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ABSTRACT

Adversarial attacks have been a looming and unaddressed threat in the industry.
However, through a decade-long history of the robustness evaluation literature, we
have learned that mounting a strong or optimal attack is challenging. It requires
both machine learning and domain expertise. In other words, the white-box threat
model, religiously assumed by a large majority of the past literature, is unrealistic.
In this paper, we propose a new practical threat model where the adversary relies
on transfer attacks through publicly available surrogate models. We argue that
this setting will become the most prevalent for security-sensitive applications in
the future. We evaluate the transfer attacks in this setting and propose a specialized
defense method based on a game-theoretic perspective. The defenses are evaluated
under 24 public models and 11 attack algorithms across three datasets (CIFAR-
10, CIFAR-100, and ImageNet). Under this threat model, our defense, PUBDEF,
outperforms the state-of-the-art white-box adversarial training by a large margin
with almost no loss in the normal accuracy. For instance, on ImageNet, our
defense achieves 62% accuracy under the strongest transfer attack vs only 36% of
the best adversarially trained model. Its accuracy when not under attack is only 2%
lower than that of an undefended model (78% vs 80%). Code is available here.

1 INTRODUCTION

Current ML models are fragile: they are susceptible to adversarial examples (Biggio et al., 2013;
Szegedy et al., 2014; Goodfellow et al., 2015), where a small imperceptible change to an image
radically changes its classification. This has stimulated a profusion of research on ML-based methods
to improve the robustness to adversarial attacks. Unfortunately, progress has slowed and fallen far
short of what is needed to protect systems in practice (Hendrycks et al., 2022). In this paper, we
articulate a new approach that we hope will lead to pragmatic improvements in resistance to attacks.

In the literature, we can find two defense strategies: systems-level defenses and ML-level defenses.
Systems-level defenses include controls such as keeping the model weights secret, returning only the
predicted class and not confidence scores, monitoring use of the model to detect anomalous patterns,
etc. Unfortunately, systems-level defenses have proven inadequate on their own: for instance, transfer
attacks can successfully attack a target model even without knowing its weights. Therefore, most
research focuses on ML-level defenses, where we try to build models that are more robust against
such attacks, for example through novel architectures and/or training methods. Researchers made
early progress on ML-level defenses, with the introduction of adversarial training (Madry et al.,
2018), but since then progress has slowed dramatically, and there is no clear path to achieving strong
adversarial robustness in any deployable model.

Current ML-level defenses suffer from two major problems: first, they have an unacceptable negative
impact on clean accuracy (accuracy when not under attack), and second, they focus on a threat model
that is increasingly recognized to be unrealistic (Gilmer et al., 2018; Goodfellow, 2018; Hendrycks
et al., 2022; Apruzzese et al., 2023). These problems are closely related: prevailing academic threat
models are unrealistic as they grant the attacker excessive powers that are hard to realize in real life,
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Figure 1: (a) Proposed threat model: transfer attack with public source models (TAPM). We consider
a low-cost black-box adversary who generates adversarial examples from publicly available models
with a known attack algorithm. (b) Our approach is based on stopping each major category of attack
with a combination of multiple mechanisms. (c) Our defense, PUBDEF, trains the defended model
to resist transfer attacks from several publicly available source models. Our model is robust to a
wide range of transfer attacks, including both those from source models that were trained against and
others that were not trained against, while also maintaining high clean accuracy.

making it too difficult to achieve strong security against such unrealistic attacks. Because of the
existing trade-off between adversarial robustness and clean accuracy, this in turn means achieving
any non-trivial adversarial robustness currently requires unacceptable degradation to clean accuracy.

We advocate for a different approach, captured in slogan form as follows:

Secure ML = Realistic threat model + Systems-level defenses
+ ML-level defenses against those threats

We propose using all available systems-level defenses. We articulate a concrete threat model,
influenced by what attacks cannot be stopped by systems-level defenses. Specifically, we propose
security against transfer attacks from public models (TAPM; Fig. 1(a)) as the threat model we focus
on. The TAPM threat model focuses on transfer attacks where the adversary starts with a publicly
available model, attacks the public model, and then hopes that this attack will “transfer”, i.e., will
also be effective against the target model. Because public models are often widely available, e.g., in
model zoos, this kind of transfer attack is particularly easy to mount and thus particularly important
to defend against. Under the TAPM threat model, we assume neither the model weights nor training
set are known to the attacker, and the attacker cannot train their own model or mount query-based
attacks that involve querying the target model many times. These assumptions are driven partly by
what kinds of attacks can be prevented or mitigated by existing systems-level defenses.

Finally, we introduce PUBDEF (Fig. 1(c)), a new method for training models that will be secure
against transfer attacks from public models. PUBDEF models are attractive for practical deployment.
For instance, they achieve clean accuracy close to that of an undefended model, so there is little
loss in performance when not under attack. When under attack (via transfer from public models),
adversarial accuracy remains fairly high: 88.6% for CIFAR-10 (almost 20 points higher than any
previous defense), 50.8% for CIFAR-100 (18 points higher), and 62.3% for ImageNet (26 points
higher than any previous defense). While our defense is not perfect and is not appropriate in all
scenarios, we believe it is a pragmatic defense that can be deployed without major loss of clean
accuracy, while making life as difficult for attackers as possible within that constraint.

2 RELATED WORK

We provide an introduction to several types of attacks and threat models seen in the literature, for
comparison to our new threat model.
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Defenses CIFAR-10 CIFAR-100 ImageNet

Clean Adv. Clean Adv. Clean Adv.

No defense 96.3 0.0 81.5 0.0 80.4 0.0
Best white-box adv. train 85.3 68.8 68.8 32.8 63.0 36.2
DVERGE + adv. train 87.6 59.6 6.3 2.1*

TRS + adv. train 86.9 66.7 63.9 39.1
PUBDEF (ours) 96.1 (+10.8) 88.6 (+19.8) 76.2 (+7.4) 50.8 (+18.0) 78.6 (+15.6) 63.0 (+26.8)

Table 1: Clean and adversarial accuracy of PUBDEF vs the best previously published defenses against
transfer attacks. Adversarial accuracy is measured in the TAPM threat model. “White-box adv. train”
are the most robust models from ROBUSTBENCH which share the same architecture as PUBDEF.
DVERGE (Yang et al., 2020) and TRS (Yang et al., 2021) are two state-of-the-art defenses against
transfer attacks. *DVERGE is designed for CIFAR-10 and is difficult to train on the other datasets.
TRS/DVERGE with adversarial training is not included for ImageNet due to its computation cost.

White-box attacks. In this threat model, the attacker is assumed to know everything about the
target model, including all model weights. This is the most studied threat model in the literature.
Adversarial training (Madry et al., 2018) has been the primary defense against white-box adversarial
examples. However, adversarial training sacrifices a considerable amount of clean accuracy (Tsipras
et al., 2019), rendering it unattractive to deploy in practice.

Transfer attacks. Papernot et al. (2016) first demonstrated the threat of transfer attacks: adversarial
examples generated on one ML model (the surrogate) can successfully fool another model if both
models are trained on the same task. Liu et al. (2017); Tramèr et al. (2017); Demontis et al. (2019)
propose various methods for quantifying a degree of the attack transferability including the distance
to the decision boundary as well as the angle between the gradients of two models. A great number
of transfer attack algorithms have been proposed over the years (Zhao et al., 2022), e.g., using
momentum during optimization (Dong et al., 2018; Lin et al., 2020; Wang et al., 2021b), applying
data augmentation (Xie et al., 2019; Wang et al., 2021a; Lin et al., 2020), and alternative loss
functions (Zhang et al., 2022; Huang et al., 2019). In this threat model, researchers often assume that
the training set for the defended model is available to the attacker, and the attacker can either train
their own surrogate models or use publicly available models as a surrogate.

Query-based attacks. Consider the setting where the attacker can query the target model (submit
an input and obtain the classifier’s output for this input), but does not know the model’s weights.
This threat model is particularly relevant for classifiers made available via an API or cloud service.
Attacks can iteratively make a series of queries to learn the decision boundary of the model and
construct an adversarial example (Brendel et al., 2018; Ilyas et al., 2018; Andriushchenko et al.,
2020). Systems-level defenses include returning only hard-label predictions (the top-1 predicted class
but not the confidence level), rate-limiting, and monitoring queries to detect query-based attacks
(Biggio et al., 2013; Goodfellow, 2019; Chen et al., 2020b; Li et al., 2020).

3 THREAT MODEL

We first define our threat model for this paper: transfer attack with public models (TAPM). It is
designed to capture a class of attacks that are especially easy and low-cost to mount, do not require
great sophistication, and are not easily prevented by existing defenses. It fills in a part of the attack
landscape that has not been captured by other well-known threat models (e.g., white-box, query-based,
and transfer attack). Under TAPM, the adversary has the following capabilities:

1. They have white-box access to all publicly available models trained for the same task. They can
mount a transfer attack, using any public model as the surrogate.

2. They cannot train or fine-tune a neural network. This might be because a reasonable training
set is not publicly available, or because the training process requires substantial expertise and
resources that outweighs the economic gain of the attack.

3. They can submit one or more adversarial inputs to the target model but cannot run query-
based attacks. This assumption is particularly well-suited to security-sensitive tasks, e.g.,
authentication and malware detection, where the adversary is caught immediately if the attack
fails, or to systems where other effective defenses against query-based attacks can be deployed.

By default, we assume that the defender is also aware of the same set of public models. However, we
will later show that our defense generalizes exceptionally well to unseen public models.
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Notation. Let S = {S1, . . . ,Ss} denote a finite set of all public models on the same task and
A = {A1, . . . ,Aa} a set of known transfer attack algorithms. An attack generates an ℓp-norm
bounded adversarial example from a model A and an input sample x:

xadv = A(S, (x, y)) such that ∥xadv − x∥p ≤ ϵ (1)

where S ∈ S is a source or surrogate model. A transfer attack xadv is uniquely defined by a pair (S,A).
The attack is then evaluated on a target model T /∈ S and considered successful if T(xadv) ̸= y.

4 GAME-THEORETIC PERSPECTIVE

We begin by motivating our defense through a game-theoretic lens. Prior work has formulated
adversarial robustness as a two-player zero-sum game (Araujo et al., 2020; Meunier et al., 2021;
Rathbun et al., 2022) but under different threat models and contexts. Under our TAPM setup, the
attacker’s strategy is naturally discrete and finite. The attacker chooses a source model S ∈ S and an
attack algorithm A ∈ A and obtains an adversarial sample xadv (as defined in Eq. (1)). Essentially,
each pair (S,A) corresponds to one of |S| · |A| = s ·a attack strategies. We will describe two versions
of the game with different defender strategies.

4.1 SIMPLE GAME

As a warm-up, we will first consider a discrete defense strategy where the defender trains s ·a models,
one against each of the attack strategies. Denote a defender’s model by T ∈ T where |T | = s · a.
The defender’s strategy is to choose T to classify a given xadv where T is trained to minimize the
expected risk of both the normal samples and the transfer adversarial samples xadv from Eq. (1).

argmin
θ

Ex,y [L(Tθ(x), y) + L(Tθ(xadv), y)] (2)

Note that this formulation is similar to the well-known adversarial training (Goodfellow et al., 2015;
Madry et al., 2018) except that xadv is independent to θ or the model being trained. The payoff of the
defender is defined as the expected accuracy on xadv chosen by the attacker:

rD(πA,πD) = ET∼πD
E(S,A)∼πA

Ex,y[1{T(A(S, (x, y))) = y}] (3)

where πA,πD are mixed (i.e., potentially randomized) strategies for the attacker and the defender,
respectively. In other words, πA,πD each represents a multinomial distribution over the s · a pure
(i.e., non-randomized) strategies. The attacker’s payoff is rA(πA,πD) = −rD(πA,πD). The payoff
matrix R ∈ Rsa×sa is defined by Ri,j = rD(ei, ej).

Figure 2: The payoff matrix of
the simple game.

As an example, we empirically compute R (Fig. 2) choosing
S = {S1, . . . ,S4} to be four public models and A as only PGD
attack (Madry et al., 2018). We will later describe how these mod-
els are chosen in Section 5.2. The defender also has four models
T = {T1, . . . ,T4}, where Ti is adversarially trained to be robust
against transfer attacks from Si. Notice that the diagonal entries are
large because Ti is trained on the attack from Si. Von Neumann’s
minimax theorem guarantees the existence of a Nash equilibrium,
i.e., an optimal strategy for each player (v. Neumann, 1928) (see
Appendix A.3). The optimal strategy can be efficiently computed
using linear programming (van den Brand, 2020). For the payoff
matrix in Fig. 2, the expected payoff for the optimal strategy is 73.0, meaning that when both the
attacker and the defender choose their strategies optimally, the target model can achieve 73.0%
accuracy on average. This is reasonable, but as we show next, we can do better.

4.2 COMPLEX GAME

Now we make the defender’s action space more flexible: the defender can choose their model’s
weights arbitrarily, instead of being limited to one of s · a models. We extend the loss function in
Eq. (2) to represent the loss against a transfer attack chosen according to mixed strategy πA:

argmin
θ

Ex,y

[
L(fθ(x), y) +

s·a∑
i=1

πiL (fθ (xadv,i) , y)

]
(4)
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where xadv,i is an attack generated by the i-th attack strategy, and the attacker’s (mixed) strategy
is given by π = (π1, . . . , πsa) representing a probability distribution over the s · a (pure) attack
strategies. Note that we can recover the simple game if the adversary is restricted to choosing πi’s s.t.
πi = 1 for a single i and 0 otherwise. However, when π represents any probability distribution, the
reward function is no longer linear in π so von Neumann’s minimax theorem no longer applies. A
Nash equilibrium may exist, but there is no known efficient algorithm to compute it.1

One naive strategy for the defender is to assume the attacker will choose uniformly at random from
all s · a attacks and find the best response, i.e., find model weights θ that minimize Eq. (4) when
πi = 1/sa for all i’s. This amounts to adversarially training a model against this particular (mixed)
attacker strategy. In this case, the defender’s payoff (adversarial accuracy) against each of the four
attacks turns out to be [96.3, 90.4, 94.6, 96.0], for the payoff matrix in Fig. 2. This means the defender
achieves over 90% accuracy against all four transfer attacks, which is a significant improvement over
the equilibrium of the simple game (73%). This suggests that while we may not be able to solve the
complex game optimally, it already enables a much better strategy for the defender. In Section 5, we
will explore several heuristics to approximately find a “local” equilibrium.

5 OUR PRACTICAL DEFENSE

5.1 LOSS FUNCTION AND WEIGHTING CONSTANTS

We propose several heuristics for solving the complex game (Section 4.2) that do not require explicitly
computing the full payoff matrix. Instead, the defender trains only one model with adjustable weights
πi’s as defined in Eq. (4). We experiment with the three training losses (detailed in Appendix A.4)
and report the best one. Overall, we find that simply sampling one attack randomly (a pair of (S,A))
at each iteration performs well or best in most cases.

5.2 DEFENDER’S SOURCE MODEL SELECTION

Given that the set of publicly available models is public and known to both the attacker and the
defender, the most natural choice for the defender is to train against all publicly available models.
However, the computation cost can be prohibitive. We show that we can achieve nearly as good
performance by choosing only a small subset of the publicly available models. However, finding an
optimal set of source models is non-trivial without trying out all possible combinations.

Intuitively, to be robust against a wide range of transfer attacks, the defender should train the target
model against a diverse set of source models and algorithms. The “diversity” of a set of models is
challenging to define. Natural approaches include using a diverse set of architectures (e.g., ConvNet vs
Transformer), a diverse set of (pre-)training methodologies (e.g., supervised vs unsupervised), and a
diverse set of data augmentation strategies. In our experiments, we found that the training procedure—
namely (1) normal, (2) ℓ∞-adversarial, (3) ℓ2-adversarial, or (4) corruption-robust training—has the
largest effect on the defense. For the rest of the paper, we categorize the source models into one of
these four groups.2 We will discuss the implications of this grouping in Sections 6.2 and 7.1.

This motivates a simple yet surprisingly effective heuristic that we use for selecting the set of source
models: when training PUBDEF, we use one source model from each group (four source models in
total for CIFAR-10 and three for CIFAR-100 and ImageNet). In more detail, we first choose four
source models: the public model that is most robust against ℓ∞ white-box attacks, the public model
that is most robust against ℓ2 white-box attacks, the public model that is most corruption robust,
and one arbitrary public model that is normally trained. Then, we compute the adversarial accuracy
against transfer attacks from every publicly available model. If the adversarial accuracy against
transfer attacks from some other public model S′ is significantly lower than the adversarial accuracy
against transfer attacks from S (the chosen model in the same group as S′), then we swap in S′ and
remove S. We made one swap for CIFAR-100 and ImageNet and no swap for CIFAR-10. We find that
this simple heuristic works well in practice and performs better than a random subset (Section 7.1).

1If we discretize each πi, the equilibrium is still guaranteed to exist by Nash’s theorem (Nash, 1951), but we
need to deal with an exponential (in sa) number of defense models.

2For CIFAR-100 and ImageNet, it is hard to find ℓ2-adversarially trained models that are publicly available,
so we exclude this group and only consider the remaining three (normal, ℓ∞, and corruption).
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6 EXPERIMENTS

6.1 SETUP

Metrics. The two most common metrics used to compare models in the past literature are clean
and adversarial accuracy. The clean accuracy is simply the accuracy on the test set, with no attack.
There are multiple ways to measure the adversarial accuracy under our threat model depending on the
attacker’s strategy (e.g., average or worst-case). We conservatively assume that the attacker knows
the defender’s strategy and chooses the best pair of (S,A) to run the attack.3 In other words, we
report the adversarial accuracy against the worst-case TAPM attack.

Baseline defenses. Adversarial training (Madry et al., 2018) can defend against transfer attacks
but at the cost of excessive degradation to clean accuracy (as we will show next). We compare
PUBDEF to the best white-box adversarially trained (AT) model from ROBUSTBENCH that has the
same architecture. For CIFAR-10, CIFAR-100, and ImageNet, the best are Addepalli et al. (2022b),
Addepalli et al. (2022a), and Salman et al. (2020), respectively. Additionally, we compare our method
to DVERGE (Yang et al., 2020) and TRS (Yang et al., 2021), the two state-of-the-art defenses against
transfer attacks. These use an ensemble of models for greater diversity, so that an attack that succeeds
on one might fail on another, hopefully making transfer attacks harder.

Public source models. For each dataset, we select 24 public pre-trained models: 12 normally
trained and 12 robustly trained models. The normal group comes from multiple public model zoos
including Hugging Face (Face, 2023), timm (Wightman, 2019), and (for CIFAR-10/100) two Github
repositories (Chen, 2023; Phan, 2023). The robust models are all hosted on ROBUSTBENCH (Croce
et al., 2020). We select a wide variety of models based on their architecture (e.g., assorted ConvNet,
ViT (Dosovitskiy et al., 2021), Swin (Liu et al., 2021), BeiT (Bao et al., 2022), ConvMixer (Trockman
& Kolter, 2023), zero-shot CLIP (Radford et al., 2021), etc.) and training methods to ensure high
diversity. We try our best to not select two models with the same architecture or from the same paper.

Attack algorithms. We evaluate the robustness of the defenses with 11 different attack algorithms. All
of the attacks are gradient-based, but they utilize different techniques for improving the transferability
of the attacks, e.g., momentum, data augmentation, intermediate representation, etc. Please refer to
Appendix A.1 for the complete list of both the source models and the attack algorithms.

PUBDEF training. We adversarially train the defended model by selecting a subset of source models
according to the heuristic in Section 5.2 and then using a PGD transfer attack on that subset. We use
a WideResNet-34-10 architecture for CIFAR-10/100 and ResNet-50 for ImageNet. We do not use
any extra data or generated data for training. Appendix A.1.3 has the complete training details.

6.2 RESULTS

PUBDEF is more robust to all 264 transfer attacks than the baselines by a large margin. We
generate 264 transfer attacks, one for each of 11 attack algorithms and 24 source models, and evaluate
PUBDEF according to the most successful attack. For CIFAR-10, PUBDEF achieves 20 percentage
points higher adversarial accuracy than the best previously published defense, with comparable clean
accuracy to an undefended model (Table 1). For CIFAR-100, PUBDEF achieves 10–18 p.p. higher
robustness and 7–12 p.p. higher clean accuracy than the best prior defense. For ImageNet, PUBDEF
achieves 26 p.p. better adversarial accuracy and 15 p.p. better clean accuracy than adversarial training;
its clean accuracy is only 2 p.p. lower than an undefended model. It is beyond our resources to train
TRS and DVERGE for ImageNet, due to the combination of ensembling and adversarial training.

Fig. 3 shows all adversarial accuracies of PUBDEF by pairs of (S,A) on ImageNet. Here, the
overall best attack is NI-Admix-TI-DIM from a ResNet-50 on Hugging Face. M-PGD, Admix, and
NI-Admix-TI-DIM are generally the strongest attack algorithms across source models and datasets.
Surprisingly, PGD usually performs well above average compared to the other more sophisticated
attacks. Appendix A.6.2 shows more detail.

PUBDEF maintains high clean accuracy. Compared to the state-of-the-art top-1 clean accuracy
for undefended models, our defense experiences only a 0–5% drop in the clean accuracy (Table 1).
Compare to white-box adversarial training, which suffers a 11–18% drop. We emphasize that the

3This assumption is realistic because, with limited queries, the attacker can intelligently pick a good source
model using the method from Maho et al. (2023), for example.
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Figure 3: Adversarial accuracy of PUBDEF against 264 transfer attacks (24 source models × 11
attack algorithms) on ImageNet. ✪ denotes the source models this defense is trained against. We
cannot produce NA attack on timm’s VGG model (shown as “n/a”) because of its in-place operation.

Src. Algo. CIFAR-10 CIFAR-100 ImageNet

Seen Seen 90.3 52.6 70.6
Unseen Seen 90.3 (−0.0) 52.6 (−0.0) 68.6 (−2.0)

Seen Unseen 90.3 (−0.0) 50.8 (−1.8) 63.0 (−7.6)

Unseen Unseen 88.6 (−1.7) 50.8 (−1.8) 63.0 (−7.6)

Table 2: Adversarial accuracy of PUBDEF under
seen/unseen transfer attacks. Seen attacks (seen src.
and seen algo.) are the 3–4 attacks that were used to
train our defense, unseen attacks are all others from
the set of 264 possible attacks. They are categorized
by whether the source models (src.) and the attack
algorithms (algo.) are seen. All non-PGD attacks
are unseen attack algorithms.

Figure 4: Clean and adversarial accuracy on
four PUBDEF models trained with 4 (4× 1), 8
(4× 2), 12 (4× 3), and 24 (All) source models.
“4 ×m” means m source models are chosen
from each of the four groups.

minimal drop in the clean accuracy is one of the most attractive properties of PUBDEF making it far
more practical than white-box adversarial training.

PUBDEF generalizes well to unseen source models and attack algorithms. Our defense is trained
against only the PGD attack and either four (CIFAR-10) or three (CIFAR-100, ImageNet) source
models. This amounts to four potential transfer attacks out of 264. Table 2 shows that PUBDEF
generalizes incredibly well to the 260 unseen attacks losing only 1.7%, 1.8%, and 7.6% in robustness
across the three datasets. This result implies that these 264 transfer attacks may be much more
“similar” than the community expected; see Section 7.3.

PUBDEF should be trained with one source model from each of the four groups. Table 9 shows
an ablation study, where we omit one of the four source models during training. We see that including
at least one source model from each of the four groups is important for strong robustness. Including
at least one ℓ2-robust and at least one corruption-robust model in the source set seems particularly
important. Without them, adversarial accuracy drops by 28.5% or 31.7%, respectively. We provide
further evidence to support this finding in with a more sophisticated ablation study (Appendix A.5)
that controls for the number of source models (Fig. 8).
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Training PUBDEF against more source models is not necessarily better. Fig. 4 shows that adding
more source models (8, 12, or 24) to PUBDEF increases the adversarial accuracy by only ∼1%, and
it also decreases clean accuracy by ∼1%. This suggests that our simple heuristic of selecting one
source model per group is not only necessary but also sufficient for training PUBDEF.

A simple loss function suffices. For CIFAR-10 and CIFAR-100, the RANDOM training loss achieves
the best results (Table 10). For ImageNet, ALL is slightly better and is only slightly worse than the
best result (DYNAMICLOSS). We use these training methods in all of our evaluations.

7 DISCUSSION

7.1 ABLATION STUDIES

Random source model selection. We experiment with two random methods for choosing the source
models for training PUBDEF. In three out of four cases, PUBDEF with the random selection method
still outperforms the white-box adversarial training by roughly 10 p.p., but in all cases, it is worse
than our default selection method. This result lets us conclude that (i) our simple selection scheme in
Section 5.2 is much more effective than random and (ii) all of the source model groups should be
represented which is in line with Section 6.2. We refer to Appendix A.5.1 for more details.

Attacks from ensembles of the public source models. A more sophisticated adversary could
use an ensemble of public models to generate a transfer attack, which has been shown to improve
the attack transferability (Liu et al., 2017; Gubri et al., 2022). We experiment with this approach
by creating three ensembles4 of four source models (one model from each group) and generate
adversarial samples with all 11 attack algorithms. This results in 33 attack candidates, and then,
we report accuracy under the best attack among these 33. We found that PUBDEF is robust against
such an ensemble attack, and this ensemble attack is no better than an attack constructed from the
best single-source model (91.7% vs 88.6% adversarial accuracy). We leave more sophisticated
ensemble-based attacks (e.g., Chen et al. (2023b;a)) as future work.

7.2 ROBUSTNESS TO WHITE-BOX AND QUERY-BASED ATTACKS

Models None Sq-100 Sq-1k

No Defense (σ=0) 96.3 36.6 0.2
No Defense (σ=0.01) 92.0 71.0 53.2
No Defense (σ=0.02) 89.2 75.4 66.2

White-Box AT (σ=0) 85.3 77.9 67.3
White-Box AT (σ=0.01) 85.2 80.7 76.5
White-Box AT (σ=0.02) 85.0 81.7 78.9

PUBDEF (σ=0) 96.1 55.2 8.8
PUBDEF (σ=0.01) 92.6 81.4 75.6
PUBDEF (σ=0.02) 88.9 82.1 79.8

Table 3: Accuracy under Square attack with
100 and 1000 queries. Each model is com-
bined with Qin et al. (2021) with σ of 0 (no
noise), 0.01, and 0.02.

As we design PUBDEF to specifically defend against
transfer attacks, we rely on system-level defenses for
other types of attacks. Here, we measure the risk
against such attacks. First, we find that PUBDEF is
not robust against white-box attacks; PGD attack with
sufficient steps reduces its accuracy to 0%. This is
expected as white-box AT has been the only reliable de-
fense against white-box attacks. Against both soft and
hard-label query-based attacks, PUBDEF is also less
robust compared to the best white-box AT (Tables 12
and 13). However, once we apply an existing defense
against query-based attacks (Qin et al., 2021), PUB-
DEF becomes the most robust (Table 3). Specifically,
we chose the standard deviation of the additive noise
σ ∈ {0.01, 0.02} and followed the same evaluation pro-
cedure as Qin et al. (2021). We evaluated the defense
against the soft-label Square attack (Andriushchenko
et al., 2020) with 100 and 1000 queries. The PUBDEF models have both higher clean accuracy (4–7
pp.) and adversarial accuracy (∼1 pp.) than the white-box AT. Adding PUBDEF to this query-based
defense boosts the robustness up to 24 pp. (from 66 to 80) against the 1000-query Square attack.

7.3 GENERALIZATION AND ADVERSARIAL SUBSPACE

Surprising generalization. In Section 6.2, PUBDEF demonstrates excellent robustness against
a broad range of TAPM attacks, even the transfer attacks from a source model and/or an attack
algorithm that were not trained against. We suspect that the surprising generalization of PUBDEF
indicates a low-dimensional structure underlying transfer adversarial examples. We visualize our
intuition in Appendix A.6.4. In this section, we investigate this phenomenon more closely.

4The ensemble averages the logits rather than averaging the losses or the softmax scores; in our past
experience, we have found that all three choices yield similar performance.
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Generalization with one source model. We train four PUBDEF models each against only one
source model (not one per group). The adversarial accuracy by groups in Fig. 6 shows an unexpected
result: training against either an ℓ2 or corruption source model alone provides above 55%
accuracy against the best attack. Furthermore, training against the ℓ2 (resp. corruption) source
model provides over 80% robustness against the ℓ∞ (resp. normal) group. This generalization effect
does not necessarily hold in reverse (e.g., training against a ℓ∞ source model yields little robustness
to the ℓ2 group). Some source models are better than others to train PUBDEF with.

Figure 5: Cosine sim. among
pairs of adversarial perturba-
tions by source model group.

To verify the manifold hypothesis, we attempt to quantify it using two
metrics: cosine similarity and principal component analysis (PCA).
Fig. 5 shows the pairwise cosine similarity values among all 264
attacks aggregated by the four source model groups and averaged
over all CIFAR-10 test samples. The cosine similarity is notably
higher when comparing adversarial examples generated within the
same group in contrast to those across two groups, especially for the
ℓ∞ and the ℓ2 adversarial training groups (0.23 and 0.24 respectively).
The cosine similarity is albeit lower in the normal and the corruption
groups. PCA analysis also supports this observation, showing evi-
dence for a low-dimensional linear subspace for the ℓ∞ and the ℓ2
groups. We defer the detailed discussion to Appendix A.6.4.

7.4 PRACTICAL CONSIDERATIONS

PUBDEF is intended to stop a specific class of attacks that are particularly easy to mount, and that are
not stopped by any reasonable systems-level defense. However, it has many limitations:

1. PUBDEF is not robust to white-box attacks and is only suitable if model weights can be kept secret.
If the model is deployed to users, then attackers can reverse-engineer it to find the weights and
mount a white-box attack (Liang et al., 2016; Tencent Keen Security Lab, 2019).

2. A sufficiently dedicated and well-financed attacker can likely train their own surrogate model, e.g.,
by somehow assembling a suitable training set and paying annotators or using the target model to
label it, then mount a transfer attack from this private surrogate, potentially bypassing our defense.

3. We only defend against ℓ∞-norm-bounded attacks. Many researchers have argued persuasively
that we also need to consider broader attack strategies (Gilmer et al., 2018; Kaufmann et al., 2023),
which we have not examined in this work.

Despite these limitations, PUBDEF has several practical benefits: (1) Minimal drop in clean accuracy:
The robustness gain of PUBDEF is (almost) free! This makes it almost ready to deploy in the real
world. (2) Low training cost: Adversarial training takes ∼2× longer due to the adversarial example
generation inside of the training loop. In contrast, PUBDEF training is much faster, as transfer attacks
can be pre-generated prior to the training, only need to be done once, and can be done in parallel.

More precisely, the training time of PUBDEF is approximately 16T +0.2NT where T is the time for
one epoch of white-box adversarial training and N is the number of epochs of training. In comparison,
adversarial training takes NT time. For N = 50 epochs, PUBDEF’s training time is 26T vs 50T
for adversarial training. The first term in the formula (16T ) is a one-time cost for generating all the
transfer attacks used in training: 4 source models × 4 instances per training sample × 10 PGD steps
= 16T . Regardless of how many PubDef models are trained or how many hyperparameters are swept,
this step has to be done once. The second term is the cost of the training loop which depends on the
exact loss function used (Section 5.1). For the “Random” loss function, the cost is 0.2T per epoch.

8 CONCLUSION

In this paper, we propose a pragmatic method for achieving as much robustness as possible, in
situations where any more than minimal decrease in clean accuracy is unacceptable. We identify
transfer attacks from public source models (TAPM) as a particularly important class of adversarial
attacks, and we devise a new method, PUBDEF, for defending against it. Putting everything together
yields a plausible defense against adversarial examples by aligning ML defenses with the most feasible
attacks in practice that existing systems-level defenses cannot prevent. We hope other researchers
will build on these ideas to achieve even stronger protections against adversarial examples.
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Attack Algorithms Momentum Augmentation Feature-Level Non-CE Loss

PGD (Madry et al., 2018) ✗ ✗ ✗ ✗
M-PGD (Dong et al., 2018) ✓ ✗ ✗ ✗
Pregradient (Wang et al., 2021b) ✓ ✗ ✗ ✗
Diverse input (DI) (Xie et al., 2019) ✗ ✓ ✗ ✗
Translation-invariant (TI) (Dong et al., 2019) ✗ ✓ ✗ ✗
Admix (Wang et al., 2021a) ✗ ✓ ✗ ✗
NA (Zhang et al., 2022) ✗ ✗ ✓ ✗
NI-SI-TI-DIM (Zhao et al., 2022) ✓ ✓ ✗ ✗
NI-Admix-TI-DIM (Zhao et al., 2022) ✓ ✓ ✗ ✗
AutoPGD-DLR (Croce & Hein, 2020) ✗ ✗ ✗ ✓
AutoPGD-CE (Croce & Hein, 2020) ✗ ✗ ✗ ✗

Table 4: All transfer attack algorithms we experiment with in this paper along with the types of
techniques they use to improve attack transferability.

A APPENDIX

A.1 DETAILED EXPERIMENT SETUP

A.1.1 FULL LIST OF PUBLIC SOURCE MODELS

Table 5, Table 6, and Table 7 compile all the source models we use in our experiments for CIFAR-10,
CIFAR-100, and ImageNet, respectively. For the normal group, model names that begin with timm/,
chenyaofo/, and huyvnphan/ are from the timm library (Wightman, 2019), Chen (2023), and
Phan (2023), respectively. Those that ends with _local are models that we train ourselves locally.
These include ConvMixer models and several models on CIFAR-100 where the public models are
more difficult to find. The remaining models are from Hugging Face’s model repository (Face, 2023).

There is no ℓ2 group for CIFAR-100 and ImageNet because ROBUSTBENCH does not host any ℓ2-
adversarially trained models apart from the ones trained on CIFAR-10. As mentioned in Section 6.1,
the models are all chosen to have as much diversity as possible in order to ensure that the defenses
are evaluated on a wide range of different transfer attacks.

A.1.2 FULL LIST OF TRANSFER ATTACK ALGORITHMS

All of the 11 transfer attack algorithms we experiment with in this paper are listed in Table 4. Two
other attacks that we do not experiment with individually but as a part of the other two combined
attacks (NI-SI-TI-DIM, NI-Admix-TI-DIM) are the scale-invariant (SI) (Lin et al., 2020) and the
Nesterov (NI) (Lin et al., 2020) attacks. We either take or adapt the attack implementation from Zhao
et al. (2022) (https://github.com/ZhengyuZhao/TransferAttackEval). Then, we
check our implementation against the official implementation of the respective attacks.

Notes on some attack implementation. NA attack was originally designed to use the interme-
diate features of ResNet-like models so it lacks implementation or instruction for choosing the
layer for other architectures. Therefore, we decided to pick an early layer in the network (about
one-fourth of all the layers). For the same reason, we also omit NA attack on the source model
Diffenderfer2021Winning_LRR_CARD_Deck as it is an ensemble of multiple architectures.

A.1.3 PUBDEF TRAINING

All CIFAR-10/100 models are trained for 200 epochs with a learning rate of 0.1, weight decay of
5× 10−4, and a batch size of 2048. ImageNet models are trained for 50 epochs with a learning rate
of 0.1, weight decay of 1 × 10−4, and a batch size of 512. We have also swept other choices of
hyperparameters (learning rate ∈ {0.2, 0.1, 0.05} and weight decay ∈ {1× 10−4, 5× 10−4}) but did
not find them to affect the model’s performance significantly. Overall PUBDEF is not more sensitive
to hyperparameter choices anymore than a standard training and is less sensitive than white-box
adversarial training. All of the models are trained on Nvidia A100 GPUs.
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Groups Model Names

Normal

aaraki/vit-base-patch16-224-in21k-finetuned-cifar10
jadohu/BEiT-finetuned
ahsanjavid/conVneXt-tiny-finetuned-cifar10
chenyaofo/resnet20
chenyaofo/vgg11-bn
chenyaofo/mobilenetv2-x0-5
chenyaofo/shufflenetv2-x0-5
chenyaofo/repvgg-a0
huyvnphan/densenet121
huyvnphan/inception-v3
convmixer_local
clip

ℓ∞

Wang2023Better_WRN-70-16
Xu2023Exploring_WRN-28-10
Debenedetti2022Light_XCiT-L12
Sehwag2020Hydra

ℓ2

Wang2023Better_WRN-70-16
Rebuffi2021Fixing_70_16_cutmix_extra
Augustin2020Adversarial_34_10_extra
Rony2019Decoupling

Corruption

Diffenderfer2021Winning_LRR_CARD_Deck
Kireev2021Effectiveness_RLATAugMix
Hendrycks2020AugMix_ResNeXt
Modas2021PRIMEResNet18

Table 5: All public source models for CIFAR-10.

Data augmentation. Unlike most training procedures, there are two separate places where data
augmentation can be applied when training PUBDEF: the first is when generating the transfer attacks
and the second is afterward when training the model with those attacks. For CIFAR-10/100, we use
the standard data augmentation (pad and then crop) in both places. For ImageNet, we also use the
standard augmentation including random resized crop, horizontal flip, and color-jitter in both of the
steps. However, in the second step, we make sure that the resizing does not make the images too
small as they would have already undergone the resizing once before. For all of the datasets, we
also add CutMix (Yun et al., 2019) to the second step. No extra data or generated data (e.g., from
generative models) are used.

Number of transfer attack instances. For each pair of (S,A), we generate multiple attacked
versions of each training image (by random initialization) to prevent the model from overfitting to a
specific perturbation. Unless stated otherwise, we use four versions in total, one of which is randomly
sampled at each training iteration. That said, using fewer versions does not significantly affect the
performance of our defense. With one version, the adversarial accuracy drops by 0.5% on CIFAR-10
and 0.2% on ImageNet. Using eight versions increases it by 1.2% on CIFAR-10. The clean accuracy
seems unaffected by the number of versions. This suggests that when computation or storage is a
bottleneck, we can use only one attack version with minimal loss of robustness.

A.2 ADDITIONAL DESCRIPTION OF THE BASELINES

EAT (Tramèr et al., 2018) is an ensemble training technique motivated by the limitations of white-box
FGSM training due to their propensity for falling into degenerate global minima that consist of
weak perturbations, resulting in weak transfer robustness. EAT is claimed to specifically increase
robustness against black-box-based attacks, where members of an ensemble are pre-trained models
that serve to augment the data by generating adversarial examples to attack a singular member model.

DVERGE (Yang et al., 2020) is a robust ensemble training technique that leverages cross-adversarial
training. In this methodology, ensemble members are subject to training on adversarial examples
generated from other models present within the same ensemble. The distinction between DVERGE
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Groups Model Names

Normal

Ahmed9275/Vit-Cifar100
MazenAmria/swin-tiny-finetuned-cifar100
chenyaofo/resnet20
chenyaofo/vgg11-bn
chenyaofo/mobilenetv2-x0-5
chenyaofo/shufflenetv2-x0-5
chenyaofo/repvgg-a0
densenet121_local
senet18_local
inception-v3_local
convmixer_local
clip

ℓ∞

Wang2023Better_WRN-70-16
Cui2023Decoupled_WRN-28-10
Bai2023Improving_edm
Debenedetti2022Light_XCiT-L12
Jia2022LAS-AT_34_20
Rade2021Helper_R18_ddpm

Corruption

Diffenderfer2021Winning_LRR_CARD_Deck
Modas2021PRIMEResNet18
Hendrycks2020AugMix_ResNeXt
Addepalli2022Efficient_WRN_34_10
Gowal2020Uncovering_extra_Linf
Diffenderfer2021Winning_Binary

Table 6: All public source models for CIFAR-100.

Groups Model Names

Normal

microsoft/resnet-50
google/vit-base-patch16-224
microsoft/swin-tiny-patch4-window7-224
facebook/convnext-tiny-224
timm/efficientnet_b3.ra2_in1k
timm/inception_v3
timm/mnasnet_100.rmsp_in1k
timm/mixer_b16_224.goog_in21k_ft_in1k
timm/rexnet_100.nav_in1k
timm/hrnet_w18.ms_aug_in1k
timm/mobilenetv3_large_100.ra_in1k
timm/vgg11.tv_in1k

ℓ∞

Liu2023Comprehensive_Swin-B
Singh2023Revisiting_ConvNeXt-T-ConvStem
Singh2023Revisiting_ViT-S-ConvStem
Debenedetti2022Light_XCiT-S12
Salman2020Do_50_2
Salman2020Do_R50

Corruption

Tian2022Deeper_DeiT-B
Tian2022Deeper_DeiT-S
Erichson2022NoisyMix_new
Hendrycks2020Many
Hendrycks2020AugMix
Geirhos2018_SIN_IN

Table 7: All public source models for ImageNet.

and EAT or adversarial training is the “distillation” loss that encourages a large difference between
the intermediate features between models in the ensemble.
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TRS (Yang et al., 2021) claims to be an improvement over DVERGE. It removes the extra loss term
from DVERGE and incorporates ℓ2-based regularization into the loss objective function to enhance
model smoothness. This regularization penalizes both the cosine similarity between the gradients of
all pairs of models in the ensemble and the Euclidean norm of the gradients. Both TRS and DVERGE
are evaluated against transfer attacks where they show a superior robustness compared to EAT as
well as single-model adversarial training.

A.3 SIMPLE GAME’S EQUILIBRIUM

The simple game (Section 4.1) can be formulated as the following von Neumann’s minimax theorem
with a bilinear objective function. We refer the interested readers to Roughgarden (2016) for the full
derivation.
Theorem 1 (von Neumann’s minimax theorem with a bilinear function (v. Neumann, 1928)). Given
a “simple game” described above and its payoff matrix R, there exists a mixed strategy π∗

A for the
attacker and a mixed strategy π∗

D for the defender such that

r∗D = max
πD∈∆sa−1

min
πA∈∆sa−1

π⊤
DRπA = min

πA∈∆sa−1
max

πD∈∆sa−1
π⊤
DRπA (5)

where ∆sa−1 is the (sa− 1)-dimensional probability simplex.

This problem can be solved like any other linear program with polynomial-time algorithms (van den
Brand, 2020).

A.4 PUBDEF’S LOSS FUNCTION

Below are all the loss functions we have experimented with when training PUBDEF models. Their
comparison is reported in Table 10.

1. Fixed: Here, all πi’s are fixed to 1/sa. We experiment with two very similar loss functions: (1)
ALL: The model is trained on all transfer attacks (pairs of (S,A)) simultaneously. This is exactly the
same as Eq. (4). (2) RANDOM: Randomly sample one pair of (S,A)i at each training iteration.

2. Top-k: This scheme modifies ALL by taking, at each iteration of training, the top k pairs of (S,A)i
that maximize the loss on the current defense model being trained. Effectively, in each batch, we
attack the current model weights with all s · a attacks, choose the k most effective attacks, and set
their πi’s to 1/k and the other πi’s to 0. For k = 1, this is a minimax problem similar to adversarial
training, but the maximization is over the choice of transfer attacks instead of the perturbation:

argmin
θ

Ex,y

[
L(fθ(x), y) + max

i∈[s·a]
L (fθ (xadv,i) , y)

]
(6)

3. Dynamic weights: This method can be considered a smooth version of the top-k. Instead of
setting each πi to either 1 or 0, we dynamically adjust it in proportion to the overall loss or error rate
of the attack (S,A)i. We call these methods DYNAMICLOSS and DYNAMICACC respectively. We
use an exponential moving average µ with a decaying factor α to estimate the loss and the accuracy:

µt+1
i = (1− α)µt

i + αL (fθ (xadv,i) , y) (DYNAMICLOSS) (7)

µt+1
i = (1− α)µt

i + αEx,y [1 {fθ (xadv,i) = y}] (DYNAMICACC) (8)

πi =
µi∑s·a
j=1 µj

(Normalize to [0, 1]) (9)

We can normalize the πi’s by their sum because both the loss and the error rate are non-negative.

A.5 DEFENDER’S SOURCE MODEL SELECTION

In this section, we specifically dive deeper into the source model selection heuristic for training
PUBDEF. We will investigate various effects on the adversarial accuracy under the TAPM transfer
attacks when including/excluding certain models.

Single source model. We begin by first choosing only one source model from each group. The results
reveal that training PUBDEF with one source model is insufficient for building a good defense. In
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Figure 6: Adversarial accuracy of PUBDEF when trained against only one source model on CIFAR-10.
We select one source model from each group, and the adversarial accuracy is also categorized by the
attacker’s source model groups.

Figure 7: (CIFAR-10) Adversarial accuracy
grouped by the attacker’s source models
(columns). Each row corresponds to a PUBDEF
model with one source model from each group
removed except for the last row where all are in-
cluded.

Figure 8: (CIFAR-10) Adversarial accuracy
grouped by the attacker’s source models
(columns). Each row corresponds to a PUBDEF
model with one source model from each group
removed, but unlike Fig. 7, another source model
from a different group is added to keep the total
number of source models constant (four).

other words, regardless of which source model is chosen, it performs far worse than the default option
to include four source models (“All”). That said, the model trained against a singular source model
from the ℓ2 or the corruption group exhibits surprisingly high resilience even to the best transfer
attack, achieving the adversarial accuracy of over 55%.

Excluding one source model group. Fig. 7 is an extension to Table 9 which shows the adversarial
accuracy from the best attack from each source model group in addition to the overall best. Here,
by looking at the diagonal entries, we can see that removing a source model from one group during
PUBDEF training reduces the robustness against the transfer attack from the same group. Note that
the overall best transfer attack always comes from the missing group (i.e., the diagonal entries are
equal to the last column). The degradation is minor for the normal and the ℓ∞ groups but very large
for the ℓ2 and the corruption groups. This implies that for certain reasons, adversarial examples
generated on source models from the normal and the ℓ∞ groups are “subsets” of the ones from the
other two groups because this generalization phenomenon happens only in one direction but not both.
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Defenses CIFAR-10 CIFAR-100 ImageNet

Clean Adv. Clean Adv. Clean Adv.

Best white-box adv. training 85.3 68.8 68.8 32.8 63.0 36.2
PUBDEF (all random) 95.2 (+9.9) 62.9 (−5.9) 75.4 (+6.6) 44.0 (+11.2) - -
PUBDEF (random per group) 95.0 (+9.7) 77.3 (+8.5) 75.3 (+6.5) 44.2 (+11.4) - -
PUBDEF (default) 96.1 (+10.8) 88.6 (+19.8) 76.2 (+7.4) 50.8 (+18.0) 78.5 (+15.5) 62.3 (+26.1)

Table 8: Clean and adversarial accuracy of PUBDEF against the best attack under the TAPM threat
model. As an ablation study, we compare the baseline as well as our default PUBDEF to PUBDEF
when the defender’s source models are randomly selected.

We conduct another experiment that controls for the fact that the number of source models used to train
PUBDEF reduces from four (the default setting where all source models are used) to three in the earlier
experiments. The results are shown in Fig. 8. Here, in addition to removing one source model, we
add another source model from a different group to the pool. For example, in the first row, the normal
model is removed, and then we add a model from each of the remaining groups to create three differ-
ent PUBDEF models ({ℓ∞, ℓ∞, ℓ2, corrupt.}, {ℓ∞, ℓ2, ℓ2, corrupt.}, {ℓ∞, ℓ2, corrupt., corrupt.}). We
then compute the adversarial accuracy of all three new models and report the best one. The conclusion
above remains unchanged, but the gap in the adversarial accuracy becomes particularly smaller for
the corruption group.

A.5.1 RANDOM SOURCE MODEL SELECTION

In this section, we provide detailed experiments and results on the random source model selection
method for training PUBDEF. We train two new sets of 30 PUBDEF models each where the source
models are randomly sampled in two different ways: (A) by model and (B) by group. When randomly
sampling by model, all source models have an equal probability of being selected. This means that
more normal models may be selected as they are over-represented (12 vs. 4/6 for the other groups).
When sampling by group, we uniformly sample one out of four groups and then uniformly sample
one source model from the group. This accounts for the difference in group sizes. The total number
of source models is still fixed at four for CIFAR-10 and three for CIFAR-100.

Table 8 compares the two random model selection methods to the default one. Here, “all random”
corresponds to the sampling by group, and “random per group” is the by-group sampling but without
replacement so all groups are represented by one model. Choosing a random source model from
each group (i.e., set B) results in a drop in the adversarial accuracy by 11% on CIFAR-10 and 7% on
CIFAR-100 on average (Appendix A.5). However, they are still 9% and 11% higher than the baseline.
On the other hand, set A performs worse than the baseline by 6% on CIFAR-10 and similarly to set B
on CIFAR-100. The discrepancy between the two datasets on set A can be explained by the fact that
the probability of choosing exactly one model from each group is only 7% on CIFAR-10 but 21% on
CIFAR-100.

Next, we use these two sampling methods to perform additional ablation studies. By randomly
sampling the source models, we can make a general statement about the effect of each source model
group in PUBDEF independent of the exact choice of the source models.

Importance of each source model group. We train 64 PUBDEF models with one, two, three, and
four source model groups (16 each). The source models are sampled by groups without replacement.
Fig. 9a and Fig. 9b show the adversarial accuracy by the source model group similarly to Fig. 7 but
with the random selection described above. Fig. 9a categorizes PUBDEF by which source model group
is excluded whereas Fig. 9b categorizes by which source model group is included. The result from
Fig. 9a very much agrees with Fig. 7 and Fig. 8. Fig. 9b also corroborates with this observation by
confirming that PUBDEF models that include the ℓ2 group outperforms the others quite significantly.

Number of total source models. Fig. 10 displays both the clean and the adversarial accuracy when
PUBDEF is trained with different numbers of source models. This is similar to Fig. 4 in the main
paper as well as Fig. 6, but the only difference is that the source models here are randomly selected.
Similar to the above result, the random selection allows us to make a more generalized statement
about the source model groups without being strictly tied to the exact choice of the source models.
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(a) Excluded (b) Included

Figure 9: (CIFAR-10) Adversarial accuracy of PUBDEF with the random source model selection (by
group). Similar to Fig. 7, we transfer attacks by the source model groups. The left plot categorizes
PUBDEF by the excluded group while the right plot categorizes by the included group.

Figure 10: Clean and adversarial accuracy under the best attack on our defense with varying numbers
of randomly chosen source models for training PUBDEF. k × 1 denotes that we (randomly) pick one
model from each of the k categories. The error bars denote t-distribution 95%-confidence interval.

This plot demonstrates that the adversarial accuracy against the best transfer attack improves as
PUBDEF is trained against more source models, but the return is diminishing. On the other hand, the
clean accuracy is completely unaffected and varies in a very narrow range.

A.6 ADDITIONAL RESULTS

A.6.1 COMPARISON TO OTHER ENSEMBLE BASELINES

We have described the ensemble defenses including DVERGE and TRS in Section 2 and Ap-
pendix A.2. Here, we will introduce another defense we built on top of TRS to make it even more
suitable as a defense against transfer attacks. We call this scheme “Frozen TRS.” The main idea
behind TRS as well as DVERGE is to make the models in the ensemble diverse and different from
one another. However, in the TAPM threat model, we want to make our defense “different” from the
public models as much as possible. With this in mind, we apply the regularization terms from TRS to
a set of models comprised of both the defense we want to train and the public source models we want
to train against. But unlike TRS, we are only training one defense model while holding all the public
models fixed (hence “frozen”).

Table 11 compares all the ensemble-based defenses including the previously described Frozen TRS.
It is evident that all the ensembles are outperformed by the single-model white-box adversarial
training as well as PUBDEF. Frozen TRS performs better than the normal TRS but worse than
the adversarially trained TRS. We believe that TRS’ regularization is effective for diversifying the
models’ gradient directions, but it takes an indirect path to improve the robustness against transfer
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Defender Src. Model Groups Clean Adv.

All groups 96.1 88.6
All groups but normal 95.4 83.4 (−5.2)

All groups but ℓ∞ 95.3 80.6 (−8.0)

All groups but ℓ2 95.0 60.1 (−28.5)

All groups but corruption 94.9 56.9 (−31.7)

Table 9: Effects on accuracy when excluding
one (out of four) defender’s source models
from PUBDEF trained on CIFAR-10.

Defense Loss
Function

CIFAR-10 CIFAR-100 ImageNet

Clean Adv. Clean Adv. Clean Adv.

RANDOM 96.1 88.6 76.2 50.8 79.0 58.6
TOP-1 95.3 87.0 73.9 50.9 78.2 57.3
TOP-2 95.8 86.1 74.2 51.9 78.4 60.6
ALL 96.0 86.8 73.5 50.3 78.5 62.3
DYNAMICACC 95.2 88.9 74.0 51.5 78.6 62.8
DYNAMICLOSS 95.6 88.4 73.8 51.1 78.6 63.0

Table 10: Clean and adversarial accuracy of our de-
fense with different training methods (Section 5).

Defenses Clean Acc. Adv. Acc.

Best white-box adversarial training 85.3 68.8
TRS 90.7 30.1
TRS + adversarial training 86.9 66.7
DVERGE 88.6 33.4
DVERGE + adversarial training 87.6 59.6
Frozen TRS 86.1 49.9
PUBDEF 96.1 88.6

Table 11: Comparison of PUBDEF to all the ensemble-based defenses on CIFAR-10.

attacks. Training on the transfer attacks themselves like PUBDEF is more straightforward and so
produces a better defense. An interesting future direction is to combine TRS (or other forms of
gradient regularization) with PUBDEF.

A.6.2 ADVERSARIAL ACCURACY ON ALL TRANSFER ATTACKS

In this section, we include the figures containing adversarial accuracy against all the transfer at-
tacks on CIFAR-10 (Fig. 11) and CIFAR-100 (Fig. 12), similarly to Fig. 3 for ImageNet in the
main paper. NA attacks are excluded and marked as “n/a” for the ensemble-based model (i.e.,
Diffenderfer2021Winning_LRR_CARD_Deck) because the intermediate feature is more
difficult to specify. Some interesting observations:

• PGD and M-PGD are among the best attack algorithms across all of the datasets despite
their simplicity compared to the rest of the attacks.

• NA attack is the weakest attack on both CIFAR-100 and ImageNet but the strongest on
CIFAR-10.

• The source models from the ℓ∞ group produce stronger transfer attacks than the other groups.
The trend is particularly strong on CIFAR-100 but weaker on CIFAR-10 and ImageNet.

A.6.3 ROBUSTNESS AGAINST QUERY-BASED ATTACKS

We include additional results on the models under query-based attacks. Table 12 shows accuracy
under Square attack, a soft-label (or score-based) query-based attack without any system-level defense
in place. Table 13 reports accuracy under hard-label (or decision-based) query-based attack also
without any system-level defense. Here, the white-box adversarially trained models are more robust
than PUBDEF. However, after applying a system-level defense like Qin et al. (2021), PUBDEF has
higher accuracy and robustness as shown in Section 7.2.

A.6.4 DETAILS ON THE ADVERSARIAL SUBSPACE EXPERIMENTS

We start by providing more intuition by visualizing a space of the transfer attack around a training
sample x. Fig. 13 compares the attack surfaces under the white-box and the TAPM threat model.
The white-box attack is inherently more difficult to solve as the defender must train the model to
be robust at any point in the ℓp-norm ball of a given radius. On the other hand, under the TAPM
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Figure 11: Adversarial accuracy of PUBDEF against 264 transfer attacks (24 source models × 11
attack algorithms) on CIFAR-10. ✪ denotes the source models this defense is trained against.

Models CIFAR-10 CIFAR-100 ImageNet

Sq-100 Sq-1000 Sq-100 Sq-1000 Sq-100 Sq-1000

No Defense 36.6 0.2 9.1 1.8 49.9 17.9
Best White-Box AT 77.9 67.3 55.9 41.0 58.4 57.6
PUBDEF 55.2 8.8 13.5 0.3 55.1 32.3

Table 12: Accuracy of the models under Square Attack (soft-label query-based) with 100 and 1000
queries. Here, no system-level defense is applied.

setting, there are only finitely many attacks, and so they will always “occupy” a smaller volume of
the ball. Put differently, they can only span a linear subspace of min{s · a, d} dimensions where s · a
is the number of all potential transfer attacks defined in Section 3 and d is the input dimension where
usually d ≫ sa.

Fig. 14 potentially explain why PUBDEF generalizes well to attacks not seen during training. When
all the attacks lie in a low-dimensional subspace or form a cluster around a small subsection of the
ℓp-norm ball, the sample complexity is also low. Hence, training on a few attacks is sufficient for
capturing this adversarial subspace. On the other hand, there can be two potential failure cases of
TAPM if the transfer attacks do not actually form a low-dimensional subspace. First, the model can
overfit to the training attacks and does not generalize to the unseen. The second case can happen
when the model does not necessarily over to the training attack and tries to learn to be robust in the
entire ℓp-norm ball. In this case, TAPM could perform similarly to white-box adversarial training,
and we may see no benefit as it suffers the same pitfalls as white-box adversarial training. Based
on our results, it seems that TAPM may experience the first failure case on a subset of the samples,
creating a small generalization gap between the seen and the unseen attacks as shown in Table 2.

Cosine similarity. Here, we include additional observations that were not mentioned in Section 7.3.
From Fig. 5, there is also a relatively strong similarity (0.17) between the ℓ∞ and the ℓ2 groups
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Figure 12: Adversarial accuracy of PUBDEF against 264 transfer attacks (24 source models × 11
attack algorithms) on CIFAR-100. ✪ denotes the source models this defense is trained against.

Models CIFAR-10 (HSJ) CIFAR-100 (HSJ) ImageNet (HSJ) ImageNet (GeoDA)

No Defense 0.0276 0.0208 0.1995 0.1186
Best White-Box AT 0.1542 0.1518 0.1969 0.1662
PUBDEF 0.0466 0.0397 0.1814 0.1604

Table 13: Mean adversarial perturbation norm (ℓ∞) found by two hard-label query-based attacks,
HSJ (Chen et al., 2020a) and GeoDA (Rahmati et al., 2020), with 1000 queries. Higher means the
model is more robust.

compared to the other cross-group pairs. This corroborates the earlier result as well as an observation
made by Croce & Hein (2021) that robustness transfers among different ℓp-norms. However, this
result does not explain generalization among normally trained models, as the cosine similarity within
the group remains low (0.04). The low similarity might be due to the fact that there are 12 source
models in the normally trained group instead of four in the others which implies higher diversity
within the normally trained group as well as the transfer attacks generated from them.

PCA. In addition to cosine similarity, we fit PCA on the adversarial perturbation in an attempt to
verify whether they lie in a low-dimensional linear subspace. This analysis is inspired by the notion
of “adversarial subspace” done by Tramèr et al. (2017). First, we randomly choose a test sample as
well as all 264 adversarial examples generated from it. We put these adversarial examples into five
groups by the source models (including all). Then, we fit PCA to the attacks in each of these groups.
If the adversarial examples do lie on a low-dimensional linear manifold, then we should expect that
most of the variance is explained by only the first few principal components.

Fig. 15 shows the explained variance plot for three random CIFAR-10 samples, and from this figure,
we can see some evidence for the low-dimensional linear subspace for the robust training groups.
In the ℓ∞, ℓ2, and corruption groups, the first principal component already explains about 20% of
all the variance. For ℓ∞ and ℓ2, 90% of the variance is explained by approximately 15 dimensions.
This result supports our observation based on the cosine similarity: the ℓ∞ and the ℓ2 groups seem
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Figure 13: Schematic comparing TAPM to the white-box threat model. Left: an ℓp-norm ball with
radius ϵ around a clean input sample x. Middle: the white-box threat model assumes that attacks can
lie anywhere inside the ball and so the defense has to protect the entire ball (red highlight). Right: the
TAPM threat model expects only a finite set of transfer attacks that may lie on a small-dimensional
manifold.

Figure 14: Schematic explaining the generalization phenomenon of PUBDEF. Left: the observed
case where PUBDEF generalizes well to unseen attack. Middle: the first potential failure case where
PUBDEF overfits to the attacks used during training. Right: the second failure case where PUBDEF
does not overfit but does not perform better than adversarial training.

to cluster most tightly (high cosine similarity) followed by the corruption group and lastly by the
normal group.

25



Published as a conference paper at ICLR 2024

(a) Sample #1 (b) Sample #2 (c) Sample #3

Figure 15: PCA explained variance as a function of dimension (number of the principal components)
of the transfer attacks for three random CIFAR-10 samples accumulated by the source model groups.
All attack algorithms were used. The green and the red dashed lines denote 90% and 95% of the
variance.
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