Under review as a conference paper at ICLR 2026

A FAST, RELIABLE, AND SECURE PROGRAMMING LAN-
GUAGE FOR LLLM AGENTS WITH CODE ACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern large language models (LLMs) are often deployed as agents, calling ex-
ternal tools adaptively to solve tasks. Rather than directly calling tools, it can be
more effective for LLMs to write code to perform the tool calls, enabling them to
automatically generate complex control flow such as conditionals and loops. Such
code actions are typically provided as Python code, since LLMs are quite proficient
at it; however, Python may not be the ideal language due to limited built-in support
for performance, security, and reliability. We propose a novel programming lan-
guage for code actions, called QUASAR, which has several benefits: (1) automated
parallelization to improve performance, (2) uncertainty quantification to improve
reliability and mitigate hallucinations, and (3) security features enabling the user to
validate actions. LLMs can write code in a subset of Python, which is automatically
transpiled to QUASAR. We evaluate our approach on the ViperGPT and CaMeL
agents, applied to the GQA visual question answering and AgentDojo Al assistant
datasets, demonstrating that LLMs with QUASAR actions instead of Python actions
retain strong performance, while reducing execution time by up to 56%, improving
security by reducing user approvals by up to 53%, and improving reliability by
applying conformal prediction to achieve a desired target coverage level.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable general reasoning capabilities.
To leverage these capabilities to solve practical tasks, there has been significant interest in LLM
agents, where the LLM is given access to tools that can be used to interact with an external system.
The LLM can autonomously choose when to use different tools to help complete a task given by
the user. Tools include functions to read and edit files (Yang et al., |2024), access to knowledge
sources such as databases (Lewis et al.| 2021), external memory to store information across different
interactions (Liu et al.,[2024bj; Maharana et al.,2024)), and access to user input/output devices such as
mouse, keyboard, and screen (Anthropicl 2025).

An effective strategy in practice is to provide these tools in the form of software APIs, and then let the
LLM write code that invokes these APIs (Wang et al.,|2024b; Suris et al., [2023} [Trivedi et al.| 2024;
Debenedetti et al., 2025)); we refer to these systems as LLM agents with code actions. This strategy
enables the LLM to write code that includes control flow to facilitate more complex interactions,
such as automating iterative tasks by writing loops. For example, ViperGPT gives the LLM access to
external tools such as object detectors to perform image question answering (Suris et al., |2023), and
AppWorld gives the LLM access to a rich variety of smartphone app APIs to enable it to help the user
automatically configure their device (in a simulation) (Trivedi et al., 2024).

A natural question is what the ideal programming language is for code actions. Python has become the
standard choice due to the presence of a large existing ecosystem of software libraries; furthermore,
due to the large amount of Python code in most LLM pretraining corpora, LLMs have been shown to
be proficient at writing Python code (Zhuo et al., [2025; |Puri et al.,|2021; |Shypula et al., [2024}2025).

However, there are also a number of drawbacks of using Python. It is a highly dynamic language,
making it difficult to provide assurances that the generated code is safe to execute. It is also
challenging to optimize, when many agent workflows exhibit significant potential for parallelism;
for instance, programs generated by ViperGPT often call multiple APIs that could be executed in
parallel. In addition, agents may call other models, which are themselves prone to hallucination.

Under review as a conference paper at ICLR 2026

While conformal prediction (Vovk et al., 2005) can mitigate this for an individual model call by
returning a set, the rest of the agent’s program must then be executed with a set of values rather than
a single concrete value. Python cannot do this kind of set-based execution. As a consequence, there
is a unique opportunity to rethink the programming language that forms the basis of code actions.

We propose a novel agent language, QUASAR (for QUick And Secure And Reliable) that combines
several promising recent ideas from the programming languages literature. The key idea is to
separate internal computation from external actions. Specifically, QUASAR has a pure, functional
“core language” based on lambda calculus, with side effects isolated in “external calls”. Internal
computations are things like executing the “then” branch of an “if” statement when the condition is
true. External actions are things like executing shell programs or making requests to remote APIs.
This separation provides several benefits: (1) it enables QUASAR to make use of recently proposed
techniques for automatically executing external calls in parallel when possible (Mell et al 2025), (2)
it can enforce whitelists on external calls to ensure that undesirable APIs are not executed without user
permission, and it can efficiently ask the user for approval in batches, and (3) it can incorporate recent
techniques for uncertainty quantification in neurosymbolic programs (Ramalingam et al., [2024).

A key challenge is that unlike Python, LLMs have never seen QUASAR code and therefore do not
know how to write code in this language. Rather than directly teach them QUASAR, we propose an
alternative strategy where we first implement a transpiler from a subset of Python to QUASAR, and
then have the LLM generate Python code in this subset. Then, whenever the LLM writes code to be
executed, we translate it to QUASAR and execute it using the QUASAR interpreter instead.

Contributions. (1) We introduce QUASAR, a novel programming language for LLM agent actions.
(2) We propose a generation strategy for QUASAR code by first asking the LLM to generate code in a
subset of Python, and then transpiling that to QUASAR. (3) We experimentally demonstrate that our
generation strategy achieves task performance comparable to standard Python generation. (4) We
experimentally demonstrate the utility of QUASAR, reducing execution time when possible by 56%,
improving security by reducing user approvals when possible by 53%, and improving reliability by
applying conformal prediction to achieve a target error rate.

2 RELATED WORK

With the promising capabilities of LLMs, numerous studies have explored their use as autonomous
agents (Wang et al.| [2024a; |[Huang et al.| 2024} [Yang et al.| 2024). Early efforts, such as Chain-of-
Thought prompting (Jason Wei, 2023)), demonstrated that providing in-context reasoning examples
can significantly enhance LLM reasoning abilities. Recognizing the tendency of LL.Ms to produce
hallucinations, subsequent work like Retrieval-Augmented Generation (RAG) (Lewis et al.l 2021)
and Dense Passage Retrieval (DPR) (Karpukhin et al.,2020) introduced mechanisms to incorporate
external knowledge bases, using retrieved information to improve model accuracy and reliability.

Building on this idea, ReAct (Yao et al.}|2023b) extends the role of external resources by providing
LLMs with access to executable APIs and external tools, enabling them to perform simple tasks
through API calls. While these approaches primarily guide agentic behavior via natural language,
recent works such as CodeAct (Wang et al.,[2024b)), ViperGPT (Suris et al.||2023)), AppWorld (Trivedi
et al.,|2024), and CaMeL (Debenedetti et al.|[2025) take a step further by instructing LLMs to generate
executable Python code as agent actions. This transition from natural language to code-based actions
has demonstrated improved task performance and greater flexibility.

However, despite these advancements, several challenges remain for LLM agents. These include
security and privacy risks (He et al., [2024; |/Andriushchenko et al., |2025), persistent hallucination
issues (Liu et al.| 2024a; [Li et al.| 2024a)), and concerns over computational efficiency (Yao et al.|
2023a). Recent work has proposed addressing the security vulnerabilities by analyzing dataflows in
agent-generated code, focusing on a restricted subset of Python (Debenedetti et al.| [2025). However,
they do not offer performance or reliability improvements, and their approach does not support asking
for batch user approval. Other work has addressed conformal prediction of functional programs
with neural components (Ramalingam et al) [2024) and automatic parallelization of functional
programs (Mell et al.|[2025)). Though we draw on insights from this work, neither considers programs
generated by LLM agents or the imperative features of languages like Python.

Under review as a conference paper at ICLR 2026

{Alcoholic,
Non- {Non-
alcoholic} alcoholic}

Non-alcoholic

{Alcoholic}

I
Question: Is there an alcoholic drink in this image?

Figure 1: Illustrative example of an image and a natural language question about that image. We
show predictions of both the original object detector (left) and the conformal detector (right). For the
latter, the green boxes are identifed as being definitely in the image whereas the yellow boxes may or
may not be in the image. The program P; in Figure |Z| answers this question for its input image.

3 QUASAR PROGRAMMING LANGUAGE

We first describe the syntax and semantics for QUASAR programs; then, we provide details on how
QUASAR improves security, performance, and reliability (summarized in Algorithm [I)). We show a
running example in Figure [2]for the problem in Figure[T]

3.1 SYNTAX AND SEMANTICS

A QUASAR program P € P consists of standard syntatic constructs such as conditionals, loops, and
function calls. The execution of a QUASAR program P € P is expressed as a set of rewrite rules R.
If arule R € R is applicable to P, then it transforms P into a new program P’, which we denote by

PP m general, there may be multiple possible programs P’ satisfying P £ pr , for instance,
if the rule R is applicable to different parts of P. If there is any rewrite R mapping P to P’, then we
simply write P — P’. We give the full set of rewrite rules in Figure |§|in Appendix @

There are two kinds of rewrite rules: internal rules R;, and external rules R.x. Internal rules do
not have effects, meaning they do not have consequences external to the program, including network
calls, system calls, calls to external APIs, or even printing. Internal rules perform transformations
such as substituting variables, unrolling loops, and resolving conditionals; these rules are applicable
if the necessary values are constants (e.g., a conditional where the predicate is True or False).

For example, in program P, in Figure 2} the list in the for loop is a constant value [patchl,
patch2], so QUASAR applies a rule to unroll the for loop, resulting in Ps. Similarly, in Py, it can
apply rewrite rules to rewrite the predicate "no" == "yes" to False and the predicate "yes"
== "yes" to True, after which it can rewrite the conditionals to obtain Ps.

There is only one external rule Reyy = {Rexi}. This rule is designed to enable calls to external
Sfunctions f € Fe. Unlike a typical function, which is implemented as QUASAR code, an external
function is implemented in Python; thus, external functions can perform desirable effects such as
printing a value or calling an LLM to obtain its output. An external call in program P is a statement
S =y <+ f(x1, ..., zx) that calls an external function f € Fey.

QUASAR executes external calls as soon as all their arguments are available. In more detail, an
external call S = y < f(x1, ..., xx) in a program P is dispatchable if all of x1, ..., x) are values (e.g.,
0, True, or "foo"; recall that variables become values as the program is incrementally rewritten).
As QUASAR performs rewrites, it keeps track of the currently executing external calls (S, B) € E,
where S is a pointer to the external call in the current program P (preserved by rewrites) and B is a
pointer to a value that is initially & but is eventually set to the output of the external function. After
arewrite P — P’, QUASAR identifies all the dispatchable external calls S in P’ that are not yet
in E; foreach S = y « f(x1,...,x1), it executes f on x1, ..., T in a separate thread T, and adds
the pending calls (S, B) to E. The thread T is also given B; once it finishes executing the external
function f, it writes the output of f to B and terminates. Then, QUASAR applies rewrite rule Rey to
the current program (which may no longer be P’) to substitute the value in B into the program.

Under review as a conference paper at ICLR 2026

drink_patches = image_patch.find("drink")
found = False
for drink_patch in drink_patches:

P= if drink_patch.simple_query("Does this have alcohol?"):
found = True
return found
E, = {(image_patch.find ("drink"), @)} ~~ Es = {(image_patch.find("drink"), [patchl, patch2])

found = False
for drink_patch in [patchl, patch2]:
Py = if drink_patch.simple_query ("Does this have alcohol?"):
found = True
return found

found = False

if patchl.simple_qguery ("Does this have alcohol?") == "yes":
found = True

if patch2.simple_query ("Does this have alcohol?") == "yes":
found = True

return found

Py =

E3 = {(patchl.simple_query(...), @), (patch2.simple_query(...), @)} ~
E, = {(patchl.simple_query(...), "no"), (patch2.simple_query(...),"yes")}

found = False

if "no" == "yes"
found = True

if "yes" == "yes"
found = True

return found

Ps = return True

Figure 2: Given program P; for the question in Figure|l} QUASAR may execute it as follows. First,
is immediately dispatches image_patch.find ("drink"), resulting in execution set F. This
external call finishes running and returns [patchl, patch?2], resulting in execution set Es,
after which QUASAR applies Ry to substitute this value into P, to obtain P,. Then, QUASAR
applies an internal rule to unroll the for loop in P, to obtain P5. It immediately dispatches both
patchl.simple_query(...) andpatch2.simple_query (...) resulting in execution
set F’3. As before, these external calls finish running and return "no" and "yes", respectively,
yielding F4, so QUASAR applies Ry twice (once for each external call) to substitute these values
into Ps to obtain Py. Finally, QUASAR applies additional internal rules to simplify the conditionals
in Py, resulting in terminal program Ps.

For example, in Figure[2] given the initial program P;, QUASAR immediately dispatches the external
call image_patch.find ("drink") in a separate thread, leading to execution set /1. When
this thread finishes, it will write the result [patchl, patch2] to &, resulting in Fs. This allows
Ry to be applied to P, obtaining P». Similarly, as soon as QUASAR rewrites P to Ps, it dispatches
two external calls patchl.simple_query (...) and patch2.simple_query(...),re-
sulting in F3; these execute and return "no" and "yes", respectively, resulting in F4. Finally,
QUASAR applies Rey twice to substitute these values into P, resulting in Py. The general approach
is given in Algorithm|I}

A program P is terminal if no rules are applicable to P, and there are no pending external calls.
Assuming each external call only depends on its inputs, then it can be shown that any sequence of
rule applications results in the same set of external calls, and therefore the same effects. The order in

Under review as a conference paper at ICLR 2026

Algorithm 1 Pseudocode for the QUASAR interpreter. At each iteration, it validates the current set of
external calls with the user, and then executes them. It then rewrites P as much as possible (including
waiting for pending external calls to finish running), until it is stuck. Then, it repeats the process until
P cannot be rewritten any further, at which point it returns the result.

function RUNQUASAR(P)
while P has dispatchable external calls or P is not terminal do
Identify dispatchable external calls {S} in P
Query user to validate {5}, and terminate execution if rejected
Dispatch all external calls in P and add to a set
P + RUNINTERNAL(P, E)

return P
function RUNINTERNAL(P, F)
while E # & or P is not terminal do
if there exists (y < f(z1,...,x), B) € E such that B # & then
apply Rex to P to substitute B in for y
else if there exists a rule R € Ry that is applicable to P then
apply Rto P
return P

which the effects happen may be different depending on the sequence of rules applied; dependencies
can be enforced by inserting arguments and return values into the relevant external calls, similar to
how a pseudorandom number generator can be added to code for deterministic execution.

Because of this property (and assuming external calls depend only on their inputs), the QUASAR
interpreter can apply rules to P in any order. The specific strategy it employs is to first minimize the
amount of interaction with the user required to validate the external calls it makes, while maximizing
performance. These details are discussed in Sections [3.3] & [3.2] respectively.

There are two key benefits of this design of QUASAR. First, it decouples side effects (external) from
the pure computation (internal). For instance, any internal rewrite rules cannot pose security issues by
construction, since they do not have any effects on the world (other than consuming computational
resources to run); thus, we only need to worry about external calls when considering potential security
issues. Further, this separation makes it much easier to implement conformal semantics for QUASAR
than it would be for Python. Second, because the rules can be applied in any order, execution can
continue while waiting for time-consuming external calls to finish running. This is useful both for
parallelizability and for reducing the number of user interaction required to validate external calls.
We describe these benefits in more detail below.

3.2 PERFORMANCE VIA PARALLEL EVALUATION

The strategy QUASAR uses to minimize the number of rounds of interaction for security automatically
parallelizes external calls, since all external calls in P are dispatched simultaneously in the RUN-
QUASAR routine. The actual ability to expose parallelism comes from the design of the QUASAR
language and its internal rewrite rules. Intuitively, because QUASAR programs are interpreted using
rewrite rules, a statement can be “executed” as soon as the relevant program variables are substituted
with constants. This property enables QUASAR to execute statements out-of-order. For example, in
program Py in Figure 2] the statement patch2.simple_query (...) can be evaluated even
though previous statements have not yet been evaluated, since all of the arguments in this external call
(the image patch patch?2 and the string "Does this have alcohol?") are constants. As a
consequence, this external call can be dispatched in parallel with patchl.simple_query (...),
which significantly improves performance compared to ordinary sequential execution in Python.

3.3 SECURITY VIA DYNAMIC ACCESS CONTROL

We consider a standard security model based on access control (Sandhu & Samaratil, (1994} [Sandhu,
1998)), where the user must approve the execution of effects. Because effects are isolated in external
calls, we only need to ensure that external calls are consistent with the user’s desired security policy.

Under review as a conference paper at ICLR 2026

For instance, a smartphone user might give an app access to resources such as the user’s location and
the ability to send emails, in which case the app would only be allowed to access these resources.

In QUASAR, access to certain external functions can be granted ahead of time; alternatively, the
user can dynamically approve each external call made by the program. A key challenge with
dynamic access control is minimizing the number of rounds of interaction with the user; frequent
interruptions can lead to poor usability. Thus, QUASAR is designed to “collect” as many external
calls as possible and then query the user to confirm all of them. If rejected, execution terminates;
otherwise, the external calls are all dispatched in parallel and execution proceeds. This algorithm is
summarized in the RUNINTERNAL subroutine in Algorithm[T] which performs as many rewrites of the
current program P as possible (including both applying internal rules as well as handling previously-
dispatched external calls). It returns once P cannot be rewritten any further, in which case the main
routine RUNQUASAR queries the user to validate all the external calls in P, and then dispatches
all of these calls in parallel. This loop continues until P is terminal. For example, in Figure [2}
QUASAR asks the user for permission to make the external call image_patch.find ("drink")
in Py, but then is able to batch the permission requests for patchl.simple_query (...) and
path2.simple_query (...) in Ps.

3.4 RELIABILITY VIA CONFORMAL SEMANTICS

We also implement conformal semantics in QUASAR for uncertainty quantification. Conformal
prediction is a popular technique for quantifying the uncertainty of individual blackbox machine
learning models by modifying a given model to output a set of labels instead of a single label. For
example, an image classification model might output a set of plausible class labels instead of just
the most likely one. When QUASAR makes external calls to other machine learning models, we
may want to quantify the uncertainty of these models, and then keep track of how this uncertainty
propagates through the program. Specifically, program variables are assigned to sets of values instead
of individual values.

The key challenge is modifying the program execution to handle sets of values. For example, if a
Boolean variable x is bound to the set of values x — {True,False}, and a conditional statement
if x then pye else ppise that branches on z, then we effectively execute both branches pyye
and pgase Of the conditional; then, for each variable y defined in these branches, we take the union
of the values vy bound to y in Pyue and Vease N Palses 1€, Y > Vgue U Vraise. QUASAR includes a
modified set of conformal rewrite rules that handle variables bound to sets of values in this way.

Because external functions are opaque to QUASAR, abstract versions of them must be provided. In
the case of calls to neural models, such as £ind, the abstract version is provided by applying some
conformal technique, such as returning the set of labels whose probability is above some threshold.
For example, the object detector shown in the left of Figure |I| misses two objects (though in this
case, it does not affect the final answer in Figure EI); the output of the conformal detector is shown on
the right. In this case, the external call image_patch.find ("drink") indicates whether each
detection is definitely (green) or possibly (yellow) in the image; it represents the set of lists of patches

{[patchl,patch2,patch3,patchi],[patch2,patch3,patchd],
[patchl,patch2, patchd], [patch2, patchd]},

where the patches are ordered from left to right. Similarly, for each patch, the external call
patch.simple_query ("Does this drink have alcohol?") returns a prediction set
that is a subset of {"yes", "no"}. QUASAR overapproximates the true output; in this case, the
program output is {"yes™"}, i.e., there is definitely an alcoholic drink in the image.

The conformal guarantee says that, for some target fraction of the test dataset (“coverage”), the
ground truth label will be contained in the predicted set of labels. While this can be trivially obtained
by outputting the set of all labels, the sizes of sets should be kept as small as possible while satisfying
the target coverage. To satisfy the desired coverage guarantee, we use a standard conformal prediction
strategy. First, we optimize the thresholds for each individual model on a optimization set (L1
et al., 2024b). Then, using a held-out calibration set, we jointly rescale these thresholds using a
single scaling parameter 7 € R chosen using conformal prediction to satisfy a desired coverage
guarantee (Angelopoulos et al.,|2022} Zhang et al.,2025)). 7 also determines the number of programs
to generate, in order to handle uncertainty at the program level (Quach et al.).

Under review as a conference paper at ICLR 2026

({77: *.find’, 83: ‘.simple_query’},
(‘def”’,
75,
((76,),
(((‘prim’, 78, ‘drink’),
(‘call’, (79,), 77, (76, 78)),
(‘prim’, 80, False),
drink_patches = image_patch.find("drink") (‘def’,
found = False 81,
for drink_patch in drink_patches:

©
©

, 82),

if drink_patch.simple_query ("Does this have alcohol?"): (((‘prim’, 84, ‘Does this have alcohol?’),
found = True (‘call’, (85,), 83, (82, 84)),
return found (‘def’, 86, ((), (((‘prim’, 87, True),), (87,))))

(‘def’, 88, (O, (O, (89,)))),
(‘call”, (91,), 0, (85,)),
(‘call", (92,), 91, (86, 88)),
(Ycall’, (90,), 92, (O)),
(90,)))),

(‘call’, (93,), 79, (80, 81))),

(93,)))))

(@) (b)

Figure 3: An example of the same agent code, in both Python (a) and raw QUASAR (b) forms.

3.5 GENERATING QUASAR CODE

For purposes of illustration, we have written example code with a syntax similar to Python. However,
as shown in Figure 3] raw QUASAR code looks very different. A key challenge is that LLMs have
never seen QUASAR code before, and we find that they struggle to generate it directly. Instead, our
strategy is to have the LLM generate Python and then transpile this Python code to QUASAR. That is,
the LLM generates the code in Figure [3a] we transpile it to the code in[3b] and then the QUASAR
interpreter executes it. It is very challenging to transpile unrestricted Python to QUASAR, since this
strategy would inherit all the challenges of making Python more performant, secure, and reliable.
Furthermore, many practical agents do not use the unsupported language features of Python (e.g.,
classes and inheritance); intuitively, agents are trying to perform actions, not write complex software.
Thus, our transpiler supports a restricted subset of Python carefully chosen to balance expressiveness
and ease of transpilation. We consider three strategies for generating Python code in this subset:

* Instruction: It is often sufficient to instruct the LLM to do so in the system prompt.

e Multi-turn: It is also possible to feed error messages from our transpiler back to the LLM in
a multi-turn loop. Importantly, this feedback is only based on static program information; in
contrast, traditional multi-turn feedback based on Python interpreter errors requires running
the code, which can result in undesirable side-effects from unsuccessfully executed code.
However, a shortcoming of this approach is that calling the LLM multiple times can be slow.

* SFT: For smaller models which struggle to adhere to the allowed subset of Python, we can
use supervised fine-tuning to improve adherence.

We provide details on the supported subset of Python and our transpilation strategy Appendix [B]

4 EVALUATION

We evaluate two aspects of our approach. First, we show that generating QUASAR code via transpila-
tion retains task performance comparable to the use of Python, and we show several strategies for
improving transpilation success (Section[d.T). Second, we show that QUASAR is useful, offering
improvements in several diverse regards: performance, with significant reductions in execution time
(Section[4.2)); security, with significant reductions in the number of user interactions required (Sec-
tion[4.3); and reliability, with the conformal semantics achieving a target coverage rate (Section [4.4).

We evaluate on ViperGPT (Suris et al.|, [2023)), a visual question answering agent approach, and
CaMeL, a secure Al assistant. Given a natural language query about an image, ViperGPT first uses
an LLM agent to generate a Python program that would answer that query when provided with an
image. The Python program itself has access to various neural modules, including an object detector,
a vision-language model, and an LLM. We apply the ViperGPT approach on 1000 tasks randomly
sampled from GQA (Hudson & Manning, 2019), a dataset of questions about various day-to-day

Under review as a conference paper at ICLR 2026

Approach Execution Accuracy
GQA AD GQA AD
Python 99.6 76.7 71.8 64.6
Ours 99.9 844 73.1 65.7
Multi-turn ~ 100.0 91.1 73.1 70.5
Nano Base 92 - 65 -
Nano SFT 99 - 71 -

Table 1: Comparison of different code generation approaches on GQA and AgentDojo (AD). “Exe-
cution” is the fraction of generated programs that execute successfully (i.e., no syntax or runtime
errors); “Accuracy” is the fraction of successful programs that correctly output the ground truth label.

images. CaMeL performs tasks for users by using an LLM to generate Python code which itself may
invoke “quarantined” LLMs to process data without risk of prompt injections. We apply the CaMeL.
approach to all four suites of the AgentDojo (Debenedetti et al.,2024)) benchmark. All of our results
use GPT-5 with default (“Medium”) reasoning level unless otherwise stated.

4.1 GENERATION OF QUASAR CODE

First, we compare ordinary, unrestricted Python generation (“Python”) to Python generation restricted
to the allowed subset (“Ours”), as well as using multi-turn feedback (“Multi-turn™). Finally, we
consider fine-tuning small model (i.e., GPT-4.1-nano) using programs generated by a large model (i.e.,
GPT-5). We report results for both the base small model (“Nano Base”) and the fine-tuned version
(“Nano SFT”); for these results, we use 900 examples for training and report results on a held-out
subset of 100 examples. For each approach, we consider the evaluation accuracy on the GQA and
AgentDojo (AD) datasets—i.e., for what fraction of tasks does the generated program both execute
without error (“Execution”) and produce the correct result for the task (“Accuracy”). Execution errors
can be due to the LLM failing to adhere to the allowed subset or due to runtime errors. We show
results in Table[I] Restricting to the Python subset (“Ours”) does not degrade accuracy for either
dataset. Furthermore, multi-turn feedback improves accuracy for AgentDojo (“Multi-turn”); for
GQA, transpilation is almost always successful so we see no improvement. Finally, SFT improves
accuracy for GQA; the AgentDojo dataset contains only 93 tasks, which is not enough for SFT.

4.2 PERFORMANCE

To evaluate the performance improvements, we consider pairs of QUASAR programs and the Python
programs that they were transpiled from, ensuring that the programs have the same input-output
behavior. We also control for the time that each external call takes to execute by recording every
external call that a program makes and what its result and running time are. Then, we replay this
recording on both the Python and QUASAR versions of the program and record the total execution
time of each. The running times of these program pairs are shown in Figure[4a] On the GQA dataset,
QUASAR reduces running time by 18% =+ 23 (mean =+ stddev). This large variance is because only
49% of tasks are parallelizable. Among those, the running time is cut by 37% =+ 19. On AgentDojo,
the overall speedup is 49% =+ 32, with 67% improvable and a speedup of 56% =+ 22 on those.

4.3 SECURITY

We evaluate the security improvements in terms of the reduction in the number of user interactions
required to approve all external calls made by the program. As in Section[4.2] we consider pairs
of equivalent Python and QUASAR programs, i.e., that make exactly the same external calls. We
compare the number of user approvals required if the external calls are approved one at a time versus
if they are approved in batches (i.e., QUASAR executes as much internally as possible before asking
the user to approve). We show results in Figure On GQA, QUASAR reduces the number of
user interactions by 26% =+ 29. The large variance is because only 50% of tasks offer batching of
approvals; among those, the interaction count is more than cut in half, by 53% =+ 17. On AgentDojo,
the overall reduction is 25% = 26, with 56% improvable and a reduction of 55% =+ 19 on those.

Under review as a conference paper at ICLR 2026

Dataset | Performance | Security | Reliability
Overall Fraction Improvable Overall Fraction Improvable Target Empirical Fraction
Speedup Improvable Speedup Reduction Improvable Reduction Error Error Uncertain
GQA 18% + 23 49% 37% + 19 26% =+ 29 50% 53% + 17 10% 7.9% + 2.8 58.2% + 8.3
AD 49% + 32 67% 56% =+ 22 25% =+ 26 56% 44% + 19 10% 4.0% + 3.6 92.6% + 5.1

Table 2: An overview of the improvements (mean =+ stddev) provided by QUASAR.

2
- Equal Interaction Count 10° -~ Equal Interaction Count

-~ Equal Runtime

9 9
€8 s
— 3 >
0 -~ 2x Speedup 8 7 8 7
qE) .5 © £ ¢ 3¢
=] s g B £
. 8s L R g
2 = ? 08 - i g
5 g 4 94 | &
P = £ p " #
1 T3 8 <3 .
3 S S o Em .
5 . 5
10° S K g 1
3 M &
d of 5 01"
10° 10t 10% 0 1 2 3 a4 5 6 7 8 9 10 0o 1 2 3 42 5 6 7 8 9 °
Python runtime (s) Python Interaction Count Python Interaction Count
(a) (b) (©
H H
Hl = 1
H H
0.0 0.1 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.4 0.6 0.8 1.0
GQA test error AD test error
(d) (e)
‘ : ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
GQA fraction of predictions uncertain AD fraction of predictions uncertain

Figure 4: Python vs QUASAR running time for the improvable tasks (a). Python vs QUASAR user
interactions required for the improvable GQA tasks (b) and AgentDojo tasks (c). Using the conformal
semantics and targeting 0.1 coverage, the distribution of coverage for GQA (d) and AgentDojo (e),
and the distribution of fraction of “uncertain” predictions for GQA (g) and AgentDojo (g) for 100
different validation/test splits. Note that the high rate of uncertain predictions in AgentDojo is due to
our stringent criterion (i.e., we count any set size bigger than one as uncertain).

4.4 RELIABILITY

We evaluate reliability by showing how the conformal semantics can achieve a target error rate of
0.1 on a test set. Using the same dataset of QUASAR programs, we evaluated using the conformal
semantics with several different threshold values, which produce progressively larger output sets for
each program. We divided the dataset 100 times into validation/test splits. For each split, we chose
the largest threshold (and thus smallest prediction sets) where the validation error was less than 0.1,
and then we computed the test error with that threshold. The distribution of these test errors is shown
for GQA in Figure with mean coverage 7.9% = 2.8 and for AgentDojo in Figure 4e} with mean
coverage 4.0% =+ 3.6. Because the domain of labels varies based on task (e.g., yes/no, color, object,
etc), instead of measuring the size of prediction sets we measure certainty—i.e., the model is certain
if the prediction set is size 1, and otherwise it is uncertain. We consider the fraction of tasks on which
the model is uncertain. The distribution of such uncertainty rates in GQA is shown in Figure if] with
mean 58.2% = 8.3, and for AgentDojo in Figure[dg] with mean 92.6% = 5.1.

5 CONCLUSION

We have presented QUASAR, a language for code actions by LLM agents. Leveraging LLMs
proficiency with Python, we transpile from a subset of Python into QUASAR. Compared to Python,
QUASAR offers several key benefits in terms of performance (via automatic parallelization), security
(by dynamically asking the user for approval of batches of external calls), and reliability (by supporting
offering conformal execution semantics for programs).

Under review as a conference paper at ICLR 2026

REFERENCES

Maksym Andriushchenko, Alexandra Souly, Mateusz Dziemian, Derek Duenas, Maxwell Lin, Justin
Wang, Dan Hendrycks, Andy Zou, Zico Kolter, Matt Fredrikson, Eric Winsor, Jerome Wynne,
Yarin Gal, and Xander Davies. Agentharm: A benchmark for measuring harmfulness of 1lm agents,
2025. URL https://arxiv.org/abs/2410.09024.

Anastasios N. Angelopoulos, Stephen Bates, Emmanuel J. Candes, Michael 1. Jordan, and Lihua
Lei. Learn then test: Calibrating predictive algorithms to achieve risk control, 2022. URL
https://arxiv.org/abs/2110.01052.

Anthropic. Claude’s extended thinking, 2025. URL http://https://www.anthropic,
com/news/visible—-extended-thinkingl

Edoardo Debenedetti, Jie Zhang, Mislav Balunovic, Luca Beurer-Kellner, Marc Fischer, and Florian
Tramer. Agentdojo: A dynamic environment to evaluate prompt injection attacks and defenses
for LLM agents. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
m1YYAQjO3w.

Edoardo Debenedetti, Ilia Shumailov, Tianqgi Fan, Jamie Hayes, Nicholas Carlini, Daniel Fabian,
Christoph Kern, Chongyang Shi, Andreas Terzis, and Florian Tramer. Defeating prompt injections
by design, 2025. URL https://arxiv.org/abs/2503.18813,

Feng He, Tianqing Zhu, Dayong Ye, Bo Liu, Wanlei Zhou, and Philip S. Yu. The emerged security
and privacy of llm agent: A survey with case studies, 2024. URL https://arxiv.org/abs/
2407.19354.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.org/abs/2312.13010.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

et al. Jason Wei. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL
https://arxiv.org/abs/2201.11903.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangqi
Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering, 2020. URL
https://arxiv.org/abs/2004.04906.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Shou Li, Andrey Kan, Laurent Callot, Bhavana Bhasker, Muhammad Shihab Rashid, and Timothy B
Esler. Redo: Execution-free runtime error detection for coding agents, 2024a. URL https:
//arxiv.org/abs/2410.09117.

Shuo Li, Sangdon Park, Insup Lee, and Osbert Bastani. Traq: Trustworthy retrieval augmented
question answering via conformal prediction, 2024b. URL https://arxiv.org/abs/2307|
04642,

Linyu Liu, Yu Pan, Xiaocheng Li, and Guanting Chen. Uncertainty estimation and quantification
for llms: A simple supervised approach, 2024a. URL https://arxiv.org/abs/2404,
15993l

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From IIm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models, 2024b.
URL https://arxiv.org/abs/2401.02777.

10

https://arxiv.org/abs/2410.09024
https://arxiv.org/abs/2110.01052
http://https://www.anthropic.com/news/visible-extended-thinking
http://https://www.anthropic.com/news/visible-extended-thinking
https://openreview.net/forum?id=m1YYAQjO3w
https://openreview.net/forum?id=m1YYAQjO3w
https://arxiv.org/abs/2503.18813
https://arxiv.org/abs/2407.19354
https://arxiv.org/abs/2407.19354
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2410.09117
https://arxiv.org/abs/2410.09117
https://arxiv.org/abs/2307.04642
https://arxiv.org/abs/2307.04642
https://arxiv.org/abs/2404.15993
https://arxiv.org/abs/2404.15993
https://arxiv.org/abs/2401.02777

Under review as a conference paper at ICLR 2026

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
Fang. Evaluating very long-term conversational memory of 1lm agents, 2024. URL https:
//arxiv.org/abs/2402.17753.

Stephen Mell, Konstantinos Kallas, Steve Zdancewic, and Osbert Bastani. Opportunistically parallel
lambda calculus. or, lambda: The ultimate llm scripting language, 2025. URL https://arxiv,
org/abs/2405.11361.

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh
Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. Codenet: A large-scale
ai for code dataset for learning a diversity of coding tasks, 2021. URL https://arxiv.org/
abs/2105.12655/

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S Jaakkola, and Regina
Barzilay. Conformal language modeling. In The Twelfth International Conference on Learning
Representations.

Ramya Ramalingam, Sangdon Park, and Osbert Bastani. Uncertainty quantification for neurosymbolic
programs via compositional conformal prediction, 2024. URL https://arxiv.org/abs/
2405.15912.

Ravi S. Sandhu. Role-based access controll 1portions of this chapter have been published earlier
in sandhu et al. (1996), sandhu (1996), sandhu and bhamidipati (1997), sandhu et al. (1997)
and sandhu and feinstein (1994). 46:237-286, 1998. ISSN 0065-2458. doi: https://doi.org/
10.1016/S0065-2458(08)60206-5. URL https://www.sciencedirect.com/science/
article/pii/S0065245808602065.

R.S. Sandhu and P. Samarati. Access control: principle and practice. IEEE Communications
Magazine, 32(9):40—48, 1994. doi: 10.1109/35.312842.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi,
Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits, 2024. URL https://arxiv.org/abs/2302.07867.

Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, and Osbert Bastani.
Evaluating the diversity and quality of Ilm generated content, 2025. URL https://arxiv,
org/abs/2504.12522]

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning, 2023. URL https://arxiv.org/abs/2303.08128.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents, 2024. URL https://arxiv,
org/abs/2407.18901.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024a. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/10,
1007/s11704-024-40231-1l

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better 1lm agents, 2024b. URL https://arxiv.org/abs/
2402.01030.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

11

https://arxiv.org/abs/2402.17753
https://arxiv.org/abs/2402.17753
https://arxiv.org/abs/2405.11361
https://arxiv.org/abs/2405.11361
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2405.15912
https://arxiv.org/abs/2405.15912
https://www.sciencedirect.com/science/article/pii/S0065245808602065
https://www.sciencedirect.com/science/article/pii/S0065245808602065
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2504.12522
https://arxiv.org/abs/2504.12522
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2407.18901
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2405.15793

Under review as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv,
org/abs/2210.036209.

Botong Zhang, Shuo Li, and Osbert Bastani. Conformal structured prediction, 2025. URL https:
//arxiv.org/abs/2410.06296.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2025. URL https://arxiv.org/abs/2406.15877.

12

https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2410.06296
https://arxiv.org/abs/2410.06296
https://arxiv.org/abs/2406.15877

Under review as a conference paper at ICLR 2026

P = stmty;...;stmt,;returnz

stmt = x < op

op = prim c
|
| (z1,...,2n)
E:
| proj i x

| fold w z block
| if « block: blocka

| 7S
block == {x = P}
value == c | (valuey, ..., valuey)

Figure 5: The grammar defining programs in QUASAR.

A FULL QUASAR LANGUAGE

As described in Section [3] QUASAR executes programs by transforming them with rewrite rules until
they reach a result. The syntax of programs is given in Figure[5] A program consists of a sequence of
statements, where each statement defines some variable (z,y, . . .) to be the result of some operation
(op). Variables are assumed to be defined exactly once (i.e., they are unique and do not shadow each
other). An operation can be, in order: a primitive value ¢ (where c ranges over Python values, such
as True, 5, or "foo"); another variable x; a tuple of variables x;, the result of calling an external
function f (from the set F.,;) with argument x; the result of projecting out the i-th component
from a tuple x; the result of folding over a list w with initial accumulator « and fold body block;
an if expression on condition x with then-case block, and else-case blocks; or the result of some
pending external call S. A block is a program, but which may additionally have some parameter x
(in particular, so that the body of a fold can take the previous accumulator and the current list item as
arguments). A value is either a Python object or a (possibly nested) tuple of Python objects—it does
not directly occur in programs, but is used in the semantics.

The interpreter state at any time is simply a program P and a set E of dispatched external calls. The
semantics consist of rewrite rules R € R, which transform one execution state to another, written

P E EiN P’ E’. Many rules do not affect E, and so are simply written as P L p

The rewrite rules are given in Figure[] The rule “alias” removes a statement y <— z, replacing it with
nothing, but renaming all occurences of y in the program to z; “proj” replaces a projection operator, if
the variable x is known to be a tuple (z1, ..., z,), with the i-th element; for if statements, when the
condition z is the primitive True (“if-t”), then the statement is replaced by a copy of block; (copying
ensures that variables are unique; since blocks in if statements do not require parameters, w is bound
to an empty tuple); if the condition is False (“if-f”), then the same is done for blocks; “fold” applies
block to each element of the list w, with = being the initial accumulator and y being the final one,
and z; being the i-th intermediate accumulator; “disp” replaces an external call to a function f when
the argument x has a value value (i.e., it is a primitive or a tuple of primitives, which value(T, =)
computes) with a placeholder .S, begins executing the function f, and updates the execution set E
“ext” applies when an external function has finished executing—and so the execution set E' contains a
result in place of @—and replaces the placeholder with the result. In Section 3] we simplified .S in
the execution set to just be the external call statement itself, whereas here it is an identifier for the
spawned task.

B TRANSPILATION

QUASAR is functional, while Python supports imperative programming. Thus in QUASAR, variables
cannot be changed once they have been defined. Being functional makes supporting parallel, partial,

13

Under review as a conference paper at ICLR 2026

(x+ (z1,...,2n)) €T

lias
(alias) Ty < proj i z] = Ty < z;

Ty + z] — rename(T[[9]], y, x) 1l (proj)

(z + prim True) € T {w = stmts;return z} = copy(block:)
Ty < if = blocky blocks] — T[[w «+ (); stmis;y < 2]]

(if-t)

(z + prim False) €T {w = stmis;return z} = copy(blocks)

Ty < if = blocky blocks] — T[[w «+ (); stmis;y « 2]] Gt-)

(w4 prim [c1,...,cn]) €T

Vi.{y; = stmts;;return z; } = copy(block stmts; = (w; < prim c¢i;y; < (2i—1,w;); stmts;
(fold)
0

T[y + fold w z block] — T[[z0 < x; stmtsy;...;stmts,;y < zn]]

value(T, z) = value S = spawn(f, value)
Ty« fz],E—=T[ly+ 7S], EU{(S,92)}

(disp)

term = (stmits;return)

Tly < 751, EU{(S, term)} — Tlistmis:y < 2], B "
(@)
(z + primc) € T (z « (x1,...,20)) €T Vi.value(T, x;) = value;
value(T,z) = ¢ value(T, z) = (values, ..., valuey,)
(b)

Figure 6: The rewrite rules of the semantics of QUASAR (a), and the formal definition of the value
function used by the “disp” rule (b). T'[stmt] means a program P with some statement stmt in it;
T|[stmts]] means that the statement stmt was replaced by the list of statements stmts. For each
rule, the P, E — P’, E’ below the line is an allowed rewrite, subject to all of the conditions above
the line. If E is not modified by a rule, we omit it for concision. stmt € T means that stmt is in the
list of statements of 7.

found = False found0 = False
cond = drink_patch.simple_query ("...") cond = drink_patch.simple_query("...")
if cond: def then_case():

found = True - foundl = True

return foundl
def else_case():
return found0
found2 = then_case() if cond else else_case()

Figure 7: An illustration of the translation of “if” statements, shown in Python syntax. Before,
with imperative updates in “if” statements (a). After, with no imperative updates and a functional
conditional operation (b).

and conformal execution possible, but agents generate Python code with imperative variable updates
to local variables. Handling updates in “straight-line” code (without control-flow structures like i £
and for) is straightforward. However, updates inside of control-flow structures, which thus may or
may not happen, are more challenging. In the example from Figure[I] found may be updated inside
of the loop.

Currently, QUASAR supports the subset of Python that uses function calls, local variable assignments,
and 1 f, for, and while control-flow constructs. It does not support early returns from loops (i.e.,
break, continue, or return inside of a loop). To support imperative control-flow structures in
Python, we convert them into a functional form. i f statements in Python are transformed as shown in
Figure[/| where variables that might be updated by a statement-level conditional are instead returned
from an expression-level conditional. A similar translation is done from imperative for loops to
functional fold operations: variables that might be updated by the for loop are instead passed as the
fold accumulator (in Python, this fold operation is called reduce).

14

Under review as a conference paper at ICLR 2026

opi= ...
| absprim {c1,...,cn}
| abslist [(c1,b1),- .., (Cn,bn)]
| join {z1,...,zn}
absvalue == {c1,...,cn} | (absvaluey, ..., absvaluey)

Figure 8: The additional operations in the grammar of QUASAR to support conformal evaluation.

Y < joinyi,...,Ym (join-join)
Tz + joinz1,...,Tn,y] = T[[x + joinz1,...,Tn, Y1, ., Ym]] L
i < (Win,...,w;, eT stmts; = (y; <= joinwi j,...,Wn,5) . .
(i (f’l iim)) 5= (Y J 1,5 n J)Qom—tuple)
Tz < joinz1,...,xs] = T[[stmtst;...;stmtsn;x < (Y1,...,ym)]]

(z; «+ prim¢;)) € T
T[z < joinz1,...,xz,] = T[[x + absprim {c1,...,cn}]]

(join-prim)

(z + absprim {True,False}) €T
{w1 = stmtsi;return z1 } = freshen(block:) {w2 = stmtsa;return 22} = freshen(blocks)

Ty < if x block: blocks] — T[[w1 < (); stmisi;wa < (); stmisa;y join 21, 22]]

(if-tf)

(w <+ abslist [(c1,b1), ..., (cn,bn)]) €T
Vi.{y; = stmts;;return z;} = freshen(block) stmits; = (w; < prim ¢;;y; < (zi—1,w;); stmits;)

stmts; = if b; then stmts; else (stmts;; z; < join zi, zi—1)
(fold-abs)

T[y + fold w z block] — T[[z0 < x; stmtsy;...; stmtsn;y < zu]

Figure 9: The additional rewrite rules in the semantics of QUASAR to support conformal evaluation.

C CONFORMAL SEMANTICS FOR QUASAR

In order to support conformal evaluation, QUASAR must be extended to support sets of values. The
syntax has three additional operations, as shown in Figure[8] In order: abstract primitives represent
one of a set of Python values, ¢;; abstract lists represent a list where some of the elements may be
uncertain: if b; is False the element ¢; may or may not be in the list, whereas if b; is False, then
¢; is definitely in the list; and a join operation, which combines two computations into a set. Join is
distinct from an abstract set, since in the latter the values must be known, whereas in the former they
may not yet be computed.

The semantics also contains additional rules in order to support these new operations, as shown in
Figure[9} The rule “join-join” applies when « is the join of variables, and one of them, y, is itself a
join, in which case they can be flattened to a single join; “join-tuple” applies when z is the join of n
tuples of identical length m, in which case it becomes the tuple of joins of the respective components;
“join-prim” applies when z is the join of n primitives ¢;, in which case it becomes an abstract set of
those values; “if-tf” applies when the condition of an if statement is the abstract set of both True and
False, in which case both branches are taken, resulting in z; and z5, which are joined to produce y;
“fold-abs” applies when folding over an abstract list, in which case a copy of block is made for each
element of the list, however if a list element is uncertain (b; = False), then the resulting accumulator
z; 18 joined with z;_; to capture both the case when ¢; is and is not in the list.

15

	Introduction
	Related Work
	Quasar Programming Language
	Syntax and Semantics
	Performance via Parallel Evaluation
	Security via Dynamic Access Control
	Reliability via Conformal Semantics
	Generating Quasar Code

	Evaluation
	Generation of Quasar Code
	Performance
	Security
	Reliability

	Conclusion
	Full Quasar Language
	Transpilation
	Conformal Semantics for Quasar

