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Abstract

Recent studies show that the attention heads001
in Transformer are not equal (Voita et al.,002
2019; Michel et al., 2019). We relate this phe-003
nomenon to the imbalance training of multi-004
head attention and the model dependence on005
specific heads. To tackle this problem, we pro-006
pose a simple masking method: HeadMask,007
in two specific ways. Experiments show that008
translation improvements are achieved on mul-009
tiple language pairs. Subsequent empirical010
analyses also support our assumption and con-011
firm the effectiveness of the method.012

1 Introduction013

Recently, more and more novel network structures014

of neural machine translation(NMT) have been015

proposed (Bahdanau et al., 2015; Barone et al.,016

2017; Gehring et al., 2017; Vaswani et al., 2017),017

among which Transformer (Vaswani et al., 2017)018

achieves the best results. One important difference019

between Transformer and other translation models020

is its multi-head attention mechanism.021

Some interesting phenomena of the attention022

heads are discovered recently. Voita et al. (2019)023

find that only a small subset of heads appear to024

be important for the translation task and vast ma-025

jority of heads can be removed without seriously026

affecting performance. Michel et al. (2019) also027

find that several heads can be removed from trained028

transformer models without statistically significant029

degradation in test performance. It turns out that030

not all heads are equally important.031

We speculate that this can be attributed to the im-032

balanced training of multi-head attention, as some033

heads are not trained adequately and contribute lit-034

tle to the model. However, this can be turned into035

the bottleneck for the whole model. For an analogy,036

if a soccer player gets used to using the right foot037

and spares more training opportunities for it, it will038

be stronger and stronger. As a result, the right foot039

is further relied on, while the left foot receives less 040

training and gradually turns into the limitation. 041

In this paper, we firstly empirically confirm the 042

inequality in multi-head attention. Then a new 043

training method with two variants is proposed to 044

avoid the bottleneck and improve the translation 045

performance. Further analyses are also made to 046

verify the assumption. 047

2 Head Inequality 048

Following Michel et al. (2019), we define the im- 049

portance of an attention head h as 050

Ih = Ex∼X

∣∣∣∣∂L(x)∂ξh

∣∣∣∣ (1) 051

where L(x) is the loss on sample x and ξ is the 052

head mask variable with values in {0, 1}. Intu- 053

itively, if headh is important, switching ξh will 054

have a significant effect on the loss. Applying the 055

chain rule yields the final expression for Ih: 056

Ih = Ex∼X

∣∣∣∣Atth(x)T
∂L(x)
∂Atth(x)

∣∣∣∣ (2) 057

This is equivalent to the Taylor expansion 058

method from Molchanov et al. (2017). In Trans- 059

former base (Vaswani et al., 2017), there are 3 060

types of attention (encoder self attention, decoder 061

self attention, encoder-decoder attention) with 6 062

layers per type and 8 heads per layer. Therefore, 063

it amounts to 144 heads. We divide them into 8 064

groups with 18 heads (12.5%) each group accord- 065

ing to their importance Ih, among which, 1-18 are 066

the most important and so on. 067

We then mask different groups of the heads. As 068

is shown in Figure 1, masking a group of unimpor- 069

tant heads has little effect on the translation quality 070

while masking important heads leads to a signifi- 071

cant drop of performance. Surprisingly, almost half 072

of the heads are not important, as it makes almost 073

no difference whether they are masked or not. 074
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Figure 1: Mask the heads in the same group. Important
ones matter much more than unimportant ones.

We also gradually masking more heads group075

by group in the ascending order and descending076

order, respectively. As is shown in Figure 2, the077

line starting with unimportant heads drops much078

slower than the one starting with important ones. It079

fully illustrates the inequality of different heads.080
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Figure 2: Mask all heads in the ascending order and
descending order. The drop curves differ greatly.

Figure 1 and Figure 2 further demonstrates the081

inequality of the importance of attention heads. A082

simple assumption for explanation is that some083

heads coincidentally get more updating opportu-084

nities in the early stage, which makes the model085

learning to depend on them gradually. As a re-086

sult, the model increasingly draws a strong con-087

nection with these specific heads while this local088

dependence prevents the rest attention heads from089

adequate training and restricts the overall capacity.090

3 HeadMask091

Since the problem refers to the unfair training of092

attention heads, it is natural for us to explicitly093

balance the training chances. We propose a simple094

method: HeadMask, which masks certain heads095

during training in two specific ways.096

3.1 Mask Randomly 097

The first one is randomly picking heads and mask- 098

ing them in each batch. It ensures every head gets 099

relatively equal opportunities of training and avoid 100

partial dependence, as is shown in Algorithm 1. 101

For the soccer analogy, it is like training the feet 102

randomly, making both receive the same amount 103

of practice. 104

Algorithm 1 HeadMask: Mask Randomly

Input: q, k, v for attention, number of masks n
Output: masked context

1: for batch in datasets do
2: heads = random.sample(all_heads, n)
3: for head in heads do
4: ξhead = 0
5: end for
6: context = attn(ξ)
7: end for

3.2 Mask Important Ones 105

The second one is masking the most important 106

heads. By forcing the model neglects important 107

heads, we hope more training chances are assigned 108

to weaker heads. For the soccer analogy, it means 109

training the left foot more if the right foot domi- 110

nates. And once reversed, train contrarily. Its main 111

idea is about suppressing addicted training. Specif- 112

ically, the network firstly proceeds feed-forward 113

calculation and back propagation without updating 114

parameters to yield the importance of heads. And 115

after picking the most important heads by sorting, 116

mask them. During training, we only use the rest 117

part of networks to reach the final loss and update 118

parameters, as is shown in algorithm 2. 119

Algorithm 2 HeadMask: Mask Important Ones

Input: q, k, v for attention, number of masks n
Output: masked context

1: for batch in datasets do
2: calculate L by feed-forward
3: back propagation without updating params
4: calculate importance of all heads I
5: heads = argmaxn(I)
6: for head in heads do
7: ξhead = 0
8: end for
9: context = attn(ξ)

10: calculate L by feed-forward
11: back propagation and update params
12: end for
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4 Experiments120

4.1 Datasets and Systems121

We conduct experiments on four datasets, includ-122

ing three low-resource ones (less than 1 million).123

We use BPE (Sennrich et al., 2016) for Zh-En and124

Ro-En, adopt the preprocessed versions from Lu-125

ong and Manning (2015) as well as the settings126

of Huang et al. (2017) for Vi-En, and follow the127

joint-BPE settings of Sennrich et al. (2017) for128

Tr-EN. More information is in Table 1.129

Datasets Scale Dev Test
NIST Zh-En 1.34M MT03 MT04/05/06
WMT16 Ro-En 608K newstest2015 newstest2016
IWSLT15 Vi-En 133K tst2012 tst2013
WMT17 Tr-En 207K newstest2016 newstest2017

Table 1: The information of our datasets

We follow Transformer base setting (Vaswani130

et al., 2017). Parameters are optimized by131

Adam (Kingma and Ba, 2015), with β1 = 0.9,132

β2 = 0.98, and ε = 10−9. The learning rate133

is scheduled according to the method proposed134

in Vaswani et al. (2017), with warmup_steps =135

4000. Label smoothing (Szegedy et al., 2016) of136

value=0.1 and dropout (Srivastava et al., 2014) of137

value=0.1 are also adopted.138

Comparison We compare the baseline with139

masking randomly (Random-N) and masking im-140

portant ones (Impt-N), where N is the mask number.141

In this paper, we mainly employ N = 18(12.5%).142

4.2 Results143

As is shown in Table 2,3,4, except for Vi-En ex-144

periments, Impt-18 yields enhancement over all145

language directions and reach the best result on the146

experiment of Ro → En. And Random-18 obtains147

steady improvements over all pairs and is obviously148

better than Impt-18. It seems the aggressive mask-149

ing strategy at important heads can be too harsh150

and reversely restrict the model. And the random 151

method is more expert in building a rational train- 152

ing pattern. In conclusion, reducing the unbalanced 153

training among attention heads can effectively im- 154

prove the translation quality. 155

Test sets MT04 MT05 MT06
Baseline 46.62 43.46 43.09
Impt-18 46.94 (+0.28) 44.19 (+0.73) 43.16 (+0.07)
Random-18 47.04 (+0.42) 44.33 (+0.87) 43.88 (+0.79)

Table 2: Results on Experiments of Zh → En

Directions Ro → En Vi → En Tr → En
Baseline 32.17 26.49 17.29
Impt-18 32.95 (+0.78) 26.36 (-0.13) 17.48 (+0.19)
Random-18 32.85 (+0.68) 26.85 (+0.36) 17.56 (+0.27)

Table 3: Results on Experiments of Ro/Vi/Tr → En

Directions En → Ro En → Vi En → Tr
Baseline 31.98 28.07 15.74
Impt-18 32.47 (+0.49) 28.06 (-0.01) 16.10 (+0.36)
Random-18 32.64 (+0.66) 28.46 (+0.39) 16.16 (+0.42)

Table 4: Results on Experiments of En → Ro/Vi/Tr

4.3 Statistical Analysis 156

4.3.1 Flatter Distribution 157

To evaluate the adjusted training of heads, we check 158

the distribution of head importance. As is shown 159

in Figure 3, our methods make the importance dis- 160

tribution flatter. And the overall variance and mean 161

are also calculated, as is shown in Table 5,6. Com- 162

pared with Baseline, Impt-18 and Random-18 sig- 163

nificantly reduce the variance of attention heads, 164

achieving the goal of more equal training. And the 165

mean also decreases, which proves the decline of 166

dependence on every individual head. More specifi- 167

cally, Impt-18 can better resolve the imbalance, for 168

it well prevent the emergence of “super” heads. 169
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Figure 3: Distribution of importance of attention heads. Our methods make the whole distribution much flatter.
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Figure 4: Our methods significantly maintain the performance even if the important heads are masked.
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(b) Mask 36 heads in training
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Figure 5: As the number of masked heads grows, the drop curves starting with important heads are moving up.

Directions Zh2En Ro2En Vi2En Tr2En
Baseline 77.28 552.93 100.73 1767.70
Random-18 33.21 255.98 48.28 900.70
Impt-18 9.13 72.73 14.13 188.87

Table 5: Our methods greatly reduce the Variance of the head
importance, illustrating the improved equality of heads.

Directions Zh2En Ro2En Vi2En Tr2En
Baseline 27.15 47.18 17.96 83.79
Random-18 19.62 39.96 14.86 74.05
Impt-18 18.95 37.30 18.96 85.12

Table 6: Our methods reduce the Mean of the head impor-
tance, illustrating the lessened dependence on each head.

4.3.2 Weaker Dependence170

We repeat the experiments of masking different171

groups of heads. As is shown in Figure 4, the172

translation quality is still maintained even if impor-173

tant heads are masked, proving the dependence on174

them has decreased. And Impt-18 performs more175

steadily since it is accustomed to such situations.176

4.3.3 More Robust Models177

We also repeat the experiments of masking all178

heads, as is shown in Figure 5. The two middle179

lines originally lie in the same place as the bottom180

one. As the number of masked heads in training (N)181

grows, they gradually move up and approach the182

top line where unimportant heads are masked first.183

It shows our methods make the model rely less on 184

the important heads and become more robust. 185

5 Related Works 186

Recently, many analytical works about multi-head 187

attention come out (Raganato and Tiedemann, 188

2018; Tang et al., 2018; Voita et al., 2019; Michel 189

et al., 2019; Sun et al., 2020; Behnke and Heafield, 190

2020). And for the inequality of the networks, 191

some studies focus on the model level (Frankle and 192

Carbin, 2019), the layer level (Zhang et al., 2019), 193

and the neuron level (Bau et al., 2019). For the 194

mask algorithm, there are also works on the layer 195

level (Fan et al., 2020), the word level (Provilkov 196

et al., 2019), and the neuron level (Srivastava et al., 197

2014). Different from them, we mainly study the 198

attention level and conduct a statistical analysis. 199

6 Conclusion 200

In this paper, we empirically validate the inequal- 201

ity of attention heads in Transformer and come up 202

with an assumption of imbalanced training. Corre- 203

spondingly, we propose a specific method in two 204

ways to resolve the issue. Experiments show the 205

improvements on multiple language pairs. And de- 206

tailed analysis shows the alleviation of the problem 207

and the effectiveness of our techniques. 208
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