaller absolute error as odd indexed terms cancel with
even index terms: we emphasize again that in Figure 2 we plot the absolute not relative error. In
addition, for L = 1 there is symmetry in the absolute error for positive and negative correlations
as αp,2 = 0 for all odd p. One also observes that approximation accuracy goes down with depth,
which is due to the error in the coefficients at the previous layer contributing to the error in the
coefficients at the next, thereby resulting in an accumulation of error with depth. Also, and certainly
as one might expect, a larger truncation point T results in overall better approximation. Finally, as
the decay in the Hermite coefficients for ReLU is relatively slow, see e.g., Table 1 and Lemma 3.2,
we expect the truncated ReLU NTK power series to perform worse relative to the truncated NTK’s
for other activation functions.
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Figure 2: (NTK Approximation via Truncation) Absolute error between the analytical ReLU NTK
and the truncated ReLU NTK power series as a function of the input correlation ρ for two different
values of the truncation point T and three different values for the depth L of the network. Although
the truncated NTK achieves a uniform approximation error of only 10−1 on [−1, 1], for |ρ| ≤ 0.5,
which we remark is more typical for real world data, T = 50 suffices for the truncated NTK to
achieve machine level precision.

B.4 CHARACTERIZING NTK POWER SERIES COEFFICIENT DECAY RATES FOR DEEP
NETWORKS

In general, Theorem 3.1 does not provide a straightforward path to analyzing the decay of the NTK
power series coefficients for depths greater than two. This is at least in part due to the difficulty
of analyzing F (p, k, ᾱl−1), which recall is the sum of all ordered products of k elements of ᾱl−1

whose indices sum to p, defined in (4). However, in the setting where the squares of the Hermite
coefficients, and therefore the series (αp,2)∞p=0, decay at an exponential rate, this quantity can be
characterized and therefore an analysis, at least to a certain degree, of the impact of depth con-
ducted. Although admittedly limited in scope, we highlight that this setting is relevant for the study
of Gaussian activation functions and radial basis function (RBF) networks. We will also make the
additional simplifying assumption that the activation function has zero Gaussian mean (which can be
obtained by centering). Unfortunately this further reduces the applicability of the following results
to activation functions commonly used in practice. We leave the study of relaxing this zero bias as-
sumption, perhaps only enforcing exponential decay asymptotically, as well as a proper exploration
of other decay patterns, to future work.

The following lemma precisely describes, in the specific setting considered here, the evolution of
the coefficients of the Gaussian Process kernel with depth.

Lemma B.7. Let α0,2 = 0 and αp,2 = C2η
−p
2 for p ∈ Z≥1, where C2 and η2 are constants such

that
∑∞
p=1 αp,2 = 1. Then for all l ≥ 2 and p ∈ Z≥0

αp,l+1 =

{
0, p = 0,

Cl+1η
−p
l+1, p ≥ 1

(43)

where the constants ηl+1 and Cl+1 are defined as

ηl+1 =
ηlη2

η2 + Cl
, Cl+1 =

ClC2

η2 + Cl
. (44)

Proof. Observe for l = 2, we have that α0,l = 0 and αp,l = Clη
−p
l hold by assumption. Thus

by induction it suffices to show that α0,l = 0 and αp,l = Clη
−p
l implies (43) and (44) hold. Thus
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assume for some l ≥ 2 we have that α0,l = 0 and αp,l = Clη
−p
l . Recall the definition of F from

(4): as α0,l = 0 then with p ≥ 1 and 1 ≤ k ≤ p

F (p, k, ᾱl) =
∑

(ji)∈J (p,k)

k∏
i=1

αji,l =
∑

(ji)∈J+(p,k)

k∏
i=1

αji,l,

where

J+(p, k) :=
{

(ji)i∈[k] : ji ≥ 1 ∀i ∈ [k],

k∑
i=1

ji = p
}

for all p ∈ Z≥1, k ∈ [p],

which is the set of all k-tuples of positive (instead of non-negative) integers which sum to p. Substi-
tuting αp,l = Clη

−p
l then

F (p, k, ᾱl) =
∑

(ji)∈J+(p,k)

Ckl η
−p
l = Ckl η

−p
l |J+(p, k)| = Ckl η

−p
l

(
p− 1

k − 1

)
,

where the final equality follows from a stars and bars argument. Now observe for k > p that at
least one of the indices in (ji)

k
i=1 must be 0 and therefore

∏k
i=1 αji,2 = 0. As a result under the

assumptions of the lemma

F (p, k, ᾱl) =


1, k = 0 and p = 0,

Ckl η
−p
l

(
p−1
k−1

)
, k ∈ [p] and p ≥ 1,

0, otherwise.
(45)

Substituting (45) into (7) it follows that

α0,l+1 =

∞∑
k=0

αk,2F (0, k, ᾱl) = α0,2 = 0

and for p ≥ 1

αp,l+1 =

∞∑
k=0

αk,2F (p, k, ᾱl)

= C2η
−p
l

p∑
k=1

(
Cl
η2

)k (
p− 1

k − 1

)

= η−pl Clη
−1
2 C2

p−1∑
h=0

(
Cl
η2

)h(
p− 1

h

)

= η−pl Clη
−1
2 C2

(
1 +

Cl
η2

)p−1

=
ClC2

η2 + Cl

(
ηlη2

η2 + Cl

)−p
= Cl+1η

−p
l+1

as claimed.

We now analyze the coefficients of the derivative of the Gaussian Process kernel.
Lemma B.8. In addition to the assumptions of Lemma B.7, assume also that φ satisfies Assumption
3. Then υp,2 = C2

η2
(1 + p)η−p2 . Furthermore, for all l ≥ 2 and p ∈ Z≥0

υp,l+1 =

{
C2η

−1
2 , p = 0,

(V ′l+1 + Vl+1p)η
−p
l+1, p ≥ 1,

(46)

where the constants V ′l+1 and Vl+1 are defined as

V ′l+1 :=
2C2Cl

η2(Cl + η2)
− C2C

2
l

η2(Cl + η2)2
, Vl+1 :=

C2C
2
l

η2(Cl + η2)2
(47)

and Cl and ηl are defined in (44).

30



Published as a conference paper at ICLR 2023

Proof. Under Assumption 3 then for all p ∈ Z≥0 we have

υp,2 = σ2
wµ

2
p(φ
′) = σ2

w(p+ 1)µp+1(φ)2 = (p+ 1)αp+1,2 =
C2

η2
(1 + p)η−p2 .

For l ≥ 2 and p = 0 it therefore follows that

υ0,l+1 =

∞∑
k=0

(k + 1)αk+1,2F (0, k, ᾱl) = α1,2 = C2η
−1
2 .

For l ≥ 2 and p ≥ 1 then

υp,l+1 =

∞∑
k=0

υk,2F (p, k, ᾱl)

=

∞∑
k=0

(k + 1)αk+1,2F (p, k, ᾱl)

=

∞∑
h=1

hC2η
−h
2 F (p, h− 1, ᾱl)

=
C2

Cl
η−pl

p+1∑
h=2

h

(
Cl
η2

)h(
p− 1

h− 2

)

=
C2

Cl
η−pl

p−1∑
r=0

(r + 2)

(
Cl
η2

)r+2(
p− 1

r

)

=
C2Cl
η2

2

η−pl

(
2

p−1∑
r=0

(
Cl
η2

)r (
p− 1

r

)
+

p−1∑
r=0

r

(
Cl
η2

)r (
p− 1

r

))

=
C2Cl
η2

2

η−pl

(
2

(
1 +

Cl
η2

)p−1

+
Cl
η2

(p− 1)

(
1 +

Cl
η2

)p−2
)

=
2C2Cl

η2(Cl + η2)

(
ηlη2

η2 + Cl

)−p
+

C2C
2
l

η2(Cl + η2)2
(p− 1)

(
ηlη2

η2 + Cl

)−p
=

(
2C2Cl

η2(Cl + η2)
− C2C

2
l

η2(Cl + η2)2

)
η−pl+1 +

(
C2C

2
l

η2(Cl + η2)2

)
pη−pl+1

= (V ′l+1 + Vl+1p)η
−p
l+1

as claimed.

With the coefficients of both the Gaussian Process kernel and its derivative characterized, we proceed
to upper bound the decay of the NTK coefficients in the specific setting outlined in Lemma B.7 and
B.8.
Lemma B.9. Let the data, hyperparameters and activation function φ be such that Assumptions 1,
2 and 3 are satisfied along with the conditions of of Lemma B.7. Then for any l ≥ 2 there exist
positive constants M ′l and K ′l such that for all p ∈ Z≥1

κp,l ≤ (M ′l +K ′lp
2l−3)η−pl (48)

where ηl is defined in Lemma B.7.

Proof. We proceed by induction starting with the base case l = 2. Applying the results of Lemmas
B.7 and B.8 to (6) then for p ∈ Z≥1

κp,2 = ((C2 + γ2
bC2η

−1
2 ) + (γ2

bC2η
−1
2 + γ2

wC2)p)η−p2 . (49)

If we define M ′2 := C2 + γ2
bC2η

−1
2 and K ′2 := γ2

bC2η
−1
2 + γ2

wC2, which are clearly positive
constants, then κp,2 = (M ′2 + K ′2p)η

−p
2 and so for l = 2 the induction hypothesis clearly holds.
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We now assume the inductive hypothesis holds for some l ≥ 2. Observe from (46), with l ≥ 2 and
p ∈ Z≥0 that

υp,l+1 ≤ (A′l+1 + Vl+1p)η
−p
l+1. (50)

where A′l+1 := max{C2η
−1
2 , V ′l+1}. Substituting 50 and the inductive hypothesis inequality into

(6) it follows for p ≥ 1 that

κp,l+1 ≤ Cl+1η
−p
l+1 + η−pl+1

p∑
q=0

(M ′l +K ′lq
2l−3)η−ql (A′l+1 + Vl+1(p− q))ηql+1

= Cl+1η
−p
l+1 + η−pl+1

p∑
q=0

(M ′l +K ′lq
2l−3)(A′l+1 + Vl+1(p− q))

(
η2

η2 + Cl

)q

≤ Cl+1η
−p
l+1 + η−pl+1

p∑
q=0

(M ′l +K ′lq
2l−3)(A′l+1 + Vl+1(p− q))

≤ Cl+1η
−p
l+1 + η−pl+1

p∑
q=0

(M ′l +K ′lq
2l−3)(A′l+1 + Vl+1p)

≤ (Cl+1 +M ′lA
′
l+1)η−pl+1 +

(
M ′lVl+1p+

p∑
q=1

(M ′l +K ′lq
2l−3)(A′l+1 + Vl+1p)

)
η−pl+1

≤ (Cl+1 +M ′lA
′
l+1)η−pl+1 +

(
M ′lVl+1p+ p(M ′l +K ′lp

2l−3)(A′l+1 + Vl+1p)
)
η−pl+1

≤ (Cl+1 +M ′lA
′
l+1)η−pl+1 + p

(
M ′lA

′
l+1 + 2M ′lVl+1p+K ′lA

′
l+1p

2l−3 +K ′lVl+1p
2l−2

)
η−pl+1

≤
(
(Cl+1 +M ′lA

′
l+1) +

(
M ′lA

′
l+1 + 2M ′lVl+1 +K ′lA

′
l+1 +K ′lVl+1

)
p2l−1

)
η−pl+1

Therefore there exist positive constantsM ′l+1 = Cl+1+M ′lA
′
l+1 andK ′l+1 = M ′lA

′
l+1+2M ′lVl+1+

K ′lA
′
l+1 + K ′lVl+1 such that κp,l+1 ≤ (M ′l+1 + K ′l+1p

2(l+1)−3)η−pl+1 as claimed. This completes
the inductive step and therefore also the proof of the lemma.

C ANALYZING THE SPECTRUM OF THE NTK VIA ITS POWER SERIES

C.1 EFFECTIVE RANK OF POWER SERIES KERNELS

Recall that for a positive semidefinite matrix A we define the effective rank Huang et al. (2022) via
the following ratio

eff(A) :=
Tr(A)

λ1(A)
.

We consider a kernel Gram matrix K ∈ Rn×n that has the following power series representation in
terms of an input gram matrix XXT

nK =

∞∑
i=0

ci(XXT )�i.

Whenever c0 6= 0 the effective rank of K is O(1), as displayed in the following theorem.

Theorem 4.1. Assume that we have a kernel Gram matrix K of the form nK =
∑∞
p=0 cp(XXT )�p

where c0 6= 0. Furthermore, assume the input data xi are normalized so that ‖xi‖ = 1 for all
i ∈ [n]. Then

eff(K) ≤
∑∞
p=0 cp

c0
.

Proof. By linearity of trace we have that

Tr(nK) =

∞∑
i=0

ciTr((XXT )�i) = n

∞∑
i=0

ci
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where we have used the fact that Tr((XXT )�i) = n for all i ∈ N. On the other hand

λ1(nK) ≥ λ1(c0(XXT )0) = λ1(c01n×n) = nc0.

Thus we have that

eff(K) =
Tr(K)

λ1(K)
=
Tr(nK)

λ1(nK)
≤
∑∞
i=0 ci
c0

.

The above theorem demonstrates that the constant term c01n×n in the kernel leads to a significant
outlier in the spectrum of K. However this fails to capture how the structure of the input data
X manifests in the spectrum of K. For this we will examine the centered kernel matrix K̃ :=
K − c0

n 11
T . Using a very similar argument as before we can demonstrate that the effective rank

of K̃ is controlled by the effective rank of the input data gram XXT . This is formalized in the
following theorem.
Theorem 4.3. Assume that we have a kernel Gram matrix K of the form nK =

∑∞
p=0 cp(XXT )�p

where c1 6= 0. Furthermore, assume the input data xi are normalized so that ‖xi‖ = 1 for all
i ∈ [n]. Then the centered kernel K̃ := K− c0

n 1n×n satisfies

eff(K̃) ≤ eff(XXT )

∑∞
p=1 cp

c1
.

Proof. By the linearity of the trace we have that

Tr(nK̃) =

∞∑
i=1

ciTr((XXT )�i) = Tr(XXT )

∞∑
i=1

ci

where we have used the fact that Tr((XXT )�i) = Tr(XXT ) = n for all i ∈ [n]. On the other
hand we have that

λ1(nK̃) ≥ λ1(c1XXT ) = c1λ1(XXT ).

Thus we conclude

eff(K̃) =
Tr(K̃)

λ1(K̃)
=
Tr(nK̃)

λ1(nK̃)
≤ Tr(XXT )

λ1(XXT )

∑∞
i=1 ci
c1

.

C.2 EFFECTIVE RANK OF THE NTK FOR FINITE WIDTH NETWORKS

C.2.1 NOTATION AND DEFINITIONS

We will let [k] := {1, 2, . . . , k}. We consider a neural network
m∑
`=1

a`φ(〈w`,x〉)

where x ∈ Rd and w` ∈ Rd, a` ∈ R for all ` ∈ [m] and φ is a scalar valued activation function.
The network we present here does not have any bias values in the inner-layer, however the results
we will prove later apply to the nonzero bias case by replacing x with [xT , 1]T . We let W ∈ Rm×d
be the matrix whose `-th row is equal to w` and a ∈ Rm be the vector whose `-th entry is equal to
a`. We can then write the neural network in vector form

f(x;W,a) = aTφ(Wx)

where φ is understood to be applied entry-wise.

Suppose we have n training data inputs x1, . . . ,xn ∈ Rd. We will let X ∈ Rn×d be the matrix
whose i-th row is equal to xi. Let θinner = vec(W) denote the row-wise vectorization of the inner-
layer weights. We consider the Jacobian of the neural networks predictions on the training data with
respect to the inner layer weights:

JTinner =

[
∂f(x1)

∂θinner
,
∂f(x2)

∂θinner
, . . . ,

∂f(xn)

∂θinner

]
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Similarly we can look at the analagous quantity for the outer layer weights

JTouter =

[
∂f(x1)

∂a
,
∂f(x2)

∂a
, . . . ,

∂f(xn)

∂a

]
= φ

(
WXT

)
.

Our first observation is that the per-example gradients for the inner layer weights have a nice Kro-
necker product representation

∂f(x)

∂θinner
=

 a1φ
′(〈w1,x〉)

a2φ
′(〈w2,x〉)
· · ·

amφ
′(〈wm,x〉)

⊗ x.

For convenience we will let

Yi :=

 a1φ
′(〈w1,xi〉)

a2φ
′(〈w2,xi〉)
· · ·

amφ
′(〈wm,xi〉)

 .
where the dependence of Yi on the parameters W and a is suppressed (formally Yi = Yi(W,a)).
This way we may write

∂f(xi)

∂θinner
= Yi ⊗ xi.

We will study the NTK with respect to the inner-layer weights

Kinner = JinnerJ
T
inner

and the same quantity for the outer-layer weights

Kouter = JouterJ
T
outer.

For a hermitian matrix A we will let λi(A) denote the ith largest eigenvalue of A so that λ1(A) ≥
λ2(A) ≥ · · · ≥ λn(A). Similarly for an arbitrary matrix A we will let σi(A) to the ith largest
singular value of A. For a matrix A ∈ Rr×k we will let σmin(A) = σmin(r,k).

C.2.2 EFFECTIVE RANK

For a positive semidefinite matrix A we define the effective rank (Huang et al., 2022) of A to be the
quantity

eff(A) :=
Tr(A)

λ1(A)
.

The effective rank quantifies how many eigenvalues are on the order of the largest eigenvalue. We
have the Markov-like inequality

|{i : λi(A) ≥ cλ1(A)}| ≤ c−1Tr(A)

λ1(A)

and the eigenvalue bound
λi(A)

λ1(A)
≤ 1

i

T r(A)

λ1(A)
.

Let A and B be positive semidefinite matrices. Then we have

Tr(A + B)

λ1(A + B)
≤ Tr(A) + Tr(B)

max (λ1(A), λ1(B))
≤ Tr(A)

λ1(A)
+
Tr(B)

λ1(B)
.

Thus the effective rank is subadditive for positive semidefinite matrices.

We will be interested in bounding the effective rank of the NTK. Let K = JJT = JouterJ
T
outer +

JinnerJ
T
inner = Kouter + Kinner be the NTK matrix with respect to all the network parameters.

Note that by subadditivity

Tr(K)

λ1(K)
≤ Tr(Kouter)

λ1(Kouter)
+
Tr(Kinner)

λ1(Kinner)
.

In this vein we will control the effective rank of Kinner and Kouter separately.
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C.2.3 EFFECTIVE RANK OF INNER-LAYER NTK

We will show that the effective rank of inner-layer NTK is bounded by a multiple of the effective
rank of the data input gram XXT . We introduce the following meta-theorem that we will use to
prove various corollaries later

Theorem C.1. Set α := sup‖b‖=1

[
minj∈[n] |〈Yj ,b〉|

]
. Assume α > 0. Then

mini∈[n] ‖Yi‖22 Tr(XXT )

maxi∈[n] ‖Yi‖22 λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤

maxi∈[n] ‖Yi‖22
α2

Tr(XXT )

λ1(XXT )

Proof. We will first prove the upper bound. We first observe that

Tr(Kinner) =

n∑
i=1

∥∥∥∥ ∂f(xi)

∂θinner

∥∥∥∥2

2

=

n∑
i=1

‖Yi ⊗ xi‖22 =

n∑
i=1

‖Yi‖22 ‖xi‖
2
2

≤ max
j∈[n]

‖Yj‖22
n∑
i=1

‖xi‖22 = max
j∈[n]

‖Yj‖22 Tr(XXT )

Recall that
λ1 (Kinner) = λ1

(
JinnerJ

T
inner

)
= λ1

(
JTinnerJinner

)
.

Well

JTinnerJinner =

n∑
i=1

∂f(xi)

∂θinner

∂f(xi)

∂θinner

T

=

n∑
i=1

[Yi ⊗ xi] [Yi ⊗ xi]
T

=

n∑
i=1

[
YiY

T
i

]
⊗
[
xix

T
i

]
Well then we may use the fact that

λ1(JTinnerJinner) = max
‖b‖2=1

bTJTinnerJinnerb

Let b1 ∈ Rm and b2 ∈ Rd be vectors that we will optimize later satisfying ‖b1‖2 ‖b2‖2 = 1. Then
we have that ‖b1 ⊗ b2‖ = 1 and

(b1 ⊗ b2)TJTinnerJinner(b1 ⊗ b2) =

n∑
i=1

(b1 ⊗ b2)T
([
YiY

T
i

]
⊗
[
xix

T
i

])
(b1 ⊗ b2)

=

n∑
i=1

[
bT1 YiY

T
i b1

] [
bT2 xix

T
i b2

]
≥
[

min
j∈[n]

bT1 YjY
T
j b1

] n∑
i=1

bT2 xix
T
i b2

=

[
min
j∈[n]

bT1 YjY
T
j b1

]
bT2

[
n∑
i=1

xix
T
i

]
b2 =

[
min
j∈[n]

bT1 YjY
T
j b1

]
b2X

TXb2

Pick b2 so that ‖b2‖ = 1 and

b2X
TXb2 = λ1(XTX) = λ1(XXT ).

Thus for this choice of b2 we have

λ1(JTinnerJinner) ≥ (b1 ⊗ b2)TJTinnerJinner(b1 ⊗ b2) ≥[
min
j∈[n]

bT1 YjY
T
j b1

]
b2X

TXb2 =

[
min
j∈[n]

bT1 YjY
T
j b1

]
λ1(XXT )

Now note that α2 = sup‖b1‖=1

[
minj∈[n] b

T
1 YjY

T
j b1

]
. Thus by taking the sup over b1 in our

previous bound we have

λ1(Kinner) = λ1(JTinnerJinner) ≥ α2λ1(XXT ).
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Thus combined with our previous result we have

Tr(Kinner)

λ1 (Kinner)
≤

maxi∈[n] ‖Yi‖22
α2

Tr(XXT )

λ1(XXT )
.

We now prove the lower bound.

Tr(Kinner) =

n∑
i=1

∥∥∥∥ ∂f(xi)

∂θinner

∥∥∥∥2

2

=

n∑
i=1

‖Yi ⊗ xi‖22 =

n∑
i=1

‖Yi‖22 ‖xi‖
2
2

≥ min
j∈[n]

‖Yj‖22
n∑
i=1

‖xi‖22 = min
j∈[n]

‖Yj‖22 Tr(XXT )

Let Y ∈ Rn×m be the matrix whose ith row is equal to Yi. Then observe that

Kinner = [YYT ]� [XXT ]

where � denotes the entry-wise Hadamard product of two matrices. We now recall that if A and B
are two positive semidefinite matrices we have (Oymak & Soltanolkotabi, 2020, Lemma 2)

λ1(A�B) ≤ max
i∈[n]

Ai,iλ1(B).

Applying this to Kinner we get that

λ1(Kinner) ≤ max
i∈[n]
‖Yi‖22 λ1(XXT )

Combining this with our previous result we get

mini∈[n] ‖Yi‖22 Tr(XXT )

maxi∈[n] ‖Yi‖22 λ1(XXT )
≤ Tr(Kinner)

λ1(Kinner)

We can immediately get a useful corollary that applies to the ReLU activation function
Corollary C.2. Set α := sup‖b‖=1

[
minj∈[n] |〈Yj ,b〉|

]
and γmax := supx∈R |φ′(x)|. Assume

α > 0 and γmax <∞. Then

α2

γ2
max ‖a‖

2
2

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤
γ2
max ‖a‖

2
2

α2

Tr(XXT )

λ1(XXT )

Proof. Note that the hypothesis on |φ′| gives ‖Yi‖22 ≤ γ2
max ‖a‖

2
2 for all i ∈ [n]. Moreover by

Cauchy-Schwarz we have that mini∈[n] ‖Yi‖2 ≥ α. Thus by theorem C.1 we get the desired
result.

If φ is a leaky ReLU type activation (say like those used in Nguyen & Mondelli (2020)) Theorem
C.1 translates into an even simpler bound
Corollary C.3. Suppose φ′(x) ∈ [γmin, γmax] for all x ∈ R where γmin > 0. Then

γ2
minTr(XXT )

γ2
maxλ1(XXT )

≤ Tr(Kinner)

λ1 (Kinner)
≤ γ2

max

γ2
min

Tr(XXT )

λ1(XXT )

Proof. We will lower bound

α := sup
‖b‖=1

[
min
j∈[n]

|〈Yj ,b〉|
]

so that we can apply Corollary C.2. Set b = a/ ‖a‖2. Then we have that

〈Yj ,b〉 =

m∑
`=1

a`φ
′(〈w`,xj〉)a`/ ‖a‖2 ≥

γmin
‖a‖2

m∑
`=1

a2
` = γmin ‖a‖2

Thus α ≥ γmin ‖a‖2. The result then follows from Corollary C.2
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To control α in Theorem C.1 when φ is the ReLU activation function requires a bit more work. To
this end we introduce the following lemma.

Lemma C.4. Assume φ(x) = ReLU(x). Let Rmin, Rmax > 0 and define τ = {` ∈ [m] : |a`| ∈
[Rmin, Rmax]}. Set T = mini∈[n]

∑
`∈τ I [〈xi,w`〉 ≥ 0]. Then

α := sup
‖b‖=1

[
min
i∈[n]
|〈Yi,b〉|

]
≥ R2

min

Rmax

T

|τ |1/2

Proof. Let aτ be the vector such that (aτ )` = a`I[` ∈ τ ]. Then note that

〈Yj ,aτ/ ‖aτ‖2〉 =
1

‖aτ‖
∑
`∈τ

a2
`I[〈w`,xj〉 ≥ 0] ≥

R2
min

‖aτ‖
∑
`∈τ

I[〈w`,xj〉 ≥ 0] ≥ R2
min

‖aτ‖2
T ≥ R2

min

Rmax|τ |1/2
T.

Roughly what Lemma C.4 says is that α is controlled when there is a set of inner-layer neurons
that are active for each data point whose outer layer weights are similar in magnitude. Note that in
Du et al. (2019b), Arora et al. (2019a), Oymak et al. (2019), Li et al. (2020), Xie et al. (2017) and
Oymak & Soltanolkotabi (2020) the outer layer weights all have fixed constant magnitude. Thus in
that case we can set Rmin = Rmax in Lemma C.4 so that τ = [m]. In this setting we have the
following result.

Theorem C.5. Assume φ(x) = ReLU(x). Suppose |a`| = R > 0 for all ` ∈ [m]. Furthermore
suppose w1, . . . ,wm are independent random vectors such that w`/ ‖w`‖ has the uniform distri-
bution on the sphere for each ` ∈ [m]. Also assume m ≥ 4 log(n/ε)

δ2 for some δ, ε ∈ (0, 1). Then with
probability at least 1− ε we have that

(1− δ)2

4
eff(XXT ) ≤ eff(Kinner) ≤

4

(1− δ)2
eff(XXT ).

Proof. Fix j ∈ [n]. Note by the assumption on the w`’s we have that I[〈w1,xj〉 ≥
0], . . . , I[〈wm,xj〉 ≥ 0] are i.i.d. Bernouilli random variables taking the values 0 and 1 with proba-
bility 1/2. Thus by the Chernoff bound for Binomial random variables we have that

P

(
m∑
`=1

I[〈w`,xj〉 ≥ 0] ≤ m

2
(1− δ)

)
≤ exp

(
−δ2m

4

)
.

Thus taking the union bound over every j ∈ [n] we get that if m ≥ 4 log(n/ε)
δ2 then

min
j∈[n]

m∑
`=1

I[〈w`,xj〉 ≥ 0] ≥ m

2
(1− δ)

holds with probability at least 1 − ε. Now note that if we set Rmin = Rmax = R we have that
τ = [m] where τ is defined as it is in Lemma C.4. In this case by our previous bound we have that
T as defined in Lemma C.4 satisfies T ≥ m

2 (1 − δ) with probability at least 1 − ε. In this case the
conclusion of Lemma C.4 gives us

α ≥ Rm1/2 (1− δ)
2

= ‖a‖2
(1− δ)

2
.

Thus by Corollary C.2 and the above bound for α we get the desired result.

We will now use Lemma C.4 to prove a bound in the case of Gaussian initialization.
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Lemma C.6. Assume φ(x) = ReLU(x). Suppose that a` ∼ N(0, ν2) for each ` ∈ [m]
i.i.d. Furthermore suppose w1, . . . ,wm are random vectors independent of each other and a
such that w`/ ‖w`‖ has the uniform distribution on the sphere for each ` ∈ [m]. Set p =
Pz∼N(0,1) (|z| ∈ [1/2, 1]) ≈ 0.3. Assume

m ≥ 4 log(n/ε)

δ2(1− δ)p
for some ε, δ ∈ (0, 1). Then with probability at least (1− ε)2 we have that

α := sup
‖b‖=1

[
min
i∈[n]
|〈Yi,b〉|

]
≥ ν

8
(1− δ)3/2p1/2m1/2

Proof. Set Rmin = ν/2 and Rmax = ν. Now set

p = Pa∼N(0,ν2) (|a| ∈ [Rmin, Rmax]) = 2Pz∼N(0,1)

(
z ∈

[
Rmin
ν

,
Rmax
ν

])
= 2Pz∼N(0,1) (z ∈ [1/2, 1]) ≈ 0.3.

Now define τ = {` ∈ [m] : |a`| ∈ [Rmin, Rmax]}. We have by the Chernoff bound for binomial
random variables

P (|τ | ≤ (1− δ)mp) ≤ exp
(
−δ2mp

2

)
.

Thus if m ≥ log
(

1
ε

)
2
pδ2 (a weaker condition than the hypothesis on m) then we have that

|τ | ≥ (1 − δ)mp with probability at least 1 − ε. From now on assume such a τ has been ob-
served and view it as fixed so that the only remaining randomness is over the w`’s. Now set
T = mini∈[n]

∑
`∈τ I [〈xi,w`〉 ≥ 0]. By the Chernoff bound again we get that for fixed i ∈ [n]

P

(∑
`∈τ

I [〈xi,w`〉 ≥ 0] ≤ (1− δ)
2
|τ |

)
≤ exp

(
−δ2 |τ |

4

)
.

Thus by taking the union bound over i ∈ [n] we get

P
(
T ≤ (1− δ)

2
|τ |
)
≤ n exp

(
−δ2 |τ |

4

)
≤ n exp

(
−δ2 (1− δ)mp

4

)
Thus if we consider τ as fixed and m ≥ 4 log(n/ε)

δ2(1−δ)p then with probability at least 1 − ε over the
sampling of the w`’s we have that

T ≥ (1− δ)
2
|τ |

In this case by lemma C.4 we have that

α := sup
‖b‖=1

[
min
i∈[n]
|〈Yi,b〉|

]
≥ R2

min

Rmax

T

|τ |1/2

≥ ν

8
(1− δ)3/2m1/2p1/2.

Thus the above holds with probability at least (1− ε)2.

This lemma now allows us to bound the effective rank of Kinner in the case of Gaussian initializa-
tion.
Theorem C.7. Assume φ(x) = ReLU(x). Suppose that a` ∼ N(0, ν2) for each ` ∈ [m]
i.i.d. Furthermore suppose w1, . . . ,wm are random vectors independent of each other and a
such that w`/ ‖w`‖ has the uniform distribution on the sphere for each ` ∈ [m]. Set p =
Pz∼N(0,1) (|z| ∈ [1/2, 1]) ≈ 0.3. Let ε, δ ∈ (0, 1). Then there exists absolute constants c,K > 0
such that if

m ≥ 4 log(n/ε)

δ2(1− δ)p
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then with probability at least 1− 3ε we have that

1

C

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ CTr(XXT )

λ1(XXT )

where

C =
64

(1− δ)3p

[
1 +

max{c−1K log(1/ε),mK}
m

]
.

Proof. By Bernstein’s inequality

P
(
‖a/ν‖22 −m ≥ t

)
≤ exp

[
−c ·min

(
t2

mK2
,
t

K

)]
where c is an absolute constant. Set t = max{c−1K log(1/ε),mK} so that the right hand side of
the above inequality is bounded by ε. Thus by Lemma C.6 and the union bound we can ensure that
with probability at least

1− ε− [1− (1− ε)2] = 1− 3ε+ ε2 ≥ 1− 3ε

that ‖a/ν‖22 ≤ m+ t and the conclusion of Lemma C.6 hold simultaneously. In that case

‖a‖22
α2
≤ ν2[m+ t]

ν2

64 (1− δ)3mp
=

64

(1− δ)3p

[
1 +

t

m

]
= C.

Thus by Corollary C.2 we get the desired result.

By fixing δ > 0 in the previous theorem we get the immediate corollary

Corollary C.8. Assume φ(x) = ReLU(x). Suppose that a` ∼ N(0, ν2) for each ` ∈ [m] i.i.d.
Furthermore suppose w1, . . . ,wm are random vectors independent of each other and a such that
w`/ ‖w`‖ has the uniform distribution on the sphere for each ` ∈ [m]. Then there exists an absolute
constant C > 0 such that m = Ω(log(n/ε)) ensures that with probability at least 1− ε

1

C

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ CTr(XXT )

λ1(XXT )

C.2.4 EFFECTIVE RANK OF OUTER-LAYER NTK

Throughout this section φ(x) = ReLU(x). Our goal of this section, similar to before, is to bound
the effective rank of Kouter by the effective rank of the input data gram XXT . In this section we
will use often make use of the basic identities

‖AB‖F ≤ ‖A‖2 ‖B‖F

‖AB‖F ≤ ‖A‖F ‖B‖2

Tr(AAT ) = Tr(ATA) = ‖A‖2F

‖A‖2 =
∥∥AT

∥∥
2

λ1(ATA) = λ1(AAT ) = ‖A‖22 .

To begin bounding the effective rank of Kouter, we prove the following lemma.

Lemma C.9. Assume φ(x) = ReLU(x) and W is full rank with m ≥ d. Then∥∥φ(WXT )
∥∥2

F

[‖φ(WXT )‖2 + ‖φ(−WXT )‖2]
2 ≤

‖W‖22
σmin(W)2

Tr(XXT )

λ1(XXT )
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Proof. First note that∥∥φ(WXT )
∥∥2

F
≤
∥∥WXT

∥∥2

F
≤ ‖W‖22

∥∥XT
∥∥2

F
= ‖W‖22 Tr(XXT ).

Pick b ∈ Rd such that ‖b‖2 = 1 and ‖Xb‖2 = ‖X‖2. Since WT is full rank we may set
u = (WT )†b so that WTu = b where ‖u‖2 ≤ σmin(WT )−1 where σmin(WT ) is the smallest
nonzero singular value of WT . Well then

‖X‖2 = ‖Xb‖2 =
∥∥XWTu

∥∥
2
≤
∥∥XWT

∥∥
2
‖u‖2 ≤

∥∥XWT
∥∥

2
σmin(WT )−1

=
∥∥WXT

∥∥
2
σmin(W)−1

Now using the fact that x = φ(x)− φ(−x) we have that∥∥WXT
∥∥

2
=
∥∥φ(WXT )− φ(−WXT )

∥∥
2
≤
∥∥φ(WXT )

∥∥
2

+
∥∥φ(−WXT )

∥∥
2

Thus combined with our previous results gives

‖X‖2 ≤ σmin(W)−1
[∥∥φ(WXT )

∥∥
2

+
∥∥φ(−WXT )

∥∥
2

]
Therefore ∥∥φ(WXT )

∥∥2

F

σmin(W)−2 [‖φ(WXT )‖2 + ‖φ(−WXT )‖2]
2 ≤

∥∥φ(WXT )
∥∥2

F

‖X‖22

≤
‖W‖22 Tr(XXT )

‖X‖22
= ‖W‖22

Tr(XXT )

λ1(XXT )

which gives us the desired result.

Corollary C.10. Assume φ(x) = ReLU(x) and W is full rank with m ≥ d. Then

max
(∥∥φ(WXT )

∥∥2

F
,
∥∥φ(−WXT )

∥∥2

F

)
max

(
‖φ(WXT )‖22 , ‖φ(−WXT )‖22

) ≤ 4
‖W‖22

σmin(W)2

Tr(XXT )

λ1(XXT )
.

Proof. Using the fact that∥∥φ(WXT )
∥∥

2
+
∥∥φ(−WXT )

∥∥
2
≤ 2 max

(∥∥φ(WXT )
∥∥

2
,
∥∥φ(−WXT )

∥∥
2

)
and lemma C.9 we have that ∥∥φ(WXT )

∥∥2

F

4 max
(
‖φ(WXT )‖22 , ‖φ(−WXT )‖22

) ≤ ‖W‖22
σmin(W)2

Tr(XXT )

λ1(XXT )

Note that the right hand side and the denominator of the left hand side do not change when you
replace W with −W. Therefore by using the above bound for both W and −W as the weight
matrix separately we can conclude

max
(∥∥φ(WXT )

∥∥2

F
,
∥∥φ(−WXT )

∥∥2

F

)
4 max

(
‖φ(WXT )‖22 , ‖φ(−WXT )‖22

) ≤ ‖W‖22
σmin(W)2

Tr(XXT )

λ1(XXT )
.

Corollary C.11. Assume φ(x) = ReLU(x) and m ≥ d. Suppose W and −W have the same
distribution. Then conditioned on W being full rank we have that with probability at least 1/2

Tr(Kouter)

λ1(Kouter)
≤ 4

‖W‖22
σmin(W)2

Tr(XXT )

λ1(XXT )
.
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Proof. Fix W where W is full rank. We have by corollary C.10 that either∥∥φ(WXT )
∥∥2

F

‖φ(WXT )‖22
≤ 4

‖W‖22
σmin(W)2

Tr(XXT )

λ1(XXT )
.

holds or ∥∥φ(−WXT )
∥∥2

F

‖φ(−WXT )‖22
≤ 4

‖W‖22
σmin(W)2

Tr(XXT )

λ1(XXT )

(the first holds in the case where
∥∥φ(WXT )

∥∥2

2
≥
∥∥φ(−WXT )

∥∥2

2
and the second in the case∥∥φ(WXT )

∥∥2

2
<
∥∥φ(−WXT )

∥∥2

2
). Since W and −W have the same distribution, it follows that

the first inequality must hold at least 1/2 of the time. From

Tr(Kouter)

λ1(Kouter)
=

∥∥JTouter∥∥2

F∥∥JTouter∥∥2

2

=

∥∥φ(WXT )
∥∥2

F

‖φ(WXT )‖22

we get the desired result.

We now note that when W is rectangular shaped and the entries of W are i.i.d. Gaussians that W
is full rank with high probability and σmin(W)−2 ‖W‖22 is well behaved. We recall the result from
Vershynin (2012)

Theorem C.12. Let A be a N × n matrix whose entries are independent standard normal random
variables. Then for every t ≥ 0, with probability at least 1− 2 exp(−t2/2) one has

√
N −

√
n− t ≤ σmin(A) ≤ σ1(A) ≤

√
N +

√
n+ t

Corollary C.11 gives us a bound that works at least half the time. However, we would like to
derive a bound that holds with high probability. We will have that when m & n we have sufficient
concentration of the largest singular value of φ(WXT ) to prove such a bound. We recall the result
from Vershynin (2012) (Remark 5.40)

Theorem C.13. Assume that A is an N × n matrix whose rows Ai are independent sub-gaussian
random vectors in Rn with second moment matrix Σ. Then for every t ≥ 0, the following inequality
holds with probability at least 1− 2 exp(−ct2)∥∥∥∥ 1

N
A∗A− Σ

∥∥∥∥
2

≤ max(δ, δ2) where δ = C

√
n

N
+

t√
N

where C = CK , c = cK > 0 depend only on K := maxi ‖Ai‖ψ2
.

We will use theorem C.13 in the following lemma.

Lemma C.14. Assume φ(x) = ReLU(x). Let A = φ(WXT ) and M = maxi∈[n] ‖xi‖2. Suppose
that w1, . . . ,wm ∼ N(0, ν2Id) i.i.d. Set K = Mν

√
n and define

Σ := Ew∼N(0,ν2I)[φ(Xw)φ(wTXT )]

Then for every t ≥ 0 the following inequality holds with probability at least 1− 2 exp(−cKt2)∥∥∥∥ 1

m
ATA− Σ

∥∥∥∥
2

≤ max(δ, δ2) where δ = CK

√
n

m
+

t√
m
,

where cK , CK > 0 are absolute constants that depend only on K.

Proof. We will let A` : denote the `th row of A (considered as a column vector). Note that

A` : = φ(Xw`).
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We immediately get that the rows of A are i.i.d. We will now bound ‖A` : ‖ψ2
. Let b ∈ Rn such

that ‖b‖2 = 1. Then

‖〈φ(Xw`),b〉‖ψ2
=

∥∥∥∥∥
n∑
i=1

φ(〈xi,w`〉)bi

∥∥∥∥∥
ψ2

≤
n∑
i=1

|bi| ‖φ(〈xi,w`〉)‖ψ2
≤

n∑
i=1

|bi| ‖〈xi,w`〉‖ψ2

≤
n∑
i=1

|bi|C ‖xi‖2 ν ≤ CMν ‖b‖1 ≤ CMν
√
n

where C > 0 is an absolute constant. Set K := Mν
√
n. Well then by theorem C.13 we have the

following. For every t ≥ 0 the following inequality holds with probability at least 1−2 exp(−cKt2)∥∥∥∥ 1

m
ATA− Σ

∥∥∥∥
2

≤ max(δ, δ2) where δ = CK

√
n

m
+

t√
m

We are now ready to prove a high probability bound for the effective rank of Kouter.

Theorem C.15. Assume φ(x) = ReLU(x) and m ≥ d. Let M = maxi∈[n] ‖xi‖2. Suppose that
w1, . . . ,wm ∼ N(0, ν2Id) i.i.d. Set K = Mν

√
n

Σ := Ew∼N(0,ν2I)[φ(Xw)φ(wTXT )]

δ = CK

[√
n

m
+

√
log(2/ε)

m

]
where ε > 0 is small. Now assume

√
m >

√
d+

√
2 log(2/ε)

and

max(δ, δ2) ≤ 1

2
λ1(Σ)

Then with probability at least 1− 3ε

Tr(Kouter)

λ1(Kouter)
≤ 12

(√
m+

√
d+ t1√

m−
√
d− t1

)2
Tr(XTX)

λ1(XTX)

Proof. By theorem C.12 with t1 =
√

2 log(2/ε) we have that with probability at least 1− ε that
√
m−

√
d− t1 ≤ σmin(W/ν) ≤ σ1(W/ν) ≤

√
m+

√
d+ t1 (51)

The above inequalities and the hypothesis on m imply that W is full rank.

Let A = φ(WXT ) and Ã = φ(−WXT ). Set t2 =
√

log(2/ε)
cK

where cK is defined as in theorem

C.14. Note that A and Ã are identical in distribution. Thus by theorem C.14 and the union bound
we get that with probability at least 1− 2ε∥∥∥∥ 1

m
ATA− Σ

∥∥∥∥
2

,

∥∥∥∥ 1

m
ÃT Ã− Σ

∥∥∥∥
2

≤ max(δ, δ2) =: ρ (52)

where

δ = CK

√
n

m
+

t2√
m
.
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By our previous results and the union bound we can ensure with probability at least 1 − 3ε that the
bounds (51) and (52) all hold simultaneously. In this case we have∥∥∥∥ 1

m
ÃT Ã

∥∥∥∥
2

≤
∥∥∥∥ 1

m
ATA

∥∥∥∥
2

+ 2ρ

=

∥∥∥∥ 1

m
ATA

∥∥∥∥
2

[
1 +

2ρ∥∥ 1
mATA

∥∥
2

]
≤
∥∥∥∥ 1

m
ATA

∥∥∥∥
2

[
1 +

2ρ

λ1(Σ)− ρ

]
Assuming ρ ≤ λ1(Σ)/2 we have by the above bound∥∥∥∥ 1

m
ÃT Ã

∥∥∥∥
2

≤ 3

∥∥∥∥ 1

m
ATA

∥∥∥∥
2

.

Now note that ∥∥ATA
∥∥

2
=
∥∥φ(WXT )

∥∥2

2

∥∥∥ÃT Ã
∥∥∥

2
=
∥∥φ(−WXT )

∥∥2

2

so that our previous bound implies∥∥φ(−WXT )
∥∥2

2
≤ 3

∥∥φ(WXT )
∥∥2

2

then we have by corollary C.10 that

Tr(Kouter)

λ1(Kouter)
=

∥∥φ(WXT )
∥∥2

F

‖φ(WXT )‖22
≤ 12

‖W‖22
σmin(W)2

Tr(XXT )

λ1(XXT )

≤ 12

(√
m+

√
d+ t1√

m−
√
d− t1

)2
Tr(XXT )

λ1(XXT )
.

From the above theorem we get the following corollary.
Corollary C.16. Assume φ(x) = ReLU(x) and n ≥ d. Suppose that w1, . . . ,wm ∼ N(0, ν2Id)
i.i.d. Fix ε > 0 small. Set M = maxi∈[n] ‖xi‖2. Then

m = Ω
(
max(λ1(Σ)−2, 1) max(n, log(1/ε))

)
and

ν = O(1/M
√
m)

suffices to ensure that with probability at least 1− ε
Tr(Kouter)

λ1(Kouter)
≤ CTr(XXT )

λ1(XXT )

where C > 0 is an absolute constant.

C.2.5 BOUND FOR THE COMBINED NTK

Based on the results in the previous two sections, we can now bound the effective rank of the com-
bined NTK gram matrix K = Kinner + Kouter.
Theorem 4.5. Assume φ(x) = ReLU(x) and n ≥ d. Fix ε > 0 small. Suppose that w1, . . . ,wm ∼
N(0, ν2

1Id) i.i.d. and a1, . . . , am ∼ N(0, ν2
2). Set M = maxi∈[n] ‖xi‖2, and let

Σ := Ew∼N(0,ν2
1I)

[φ(Xw)φ(wTXT )].

Then
m = Ω

(
max(λ1(Σ)−2, 1) max(n, log(1/ε))

)
, ν1 = O(1/M

√
m)

suffices to ensure that, with probability at least 1−ε over the sampling of the parameter initialization,

eff(K) ≤ C · eff(XXT ),

where C > 0 is an absolute constant.

Proof. This follows from the union bound and Corollaries C.8 and C.16.
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C.2.6 MAGNITUDE OF THE SPECTRUM

By our results in sections C.2.3 and C.2.4 we have that m & n suffices to ensure that
Tr(K)

λ1(K)
.
Tr(XXT )

λ1(XXT )
≤ d

Well note that

i
λi(K)

λ1(K)
≤ Tr(K)

λ1(K)
. d

If i� d then λi(K)/λ1(K) is small. Thus the NTK only has O(d) large eigenvalues. The smallest
eigenvalue λn(K) of the NTK has been of interest in proving convergence guarantees (Du et al.,
2019a;b; Oymak & Soltanolkotabi, 2020). By our previous inequality

λn(K)

λ1(K)
.
d

n

Thus in the setting where m & n � d we have that the smallest eigenvalue will be driven to zero
relative to the largest eigenvalue. Alternatively we can view the above inequality as a lower bound
on the condition number

λ1(K)

λn(K)
&
n

d

We will first bound the analytical NTK in the setting when the outer layer weights have fixed constant
magnitude. This is the setting considered by Xie et al. (2017), Arora et al. (2019a), Du et al. (2019b),
Oymak et al. (2019), Li et al. (2020), and Oymak & Soltanolkotabi (2020).
Theorem C.17. Let φ(x) = ReLU(x) and assume X 6= 0. Let K∞inner ∈ Rn×n be the analytical
NTK, i.e.

(K∞inner)i,j := 〈xi,xj〉Ew∼N(0,Id) [φ′(〈xi,w〉)φ′(〈xj ,w〉)] .
Then

1

4

Tr(XXT )

λ1(XXT )
≤ Tr(K∞inner)

λ1 (K∞inner)
≤ 4

Tr(XXT )

λ1(XXT )
.

Proof. We consider the setting where |a`| = 1/
√
m for all ` ∈ [m] and w` ∼ N(0, Id) i.i.d.. As

was shown by Jacot et al. (2018), Du et al. (2019b) in this setting we have that if we fix the training
data X and send m→∞ we have that

‖Kinner −K∞inner‖2 → 0

in probability. Therefore by continuity of the effective rank we have that
Tr(Kinner)

λ1(Kinner)
→ Tr(K∞inner)

λ1(K∞inner)

in probability. Let η > 0. Then there exists an M ∈ N such that m ≥M implies that∣∣∣∣Tr(Kinner)

λ1(Kinner)
− Tr(K∞inner)

λ1(K∞inner)

∣∣∣∣ ≤ η (53)

with probability greater than 1/2. Now fix δ ∈ (0, 1). On the other hand by Theorem C.5 with
ε = 1/4 we have that if m ≥ 4

δ2 log(4n) then with probability at least 3/4 that

(1− δ)2

4

Tr(XXT )

λ1(XXT )
≤ Tr(Kinner)

λ1 (Kinner)
≤ 4

(1− δ)2

Tr(XXT )

λ1(XXT )
. (54)

Thus if we set m = max( 4
δ2 log(4n),M) we have with probability at least 3/4 − 1/2 = 1/4 that

(53) and (54) hold simultaneously. In this case we have that
(1− δ)2

4

Tr(XXT )

λ1(XXT )
− η ≤ Tr(K∞inner)

λ1 (K∞inner)
≤ 4

(1− δ)2

Tr(XXT )

λ1(XXT )
+ η

Note that the above argument runs through for any η > 0 and δ ∈ (0, 1). Thus we may send η → 0+

and δ → 0+ in the above inequality to get
1

4

Tr(XXT )

λ1(XXT )
≤ Tr(K∞inner)

λ1 (K∞inner)
≤ 4

Tr(XXT )

λ1(XXT )
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We thus have the following corollary about the conditioning of the analytical NTK.
Corollary C.18. Let φ(x) = ReLU(x) and assume X 6= 0. Let K∞inner ∈ Rn×n be the analytical
NTK, i.e.

(K∞inner)i,j := 〈xi,xj〉Ew∼N(0,Id) [φ′(〈xi,w〉)φ′(〈xj ,w〉)] .
Then

λn(K∞inner)

λ1(K∞inner)
≤ 4

d

n
.

C.3 EXPERIMENTAL VALIDATION OF RESULTS ON THE NTK SPECTRUM

Figure 3: (NTK Spectrum for CNNs) We plot the normalized eigenvalues λp/λ1 of the NTK
Gram matrix K and the data Gram matrix XXT for Caltech101 and isotropic Gaussian datasets. To
compute the NTK, we randomly initialize convolutional neural networks of depth 2 and 5 with 100
channels per layer. We use the standard parameterization and Pytorch’s default Kaiming uniform
initialization in order to better connect our results with what is used in practice. We consider a batch
size of n = 200 and plot the first 100 eigenvalues. The thick part of each curve corresponds to the
mean across 10 trials while the transparent part corresponds to the 95% confidence interval.

Figure 4: (Asymptotic NTK Spectrum) NTK spectrum of two-layer fully connected networks
with ReLU, Tanh and Gaussian activations under the NTK parameterization. The orange curve is
the experimental eigenvalue. The blue curves in the left shows the regression fit for the experimental
eigenvalues as a function of eigenvalue index ` in the form of λ` = a`−b where a and b are unknown
parameters determined by regression. The blue curves in the middle shows the regression fit for the
experimental eigenvalues in the form of λ` = a`−0.75b−l

1/4

. The blue curves in the right shows the
regression fit for the experimental eigenvalues in the form of λ` = a`−0.5b−l

1/2

.

We experimentally test the theory developed in Section 4.1 and its implications by analyzing the
spectrum of the NTK for both fully connected neural network architectures (FCNNs), the results of
which are displayed in Figure 1, and also convolutional neural network architectures (CNNs), shown
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in Figure 3. For the feedforward architectures we consider networks of depth 2 and 5 with the width
of all layers being set at 500. With regard to the activation function we test linear, ReLU and Tanh,
and in terms of initialization we use Kaiming uniform (He et al., 2015), which is very common in
practice and is the default in PyTorch (Paszke et al., 2019). For the convolutional architectures we
again consider depths 2 and 5, with each layer consisting of 100 channels with the filter size set
to 5x5. In terms of data, we consider 40x40 patches from both real world images, generated by
applying Pytorch’s RandomResizedCrop transform to a random batch of Caltech101 images (Li
et al., 2022), as well as synthetic images corresponding to isotropic Gaussian vectors. The batch
sized is fixed at 200 and we plot only the first 100 normalized eigenvalues. Each experiment was
repeated 10 times. Finally, to compute the NTK we use the functorch4 module in PyTorch using
an algorithmic approach inspired by Novak et al. (2022).

The results for convolutional neural networks show the same trends as observed in feedforward neu-
ral networks, which we discussed in Section 4.1. In particular, we again observe the dominant outlier
eigenvalue, which increases with both depth and the size of the Gaussian mean of the activation. We
also again see that the NTK spectrum inherits its structure from the data, i.e., is skewed for skewed
data or relatively flat for isotropic Gaussian data. Finally, we also see that the spectrum for Tanh is
closer to the spectrum for the linear activation when compared with the ReLU spectrum. In terms of
differences between the CNN and FCNN experiments, we observe that the spread of the 95% con-
fidence interval is slightly larger for convolutional nets, implying a slightly larger variance between
trials. We remark that this is likely attributable to the fact that there are only 100 channels in each
layer and by increasing this quantity we would expect the variance to reduce. In summary, despite
the fact that our analysis is concerned with FCNNs, it appears that the broad implications and trends
also hold for CNNs. We leave a thorough study of the NTK spectrum for CNNs and other network
architectures to future work.

To test our theory in Section 4.2, we numerically plot the spectrum of NTK of two-layer feedforward
networks with ReLU, Tanh, and Gaussian activations in Figure 4. The input data are uniformly
drawn from S2. Notice that when d = 2, k = Θ(`1/2). Then Corollary 4.7 shows that for the
ReLU activation λ` = Θ(`−3/2), for the Tanh activation λ` = O

(
`−3/4 exp(−π2 `

1/4)
)
, and for the

Gaussian activation λ` = O(`−1/22−`
1/2

). These theoretical decay rates for the NTK spectrum are
verified by the experimental results in Figure 4.

C.4 ANALYSIS OF THE LOWER SPECTRUM: UNIFORM DATA

Theorem 4.6. [Azevedo & Menegatto (2015)] Let Γ denote the gamma function. Suppose that the
training data are uniformly sampled from the unit hypersphere Sd, d ≥ 2. If the dot-product kernel
function has the expansion K(x1, x2) =

∑∞
p=0 cp〈x1, x2〉p where cp ≥ 0, then the eigenvalue of

every spherical harmonic of frequency k is given by

λk =
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2 )

Γ(p− k + 1)Γ(p−k+1
2 + k + d/2)

.

Proof. Let θ(t) =
∑∞
p=0 cpt

p, then K(x1, x2) = θ(〈x1, x2〉) According to Funk Hecke theorem
(Basri et al., 2019, Section 4.2), we have

λk = Vol(Sd−1)

∫ 1

−1

θ(t)Pk,d(t)(1− t2)
d−2
2 dt, (55)

where Vol(Sd−1) = 2πd/2

Γ(d/2) is the volume of the hypersphere Sd−1, and Pk,d(t) is the Gegenbauer
polynomial, given by

Pk,d(t) =
(−1)k

2k
Γ(d/2)

Γ(k + d/2)

1

(1− t2)(d−2)/2

dk

dtk
(1− t2)k+(d−2)/2,

and Γ is the gamma function.

4https://pytorch.org/functorch/stable/notebooks/neural tangent kernels.html
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From (55) we have

λk = Vol(Sd−1)

∫ 1

−1

θ(t)Pk,d(t)(1− t2)
d−2
2 dt

=
2πd/2

Γ(d/2)

∫ 1

−1

θ(t)
(−1)k

2k
Γ(d/2)

Γ(k + d/2)

dk

dtk
(1− t2)k+(d−2)/2dt

=
2πd/2

Γ(d/2)

(−1)k

2k
Γ(d/2)

Γ(k + d/2)

∞∑
p=0

cp

∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt. (56)

Using integration by parts, we have∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt

= tp
dk−1

dtk−1
(1− t2)k+(d−2)/2

∣∣∣∣1
−1

− p
∫ 1

−1

tp−1 d
k−1

dtk−1
(1− t2)k+(d−2)/2dt

= −p
∫ 1

−1

tp−1 d
k−1

dtk−1
(1− t2)k+(d−2)/2dt, (57)

where the last line in (57) holds because dk−1

dtk−1 (1− t2)k+(d−2)/2 = 0 when t = 1 or t = −1.

When p < k, repeat the above procedure (57) p times, we get∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt = (−1)pp!

∫ 1

−1

dk−p

dtk−p
(1− t2)k+(d−2)/2dt

= (−1)pp!
dk−p−1

dtk−p−1
(1− t2)k+(d−2)/2

∣∣∣∣1
−1

= 0. (58)
When p ≥ k, repeat the above procedure (57) k times, we get∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt = (−1)kp(p− 1) · · · (p− k + 1)

∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt.

(59)

When p− k is odd, tp−k(1− t2)k+(d−2)/2 is an odd function, then∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt = 0. (60)

When p− k is even,∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt = 2

∫ 1

0

tp−k(1− t2)k+(d−2)/2dt

=

∫ 1

0

(t2)(p−k−1)/2(1− t2)k+(d−2)/2dt2

= B

(
p− k + 1

2
, k + d/2

)
=

Γ(p−k+1
2 )Γ(k + d/2)

Γ(p−k+1
2 + k + d/2)

, (61)

where B is the beta function.

Plugging (61) , (58) and (60) into (59), we get∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt

=

{
(−1)kp(p− 1) . . . (p− k + 1)

Γ( p−k+1
2 )Γ(k+d/2)

Γ( p−k+1
2 +k+d/2)

, p− k is even and p ≥ k,
0, otherwise.

(62)
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Plugging (62) into (56), we get

λk =
2πd/2

Γ(d/2)

(−1)k

2k
Γ(d/2)

Γ(k + d/2)

∑
p≥k

p−k is even

cp(−1)kp(p− 1) . . . (p− k + 1)
Γ(p−k+1

2 )Γ(k + d/2)

Γ(p−k+1
2 + k + d/2)

=
πd/2

2k−1

∑
p≥k

p−k is even

cp
p(p− 1) . . . (p− k + 1)Γ(p−k+1

2 )

Γ(p−k+1
2 + k + d/2)

=
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2 )

Γ(p− k + 1)Γ(p−k+1
2 + k + d/2)

.

Corollary C.19. Under the same setting as in Theorem 4.6,

1. if cp = Θ(p−a) where a ≥ 1, then λk = Θ(k−d−2a+2),

2. if cp = δ(p even)Θ(p−a), then λk = δ(k even)Θ(k−d−2a+2),

3. if cp = O
(
exp

(
−a√p

))
, then λk = O

(
k−d+1/2 exp

(
−a
√
k
))

,

4. if cp = Θ(p1/2a−p), then λk = O
(
k−d+1a−k

)
and λk = Ω

(
k−d/2+12−ka−k

)
.

Proof of Corollary C.4, part 1. We first prove λk = O(k−d−2a+2). Suppose that cp ≤ Cp−a for
some constant C, then according to Theorem 4.6 we have

λk ≤
πd/2

2k−1

∑
p≥k

p−k is even

Cp−a
Γ(p+ 1)Γ(p−k+1

2 )

Γ(p− k + 1)Γ(p−k+1
2 + k + d/2)

.

According to Stirling’s formula, we have

Γ(z) =

√
2π

z

(z
e

)z (
1 +O

(
1

z

))
. (63)

Then for any z ≥ 1
2 , we can find constants C1 and C2 such that

C1

√
2π

z

(z
e

)z
≤ Γ(z) ≤ C2

√
2π

z

(z
e

)z
. (64)

Then

λk ≤
πd/2

2k−1

C2
2

C2
1

∑
p≥k

p−k is even

Cp−a

√
2π
p+1

(
p+1
e

)p+1√ 2π
p−k+1

2

( p−k+1
2

e

) p−k+1
2

√
2π

p−k+1

(
p−k+1
e

)p−k+1√
2π

p−k+1
2 +k+d/2

( p−k+1
2 +k+d/2

e

) p−k+1
2 +k+d/2

=
πd/2

2k−1

C2
2C

C2
1

∑
p≥k

p−k is even

p−a
e
d
2

√
2
p+1 (p+ 1)

p+1
(
p−k+1

2

) p−k+1
2

(p− k + 1)
p−k+1

√
1

p−k+1
2 +k+d/2

(
p−k+1

2 + k + d/2
) p−k+1

2 +k+d/2

=
πd/2

2k−1

C2
2C

C2
1

∑
p≥k

p−k is even

p−a
e
d
2 2
−p+k

2 (p+ 1)
p+ 1

2

(p− k + 1)
p−k+1

2

(
p−k+1

2 + k + d/2
) p−k

2 +k+d/2

= 2πd/2
2
d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p−a (p+ 1)
p+ 1

2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (65)
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We define

fa(p) =
p−a (p+ 1)

p+ 1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (66)

By applying the chain rule to elog fa(p), we have that the derivative of fa is

f ′a(p) =
(p+ 1)p+

1
2 p−a

2(p− k + 1)
p−k+1

2 (p+ k + d+ 1)
p+k+d

2

·
(
−2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+ log(1 +

k2 − d(p− k + 1)

(p− k + 1)(p+ k + d+ 1)
)

)
. (67)

Let ga(p) = − 2a
p −

k+d
(p+1)(p+k+d+1) + log(1 + k2−d(p−k+1)

(p−k+1)(p+k+d+1) ). Then ga(p) and f ′a(p) have the

same sign. Next we will show that ga(p) ≥ 0 for k ≤ p ≤ k2

d+24a when k is large enough.

First when p ≥ k and k2−d(p−k+1)
(p−k+1)(p+k+d+1) ≥ 1, we have

ga(p) ≥ −2a

k
− k + d

(k + 1)(k + k + d+ 1)
+ log(2) ≥ 0, (68)

when k is sufficiently large.

Second when p ≥ k and 0 ≤ k2−d(p−k+1)
(p−k+1)(p+k+d+1) ≤ 1, since log(1 + x) ≥ x

2 for 0 ≤ x ≤ 1, we have

ga(p) ≥ −2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+

k2 − d(p− k + 1)

2(p− k + 1)(p+ k + d+ 1)

≥ −2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+

k2 − dp
2p(p+ k + d+ 1)

.

When p ≤ k2

d+24a , we have k2 − dp ≥ 24ap. Then

k2 − dp
4p(p+ k + d+ 1)

≥ 24ap

4p(p+ k + d+ 1)
≥ 6ap

(p+ 1)(p+ k + d+ 1)
≥ k + d

(p+ 1)(p+ k + d+ 1)

when k is sufficiently large. Also we have

k2 − dp
4r(p+ k + d+ 1)

≥ 24ap

4r(p+ k + d+ 1)
≥ 6a

p+ k + d+ 1
≥ 2a

p

when k is sufficiently large.

Combining all the arguments above, we conclude that ga(p) ≥ 0 and f ′a(p) ≥ 0 when k ≤ p ≤
k2

d+24a . Then when k ≤ p ≤ k2

d+24a , we have

fa(p) ≤ fa
(

k2

d+ 24a

)
. (69)

When p ≥ k2

d+24a , we have

fa(p) =
p−a (p+ 1)

p+ 1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

=
p−a (p+ 1)

p+ 1
2

((p+ 1)2 − k2 + d(p− k + 1))
p−k+1

2 (p+ k + 1 + d)
2k+d−1

2

=
p−a (p+ 1)

− d2(
1− k2−d(p−k+1)

(p+1)2

) p−k+1
2
(

1 + k+d
p+1

) 2k+d−1
2

≤ p−a−
d
2(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2

.
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If k2−d(p−k+1) < 0,
(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2 ≥ 1. If k2−d(p−k+1) ≥ 0, i.e., p ≤ k2+dk−d

d ,
for sufficiently large k, we have

(
1− k2 − d(p− k + 1)

(p+ 1)2

) p−k+1
2

≥

(
1−

k2 − d( k2

d+24a − k + 1)

( k2

d+24a + 1)2

) k2+dk−d
d

−k+1

2

≥
(

1− 48a(d+ 24a)

k2

) k2

2d

≥ e−
k2

2d
48a(d+24a)

k2 = e−
48a(d+24a)

2d ,

which is a constant independent of k. Then for p ≥ k2

d+24a , we have

fa(p) ≤ e
48a(d+24a)

2d p−a−
d
2 . (70)

Finally we have

λk = 2πd/2
2
d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

fa(p)

≤ O

 ∑
k≤p≤ k2

d+24a

p−k is even

fa(p) +
∑

p≥ k2

d+24a

p−k is even

fa(p)



≤ O


(

k2

d+ 24a
− k + 1

)
fa

(
k2

d+ 24a

)
+

∑
p≥ k2

d+24a

p−k is even

e
48a(d+24a)

2d p−a−
d
2


≤ O

((
k2

d+ 24a
− k + 1

)
e

48a(d+24a)
2d

(
k2

d+ 24a

)−a− d2
+ e

48a(d+24a)
2d

1

a+ d
2 − 1

(
k2

d+ 24a
− 1

)1−a− d2
)

= O(k−d−2a+2).

Next we prove λk = Ω(k−d−2a+2). Since cp are nonnegative and cp = Θ(p−a), we have that
cp ≥ C ′p−a for some constant C ′. Then we have

λk ≥
πd/2

2k−1

∑
p≥k

p−k is even

C ′p−a
Γ(p+ 1)Γ(p−k+1

2 )

Γ(p− k + 1)Γ(p−k+1
2 + k + d/2)

. (71)

According to Stirling’s formula (63) and (64), using the similar argument as (65) we have

λk ≥
πd/2

2k−1

C2
1

C2
2

∑
p≥k

p−k is even

C ′p−a

√
2π
p+1

(
p+1
e

)p+1√ 2π
p−k+1

2

( p−k+1
2

e

) p−k+1
2

√
2π

p−k+1

(
p−k+1
e

)p−k+1√
2π

p−k+1
2 +k+d/2

( p−k+1
2 +k+d/2

e

) p−k+1
2 +k+d/2

(72)

= 2πd/2
2
d
2 e

d
2C2

1C
′

C2
2

∑
p≥k

p−k is even

p−a (p+ 1)
p+ 1

2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

(73)

≥ 2πd/2
2
d
2 e

d
2C2

1C
′

C2
2

∑
p≥k2

p−k is even

fa(p), (74)
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where fa(p) is defined in (66). When p ≥ k2, we have

fa(p) =
p−a (p+ 1)

p+ 1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

=
p−a (p+ 1)

p+ 1
2

((p+ 1)2 − k2 + d(p− k + 1))
p−k+1

2 (p+ k + 1 + d)
2k+d−1

2

≥ (p+ 1)
−a− d2(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2
(

1 + k+d
p+1

) 2k+d−1
2

For sufficiently large k, k2 − d(p− k + 1) < 0. Then we have(
1− k2 − d(p− k + 1)

(p+ 1)2

) p−k+1
2

=

(
1− k2 − d(p− k + 1)

(p+ 1)2

) −(p+1)2

k2−d(p−k+1)
·−k

2+d(p−k+1)

(p+1)2
· p−k+1

2

≤ e
−k2+d(p−k+1)

(p+1)2
· p−k+1

2

≤ e
dp2

2p2 = e
d
2

which is a constant independent of k. Also, for sufficiently large k, we have(
1 +

k + d

p+ 1

) 2k+d−1
2

=

(
1 +

k + d

p+ 1

) p+1
k+d

k+d
p+1

2k+d−1
2

≤ e
k+d
p+1

2k+d−1
2

≤ e 3k2

2r = e
3
2

Then for p ≥ k2, we have fa(p) ≥ e− d2− 3
2 (p+ 1)−a−

d
2 .

Finally we have

λk ≥ 2πd/2
2
d
2 e

d
2C2

1C
′

C2
2

∑
p≥k2

p−k is even

fa(p) (75)

≥ 2πd/2
2
d
2 e

d
2C2

1C
′

C2
2

∑
p≥k2

p−k is even

e−
d
2−

3
2 (p+ 1)−a−

d
2 (76)

≥ 2πd/2
2
d
2 e

d
2C2

1C
′

C2
2

e−
d
2−

3
2

1

2(a+ d
2 − 1)

(k2 + 2)1−a− d2 (77)

= Ω(k−d−2a+2). (78)

Overall, we have λk = Θ(k−d−2a+2).

Proof of Corollary C.4, part 2. It is easy to verify that λk = 0 when k is even because cp = 0 when
p ≥ k and p− k is even. When k is odd, the proof of Theorem 4.6 still applies.

Proof of Corollary C.4, part 3. Since cp = O
(
exp

(
−a√p

))
, we have that cp ≤ Ce−a

√
p for some

constant C. Similar to (65), we have

λk ≤ 2πd/2
2
d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

e−a
√
p (p+ 1)

p+ 1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (79)
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Use the definition in (66) and let a = 0, we have

f0(p) =
(p+ 1)

p+ 1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (80)

Then according to (69) and (70), for sufficiently large k, we have f0(p) ≤ f0

(
k2

d

)
when k ≤ p ≤

k2

d and f0(p) ≤ C3p
− d2 for some constant C3 when p ≥ k2

d . Then when k ≤ p ≤ k2

d , we have

f0(p) ≤ f0

(
k2

d

)
≤ C3

(
k2

d

)− d2
. When p ≥ k2

d , we have f0(p) ≤ C3p
− d2 ≤ C3

(
k2

d

)− d2
. Overall,

for all p ≥ k, we have

f0(p) ≤ C3

(
k2

d

)− d2
. (81)

Then we have

λk ≤ 2πd/2
2
d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

e−a
√
pf0(p) (82)

≤ 2πd/2
2
d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d2 ∑
p≥k

p−k is even

e−a
√
p (83)

≤ 2πd/2
2
d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d2 2e−a
√
k−1(a

√
k − 1 + 1)

a2
(84)

= O
(
k−d+1/2 exp

(
−a
√
k
))

(85)

Proof of Corollary C.4, part 4. Since cp = Θ(p1/2a−p), we have that cp ≤ Cp1/2a−p for some
constant C. Similar to (65), we have

λk ≤ 2πd/2
2
d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p1/2a−p (p+ 1)
p+ 1

2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (86)

Use the definition in (66) and let a = 0, we have

f0(p) =
(p+ 1)

p+ 1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (87)

Then according to (69) and (70), for sufficiently large k, we have f0(p) ≤ f0

(
k2

d

)
when k ≤

p ≤ k2

d and f0(p) ≤ C3p
− d2 for some constant C3 when p ≥ k2

d . Then when k ≤ p ≤ k2

d , we

have p1/2f0(p) ≤ p1/2f0

(
k2

d

)
≤ C3

(
k2

d

)1/2 (
k2

d

)− d2
. When p ≥ k2

d , we have p1/2f0(p) ≤

C3p
1/2p−

d
2 ≤ C3

(
k2

d

)− d2 + 1
2

. Overall, for all p ≥ k, we have

p1/2f0(p) ≤ C3

(
k2

d

)− d2 + 1
2

. (88)
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Then we have

λk ≤ 2πd/2
2
d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p1/2a−pf0(p) (89)

≤ 2πd/2
2
d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d2 + 1
2 ∑

p≥k
p−k is even

a−p (90)

≤ 2πd/2
2
d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d2 + 1
2 1

log a
a−(k−1) (91)

= O
(
k−d+1a−k

)
. (92)

On the other hand, since cp = Θ(p1/2a−p), we have that cp ≥ C ′p1/2a−p for some constant C ′.
Similar to (73), we have

λk ≥ 2πd/2
2
d
2 e

d
2C2

1C
′

C2
2

∑
p≥k

p−k is even

p1/2a−p (p+ 1)
p+ 1

2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

(93)

≥ 2πd/2
2
d
2 e

d
2C2

1C
′

C2
2

k1/2a−k (k + 1)
k+ 1

2

(k − k + 1)
k−k+1

2 (k + k + 1 + d)
k+k+d

2

(94)

= Ω

(
k−d/2+1a−k (k + 1)

k

(k + k + 1 + d)
k

)
. (95)

Since (k + 1)
k

= kk(1 + 1/k)k = Θ(kk). Similarly, (k + k + 1 + d)
k

= Θ((2k)k). Then we have

λk = Ω

(
k−d/2+1a−k (k + 1)

k

(k + k + 1 + d)
k

)
(96)

= Ω

(
k−d/2+1a−kkk

(2k)k

)
(97)

= Ω
(
k−d/2+12−ka−k

)
. (98)

For the NTK of a two-layer ReLU network with γb > 0, then according to Lemma 3.2 we have
cp = κp,2 = Θ(p−3/2) . Therefore using Corollary 4.7 λk = Θ(k−d−1). Notice here that k
refers to the frequency, and the number of spherical harmonics of frequency at most k is Θ(kd).
Therefore, for the `th largest eigenvalue λ` we have λ` = Θ(`−(d+1)/d). This rate agrees with Basri
et al. (2019) and Velikanov & Yarotsky (2021). For the NTK of a two-layer ReLU network with
γb = 0, the eigenvalues corresponding to the even frequencies are 0, which also agrees with Basri
et al. (2019). Corollary 4.7 also shows the decay rates of eigenvalues for the NTK of two-layer
networks with Tanh activation and Gaussian activation. We observe that when the coefficients of
the kernel power series decay quickly then the eigenvalues of the kernel also decay quickly. As a
faster decay of the eigenvalues of the kernel implies a smaller RKHS, Corollary 4.7 demonstrates
that using ReLU results in a larger RKHS relative to using either Tanh or Gaussian activations. We
numerically illustrate Corollary 4.7 in Figure 4, Appendix C.3.

C.5 ANALYSIS OF THE LOWER SPECTRUM: NON-UNIFORM DATA

The purpose of this section is to prove a formal version of Theorem 4.8. In order to prove this result
we first need the following lemma.
Lemma C.20. Let the coefficients (cj)

∞
j=0 with cj ∈ R≥0 for all j ∈ Z≥0 be such that the series∑∞

j=0 cjρ
j converges for all ρ ∈ [−1, 1]. Given a data matrix X ∈ Rn×d with ‖xi‖ = 1 for all
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i ∈ [n], define r := rank(X) ≥ 2 and the gram matrix G := XXT . Consider the kernel matrix

nK =

∞∑
j=0

cjG
�j .

For arbitrary m ∈ Z≥1, let the eigenvalue index k satisfy n ≥ k > rank (Hm), where Hm :=∑m−1
j=0 cjG

�j . Then

λk(K) ≤ ‖G
�m‖
n

∞∑
j=m

cj . (99)

Proof. We start our analysis by considering λk(nK) for some arbitrary k ∈ N≤n. Let

Hm :=

m−1∑
j=0

cjG
�j ,

Tm :=

∞∑
j=m

cjG
�j

be the m-head and m-tail of the Hermite expansion of nK: clearly nK = Hm + Tm for any
m ∈ N. Recall that a constant matrix is symmetric and positive semi-definite, furthermore, by
the Schur product theorem, the Hadamard product of two positive semi-definite matrices is positive
semi-definite. As a result, G�j is symmetric and positive semi-definite for all j ∈ Z≥0 and therefore
Hm and Tm are also symmetric positive semi-definite matrices. From Weyl’s inequality (Weyl,
1912, Satz 1) it follows that

nλk(K) ≤ λk(Hm) + λ1(Tm). (100)

In order to upper bound λ1(Tm), observe, as Tm is square, symmetric and positive semi-definite,
that λ1(Tm) = ‖Tm‖. Using the non-negativity of the coefficients (cj)

∞
j=0 and the triangle inequal-

ity we have

λ1(Tm) =

∥∥∥∥∥∥
∞∑
j=m

cjG
�j

∥∥∥∥∥∥ ≤
∞∑
j=m

cj
∥∥G�j∥∥

By the assumptions of the lemma [G]ii = 1 and therefore [G]jii = 1 for all j ∈ Z≥0. Furthermore,
for any pair of positive semi-definite matrices A,B ∈ Rn×n and k ∈ [n]

λ1(A�B) ≤ max
i∈[n]

[A]iiλ1(B), (101)

Schur (1911). Therefore, as maxi∈[n][G]ii = 1,∥∥G�j∥∥ = λ1(G�j) = λ1(G�G�(j−1)) ≤ λ1(G�(j−1)) =
∥∥∥G�(j−1)

∥∥∥
for all j ∈ N. As a result

λ1(Tm) ≤
∥∥G�m∥∥ ∞∑

j=m

cj .

Finally, we now turn our attention to the analysis of λk(Hm). Upper bounding a small eigenvalue
is typically challenging, however, the problem simplifies when and k exceeds the rank of Hm, as is
assumed here, as this trivially implies λk(Hm) = 0. Therefore, for k > rank(Hm)

λk(K) ≤ ‖G
m‖
n

∞∑
j=m

cj

as claimed.

In order to use Lemma C.20 we require an upper bound on the rank of Hm. To this end we provide
Lemma C.21.
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Lemma C.21. Let G ∈ Rn×n be a symmetric, positive semi-definite matrix of rank 2 ≤ r ≤ d.
Define Hm ∈ Rn×n as

Hm =

m−1∑
j=0

cjG
�j (102)

where (cj)
m−1
j=0 is a sequence of real coefficients. Then

rank (Hm) ≤1 + min{r − 1,m− 1}(2e)r−1

+ max{0,m− r}
(

2e

r − 1

)r−1

(m− 1)r−1.
(103)

Proof. As G is a symmetric and positive semi-definite matrix, its eigenvalues are real and non-
negative and its eigenvectors are orthogonal. Let {vi}ri=1 be a set of orthogonal eigenvectors for
G and γi the eigenvalue associated with vi ∈ Rn. Then G may be written as a sum of rank one
matrices as follows,

G =

r∑
i=1

γiviv
T
i .

As the Hadamard product is commutative, associative and distributive over addition, for any j ∈ Z≥0

G�j can also be expressed as a sum of rank 1 matrices,

G�j =

(
r∑
i=1

γiviv
T
i

)�j

=

(
r∑

i1=1

γi1vi1v
T
i1

)
�

(
r∑

i2=1

γi2vi2v
T
i2

)
� · · · �

 r∑
ij=1

γijvijv
T
ij


=

r∑
i1,i2...ij=1

γi1γi2 · · · γir
(
vi1v

T
i1

)
�
(
vi2v

T
i2

)
� · · · �

(
vijv

T
ij

)
=

r∑
i1,i2,...,ij=1

γi1γi2 · · · γij
(
vi1 � vi2 � · · · � vij

) (
vi1 � vi2 � · · · � vij

)T
.

Note the fourth equality in the above follows from viv
T
i = vi⊗vi and an application of the mixed-

product property of the Hadamard product. As matrix rank is sub-additive, the rank of G�j is less
than or equal to the number of distinct rank-one matrix summands. This quantity in turn is equal to
the number of vectors of the form

(
vi1 � vi2 � · · · � vij

)
, where i1, i2, . . . , ij ∈ [r]. This in turn

is equivalent to computing the number of j-combinations with repetition from r objects. Via a stars
and bars argument this is equal to

(
r+j−1
j

)
=
(
r+j−1
r(n)−1

)
. It therefore follows that

rank(G�j) ≤
(
r + j − 1

r − 1

)
≤
(
e(r + j − 1)

r − 1

)r−1

≤ er−1

(
1 +

j

r − 1

)r−1

≤ (2e)r−1

(
δj≤r−1 + δj>r−1

(
j

r − 1

)r−1
)
.
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The rank of Hm can therefore be bounded via subadditivity of the rank as

rank(Hm) = rank

a01n×n +

m−1∑
j=1

cjG
�j


≤1 +

m−1∑
j=1

rank
(
G�j

)
≤1 +

m−1∑
j=1

(2e)r−1

(
δj≤r−1 + δj>r−1

(
j

r − 1

)r−1
)

≤1 + min{r − 1,m− 1}(2e)r−1

+ max{0,m− r}
(

2e

r − 1

)r−1

(m− 1)r−1.

(104)

As our goal here is to characterize the small eigenvalues, then as n grows we need both k and
therefore m to grow as well. As a result we will therefore be operating in the regime where m > r.
To this end we provide the following corollary.
Corollary C.22. Under the same conditions and setup as Lemma C.21 with m ≥ r ≥ 7 then

rank(Hm) < 2mr.

Proof. If r ≥ 7 > 2e+ 1 then r − 1 > 2e. As a result from Lemma C.21

rank(Hm) ≤ 1 + (r − 1)(2e)r−1 + (m− r)
(

2e

r − 1

)r−1

(m− 1)r−1

< r(2e)r−1 + (m− 1)r

< 2mr

as claimed.

Corollary C.22 implies for any k ≥ 2mr, k ≤ n that we can apply Lemma C.20 to upper bound the
size of the kth eigenvalue. Our goal is to upper bound the decay of the smallest eigenvalue. To this
end, and in order to make our bounds as tight as possible, we therefore choose the truncation point
m(n) = b(n/2)1/rc, note this is the largest truncation which still satisfies 2m(n)r ≤ n. In order to
state the next lemma, we introduce the following pieces of notation: with L := {` : R≥0 → R≥0}
define U : L × Z≥1 → R≥0 as

U(`,m) =

∫ ∞
m−1

`(x)dx.

Lemma C.23. Given a sequence of data points (xi)i∈Z≥1
with xi ∈ Sd for all i ∈ Z≥1, construct

a sequence of row-wise data matrices (Xn)n∈Z≥1
, Xn ∈ Rn×d, with xi corresponding to the

ith row of Xn. The corresponding sequence of gram matrices we denote Gn := XnX
T
n . Let

m(n) := b(n/2)1/r(n)c where r(n) := rank(Xn) and suppose for all sufficiently large n that
m(n) ≥ r(n) ≥ 7. Let the coefficients (cj)

∞
j=0 with cj ∈ R≥0 for all j ∈ Z≥0 be such that

1) the series
∑∞
j=0 cjρ

j converges for all ρ ∈ [−1, 1] and 2) (cj)
∞
j=0 = O(`(j)), where ` ∈ L

satisfies U(`,m(n)) < ∞ for all n and is monotonically decreasing. Consider the sequence of
kernel matrices indexed by n and defined as

nKn =

∞∑
j=0

cjG
�j
n .

With ν : Z≥1 → Z≥1 suppose
∥∥∥G�m(n)

n

∥∥∥ = O(n−ν(n)+1), then

λn(Kn) = O(n−ν(n)U(`,m(n))). (105)
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Proof. By the assumptions of the Lemma we may apply Lemma C.20 and Corollary C.22, which
results in

λn(Kn) ≤

∥∥∥G�m(n)
n

∥∥∥
n

∞∑
j=m(n)

cj = O(n−ν(n))

∞∑
j=m(n)

cj .

Additionally, as (cj)
∞
j=0 = O(`(j)) then

λn(Kn) = O

n−ν(n)
∞∑

j=m(n)

`(j)


= O

(
n−ν(n)

∫ ∞
m(n)−1

`(x)dx

)
= O

(
n−ν(n)U(`,m(n))

)
as claimed.

Based on Lemma C.20 we provide Theorem C.24, which considers three specific scenarios for the
decay of the power series coefficients inspired by Lemma 3.2.
Theorem C.24. In the same setting, and also under the same assumptions as in Lemma C.23, then

1. if cp = O(p−α) with α > r(n) + 1 for all n ∈ Z≥0 then λn(Kn) = O
(
n−

α−1
r(n)

)
,

2. if cp = O(e−α
√
p), then λn(Kn) = O

(
n

1
2r(n) exp

(
−α′n

1
2r(n)

))
for any α′ <

α2−1/2r(n),

3. if cp = O(e−αp), then λn(Kn) = O
(

exp
(
−α′n

1
r(n)

))
for any α′ < α2−1/2r(n).

Proof. First, as [Gn]ij ≤ 1 then∥∥G�m(n)
∥∥

n
≤ Trace(G�m(n))

n
= 1.

Therefore, to recover the three results listed we now apply Lemma C.23 with ν(n) = 0. First, to
prove 1., under the assumption `(x) = x−α with α > 0 then∫ ∞

m(n)−1

x−αdx =
(m(n)− 1)−α+1

α− 1
.

As a result
λn(Kn) = O

(
n−

α−1
r(n)

)
.

To prove ii), under the assumption `(x) = e−α
√
x with α > 0 then∫ ∞

m(n)−1

e−α
√
xdx =

2 exp(−α(
√
m(n)− 1)(α

√
m(n)− 1 + 1)

α2
.

As a result
λn(Kn) = O

(
n

1
2r(n) exp

(
−α′n

1
2r(n)

))
for any α′ < α2−1/2r(n). Finally, to prove iii), under the assumption `(x) = e−αx with α > 0 then∫ ∞

m(n)−1

e−αxdx =
exp(−α(m(n)− 1)

α
.

Therefore
λn(Kn) = O

(
exp

(
−α′n

1
r(n)

))
again for any α′ < α2−1/2r(n).
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Unfortunately, the curse of dimensionality is clearly present in these results due to the 1/r(n) factor
in the exponents of n. However, although perhaps somewhat loose we emphasize that these results
are certainly far from trivial. In particular, while trivially we know that λn(Kn) ≤ Tr(Kn)/n =
O(n−1), in contrast, even the weakest result concerning the power law decay our result is a clear
improvement as long as α > r(n) + 1. For the other settings, i.e., those specified in 2. and 3., our
results are significantly stronger.
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