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ABSTRACT

Recurrent neural networks (RNNs) are used for a variety of applications such as
speech recognition and financial forecasting where data privacy is an ongoing
concern. Fully homomorphic encryption (FHE) facilitates computation over en-
crypted data, enabling third-party services like machine learning inference while
keeping client data private. Previous studies have examined RNN inference over
encrypted data using FHE, albeit on a small scale, though impractical due to the
computational costs. This work advances insights that make large-scale RNN
evaluation over encrypted data practical. A problem that prohibits the scaling
of privacy-preserving RNNs is overflow in the ciphertext message space. As the
number of model parameters increases, the size of the domain during multiply-
accumulate operations increases, causing inaccuracies in computation. Attempts to
mitigate this problem, such as splitting the message into several ciphertexts, cause
an exponential increase in computation, making latency-sensitive applications like
RNNs impractical. A novel regularization technique is proposed that mitigates the
effects of numerical overflow during training. This allows use of one ciphertext
only and reduces the complexity of the encryption parameters that would otherwise
be required to perform correct computation while maintaining 128-bit security.
Using the CGGI variant of FHE and GPU acceleration, we quantize and evaluate
a 1.9M parameter, multi-layer RNN across 28 timesteps, achieving 90.82% top-1
accuracy over the encrypted MNIST test dataset with an average latency of 2.1s
per sample—a new state of the art in latency, model performance, and scale.

1 INTRODUCTION

Machine learning as a service powers many important applications, from advanced recommendation
systems to speech recognition, by computing over data. While privacy can be maintained during
transport and storage, any service that performs computations on data exposes it in clear text, creating
a potential vulnerability. Fully homomorphic encryption (FHE) [Gentry, 2009] provides a solution by
enabling computation over encrypted data, thereby safeguarding data privacy during computation.

There has been extensive research into evaluating different types of neural network models over
encrypted data using FHE [Podschwadt et al., 2022]. However, there have only been a few investi-
gations into recurrent neural networks (RNNs) [Lou & Jiang, 2019; Podschwadt & Takabi, 2021;
Anonymous, 2025], that can be attributed to two characteristics of FHE: (i) ciphertexts contain
noise which increases with every consecutive mathematical operation, and (ii) FHE operations are
computationally expensive. As noise grows with every consecutive operation, it eventually reaches
a point where the message in the ciphertext becomes corrupted, unless an operation referred to as
bootstrapping is performed that reduces the noise. RNNs have a variable and often very large depth
in the time dimension, making them more susceptible to ciphertext corruption than other traditional
networks, thus necessitating the use of bootstrapping to unlock unlimited depth. Due to the significant
computational overhead inherent in FHE operations and large number of operations in variable-length
RNNs, latency is significant, rendering even modest networks impractical due to inefficiency.

This work centers on scaling RNN evaluation over encrypted data to handle larger and deeper
networks while simultaneously maintaining model performance and decreasing inference latency.
We evaluate RNNs in a non-interactive client-server setting where once data is encrypted and sent to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the server, the client does not perform any other operation on the data until it receives the final result
for decryption. The server applies all necessary mathematical FHE operations on the encrypted data.

Since one of our focuses is on reducing latency, this work employs the use of the CGGI [Chillotti
et al., 2020a] variant of FHE. The CGGI scheme provides a latency-efficient bootstrapping operation,
referred to as programmable bootstrapping (PBS), that can be accelerated by GPUs [Zama, 2022].
The PBS operation can evaluate any function that can be represented by a lookup table, which
includes non-linear activation functions, while simultaneously reducing noise. However, CGGI
can only perform operations over signed integers within a bounded domain, which results in the
need for RNN quantization. We adopt the four-step RNN quantization procedure from Anonymous
[2025], which quantizes RNNs into a ternary parameter and binary activation representation. This
method allows us to represent a single activation using one ciphertext rather than several, reducing
the required computation by orders of magnitude. While [Anonymous, 2025] is effective in reducing
computational cost, it demonstrates decreased model performance for the following reason: since
activations are signed integers, multiply-accumulate operations, which result in pre-activations, can
overflow the modulus of the message space. This causes inaccuracies after activation function
evaluation and a resulting drop in performance.

In response, this work bridges this gap by introducing a novel regularization method during training in
order to mitigate overflow and increase model performance. Overflow-aware activity regularization
(OAR) pushes pre-activations to correct overflow regions. For instance, due to the use of the sign
function as the sole activation function in the network, a single overflow causes positive pre-activations
to become negative—an incorrect result. However, if the pre-activation is trained to overflow one
more time, the activation becomes positive—a correct result.

Utilizing a 1.9M parameter, multi-layered RNN architecture alongside GPU acceleration, this work
attains a noteworthy 90.82% top-1 accuracy when tested on the encrypted MNIST test dataset,
exhibiting a marginal deviation of −0.17% from plaintext performance, coupled with an average
latency of 2.1 s. Notably, this outcome showcases a latency reduction of 274x when compared
to SHE [Lou & Jiang, 2019], alongside negligible disparities in accuracy between plaintext and
encrypted runs, despite a 10x increase in model parameters and 3x augmentation in layer count.
The implementation of OAR significantly boosts model performance, with certain configurations
demonstrating a nearly 71% increase in top-1 accuracy when compared to non-OAR counterparts.
Visual examination of pre-activation distribution histograms confirms that OAR effectively guides
values to regions that result in accurate behavior. Furthermore, analysis of the average error between
activations during encrypted and plaintext executions reveals minimal discrepancies.

In section 2, relevant background information is reviewed. In section 3, overflow-aware activity
regularization is introduced. Section 4 presents and analyzes experimental results and provides a
comparison to the literature in section 5.

2 PRELIMINARIES

2.1 FULLY HOMOMORPHIC ENCRYPTION

Fully homomorphic encryption (FHE), first proposed by Gentry [2009], is a form of encryption that
enables the evaluation of mathematical operations over encrypted data. For example, if two ciphertexts
that encrypt a value of “1” are added together, the result would be an encryption of “2”. The security
of modern FHE constructions is based on the Learning With Errors (LWE) problem [Regev, 2005] in
lattice cryptography which adds a small noise sample to the message during encryption. As such,
operations on FHE ciphertexts increases overall noise magnitude with each consecutive mathematical
operation. In decryption, a rounding operation is performed that removes the noise added during
encryption. During this step, if the noise is too large in magnitude, the message can be corrupted. A
ciphertext can undergo a bootstrapping operation before the noise reaches corruptible levels, revealing
the ability to perform an unbounded number of operations on each ciphertext [Marcolla et al., 2022],
important to RNN evaluation. FHE schemes are initialized by a security parameter λ used to generate
encryption parameters and keys. As the parameters are increased, the amount of computation required
to perform FHE operations increases as well. A value of λ = 128 is used throughout this paper
[Marcolla et al., 2022].
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2.2 THE CGGI SCHEME AND PROGRAMMABLE BOOTSTRAPPING

The CGGI [Chillotti et al., 2020a] mathematical foundation of FHE operates over the real torus.
Its discretized version can encode and encrypt integers x ∈ Zk, where k = 2ω is the plaintext
modulus and ω is the bit-width. As a result, operations occur over the set of signed integers modulo
k, generating a message space x ∈ [−k/2, k/2). CGGI offers the ability to perform (1) addition
between two ciphertexts, (2) addition between a plaintext and ciphertext, and (3) multiplication
between a plaintext and ciphertext. Since the message space is bounded, operations can cause the
message in the ciphertext to overflow and wrap around the modulus, a characteristic important to this
work. For instance, if x ∈ [−8, 8) and k = 24, then 7 + 1 = −8 rather than 8.

CGGI enables simultaneous evaluation of discrete functions and noise reduction of ciphertexts
through programmable bootstrapping (PBS). With encryption parameter N (the ring dimension)
being the number of elements in lookup tables (LUTs) and a power of two, a function f(x) can be
encoded into a LUT by dividing its elements into k/2 sub-packs of N/(k/2) elements, each set to
f(x), where x ∈ [0, k/2). Each sub-pack corresponds to a specific value of x, sequentially, ensuring
tight coupling between each value in x and its corresponding sub-pack. This facilitates the evaluation
of y = f(x) for any ciphertext input. For instance, consider the sign function,

sign(x) =

{
+1 if x ≥ 0,

−1 otherwise.
(1)

A LUT with all elements equal to 1 can evaluate the sign function. Despite the absence of negative
values in the LUT, the negacyclic property implicitly encodes 2N values, where the second set of N
values evaluates to the negation of the first set during PBS evaluation. Noise in the message can lead
to incorrect output values, particularly if the encryption parameters are insufficient, especially for x
values close to 0 and k/2− 1, which may overflow due to the negacyclic property. Utilizing a smaller
plaintext modulus without changing the encryption parameters increases the sub-pack size, enhancing
the probability of correct decryption amidst noise but reducing the message space size. Hence, when
encryption parameters persist, there exists an inversely proportional relationship between the message
space size and the probability of correct decryption. Thus, if an efficient set of encryption parameters
is selected, decreasing the plaintext modulus increases accuracy, a relationship key to our work.

2.3 QUANTIZATION OF RNNS

CGGI operates with bounded signed integers, while neural networks typically use floating-point,
necessitating quantization of inputs, parameters, and activations [Bourse et al., 2018; Sanyal et al.,
2018; Lou & Jiang, 2019; Chillotti et al., 2020b; Folkerts et al., 2023]. Quantization discretizes
continuous domains and maps values to discrete elements [Liang et al., 2021], introducing noise
equal to the difference between a quantized value and its original value. This noise impacts model
performance, which is a key focus of research surrounding the quantization of neural networks
[Gholami et al., 2022]. Quantization-aware training (QAT) is a popular technique that introduces
noise during training to enhance model robustness [Jacob et al., 2018]. However, quantizing RNNs
presents challenges due to the recurrence relationship between timesteps, leading to exploding values
[Hou et al., 2021]. Techniques like (i) normalization after matrix multiplication and (ii) fixed-point
quantization have shown promise [Hou et al., 2021; Hou & Kwok, 2018]. Regarding (i), normalization
is unsupported by CGGI since it returns a quantized domain back to floating-point. Regarding (ii),
although not directly supported by CGGI, fixed-point techniques can be adapted by encrypting
each bit, and performing arithmetic operations over arrays of ciphertexts. Privacy-preserving neural
networks using CGGI, such as those in [Lou & Jiang, 2019; Sanyal et al., 2018; Folkerts et al.,
2023], leverage these techniques. Although adder and activation function circuits with multiple PBS
operations can facilitate fixed-point arithmetic over an array of ciphertexts, the sheer number of FHE
operations needed for these processes compared to a single addition or PBS operation is orders of
magnitude higher. This exponential increase in computation and latency renders RNN evaluation
impractical, nullifying any potential accuracy gains.

The technique in Anonymous [2025] successfully quantizes RNNs into binarized activations ({−1, 1})
and ternarized parameters/inputs ({−1, 0, 1}). Binarization in CGGI is performed by a PBS that
uses a lookup table encoding the sign function (eq. 1). The four-step quantization algorithm in
[Anonymous, 2025] (algorithm 1 in appendix A.1) creates an RNN where addition between integers
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Figure 1: Correct (green/light shade) and incorrect (red/dark shade) outputs of the sign function (eq.
1) in Z16. “+” or “-” signs denote its output for values within the respective shaded regions.

−32 −28 −24 −20 −16 −12 −8 −4 4 8 12 16 20 24 28 32
−0.25

0.25

1

x

OAR1 (x, k = 16)
d
dx

OAR1 (x, k = 16)

Figure 2: OAR1(x, k = 16) and its derivative.

requires one addition operation and activation function evaluation requires one PBS operation, aiding
in reducing latency significantly. In general, it utilizes QAT to quantize activations, inputs, and
parameters in RNNs sequentially, in four steps. The algorithm leads to a quantized RNN with
unbounded accumulation in matrix multiplication, increasing the likelihood of overflow in large
networks. Accumulation emerges as a key challenge, prompting solutions like fixed-point arithmetic,
as noted in works such as SHE [Lou & Jiang, 2019], which can manage accumulation of any size
despite the computational overhead. In [Anonymous, 2025], the authors evaluate an RNN over
encrypted data using 11 bits of precision, much larger than the 8-bit suggested maximum [Chillotti
et al., 2021]. They mention that this causes overflow of the plaintext modulus, resulting in a 25%
decline in top-1 accuracy over encrypted data when compared to plaintext. Therefore, this study
delves into accumulation issues and proposes a regularization strategy to mitigate overflow, unlocking
massive efficiency gains without compromising model performance.

3 OVERFLOW-AWARE ACTIVITY REGULARIZATION

Within perceptrons, the linear transformation of inputs x ∈ Rn by parameters W ∈ Rm×n is
represented by z = W · x (bias vectors are omitted to align with the specific quantization strategy
being employed [Anonymous, 2025]). This yields a “pre-activation” vector, which is then fed into
an activation function to produce “activations”. Pre-activations z ∈ Rm form a distribution with a
domain [α, β] ⊂ R. When weights are ternarized (W ∈ {−1, 0, 1}m×n) and inputs are binarized
(x ∈ {−1, 1}n), pre-activations become integers in Z. Given a precision level k = 2ω for bit-width
ω, which acts as a modulus, when operating in Zk it is possible for values to overflow. By analyzing
the effects of overflow in a neural network using this quantization representation, we make two
observations.

Observation 1: There are regions in Z where overflow in Zk is inconsequential to the intended
output of the sign activation function. Figure 1 demonstrates the effect of overflow on the output
of the sign function (eq. 1). In this example, consider a 4-bit modulus k = 24 = 16. Figure
1 displays a number line with values z ∈ Z. The large sign symbols (+/-) within shaded regions
represent the outputs of the sign function for values in that region, modulo k. Notably, some regions
(red/dark shade) induce incorrect overflow in Zk, resulting in sign disparities between Z and Zk. For
instance, within the region [−16,−9], values have a sign of “-1” in Z, but due to overflow, exhibit
a sign of “+1” in Zk, leading to incorrect activation function outputs. Conversely, other regions
(green/light shade) demonstrate correct overflow behavior, maintaining consistent signs between Z
and Zk. For example, the value “18” retains a sign of “+1” in both sets, ensuring accurate activation
function outputs despite overflow.
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Observation 2: Overflowing a value from an incorrect region into a correct one can flip the sign,
aligning the sign activation function outputs across Z and Zk. For instance, in figure 1, if a value
such as “12”, initially falling in the incorrect region [8, 15], is relocated to the correct regions [0, 7] or
[16, 23], the sign function outputs “+1” in both Zk and Z, reflecting the intended activation output.
Based on this observation, since the values in figure 1 represent the pre-activations of a perceptron,
we introduce a novel method that utilizes activity regularization to guide the network parameters
in distributing pre-activations from incorrect regions to correct ones, ensuring consistent activation
results with matching signs in both Z and Zk.

3.1 THE OVERFLOW-AWARE ACTIVITY REGULARIZER

The Overflow-Aware Activity Regularizer (OAR), inspired by L1 regularization, penalizes values
in incorrect regions based on their distance from the nearest correct region. The following set of
equations define the novel OAR for a pre-activation input x ∈ Z and a modulus k = 2ω ,

OAR1(x, k) = ReLU

(
1− 4

k

∣∣∣∣[|x| − k − 2

4

]
mod k

− k

2

∣∣∣∣) (2)

OAR2(x, k) = OAR2
1(x, k) (3)

To extend this to a loss function over pre-activation vector x ∈ Zn, the minimization objective can be
defined as,

min
ϑ

[
LOAR(x, k) =

n−1∑
i=0

OAR(xi, k)

]
(4)

where ϑ is the set of all parameters in the model, and OAR can be either equation 2 or 3.

In each incorrect region, the first half of values is closest to the preceding correct region, while the
second half is closest to the succeeding correct region. Figure 2 depicts the OAR1 regularizer for
a modulus k = 24 = 16, with the penalty applied to each incorrect region represented by a hat
function. The derivative function, also displayed, is positive for values needing adjustment to the
preceding correct region and negative for those requiring adjustment to the succeeding correct region.
Correct region values undergo no penalty, preventing unnecessary updates. Notably, OAR minimizes
strain on the model by limiting the necessary movement of each incorrect value to a maximum of
k/4 spots left or right. In this context, strain is defined as the effort a model exerts when changing
parameters to accomplish an objective. In contrast, L1 or L2 regularization compels values to move
an unbounded number of spaces towards zero, increasing strain on the model. This feature aids in
balancing accuracy while minimizing parameter changes for optimal convergence. The hat functions
are also translated by 0.5 towards zero to maintain continuous derivatives at all points.

The OAR is employed in the fourth step of the 4-step quantization procedure outlined in [Anonymous,
2025] during quantization-aware training for every layer. Algorithm 1 extends the base algorithm with
the OAR, marked in green as “NEW” (line 20). It is applied akin to general activity regularization,
adding the OAR loss per layer (eq. 4) to the total model loss, with pre-activations serving as inputs.
The OAR accommodates any modulus k = 2ω, where ω ≥ 1, facilitating generalization to any
precision and integer quantization level. OAR2 (eq. 3) closely resembles OAR1, with parabolic hat
functions and linear derivatives, imposing a higher penalty on values nearer to the center of incorrect
regions, promoting faster convergence towards correct regions. Effectiveness is measured using the
OAR metric which quantifies the percentage of pre-activations in correct regions relative to total
pre-activations per layer.

3.2 SIGN ACTIVATION FUNCTION OVER A MODULUS

Algorithm 1 from [Anonymous, 2025] binarizes activations during quantization-aware training by
applying the sign function (eq. 1) in the forward step while using the derivative of the tanh
function during backpropagation. However, the sign function performed by CGGI operates over
integers in Zk for a modulus k = 2ω. To better mimic this environment, we propose converting
pre-activations to their signed representation in Zk before applying the sign function during training.
In addition to the OAR, this would allow the model to learn from incorrect values resulting from
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Figure 3: Architecture of MNIST RNN. DS (by 2) refers to downsample by a factor of 2, FF refers to
feed-forward. Numbers in parentheses refer to number of units. Out is the output layer.

overflowing the modulus. The following function converts unsigned integers x ∈ Z to their signed
representation xk ∈ Zk given a modulus k = 2ω ,

xk = signed(x, k) =

{
xmod k, x mod k < k/2

−(k − (xmod k)), x mod k ≥ k/2
(5)

Equation 6 shows the proposed ModSign function for pre-activation x ∈ Z and a modulus of
k = 2ω ,

ModSign(x, k) = sign (signed(x, k)) (6)

It is crucial that the ModSign function is applied alongside the OAR. Experimenting with the
function itself, the model did not quantize and perform well. Thus, we propose changing the
activation functions in the fourth step of the 4-step quantization algorithm [Anonymous, 2025] to
the ModSign function that uses the derivative of tanh during backpropagation. These changes are
reflected in algorithm 1, line 15

4 EXPERIMENTAL RESULTS

The goal of these experiments is to (1) evaluate the effectiveness of the Overflow-Aware Activity
Regularizer (OAR), and (2) show that it allows us to execute large-scale RNNs over encrypted data
more efficiently than previous works while maintaining model performance.

We utilize a large multi-layer RNN, akin to [Anonymous, 2025], on the MNIST dataset [LeCun
et al., 2010] for handwritten digit classification on 28× 28 pixel images. The MNIST RNN (figure
3) processes each row of the input image at every timestep, totaling 28 timesteps per classification,
and comprising 1,914,368 parameters. Refer to appendix A.2 for more detail regarding the MNIST
RNN. We train, quantize, and evaluate models in plaintext using TensorFlow [Abadi et al., 2016],
QKeras [Coelho et al., 2021], and machine A from table 5 in appendix A.2. We perform evaluation
over encrypted data using machine B (table 5), a modified version of the Concrete-Core library
[Chillotti et al., 2020b] (with fixes, link in table 5) incorporating a CGGI [Chillotti et al., 2020a]
implementation, and the threat model defined in appendix A.2.2. We adhere to a MNIST split of
57.5K training, 2.5K validation, and 10K test samples. In the following experiments, we conduct the
fourth step of the 4-step procedure, which includes the OAR, thus initializing the same model from
step 3 across experiments to obtain comparable results. For information regarding the first three steps,
see appendix A.2. We use a learning rate of 10−5, gradient scaling temperature scale s = 4 for RNN
layers, and a ternarization scale t = 1.5 for all layers, as required by algorithm 1, selected through a
grid search. We experiment with the OAR2 regularizer since it was found to be the most effective
from an analysis comparing OAR1, OAR2, and L2 activity regularization (see appendix A.3).

4.1 OAR EVALUATION

4.1.1 ACCURACY WITH AND WITHOUT OVERFLOW-AWARE ACTIVITY REGULARIZATION

We compare the test accuracy of models trained with and without OAR (settings A and B, respectively).
Both settings use the ModSign activation function. Table 1 displays their accuracy results concerning
the OAR2 regularizer (eq. 3) for bit-widths up to 8, the practical limit for CGGI operations [Chillotti
et al., 2021]. Each model undergoes 1000 epochs of training utilizing a regularization rate set at 10−3.
The ‘Difference’ column in table 1, which displays the difference in test accuracy between settings
A and B, shows minimal variation between both settings for bit-widths 7 and 8. Notably, the OAR
metric, which measures the percentage of pre-activations positioned in the correct regions of the
domain, remains high for both bit-widths, implying adequate coverage by integer precision. For both
5-bit and 6-bit, the OAR is crucial in obtaining high accuracy, with a +71% and +43% difference in
accuracy when used. This is supported by a large positive difference in the OAR metric columns,
showing that the OAR successfully moves pre-activations to the correct regions. Below 5-bit, both
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Table 1: MNIST RNN test metrics with and without OAR2 for different bit-widths.

Bit-
Width

Accuracy
(w/o OAR)

Accuracy
(w/ OAR)

Difference in
Accuracy

OAR Metric
(w/o OAR)

OAR Metric
(w/ OAR)

8 95.30% 95.19% -0.11% 97.30% 99.96%

7 95.15% 93.97% -1.18% 74.72% 99.98%

6 46.82% 89.35% +42.53% 48.43% 99.96%

5 9.88% 80.73% +70.85% 61.20% 99.79%

4 11.13% 11.04% -0.09% 52.98% 51.79%

3 11.14% 11.16% +0.02% 52.91% 51.92%

Table 2: MNIST RNN test accuracy with OAR2 for bit-widths 5 and 6 at various regularization rates.

OAR Rate 5-bit Accuracy 6-bit Accuracy

0 9.88% 46.82%

10−6 12.30% 70.33%

10−5 19.77% 87.58%

OAR Rate 5-bit Accuracy 6-bit Accuracy

10−4 81.11% 92.11%

10−3 80.73% 89.35%

10−2 76.79% 83.92%

settings fail to surpass random accuracy levels, suggesting potential limitations of OAR in lower
bit-widths, possibly due to excessively granular domain representations.

4.1.2 ACCURACY WITH DIFFERENT OAR REGULARIZATION RATES

Focusing on the optimal bit-widths of 5 and 6, we vary the regularization rates for OAR2. Table 2
presents the MNIST RNN test accuracy for different OAR2 rates (models trained for 1000 epochs).
The test accuracy without OAR regularization is shown in the first row. Across both bit-widths, 10−4

yields the highest accuracy. Notably, the 5-bit setting exhibits greater sensitivity to rate changes, with
accuracy shifting over 60% between 10−5 and 10−4. This sensitivity is expected due to the finer
granularity of the 5-bit domain, where small fluctuations can lead to significant shifts between correct
and incorrect regions. This observation is supported by the larger accuracy gap between the 6-bit
and 5-bit settings at 10−4, with the former consistently outperforming the latter. Thus, both rate and
bit-width are crucial hyperparameters in OAR regularization.

4.1.3 VISUALIZING PRE-ACTIVATION DISTRIBUTIONS

Section 4.1.1 confirms OAR’s success in shifting pre-activations to correct overflow regions while
maintaining high accuracy. In this section, we examine histograms of pre-activations in the FF(1024)
layer throughout training. Figure 4 presents histograms for 5-bit and 6-bit iterations (from section
4.1.2) with OAR2 regularization at a rate of 10−4. Dashed vertical lines mark +/- regions in Zk, with
checkmarks and “x”-marks indicating correct and incorrect regions. In both graphs, the intended
distribution division is clear, with large pre-activation amounts in correct regions and small amounts
in incorrect ones. The 5-bit setting shows more granular regions compared to the 6-bit setting, with
smaller distances between correct regions. Despite some spikes in incorrect regions, the distinction
between regions remains clear, with larger spikes in correct areas. This supports the observations in
section 4.1.2, potentially explaining the variance in test accuracy between 6-bit and 5-bit experiments.

4.1.4 OAR FOR LONGER AND LARGER RNNS

This experiment assesses OAR’s impact on longer sequences and larger RNNs. Input images are
resized from 28× 28 to 128× 128 pixels, increasing parameters to 8,480,768 and timesteps to 128.
For the enlarged RNN, we initialized the learning rate cosine decay to 5 · 10−6. Training utilizes
6-bit OAR2 regularization at a rate of 10−4, yielding a test accuracy of 92.69%. This confirms
OAR’s efficacy for longer/larger networks, crucial for efficiency, especially considering the sequential
evaluation nature of RNNs over extended timesteps. By facilitating the use of superior parameters for
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(a) 5-bit (b) 6-bit

Figure 4: Pre-activation distribution histograms of the FF(1024) layer of the MNIST RNN, using
5-bit and 6-bit OAR2 regularization with a rate of 10−4. Histograms extracted from TensorBoard.

faster efficiency without compromising accuracy, OAR proves crucial for optimizing performance in
longer networks. Interestingly, the FF(1024) layer’s OAR metric is 70.57%, suggesting complete
pre-activation correction may not be necessary for good performance in larger networks. However,
the network does not train without using both OAR and ModSign.

4.2 RNNS OVER ENCRYPTED DATA

We evaluate regular and enlarged MNIST RNNs over encrypted data using models from sections
4.1.2 and 4.1.4, trained with 6-bit OAR2 at a rate of 10−4. Each model is tested with parameter sets
1 and 2 from table 6 in appendix A.2, ensuring a minimum security level of λ ≥ 128 bits. Both sets
support 6-bit message spaces, with set 1 providing higher precision in PBS operations but lower
operational efficiency. Following appendix A.4, we accumulate pre-activations in the output layer into
4 ciphertexts per output unit to avoid overflow. sign activations are evaluated using a programmable
bootstrap (PBS) and accelerated on two NVIDIA A100 GPUs, with each streaming multiprocessor
evaluating one PBS in parallel. ”encrypted” and ”plaintext” denote evaluations over encrypted and
plaintext data, respectively, using the 6-bit ModSign activation function for plaintext evaluations.
Performance metrics include top-1 accuracy for encrypted and plaintext runs, and average latency.
Error metrics include mean absolute error (MAE) between encrypted and plaintext pre-activations
and percent difference (PD) between encrypted and plaintext activations, averaged across the test
dataset. Standard deviation (σ) values are included for latency and error metrics to show average
difference between samples, important for assessing the stability of our method since every sample is
encrypted with normally-sampled FHE noise, potentially impacting metrics.

Top-1 accuracy and average latency results are presented in table 3 for both MNIST RNN models
over the encrypted MNIST test dataset (10K samples). Table 4 displays PD and MAE metrics for
each model, per layer. Using parameter set 1, the regular model achieves an encrypted top-1 accuracy
of 90.86%, just 0.13% less than plaintext. The near-zero PDs in activations show negligible amount
of error, indicating precise computation by the encrypted RNN. This is further supported by an
output layer MAE between pre-activations of 2.02, significantly lower than the possible maximum of
1024, confirming minimal overflow impact due to effective overflow-aware activity regularization
(OAR). In terms of efficiency, the model achieves an average latency of 4.86 seconds per sample.
With parameter set 2, latency significantly decreases to 2.10 seconds per sample while maintaining
accuracy within 0.17% of plaintext. Although parameter set 2 results in slightly higher PDs and MAE,
the accuracy impact is negligible. The successful performance with a smaller parameter set highlights
the effectiveness of OAR in reducing the need for large parameters and gaining efficiency as a result.
Without OAR regularization, distributions would exceed the 8-bit modulus suggested for CGGI,
requiring much larger parameters to maintain accuracy. Minimal σ values indicate our method’s
stability despite the presence of FHE noise. Overall, these results demonstrate our approach’s
effectiveness in balancing accuracy and latency, enabled by our mitigation of overflow issues.
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Table 3: Performance metrics for regular and enlarged MNIST RNN inference over encrypted data.

Type of
Model

Parameter
Set ID

Encrypted
Accuracy

Plaintext
Accuracy

Difference in
Accuracy

Average
Latency (s)

Regular 1 90.86% 90.99% -0.13% 4.86± 0.01
2 90.82% 90.99% -0.17% 2.10± 0.01

Enlarged 1 89.42% 92.27% -2.85% 21.72± 0.42
2 87.56% 92.27% -4.71% 10.26± 0.03

Table 4: Error metrics for regular and enlarged MNIST RNN inference over encrypted data, per layer.

Type of
Model

Parameter
Set ID

First RNN
Average PD (%)

Second RNN
Average PD (%)

FF(1024)
Average PD (%)

Out(10)
MAE

Regular 1 0.00± 0.00 0.10± 0.14 1.94± 1.73 2.02± 1.31
2 0.56± 0.62 0.46± 0.29 5.72± 1.83 3.96± 1.37

Enlarged 1 7.85± 5.25 11.42± 3.28 34.92± 1.63 53.06± 13.82
2 19.52± 2.03 20.80± 1.79 35.82± 1.55 53.38± 13.92

The enlarged model achieves excellent results for both parameter sets, despite a tenfold increase in
error metrics across all layers, as shown in table 4. This sustained accuracy, despite higher error rates,
demonstrates the robustness of the network due to overflow-aware activity regularization. As noted
in section 4.1.4, the model failed to train without this regularization. The increased inaccuracies per
layer are expected since each matrix multiplication involves nearly five times more multiply-add
operations than the standard model, indicating an issue with FHE noise rather than overflow. This
can be mitigated by including intermediary PBS operations to reduce noise. In terms of efficiency,
the increase in latency is linearly proportional to the rise in timesteps (4.57x). The combination of
strong encrypted accuracy and a linear latency response for a network that is significantly larger than
the regular model highlights the effectiveness of OAR in scaling to larger and more extended RNNs.

5 RELATED WORK

The literature on non-interactive FHE evaluation of RNNs is limited to three key studies. (i) SHE
[Lou & Jiang, 2019] uses multiple ciphertexts per input/activation, necessitating complex adder and
activation circuits that are abundant in programmable bootstrapping operations, significantly reducing
efficiency. Despite this, their fixed-point quantization approach achieves good accuracy, evaluating
a single-layer RNN with 300 units over 25 timesteps on the Penn Treebank [Marcus et al., 1993]
dataset. This setup, with approximately 180K parameters, completes one inference in 576 seconds,
with a 2.1% accuracy drop from full-precision plaintext. Our implementation runs a 1.9M-parameter,
multi-layer RNN across 28 timesteps in 2.1 seconds, achieving a 274x decrease in latency for a 10x
increase in parameters, maintaining over 90% accuracy with an 8% drop from the 99% accuracy
of full-precision plaintext MNIST evaluation. (ii) In another study, Podschwadt & Takabi [2021]
leverage batched processing and eliminate quantization by employing the CKKS [Cheon et al., 2017]
FHE scheme. Their method divides an RNN with τ timesteps into n sub-RNNs, each with τ/n
timesteps. While beneficial, this approach struggles with long-term dependencies, and the significant
latency of one evaluation, at 19.5 minutes, makes it unsuitable for low-latency applications. (iii)
A recent study by Anonymous [2025], which forms the basis of our research, presents a 4-step
quantization procedure for CGGI evaluation of RNNs that allows the use of one ciphertext per
input/activation for large efficiency gains. They evaluate a 12.6M parameter RNN with attention
over encrypted data across 188 timesteps, achieving a latency of 531 seconds. Despite their excellent
latency for such a large model with attention, there is a -25% accuracy drop between encrypted and
plaintext top-1 accuracy due to using an 11-bit plaintext modulus. Our work introduces OAR to
mitigate overflow effects from using a smaller modulus, recovering this lost accuracy while retaining
the efficiency benefits of their quantization technique. Successful scaling to a larger RNN suggests
that [Anonymous, 2025] may benefit from using OAR. Other works [Bourse et al., 2018; Sanyal et al.,
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2018; Folkerts et al., 2023] evaluate different types of neural networks over the encrypted MNIST
dataset using CGGI but do not investigate RNNs.

6 CONCLUSION

In this study, we proposed methods for non-interactively evaluating large-scale RNNs over encrypted
data using fully homomorphic encryption. Employing a single-ciphertext representation for RNN
inputs and activations is crucial for reducing inference latency, a major obstacle to scaling RNNs, but
causes reduced model performance due to numeric overflow. Introducing overflow-aware activity
regularization (OAR) effectively mitigates overflow effects and restores lost accuracy, demonstrating
efficacy across RNN scales. Leveraging OAR and GPU acceleration, we evaluated a 1.9M-parameter,
multi-layer RNN over encrypted MNIST, achieving remarkable results: 2.1 seconds latency and over
90% top-1 accuracy, setting a new state-of-the-art. Future research could optimize OAR further and
explore deterministic methods for handling overflow regions in trained networks.
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A APPENDIX

A.1 MODIFIED FOUR-STEP QUANTIZATION ALGORITHM

Algorithm 1: Modified Four-Step Quantization Algorithm for RNNs from Anonymous et al.
Anonymous [2025]
Input :Vanilla RNN model M0, trained or untrained, input dataset D, ternarization scale t,

modulus k = 2ω for ω-bit accumulation.
Output :Quantized RNN with binary activations and ternary inputs/parameters M4.

Step 1:
1 Change activations in M0 to tanh.
2 M1 ← train(M0).

Step 2:
3 Change activations in M1 to sign with tanh derivative.
4 M2 ← train(M1).
5 if exploding/vanishing gradients then
6 Increase batch size.
7 Repeat lines 3 - 4.
8 if model is still not training then
9 foreach RNN layer in M3 do

10 Set temperature scale sl for gradient scaling.
11 Repeat line 3.
12 Repeat line 4 while applying gradient scaling.

Step 3:
13 D ← ternary(D, τI) where τI = t · E(|D|).
14 M3 ← train(M2).

Step 4:
15 Change activations in M3 to ModSign(k) with tanh derivative (eq.6). /* NEW */
16 foreach layer l in M3 w/ parameter distribution θl do
17 τl ← t · E(|θl|)
18 foreach RNN layer l in M3 do
19 Set temperature scale sl for gradient scaling.
20 M4 ← train(M3) while applying (1) gradient scaling, (2) ternarization in the forward step, and

(3) OAR(k) in each layer. /* NEW */
21 if model fails to train then
22 Increase number of parameters in each layer of M0 by 3x.
23 Repeat lines 1 - 20.
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A.2 DETAILED EXPERIMENTAL SETUP

Table 5: Hardware and software experimental setup. Standalone numbers indicate corresponding
version numbers. (x2) indicates there are two components.

Machine A Machine B

CPU Intel i7-7820X, 8-Core,
3.60 GHz

AMD EPYC 7763, 64-Core, 3.1 GHz
(x2)

GPU Nvidia RTX 2080 Ti Nvidia A100 40GB (x2)

RAM 132 GB 512 GB

OS Ubuntu 22.04.2 LTS,
5.19.0-46-generic

Ubuntu 22.10,
5.19.0-46-generic

CUDA 11.2.152 12.1.105

Python 3.10.6 N/A

TensorFlow 2.10.1 N/A

QKeras 0.9.0 N/A

Rust N/A 1.69.0

Concrete-Core N/A Link hidden due to double blind review.

A.2.1 FURTHER DETAIL ON THE MNIST RNN AND TRAINING

As shown in figure 3, the first and third layers of the MNIST RNN consist of vanilla RNNs with 128
units. The second layer downsamples the outputs of the first RNN by half by stacking every two
outputs, reducing the timesteps from 28 to 14, and increasing the size of the inputs to the third layer
from 128 to 256. This temporal pooling aids in computation reduction while preserving accuracy [He
et al., 2019]. The fourth layer flattens the outputs into a 1792-unit vector, connecting all RNN outputs
to the classification layers. Following is a feed-forward network with 1024 units, culminating in an
output layer of 10 units fed into a softmax function for probability generation. tanh activation
is used in each layer as per the quantization strategy [Anonymous, 2025]. Bias parameters are
omitted, as discussed in section 3. During training, the dataset is normalized by dividing by 255,
and for enhanced generalization, we apply horizontal flips and random brightness adjustments to
random images. The training dataset is randomly shuffled every epoch. Our training setup employs
categorical cross-entropy loss, Adam optimization [Kingma & Ba, 2015], and a cosine schedule
for the learning rate, decreasing to 0.1 times the initial value after 100 epochs. In the first three steps
of the 4-step quantization procedure, we use a learning rate of 10−4, and a batch size of 512. We
train the first step for 100 epochs, and every subsequent step, including the fourth step, for 1000
epochs. In step one, we use the default parameter initializers of dense and RNN layers in TensorFlow
(namely, “glorot uniform” and “orthogonal” kernel and recurrent kernel initializers in RNN layers,
respectively, and the “he normal” kernel initializer in dense layers).

A.2.2 THREAT MODEL AND SECURITY PARAMETERS

In this study, we embrace the “honest but curious” threat model, where participants conduct the
privacy-preserving inference protocol with honesty but may seek insights from intermediate values.
Through fully homomorphic encryption (FHE), security is maintained, encrypting all observed values
and leveraging FHE’s security guarantees [Rechberger & Walch, 2022]. Furthermore, this study
evaluates neural networks that perform privacy-preserving inference over encrypted data, utilizing
plaintext model parameters. Thus, FHE exclusively ensures the privacy of input data.

Bergerat et al. [2023] provide several sets of CGGI parameters that provide at least λ = 128 bits of
security. Each set can accommodate different plaintext moduli p = 2ω , where omega is the bit-width.
Sets with stronger parameters (i.e. larger n, N , and k values) provide larger plaintext moduli but
yield less efficient executions of CGGI algorithms. Refer to [Bergerat et al., 2023] for parameter
definitions. We experiment with two sets of parameters, namely sets 1 and 2 in table 6, of which
set 1 is sourced from row 5, table 4, and set 2 from row 12, table 8 in [Bergerat et al., 2023]. Since
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the parameters in set 2 (n and N ) are smaller than in set 1, they result in smaller latency of CGGI
operations. However, they support smaller plaintext moduli since the noise parameters, σ2

LWE and
σ2
RLWE, are larger, causing larger noise in ciphertexts. When compared to other sets, while they are

rated for a 5-bit modulus, sets 1 and 2 are able to support larger multiply-accumulations (according to
the ν metric which is proportional to the 2-norm of linear transformation vectors during dot-products,
as defined in [Bergerat et al., 2023]). Thus, we are able to run experiments in a 6-bit message
space, which was supported experimentally as well. Due to the smaller noise characteristics of set
1, it can handle more operations in a 6-bit message space than set 2. Consequently, the size of the
dot-products that can be evaluated is less for set 2. Additionally, the ring dimension N determines the
size of lookup tables (LUTs) for evaluating functions using the programmable bootstrapping (PBS)
operation, as defined in section 2.2. As the domain increases, each LUT sub-pack should increase in
size as well. Parameter set 2 has a lower ring dimension, and thus, smaller sub-packs. As a result, it
can cause more inaccuracies in PBS evaluation. For detailed information regarding definitions of the
parameters in table 6, refer to [Chillotti et al., 2020a] or [Bergerat et al., 2023].

Table 6: CGGI security parameters (λ = 128) based on [Bergerat et al., 2023]. Please see [Bergerat
et al., 2023] for parameter definitions. Select (*) parameters are modified for better precision while
maintaining security guarantees. For both sets of parameters, k = 1, as defined in [Bergerat et al.,
2023].

Parameter
Set ID

n σ2
LWE log2(N) σ2

RLWE lPBS log2(βPBS) lKS log2(βKS)

1 732 3.87088
(×10−11)

11 4.90564
(×10−32)

3 14 2 8

2 585 8.35721
(×10−9)

10 8.93436
(×10−16)

5* 5* 2 8
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A.3 MNIST RNN ACCURACY WITH DIFFERENT ACTIVITY REGULARIZERS

This section evaluates the effect of different types of activity regularization on MNIST RNN accuracy
over the MNIST test dataset. There are three different types of regularization defined in this work
that can push pre-activations to the correct regions in Zk. L2 regularization can be applied to pre-
activations to push them towards the first correct region, specifically [k/2, k/2). OAR1 regularization
pushes the pre-activations to all the correct regions, using a constant gradient for each value. OAR2

regularization is similar, except that it uses a gradient with magnitude relative to the distance of
the value from the center of the incorrect region. Table 7 shows the test accuracy results for each
regularizer’s application over the MNIST RNN. The results in the table are recorded after training
for 1000 epochs, using a precision setting of 6-bit and the ModSign activation function. From the
table, it is evident that L2 regularization does not help increase the accuracy. However, for each run
performed with L2 regularization, the OAR metric for each layer achieves almost 100%. Inspecting
the pre-activation distributions reveals that the values are correctly moved to the region [−32, 32),
yet the accuracy does not increase. This observation, along with the better accuracy results for the
runs with OAR, leads us to conclude that OAR regularization is necessary to both move values to
correct regions and retain accuracy.

Table 7: MNIST RNN test accuracy with L2, OAR1, and OAR2 activity regularization. Precision of
6-bits is used.

Regularization Rate L2 OAR1 OAR2

1 · 10−5 34% 25% 88%
5 · 10−5 31% 25% 91%
1 · 10−4 31% 26% 92%
5 · 10−4 30% 44% 92%
1 · 10−3 30% 74% 89%
5 · 10−3 31% 69% 86%

Since we are using ternarization, a possible reason for the poor performance with L2 regularization is
that most of the weights are pushed to zero, limiting the network’s representational power. Effectively,
this approach prunes the network, and the more the network is pruned, the lower the accuracy. In
contrast, OAR regularization pulls weights towards zero and also pushes them outwards to other
regions, causing less weights to be quantized as zero values. The number of quantized parameters
that are zero divided by the total number of parameters is considered the pruning level. For instance,
if this number is 80%, then 80% of the parameters in the model are zero. That being said, the pruning
levels for the runs from table 7 with L2, OAR1, and OAR2 regularization, and a regularization rate
of 10−3, are 84.96%, 77.58%, and 78.02% respectively. These numbers show that L2 regularization
prunes the network more than OAR regularization (around 9% more in this case), suggesting that it
could contribute to the observed lower accuracy.

Table 7 shows that OAR1 and OAR2 are effective regularization techniques for achieving high OAR
metrics and accuracy. The table also shows that OAR1 is less effective than OAR2. In addition to
the table, figure 5 shows the training curves of all the experiments in the table. On the right side of
the table, the brackets aid in identifying the runs and their associated pre-activation regularization
method. OAR2 consistently outperforms OAR1 in both the table and figure. The figure shows a
better separation between the methods, with L2 at the bottom, OAR1 in the middle, and OAR2 at
the top.
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A.4 MANAGING OVERFLOW IN OUTPUT LOGITS

In the output layer of the MNIST RNN, pre-activations are fed into a softmax function. In this
work, we do not calculate a softmax function in the output layer over encrypted data due to the
difficulty of its implementation using FHE operations. Rather, we return the pre-activations to the
client, who decrypts them and performs a softmax calculation in the clear. When calculating
softmax, the relative magnitude between values is important for correctness. Therefore, if any of
the pre-activations underwent overflow during matrix multiplication, softmax would generate an
incorrect distribution. In section 3, we observed there is a way to harness overflow and make it useful.
However, this observation depends on the use of the sign activation function (to reiterate, when
overflow occurs, it is possible to overflow again and regain the intended sign of pre-activations).

We can increase the size of the CGGI security parameters to increase the available plaintext precision
in the output ciphertexts, as suggested in appendix A.2, in order to support a larger accumulation
space. In response, this would decrease the efficiency of the CGGI computation and not be desirable.
Since the output layer is composed of a matrix multiplication operation only, the procedure in
[Anonymous, 2025] divides the summation in each dot product into d smaller summations, each
summation represented by a ciphertext. Thus, d ciphertexts represent each output unit. Instead of
sending o ciphertexts to the client for o output units, this would send o · d ciphertexts. We do not
worry about the expansion in network bandwidth since it is not a focus in this work. On the client
side, the ciphertexts are decrypted and summed per output unit to complete the full summation.

As a result of the 4-step quantization process [Anonymous, 2025], the matrix multiplication operation
between inputs x ∈ {−1, 1}i and parameters W ∈ {−1, 0, 1}o×i in the output layer, where i is
the number of input units, is composed of a series of dot products between elements equal to “1”
or “−1”. This allows us to set an upper bound on the values of the output of each dot product.
Consider x ∈ {1}i and W ∈ {1}o×i, then the maximum absolute value of dot products in the
matrix multiplication is equal to i. Taking this into consideration, given a plaintext modulus k, d
can be adjusted such that the ciphertexts containing the smaller summations do not overflow—they
would need to be able to handle pre-activations zk ∈ [−i/d, i/d], which requires a plaintext modulus
k ≥ 2 · i/d. By increasing d, we can guarantee that there will be no overflow in any message space.

Equation 7 shows how the dot product that calculates each output unit zk can be divided into several
smaller dot products. The dot product is between a row vector wk ⊂ W and x. It also shows
how they can be recombined to evaluate the original dot product. In our RNN evaluation method
with CGGI, each smaller dot product is calculated by the server through a series of additions or
subtractions of binarized ciphertexts. The server sends every resulting ciphertext for each output unit
to the client. The client decrypts the ciphertexts and recombines them according to equation 7 in the
clear for each output unit.

zk = ⟨wk,x⟩ =
i−1∑
j=0

wk,j · xj =

i/d−1∑
j=0

wk,j · xj︸ ︷︷ ︸
Summation 0

+

2i/d−1∑
j=i/d

wk,j · xj︸ ︷︷ ︸
Summation 1

+...+

i−1∑
j=(d−1)i/d

wk,j · xj︸ ︷︷ ︸
Summation d−1

(7)

A.5 LIMITATIONS OF OVERFLOW-AWARE ACTIVITY REGULARIZATION

In this study, we applied and evaluated OAR solely over the MNIST dataset. In future work, we will
evaluate this method over other datasets to assess its generalization, which we were unable to perform
due to time constraints. In section 4.1.1, we showed that the regularizer does not perform well for
very low precision levels, such as 3 to 4 bit. It is possible that the pre-activation domain becomes too
granular for the regularizer to have a meaningful impact, as suggested in sections of 4.1.1, 4.1.2, and
4.1.3. More research is required to investigate the application of OAR to lower precision levels. In
appendix A.3, we showed the limitations of OAR1 and how it did not perform as well. Future work
will investigate the cause of this, possibly through a gradient analysis as the gradient flows from the
output layer to the first RNN layer.
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