
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARS: AUTOMATIC ROUTING SOLVER WITH
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world Vehicle Routing Problems (VRPs) are characterized by a variety of
practical constraints, making manual solver design both knowledge-intensive and
time-consuming. Although there is increasing effort in automating the design
of routing solvers, existing research has explored only a limited array of VRP
variants and fails to adequately address the complex and prevalent constraints
encountered in real-world situations. To fill this gap, we propose the Automatic
Routing Solver (ARS), which leverages Large Language Model (LLM) agents
to enhance a backbone metaheuristic framework. ARS automatically generates
constraint-aware heuristic code from natural language problem descriptions, en-
abling the framework to handle a wider range of VRP variants without relying
on cumbersome modeling rules. Alongside ARS, we introduce RoutBench 1, a
benchmark comprising 1,000 VRP variants derived from 24 attributes, designed to
rigorously evaluate the effectiveness of automatic routing solvers in handling VRPs
with diverse practical constraints. In our experiments, ARS achieves a success rate
of over 90% on common VRPs and over 60% on RoutBench, outperforming the
other seven LLM-based methods by at least 30% in success rate. Compared to
three general-purpose solvers, the ARS framework not only makes it easier for an
LLM to generate correct code, with approximately 25% higher correctness, but
also achieves superior solving efficiency across many VRP variants.

1 INTRODUCTION

The Vehicle Routing Problem (VRP) is a fundamental Combinatorial Optimization Problem (COP)
that plays a critical role in logistics, transportation, manufacturing, retail distribution, and delivery
planning (Toth & Vigo, 2014; Liu et al., 2023). In these scenarios, the objective of VRPs is to
efficiently allocate and plan vehicle routes to meet various requirements while minimizing overall
routing costs. These requirements often include constraints such as vehicle capacities, time windows,
and duration limits, resulting in numerous variants of VRPs in practical applications (Braekers et al.,
2016). However, existing heuristics are usually problem-specific. When the problem changes slightly
(e.g., a minor modification to the requirements), a lot of effort is required for experts to redesign the
heuristic to make it effective in solving the new problems (Vidal et al., 2013; Rabbouch et al., 2021;
Errami et al., 2023).

Large Language Models (LLMs) have shown powerful reasoning and code-generation capabili-
ties (Chen et al., 2021; Austin et al., 2021; Li et al., 2023). By integrating these functionalities, users
can express their specific requirements in natural language, enabling the models to automatically
design algorithms to address VRPs (Liu et al., 2024c). Most existing works primarily leverage the
LLM to solve a small number of standard VRPs (Jiang et al., 2024; Huang et al., 2024) and cannot be
applied to complex VRPs. Some recent studies have employed LLMs to formulate routing problems
as integer programming models and solve them using general-purpose solvers (e.g., OR-Tools, Gu-
rubi) (Xiao et al., 2023; Zhang et al., 2024; Jiang et al., 2025). However, these approaches may face
challenges in adhering to standard modeling practices, and the solvers often exhibit low efficiency,
limiting their ability to handle complex real-world constraints.

1https://anonymous.4open.science/r/RoutBench/

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To tackle these challenges, this paper proposes a framework that uses a heuristic algorithm, developed
with the assistance of LLMs, to automatically solve the VRP variants with complex constraints. Our
contributions are summarized as follows:

• We propose ARS, a framework designed to automatically generate constraint-aware heuris-
tics based on the problem description, which enhances a backbone heuristic algorithm for
route optimization, offering an adaptive framework to address the diverse routing problems
expressed in natural language.

• We introduce RoutBench, a benchmark with 1,000 VRP variants derived from 24 VRP
constraints. Each variant in RoutBench is equipped with a detailed problem description,
instance data, and validation code, enabling the evaluation of the effectiveness of various
routing solvers in handling diverse VRP constraints.

• We comprehensively validate our approach on common problems and RoutBench. Compared
to seven LLM-based methods, ARS achieves a success rate at least 30% higher. Compared
to three general-purpose solvers, our framework enables LLMs to generate correct code for
various VRPs more easily, without relying on cumbersome modeling rules.

2 PROBLEM FORMULATION

Vehicle Routing Problems (VRPs) involve optimizing the routes and schedules of a fleet of vehicles
delivering goods or services to various locations, aiming to minimize costs while satisfying constraints
like delivery windows and vehicle capacities. The VRP variants can be mathematically described as
optimization problems on a graph G = (V, E) where nodes V = {0, 1, . . . , n} represent depot 0 and
locations {1, . . . , n}, and edges represent the possible routes between these nodes E = {eij , i, j ∈ V},
each of them is assigned with a cost cij . The mathematical representation is given by:

min
∑
i∈V

∑
j∈V

cijxij ,

subject to x ∈ C,

(1)

where x = {xij | i, j ∈ V, i ̸= j} represents the set of decision variables, xij is a binary variable that
indicates whether the route from i to j is used. The feasible solution space C is defined by constraints.
In this paper, we consider VRPs with a variety of real-world constraints such as vehicle capacity,
travel distance, and time windows, thereby extending the basic VRP, as seen in the Capacitated
VRP (CVRP) (Toth & Vigo, 2014) and the VRP with Time Windows (VRPTW) (Solomon, 1987).
Moreover, new constraints often emerge in real-world scenarios. For example, VRP variants related
to vehicle capacity include Heterogeneous VRP (HVRP), which considers vehicles with different
capacities (Lai et al., 2016), Multi-Product VRP (MPVRP), which addresses the need to transport
multiple types of products (Yuceer, 1997), and dynamic demands (Powell, 1986). VRP variants that
incorporate these real-world constraints are more prevalent and practically significant in real-world
applications.

However, current methods focus on a limited range of problems and do not sufficiently address the
complex and diverse constraints present in real-world scenarios. To bridge this gap and further the
development of automated solutions for practical VRP variants, this paper introduces a benchmark
for VRPs featuring various complex yet practical constraints. Additionally, we propose a general
automatic routing solver enhanced by a large language model to effectively manage these constraints.

3 AUTOMATIC ROUTING SOLVER

Given the problem description in natural language format and the instance data for any VRP variants
with one or more constraints, our proposed Automatic Routing Solver (ARS) can automatically
generate the constraint-aware heuristic to enhance a backbone heuristic algorithm. ARS consists of
three key components: 1) Pre-defined Database, 2) Constraint-aware heuristic generation, and 3)
Augmented heuristic solver.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Vehicle
Capacity (C)

Distance
Limit (L)

Pickup and
Delivery (PD)

Same
Vehicle (S)

Time Windows
(TW)

Priority (P)

Selected
Problem Data
Vehicle Capacity: 200
Customer (No., X, Y, Demand, ...):
[[0, 40, 50, 0, ...], [1, 45, 68, 10, ...],
[2, 45, 70, 30, ...], [3, 42, 66, 10, ...],
...]

Verification Code
def check_constraints(sol: VrpState) -> bool:
 for route in sol.routes:
 total_demand = sum(sol.data["demand"]
[node] for node in route)
 if total_demand > sol.data["capacity"]:
 return False
 ...
return True

Problem Description
I need to make sure the total load on each
route stays within the vehicle's capacity.
I can only deliver to Customer 23 during
non-business hours: [0-900] or [1800-2400].

Generate Constraint
Checker Program

 Generation

Constraint-Aware Heuristic (CAH)

Generate Constraint
Scorer Program

Test

Init. Solution

Final Solution

CAH

Destroy & Repair

Local Search

2-OPT

 Destroy &1

SWAP SHIFT

 Destroy &2
 Repair &1

Stop

 Optimization

 DataBase Test Instance

CAH CAH CAH

Figure 1: Overview of the proposed ARS framework. The left side of the figure shows the test instance,
including the problem description, corresponding data, and validation code for result verification.
The right side comprises the database, generation module, and VRP solver. The generation module
selects relevant constraints from the database and generates constraint-aware heuristics for the VRP
solver to address different VRP variants.

3.1 DATABASE

We build a database, denoted as D, with several representative fundamental constraints to provide
additional guidance for LLM-driven constraint-aware heuristic generation. Specifically, database D
includes a basic VRP information (I0, C0) (without additional constraints) and six representative
constraints (Ik, Ck), k = 1, . . . , 6, each corresponds to a distinct representative constraint: Vehicle
Capacity, Distance Limit, Time Windows, Pickup and Delivery, Same Vehicle, and Priority.

Each constraint example (Ik, Ck) consists of two parts:

• Ik: The problem description. The natural language description of the constraint.

• Ck: The constraint feasibility checking program. It checks whether a solution belongs to the
feasible solution space described by Ik. The program is given a solution and returns ”True”
if the corresponding constraint is satisfied.

3.2 CONSTRAINT-AWARE HEURISTIC

We first select relative constraints from the database. Then we sequentially generate the constraint
checker and scorer programs for the target VRP variants, given the selected constraints and the
problem description. Finally, the constraint-aware heuristic is generated based on the designed
constraint checker and scorer programs.

3.2.1 CONSTRAINT CHECKER PROGRAM GENERATION

Given an input problem description I , we instruct an LLM agent to automatically select a subset of
relevant constraints S from a database D, using them as references to generate the constraint checker
program. This process has two steps: 1) Constraint Selection and 2) Constraint Checker Program
Generation.

The first step uses a Retrieval-Augmented Generation (RAG) method to retrieve information from the
database. There can be two cases. In the first case, LLM agents select one or more relative constraint
examples. In the second case, if no constraints are recognized as related to the input I , the base case
(I0, C0), with no additional constraints, is selected.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The second step then works with this set of selected constraints, S. For each constraint Ck within S,
we incorporate specific modifications, ∆Ck(I), based on the problem description I . This process
results in the creation of new, customized constraints Cnew, which are better suited to address the
specific requirements of the problem. This method offers two main benefits:

• User-Centric Design: It aligns with how users typically work by enhancing existing con-
straints. This allows users to refine their specific requirements without the need to develop a
complete problem definition from the beginning.

• Efficient Processing by LLMs: It helps LLM agents focus on these new, tailored constraints.
This reduces unnecessary complexity and enhances the relevance and accuracy of the
solutions provided by the models.

3.2.2 CONSTRAINT SCORER PROGRAM GENERATION

In practice, heuristic algorithms operate within a variable space that is typically much larger than
the feasible solution space. This discrepancy presents significant challenges in identifying feasible
solutions. To address this, heuristic methods may permit the presence of infeasible solutions during
the search process, as this allows for the evaluation of potential improvements in solution quality
(Deb, 2000; Máximo & Nascimento, 2021).

Therefore, to effectively integrate Cnew into the solution process, we utilize LLM agents to generate a
violation score function guided by the constraint checker program. This score function quantifies
the degree of constraint violation, thereby establishing a method for handling constraints and identi-
fying high-quality solutions. It aids in systematically assessing and managing constraint violations,
facilitating the search for feasible and high-quality solutions within the expansive variable space.

3.2.3 CONSTRAINT-AWARE HEURISTIC GENERATION

We present the Constraint-Aware Heuristic (CAH) based on the constraint checker and scorer
programs. As seen in Algorithm 1, the constraint handling method evaluates whether a new solution
snew improves upon an old solution sold. It first verifies whether sold is feasible (line 1). If sold is
feasible, it then verifies whether snew is feasible and has a smaller travel distance (line 2). If both
conditions are satisfied, snew is accepted. If sold is infeasible, but snew is either feasible or has
a lower violation score than sold (line 5), snew is also accepted. This approach allows infeasible
solutions to evolve gradually toward feasibility while minimizing the overall travel distance.

Algorithm 1 Constraint-Aware Heuristic (CAH)

Require: New solution snew, Old solution sold
1: if Checker(sold) is feasible then
2: if Checker(snew) is feasible and Cost(snew) < Cost(sold) then
3: return true;
4: end if
5: else if Checker(snew) is feasible or Scorer(snew) < Scorer(sold) then
6: return true;
7: end if
8: return false;

3.3 AUGMENTED HEURISTIC SOLVER

The solver has a general single-point-based search backbone heuristic framework, which utilizes
automatically generated constraint-aware heuristics to solve various VRP variants. This backbone
heuristic solver mainly consists of 1) destroy&repair and 2) local search.

In the destroy phase, we employ multiple operators, including random removal and string re-
moval (Christiaens & Vanden Berghe, 2020), to selectively remove customers or partial routes
from the current solution. The choice of destroy operators is determined using a roulette wheel
selection mechanism, which assigns higher probabilities to operators that performed well in previous
iterations. The repair phase reinserts removed customers into the solution using a greedy repair

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

operator, aiming to construct a feasible solution with shorter routes. Specific details of these operators
are provided in Appendix B.4.

Following the destroy&repair phase, the solution undergoes a local search process to further refine its
quality. We utilize a set of local search operators, including 2-OPT (Lin, 1965), SWAP (Osman, 1993),
and SHIFT (Rosenkrantz et al., 1977), and the best solution found among these operators is selected.
To avoid premature convergence, the Record-to-Record Travel (RRT) criterion is applied (Dueck,
1993; Santini et al., 2018), allowing the acceptance of slightly worse solutions within a predefined
threshold, thus maintaining a balance between intensification and diversification. The entire process
is iteratively repeated until a termination condition is met, such as a time limit.

Throughout the search, the constraint-aware heuristic serves as the selection strategy for solution
updates, applied in both the recreate step and all local search operators. This design allows existing
algorithms, which provide the fundamental search capabilities, while the LLM-generated heuristic
evaluates and guides this exploration, ensuring the solver not only satisfies user requirements but also
effectively minimizes the total route length.

4 ROUTBENCH

Recent advancements in LLMs have opened up new possibilities for automatically generating routing
solvers to address different VRP variants (Xiao et al., 2023; Chen et al., 2023). However, they are
typically evaluated on only a few dozen simple problems, leaving a significant gap in assessing their
generalization ability. There is yet to be a VRP benchmark that can evaluate the generalization ability
of these methods, especially under complex and diverse constraints in real-world scenarios.

Table 1: A classification of common VRP variants is presented based on six constraint types, with
abbreviations provided for both the constraints and VRP variants in parentheses. Each constraint type
includes four distinct variants, with examples provided for each, resulting in a total of 24 constraints.

Basic Constraints VRP Variants

Vehicle Capacity (C)

Capacitated VRP (CVRP) (Vidal, 2022; Luo et al., 2023)
Heterogeneous CVRP (HCVRP) (Lai et al., 2016)
Multi-Product VRP (MVRP) (Yuceer, 1997)
Dynamic CVRP (DCVRP) (Powell, 1986)

Distance Limit (L)

VRP with Distance Limit (VRPL) (Laporte et al., 1985; Li et al., 1992)
Heterogeneous VRPL (HVRPL) (Lee et al., 2021)
Recharging VRP (RVRP) (Conrad & Figliozzi, 2011; Erdoğan & Miller-Hooks, 2012)
Dynamic VRPL (DVRPL) (Suzuki, 2011; Khouadjia et al., 2012; Qian & Eglese, 2016)

Time Windows (TW)

VRP with Time Windows (VRPTW) (Solomon, 1987)
Heterogeneous VRPTW (HVRPTW) (Ren et al., 2010; Vidal et al., 2014)
VRP with Multiple Time Windows (VRPMTW) (Belhaiza et al., 2014)
Dynamic VRPTW (DVRPTW) (Ghiani et al., 2003; Pillac et al., 2013)

Pickup and Delivery (PD)

VRP with Mixed Pickup and Delivery (VRPMPD) (Avci & Topaloglu, 2015)
Heterogeneous VRPMPD (HVRPMPD) (Avci & Topaloglu, 2016)
Multi-Product VRPMPD (MVRPMPD) (Zhang et al., 2019)
Dynamic VRPMPD (DVRPMPD) (Gendreau et al., 2006)

Same Vehicle (S)

VRP with Same Vehicle Constraint (VRPSVC) (Kumar & Panneerselvam, 2012)
Clustered VRP (CluVRP) (Battarra et al., 2014; Islam et al., 2021)
VRP with Sequential Ordering (VRPSO) (Escudero, 1988; Gambardella & Dorigo, 2000)
VRP with Incompatible Loading Constraint (VRPILC) (Wang et al., 2015)

Priority (P)

Precedence constrained VRP (PVRP) (Kubo & Kasugai, 1991)
VRP with Relaxed Priority Rules (VRPRP) (Doan et al., 2021)
VRP with Multiple Priorities (VRPMP) (Yang et al., 2015)
VRP with d-Relaxed Priority Rule (VRP-dRP) (Dasari & Singh, 2023)

Thus, we propose RoutBench, a benchmark dataset that includes 1,000 VRP variants derived from 24
constraints. These constraints are chosen for their practical significance and theoretical challenges, as
highlighted in Table 1. This design not only expands the test scale by two orders of magnitude but
also provides an opportunity to evaluate algorithms on unseen VRPs. If an algorithm can effectively
solve these unseen problems, it demonstrates the potential to address new real-world challenges,
better meeting practical application needs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Analysis of problem distribution across
common problems, RoutBench, and all problems.

Figure 3: The frequency of constraint usage is
analyzed for RoutBench-S and RoutBench-H.

4.1 DATASET CONSTRUCTION

The RoutBench is constructed by combinations of six basic constraint types: Vehicle Capacity (C),
Distance Limits (L), Time Windows (TW), Pickup and Delivery (PD), Same Vehicle (S), and Priority
(P). We design four representative variants derived from each basic constraint type that incorporate
variations such as heterogeneous vehicle fleets, multidimensional resource limits, dynamic changes,
and others. To produce one problem instance, we first pick one basic constraint combination and then
pick one real constraint variant for each chosen basic constraint type. Notice that Vehicle Capacity
(C) and Pickup and Delivery (PD) are mutually exclusive, since PD is essentially a derivative of C.
The total number of problem combinations is :

Ncombinations =

6∑
k=1

(
6

k

)
· 4k, (2)

where
(
6
k

)
represents the number of ways to select k constraints from the six types, and 4k accounts

for the four variations per constraint. After excluding combinations containing both C and PD, the
total number of feasible combinations becomes 5624. From these, 1000 unique problem instances are
uniformly sampled based on the order of all combinations, ensuring even coverage across the solution
space. To balance complexity, RoutBench-S includes 500 problems with three or fewer constraints,
while RoutBench-H consists of the remaining 500 problems with more than three constraints.

Each problem instance is comprised of three components: 1) the problem description, which is a
natural language explanation of the problem; 2) the instance data, including the geometric positions of
nodes and the constraint parameters, with data generated using the Solomon C103 dataset (Solomon,
1987) as a base; and 3) the validation code, used to confirm whether a solution adheres to user
requirements and satisfies all constraints. Problem sizes include 25, 50, and 100 nodes. All instances
in RoutBench come with Best Known Solutions (BKS), with details provided in Appendix E.6.

The detailed descriptions of the 24 problem instances are provided in Table 6. These examples
illustrate the diversity of problem settings and serve as a representative subset of the dataset’s broader
scope. By systematically combining constraints, leveraging validation mechanisms, and ensuring
feasibility, RoutBench offers a diverse and reliable dataset for benchmarking VRP solvers.

4.2 ANALYSIS

This section analyzes the distribution of problem types and complexities in the RoutBench dataset,
focusing on the 48-problem subset and RoutBench, and their relationship to the full set of 5624
feasible problems.

The distribution of problems by the number of constraints is shown in Figure 2. The 48-problem subset
consists of common problems, one is a simple VRP without any constraints, while the remaining
47 include one to five basic constraints. In RoutBench, the distribution reflects the proportions of
the full set of 5624 problems. Specifically, problems with three constraints are the most common
in the dataset, as three-constraint problems dominate the total number of problems with three or

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

fewer constraints. For more complex problems, those with four and five constraints appear in similar
proportions, ensuring a balanced representation of high-complexity scenarios.

Figure 3 shows the distribution of problem types across RoutBench. Most problem types, such as
VRPTW, HVRPL, and CluVRP, are well-represented. However, problems involving vehicle capacity
constraints (e.g., CVRP, HCVRP) and pickup and delivery operations (e.g., VRPMPD, HVRPMPD)
are less frequent. This is because these two categories are mutually exclusive, and the two types do
not coexist in the dataset.

Overall, the RoutBench dataset achieves a diverse and balanced representation of problem types and
complexities. The 48-problem subset provides a concise overview of simpler cases, while RoutBench
captures a wide range of scenarios.

5 EXPERIMENTS

To evaluate the performance of LLM-based methods in handling different VRP variants, we assess
their ability to generate correct programs within our solver. To show the difference between our ARS
framework and general-purpose solvers, we compare our solver with others (e.g., CPLEX, OR-Tools,
and Gurobi) on the success rate of generating programs and the performance of solving various VRP
variants. Additionally, we experiment with other closed- and open-source LLMs (e.g., DeepSeek V3
and LLaMA 3.1 70B) to see their impact on program generation. Finally, we conduct an ablation
study on our proposed solver.

5.1 COMPARISON WITH LLM-BASED METHODS

To evaluate the ability of ARS to generate successful programs, we compare it with seven other LLM-
based methods: Standard Prompting, Chain of Thought (CoT) (Wei et al., 2022), Reflexion (Shinn
et al., 2024), Progressive-Hint Prompting (PHP) (Zheng et al., 2023), Chain-of-Experts (CoE) (Xiao
et al., 2023), Self-debug (Chen et al., 2023), and Self-verification (Huang et al., 2024). To focus on
program generation, all methods use our backbone framework to handle the various VRP variants.

We conduct this experiment on 48 common problems and RoutBench using GPT-4o. We use two
metrics to evaluate the results. The Success Rate (SR) measures the proportion of programs where
the generated solutions pass the validation process. The Runtime Error Rate (RER) is the percentage
of programs that fail due to runtime errors, incorrect API usage, or syntax mistakes.

Table 2: The performance comparison between ARS and seven LLM-based methods on common
problems and RoutBench. The best results among these methods are highlighted in grey.

Methods Common Problems RoutBench
RoutBench-S RoutBench-H

SR ↑ RER ↓ SR ↑ RER ↓ SR ↑ RER ↓
Standard Prompting 41.67% 6.25% 37.60% 8.20% 11.60% 15.80%
CoT 37.50% 8.33% 37.40% 9.60% 13.40% 14.80%
Reflexion 45.83% 6.25% 41.80% 4.60% 15.20% 7.60%
PHP 33.33% 10.42% 32.60% 12.00% 11.20% 17.40%
CoE 37.50% 2.08% 34.20% 8.00% 11.40% 12.20%
Self-debug 43.75% 0.00% 34.60% 4.00% 10.80% 7.60%
Self-verification 43.75% 2.08% 34.00% 5.20% 15.60% 9.20%
ARS (Ours) 91.67% 0.00% 73.20% 5.20% 46.80% 11.80%

As shown in Table 2, ARS significantly outperforms other LLM-based methods in generating correct
programs for both common problems and RoutBench. It is evident that these compared methods
exhibit unsatisfactory performance across all problems, particularly on the RoutBench-H problems,
where their SR is merely around 10%. None of the compared algorithms achieved an SR of 50%
or higher. In contrast, ARS achieved an SR of 91.67% on the common problems. Moreover, on
RoutBench, ARS generated correct solutions for 60% of the VRP variants, outperforming all seven
other LLM-based methods by at least 30% in terms of SR. These results highlight the generality of
ARS in addressing complex VRP variants.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 COMPARISON WITH DIFFERENT SOLVERS

To evaluate the difference of LLM in code generation between our solver and general-purpose solvers,
we ask an LLM using only Standard Prompting to generate constraint-handling code for four solvers
(i.e., CPLEX, OR-Tools, Gurobi, and our solver). As shown in Figures 4 and 5, under standard
prompting, our solver achieves the highest Success Rate on the common problems and requires the
fewest Lines of Code compared to other solvers. This is due to two advantages of our framework.
First, the LLM only needs to convert the problem description into constraint-handling code using
straightforward Python syntax, while other solvers require highly standardized modeling. Second,
our framework allows the LLM to focus solely on generating the constraint-handling code, which is
then used directly by our solver, rather than requiring the LLM to understand the entire framework
first. For the same VRP variants, our framework makes program generation easier compared to these
solvers. Examples of solver codes are provided in Appendix F.

Figure 4: Comparison of the success rate for dif-
ferent solvers with standard prompting.

Figure 5: Compares the lines of code generated by
LLMs for different solvers on four VRP variants.

To explore the performance of these solvers on different VRP variants, we test them on four VRP
variants, including two classic variants, CVRP and CVRPTW, as well as two dynamic variants,
DCVRP and DCVRP-L. Details of these problems are provided in Appendix E.3. Since general-
purpose solvers often require considerable time for VRPs, we allocated time limits of 25, 50, and 100
minutes for problem sizes of 25, 50, and 100, respectively. As shown in Table 1, our solver achieved
the optimal results in all tested instances. We also tested it on instances with up to 200 nodes from
the CVRPLIB benchmark, where our solver still performed best among the four solvers (results are
in Appendix E.10). Notably, our framework is designed to enable a search algorithm to handle a wide
range of VRPs, rather than to claim state-of-the-art performance on a few specific problems. This is
why the results for other methods (e.g., HGS and LKH-3) are provided for reference only.

Table 3: Performance analysis of different solvers. The table presents the gaps compared to the
results obtained by ARS. The record time is the time to find the best solution per run. The best results
among the four solvers (i.e., CPLEX, OR-Tools, Gurobi, and ARS) are highlighted in grey.

CVRP CVRPTW

Solvers 25 Nodes 50 Nodes 100 Nodes 25 Nodes 50 Nodes 100 Nodes

Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time

HGS 186.9 0.00% 0.1s 358.0 0.00% 0.2s 817.8 0.00% 0.3s 190.3 0.00% 0.1s 361.4 0.00% 0.1s 826.3 0.00% 0.4s
LKH-3 186.9 0.00% 0.1s 358.0 0.00% 0.1s 817.8 0.00% 1.3s 190.3 0.00% 0.1s 361.4 0.00% 0.1s 826.3 0.00% 4.2s
CPLEX 187.6 0.37% 45s 362.7 1.31% 47m 841.6 2.91% 1.1h 190.3 0.00% 1.3s 361.4 0.00% 5.2m 826.3 0.00% 1.3h
OR-Tools 186.9 0.00% 4.2s 358.8 0.22% 7.2s 849.2 3.84% 1.0m 190.3 0.00% 0.5s 362.5 0.30% 9.6s 828.1 0.21% 3.1m
Gurobi 186.9 0.00% 1.8m 358.0 0.00% 5.6m 828.0 1.25% 1.3h 190.3 0.00% 10s 361.4 0.00% 1.2m 826.3 0.00% 1.4h
Ours 186.9 0.00% 2.3s 358.0 0.00% 19.1s 817.8 0.00% 2.4m 190.3 0.00% 3.7s 361.4 0.00% 10.2s 826.3 0.00% 4.3m

DCVRP DCVRP-L

Solvers 25 Nodes 50 Nodes 100 Nodes 25 Nodes 50 Nodes 100 Nodes

Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time Obj. ↓ Gap Time

CPLEX 213.3 9.16% 35s 392.1 6.98% 50m 878.4 5.65% 1.2h 215.3 0.00% 1.6m 390.7 1.11% 48m 871.0 2.68% 1.6h
OR-Tools 253.4 29.68% 0.7s 426.0 16.23% 39s 893.6 7.48% 1.4h 226.3 5.11% 1.4s 405.8 5.02% 1.5m 874.6 3.10% 11m
Gurobi 219.2 12.18% 5.2m 395.1 7.80% 40m 874.8 5.22% 1.1h 219.2 1.81% 2.4m 395.5 2.36% 44m 876.8 3.36% 1.0h
Ours 195.4 0.00% 6s 366.5 0.00% 1.8m 831.4 0.00% 18m 215.3 0.00% 2.4s 386.4 0.00% 26s 848.3 0.00% 19m

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 EVALUATION WITH DIFFERENT LLMS

We further investigate the impact of using different LLMs (i.e., GPT-3.5-Turbo, GPT-4o, DeepSeek-
V3, and LLaMA-3.1-70B) for generating correct programs to solve VRP variants under standard
prompting and ARS. As shown in Figure 6, all methods benefit from more advanced LLMs, leading
to improved accuracy. The results indicate that DeepSeek-V3 is the most effective LLM for handling
VRP variants among these LLMs, and ARS achieves an SR of 77.20% on simple problems in
RoutBench. The improvement is even more pronounced for RoutBench-H problems, where ARS
attains an SR of 61.60%. Further discussion can be found in Appendix E.4.

(a) RoutBench-S (b) RoutBench-H

Figure 6: The performance of standard prompting and ARS is compared across various LLMs. ARS
demonstrates compatibility with different models and shows clear advantages in RoutBench.

5.4 ABLATION STUDY

Table 4: Ablation study on ARS for program gen-
eration. The best results among these methods are
highlighted in grey.

Methods Common Problems

SR ↑ RER ↓
w/o Constraint Selection 62.50% 2.08%
w/o Database 41.67% 6.25%
ARS (full) 91.67% 0.00%

We conducted an ablation study on ARS by
removing its database and constraint selection
components individually. As shown in Table 4,
removing constraint selection decreases the suc-
cess rate (SR). This is because, without this
step, ARS uses all six representative constraints,
which can mislead the LLM with irrelevant in-
formation.

The impact is more significant when removing
the database. This effectively reverts the pro-
cess to Standard Prompting, forcing the LLM to
generate all constraints independently and thus
increasing the difficulty. These results demonstrate that both components are essential for ARS to
achieve optimal performance. A more detailed discussion is provided in Appendix E.7.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

Conclusion. In this paper, we propose ARS, a framework that leverages LLMs to automatically
generate constraint-aware heuristics that enhance a backbone algorithm for a wide range of VRPs.
We also introduce RoutBench, a comprehensive benchmark of 1,000 VRP variants derived from
24 distinct constraints. Each variant provides a problem description, instance data, and validation
code to facilitate the standardized evaluation of routing solvers. Our results show that compared to
general-purpose solvers, ARS not only enables an LLM to generate correct code more easily but also
achieves superior solving efficiency across many VRP variants.

Limitation and Future Work. In this paper, we focus on leveraging LLMs to enable an existing
search algorithm to handle a wide range of VRPs. In the future, this work can be extended by
either refining the underlying search algorithm to enhance the search capabilities of the solver, or by
replacing it to apply the framework to other domains, such as 3D bin packing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mustafa Avci and Seyda Topaloglu. An adaptive local search algorithm for vehicle routing problem
with simultaneous and mixed pickups and deliveries. Computers & Industrial Engineering, 83:
15–29, 2015.

Mustafa Avci and Seyda Topaloglu. A hybrid metaheuristic algorithm for heterogeneous vehicle
routing problem with simultaneous pickup and delivery. Expert Systems with Applications, 53:
160–171, 2016.

Maria Battarra, Güneş Erdoğan, and Daniele Vigo. Exact algorithms for the clustered vehicle routing
problem. Operations Research, 62(1):58–71, 2014.

Slim Belhaiza, Pierre Hansen, and Gilbert Laporte. A hybrid variable neighborhood tabu search
heuristic for the vehicle routing problem with multiple time windows. Computers & Operations
Research, 52:269–281, 2014.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem:
State of the art classification and review. Computers & industrial engineering, 99:300–313, 2016.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Jan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing
problems. Transportation Science, 54(2):417–433, 2020.

Ryan G Conrad and Miguel Andres Figliozzi. The recharging vehicle routing problem. In Proceedings
of the 2011 industrial engineering research conference, volume 8. IISE Norcross, GA, 2011.

George B Dantzig and John H Ramser. The truck dispatching problem. Management Science, 6(1):
80–91, 1959.

Kasi Viswanath Dasari and Alok Singh. Two heuristic approaches for clustered traveling salesman
problem with d-relaxed priority rule. Expert Systems with Applications, 224:120003, 2023.

Kalyanmoy Deb. An efficient constraint handling method for genetic algorithms. Computer methods
in applied mechanics and engineering, 186(2-4):311–338, 2000.

Thanh Tan Doan, Nathalie Bostel, and Minh Hoàng Hà. The vehicle routing problem with relaxed
priority rules. EURO Journal on Transportation and Logistics, 10:100039, 2021.

Gunter Dueck. New optimization heuristics: The great deluge algorithm and the record-to-record
travel. Journal of Computational physics, 104(1):86–92, 1993.

Sevgi Erdoğan and Elise Miller-Hooks. A green vehicle routing problem. Transportation research
part E: logistics and transportation review, 48(1):100–114, 2012.

Najib Errami, Eduardo Queiroga, Ruslan Sadykov, and Eduardo Uchoa. Vrpsolvereasy: a python
library for the exact solution of a rich vehicle routing problem. 2023.

Laureano F Escudero. An inexact algorithm for the sequential ordering problem. European Journal
of Operational Research, 37(2):236–249, 1988.

Luca Maria Gambardella and Marco Dorigo. An ant colony system hybridized with a new local
search for the sequential ordering problem. INFORMS Journal on Computing, 12(3):237–255,
2000.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michel Gendreau, Francois Guertin, Jean-Yves Potvin, and René Séguin. Neighborhood search
heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation
Research Part C: Emerging Technologies, 14(3):157–174, 2006.

Ian P Gent and Toby Walsh. Towards an understanding of hill-climbing procedures for SAT. In
Proceedings of AAAI-93, 1993.

Gianpaolo Ghiani, Francesca Guerriero, Gilbert Laporte, and Roberto Musmanno. Real-time vehicle
routing: Solution concepts, algorithms and parallel computing strategies. European journal of
operational research, 151(1):1–11, 2003.

Fred Glover. Tabu search—part i. ORSA Journal on Computing, 1(3):190–206, 1989.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

Zhehui Huang, Guangyao Shi, and Gaurav S Sukhatme. From words to routes: Applying large
language models to vehicle routing. arXiv preprint arXiv:2403.10795, 2024.

Md Anisul Islam, Yuvraj Gajpal, and Tarek Y ElMekkawy. Hybrid particle swarm optimization
algorithm for solving the clustered vehicle routing problem. Applied Soft Computing, 110:107655,
2021.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combinato-
rial optimization through large language model. arXiv preprint arXiv:2408.12214, 2024.

Xia Jiang, Yaoxin Wu, Chenhao Zhang, and Yingqian Zhang. Droc: Elevating large language
models for complex vehicle routing via decomposed retrieval of constraints. In 13th international
Conference on Learning Representations, ICLR 2025. OpenReview. net, 2025.

Mostepha R Khouadjia, Briseida Sarasola, Enrique Alba, Laetitia Jourdan, and El-Ghazali Talbi. A
comparative study between dynamic adapted pso and vns for the vehicle routing problem with
dynamic requests. Applied Soft Computing, 12(4):1426–1439, 2012.

Scott Kirkpatrick, Charles D Gelatt, and Mario P Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

Mikio Kubo and Hiroshi Kasugai. The precedence constrained traveling salesman problem. Journal
of the Operations Research Society of Japan, 34(2):152–172, 1991.

Suresh Nanda Kumar and Ramasamy Panneerselvam. A survey on the vehicle routing problem and
its variants. 2012.

David SW Lai, Ozgun Caliskan Demirag, and Janny MY Leung. A tabu search heuristic for the
heterogeneous vehicle routing problem on a multigraph. Transportation Research Part E: Logistics
and Transportation Review, 86:32–52, 2016.

Gilbert Laporte, Yves Nobert, and Martin Desrochers. Optimal routing under capacity and distance
restrictions. Operations research, 33(5):1050–1073, 1985.

Jaehyung Lee, Euntak Lee, Jaewoong Yun, Jin-Hyuk Chung, and Jinhee Kim. Latent heterogeneity
in autonomous driving preferences and in-vehicle activities by travel distance. Journal of transport
geography, 94:103089, 2021.

Chung-Lun Li, David Simchi-Levi, and Martin Desrochers. On the distance constrained vehicle
routing problem. Operations research, 40(4):790–799, 1992.

Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. CaDA: Cross-problem routing solver
with constraint-aware dual-attention. arXiv preprint arXiv:2412.00346, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical Journal, 44
(10):2245–2269, 1965.

Fei Liu, Chengyu Lu, Lin Gui, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Heuristics for
vehicle routing problem: A survey and recent advances. arXiv preprint arXiv:2303.04147, 2023.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1898–1908,
2024a.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024b.

Fei Liu, Yiming Yao, Ping Guo, Zhiyuan Yang, Xi Lin, Xialiang Tong, Mingxuan Yuan, Zhichao Lu,
Zhenkun Wang, and Qingfu Zhang. A systematic survey on large language models for algorithm
design. arXiv preprint arXiv:2410.14716, 2024c.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024d.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Jens Lysgaard, Adam N Letchford, and Richard W Eglese. A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Mathematical programming, 100:423–445, 2004.

Setyo Tri Windras Mara, Rachmadi Norcahyo, Panca Jodiawan, Luluk Lusiantoro, and
Achmad Pratama Rifai. A survey of adaptive large neighborhood search algorithms and ap-
plications. Computers & Operations Research, 146:105903, 2022.

Vinı́cius R Máximo and Mariá CV Nascimento. A hybrid adaptive iterated local search with
diversification control to the capacitated vehicle routing problem. European Journal of Operational
Research, 294(3):1108–1119, 2021.

Ibrahim Hassan Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of operations research, 41:421–451, 1993.

Victor Pillac, Michel Gendreau, Christelle Guéret, and Andrés L Medaglia. A review of dynamic
vehicle routing problems. European Journal of Operational Research, 225(1):1–11, 2013.

Warren B Powell. A stochastic model of the dynamic vehicle allocation problem. Transportation
science, 20(2):117–129, 1986.

Jiani Qian and Richard Eglese. Fuel emissions optimization in vehicle routing problems with
time-varying speeds. European Journal of Operational Research, 248(3):840–848, 2016.

Bochra Rabbouch, Foued Saâdaoui, and Rafaa Mraihi. Efficient implementation of the genetic
algorithm to solve rich vehicle routing problems. Operational Research, 21:1763–1791, 2021.

Yingtao Ren, Maged Dessouky, and Fernando Ordóñez. The multi-shift vehicle routing problem with
overtime. Computers & Operations Research, 37(11):1987–1998, 2010.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation science, 40(4):455–472, 2006.

Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several heuristics
for the traveling salesman problem. SIAM journal on computing, 6(3):563–581, 1977.

Alberto Santini, Stefan Ropke, and Lars Magnus Hvattum. A comparison of acceptance criteria for
the adaptive large neighbourhood search metaheuristic. Journal of Heuristics, 24:783–815, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Khurram Shafique and Mubarak Shah. A noniterative greedy algorithm for multiframe point cor-
respondence. IEEE transactions on pattern analysis and machine intelligence, 27(1):51–65,
2005.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254–265, 1987.

Yoshinori Suzuki. A new truck-routing approach for reducing fuel consumption and pollutants
emission. Transportation Research Part D: Transport and Environment, 16(1):73–77, 2011.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighbor-
hood. Computers & Operations Research, 140:105643, 2022.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A hybrid genetic
algorithm with adaptive diversity management for a large class of vehicle routing problems with
time-windows. Computers & operations research, 40(1):475–489, 2013.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified solution
framework for multi-attribute vehicle routing problems. European Journal of Operational Research,
234(3):658–673, 2014.

Chao Wang, Mengmeng Cao, Hao Jiang, Xiaoshu Xiang, and Xingyi Zhang. A deep reinforcement
learning-based adaptive large neighborhood search for capacitatedelectric vehicle routing problems.
IEEE Transactions on Emerging Topics in Computational Intelligence, 2024.

Zheng Wang, Ying Li, and Xiangpei Hu. A heuristic approach and a tabu search for the heterogeneous
multi-type fleet vehicle routing problem with time windows and an incompatible loading constraint.
Computers & Industrial Engineering, 89:162–176, 2015.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex operations
research problems. In The Twelfth International Conference on Learning Representations, 2023.

Zhiwei Yang, Michael Emmerich, and Thomas Bäck. Ant based solver for dynamic vehicle routing
problem with time windows and multiple priorities. In 2015 IEEE Congress on Evolutionary
Computation (CEC), pp. 2813–2819. IEEE, 2015.

Umit Yuceer. A multi-product loading problem: a model and solution method. European Journal of
Operational Research, 101(3):519–531, 1997.

Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang, and Wotao Yin. Solving
general natural-language-description optimization problems with large language models. arXiv
preprint arXiv:2407.07924, 2024.

Zhenzhen Zhang, Brenda Cheang, Chongshou Li, and Andrew Lim. Multi-commodity demand
fulfillment via simultaneous pickup and delivery for a fast fashion retailer. Computers & Operations
Research, 103:81–96, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for compre-
hensive exploration in llm-based automatic heuristic design. arXiv preprint arXiv:2501.08603,
2025.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. MVMoE:
Multi-task vehicle routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This is an appendix for “ARS: Automatic Routing Solver with Large Language Models”. Specifically,
we provide:

• Related works on heuristics, NCO, and LLMs for VRPs (Appendix A).

• Detailed explanation of the methodology, including the prompts used in ARS, examples of
LLM outputs, and the operators employed (Appendix B).

• Function template for the constraint Checker and scorer programs (Appendix C).

• Details of 48 common problems and constraints for 24 VRP variants (Appendix D).

• More experimental results and analyses, including ARS analysis, LLM-suggested constraints,
enhancements, and CVRPLib evaluation (Appendix E).

• Code examples for our solver, CPLEX, OR-Tools, and Gurobi (Appendix F).

• The potential societal impact of this work (Appendix G).

• A statement on the use of Large Language Models for manuscript preparation (Appendix H).

• The licenses and URLs of the baseline methods (Appendix I).

A RELATED WORKS

The Vehicle Routing Problem (VRP) is a classical combinatorial optimization problem that seeks
optimal routes for vehicles to serve customers under constraints like capacity and time windows
(Dantzig & Ramser, 1959). Over the years, many VRP variants have been developed and extensively
studied, including the Capacitated VRP (CVRP) (Lysgaard et al., 2004), the VRP with Time Windows
(VRPTW) (Solomon, 1987), and the Multi-Depot VRP (MDVRP) (Yuceer, 1997). However, solving
these VRP variants often requires experts to deeply understand the specific problem characteristics,
including the constraints, customer demands, and operational rules. This process involves carefully
analyzing the problem, designing appropriate models, and implementing customized algorithms.
Such methods usually require complex coding and are limited in their ability to address only a
small number of VRP variants, making them less flexible and scalable for the diverse and evolving
challenges in real-world applications.

A.1 HEURISTICS FOR VRPS

Traditional methods for solving VRP often rely on heuristics. Some simple heuristics, such as the
Greedy algorithm and hill-climbing, are commonly used to solve VRP. The Greedy algorithm builds a
solution step-by-step by making the most immediate, optimal choice at each step, though it often leads
to suboptimal global solutions (Shafique & Shah, 2005). Hill-climbing, on the other hand, iteratively
improves a solution by moving to a better neighboring solution, but it is prone to getting stuck in
local optima (Gent & Walsh, 1993). To address these limitations, more advanced metaheuristics
have been developed. Simulated Annealing (SA) probabilistically accepts worse solutions during the
search process to escape local optima, mimicking the physical annealing process (Kirkpatrick et al.,
1983). Tabu Search (TS) enhances local search by using a tabu list to prevent revisiting previously
explored solutions, enabling it to explore broader solution spaces (Glover, 1989).

In addition to these, state-of-the-art approaches like the Hybrid Genetic Search (HGS) and Lin-
Kernighan-Helsgaun (LKH-3) algorithms have achieved remarkable success in solving VRPs. HGS
combines genetic algorithms with heuristics tailored for specific types of VRPs, efficiently balancing
exploration and exploitation (Vidal et al., 2013). It is particularly powerful for large-scale and
complex VRPs. LKH-3, an extension of the classic Lin-Kernighan heuristic, is highly effective
for solving Traveling Salesman Problems (TSP) and TSP-based VRPs, leveraging advanced search
strategies and efficient implementations to achieve near-optimal solutions (Helsgaun, 2017).

Adaptive Large Neighborhood Search (ALNS) represents a more dynamic and flexible ap-
proach (Ropke & Pisinger, 2006). It adaptively selects different neighborhood operators based
on their performance during the search process, making it highly effective for solving complex VRP
variants (Mara et al., 2022). Recent advancements in ALNS (Wang et al., 2024) integrate machine
learning techniques to predict the most effective operators and reinforcement learning to optimize

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

selection policies. Hybrid ALNS approaches, such as combining ALNS with branch-and-price
methods, further enhance their ability to solve constrained and large-scale VRPs (Vidal, 2022).

Despite their success, these methods often require experts to deeply understand the specific VRP
variant, carefully model the problem, and implement customized algorithms. This reliance on expert
knowledge limits the scalability of these approaches to handle a broader range of VRP variants
without significant manual effort.

A.2 NCO FOR VRPS

Neural combinatorial optimization (NCO) represents a paradigm shift in solving VRPs by leveraging
deep learning models to directly learn problem-solving strategies from data. Several notable NCO
approaches have been proposed to address the challenge of solving multiple VRP variants within a
unified framework. For instance, MTPOMO tackles cross-problem generalization by representing
VRPs as combinations of shared attributes, allowing a single model to solve unseen variants in a
zero-shot manner (Liu et al., 2024a). MVMoE employs a multi-task learning framework with a
mixture-of-experts architecture, using a hierarchical gating mechanism to balance model capacity and
computational efficiency, achieving strong results across ten unseen VRP variants (Zhou et al., 2024).
CaDA further advances the field by incorporating a constraint-aware dual-attention mechanism, which
effectively captures both global and local problem-specific information, enabling state-of-the-art
performance on sixteen VRP variants (Li et al., 2024).

However, despite these advancements, current NCO methods still face significant limitations. They
typically require manual modifications to adapt algorithms for new VRP variants, limiting their
scalability and practicality for real-world applications with highly diverse constraints.

A.3 LLMS FOR VRPS

Recent advancements in large language models (LLMs) have introduced new possibilities for solving
vehicle routing problems (VRPs) by leveraging their capacity to encode and process complex
optimization tasks (Huang et al., 2024). LLM-based automatic heuristic design (AHD) has emerged
as a promising approach, enabling the generation of high-quality heuristics for problems like the
traveling salesman problem (TSP) and capacitated VRP (CVRP) without extensive domain expertise.
Methods such as Evolutionary Optimization Heuristics (EoH) integrate LLMs with evolutionary
computation (EC) to iteratively refine a population of heuristics, facilitating automated discovery
of effective solutions (Liu et al., 2024b). However, population-based approaches often converge
prematurely to local optima. To overcome this, Monte Carlo Tree Search-based AHD (MCTS-AHD)
organizes LLM-generated heuristics into a tree structure, enabling deeper exploration of the search
space and better utilization of underperforming heuristics (Zheng et al., 2025).

Other studies have explored the application of LLMs to different VRP variants, showcasing innovative
approaches and promising results. For example, LLM-driven Evolutionary Algorithms (LMEA)
utilize LLMs as evolutionary optimizers, achieving competitive results on TSPs with minimal
domain knowledge (Liu et al., 2024d). Mechanisms like self-adaptation help balance exploration
and exploitation, effectively avoiding local optima. Similarly, an approach proposed by Huang et
al. (Huang et al., 2024) enables LLMs to directly generate executable programs for VRPs from
natural language task descriptions. This method is further enhanced by a self-reflection framework,
which allows LLMs to debug and verify their solutions, significantly improving feasibility, optimality,
and efficiency. These early explorations highlight the potential of LLMs in addressing VRPs and
advancing the field.

Another line of research explores transforming textual problem descriptions into mathematical formu-
lations and executable code that can be processed by external solvers (Tang et al., 2024). This approach
benefits from LLMs’ ability to interpret user queries and generate structured outputs, enabling the
automation of optimization tasks. In parallel, multi-agent systems have been introduced to coordinate
LLM-based agents for tasks such as problem formulation, programming, and evaluation (Xiao et al.,
2023). Separately, the DRoC framework introduces a novel method for solving complex VRPs by
decomposing constraints, retrieving external knowledge through a retrieval-augmented generation
(RAG) approach, and integrating it with the model’s internal knowledge. By dynamically optimizing
program generation, this framework has demonstrated significant improvements in both accuracy and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

runtime efficiency across 48 VRP variants (Jiang et al., 2025). However, despite these innovations,
these methods remain inherently constrained by the scope of knowledge encoded within pre-trained
models, particularly in generating solver-specific code. This limitation poses significant challenges
for LLMs in addressing novel or highly complex problems (Zhang et al., 2024).

B DETAILED METHODOLOGY

B.1 PROMPTS OF ARS

Automatic Routing Solver (ARS) is designed to address each VRP variant by leveraging LLMs
in two key steps: Constraint Checking Program Generation and Constraint Scoring Program
Generation, with a total of three LLM calls. In this section, we describe the prompt engineering
involved in each step. These prompts are constructed based on user inputs and several representative
constraints stored in the database to generate the Constraint Checking Program and the Constraint
Scoring Program. Variable information, such as user inputs and constraint descriptions, is highlighted
in blue for clarity.

Step 1.1: Constraint Selection. In the first step, the ARS identifies constraints relevant to the user’s
input from the database. This step processes the user input and matches it against the constraints
stored in the database. If relevant constraints are found, they are selected for further processing.
Otherwise, LLM outputs ”No Relevant Constraint”. This step ensures that only the constraints
relevant to the problem description are considered in subsequent steps.

Prompt for Constraint Selection

For the description in the VRP problem, identify and provide the relevant constraint types
from the following list:
{constraint description}

According to the user input:
{user input}
If no constraint types match the user input, respond with: ”No Relevant Constraint”.

Do not give additional explanations.

Step 1.2: Constraint Checking Program Generation. Based on the relevant constraints selected
in the previous step, the ARS uses the LLM to generate a new Constraint Checking Program by
taking the selected constraints as references. Specifically, the selected constraints are provided as
input to the LLM, which then generates the new program tailored to the problem description and the
referenced constraint information.

Prompt for Constraint Checker Program Generation

As a Python algorithm expert, please implement a function to check the constraints for the
vehicle routing problem (VRP) based on the provided description and relevant code.

User input:
{user input}

Relevant Examples:
{related constraints and codes}

Do not give additional explanations.

Step 2: Constraint Scoring Program Generation. In the final step, the ARS generates a Constraint
Scoring Program using the Constraint Checking Program developed in the previous step as a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

foundation. This scoring program evaluates the degree to which the constraints are satisfied by
assigning a quantitative score based on the results of the constraint checks.

Prompt for Constraint Scorer Program Generation

As a Python algorithm expert, please implement a function to calculate the constraint
violation score for the Vehicle Routing Problem (VRP) based on the given constraints.

Function Template:
{function template}

Constraints Description:
{constraints description}

Check Constraints Code:
{related constraints and codes}

Do not give additional explanations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 EXAMPLES OF LLM OUTPUTS

This subsection shows an example of using LLM with ARS to solve the CVRP with Incompatible
Loading Constraints (CVRP-ILS). The process includes three LLM calls. The first call selects
constraints related to CVRP-ILS. The second call creates a program to check these constraints. The
third call creates a program to calculate violation scores.

Example of Step 1.1: Constraint Selection

First Call Input:
For the description in the VRP problem, identify and provide the relevant constraint types
from the following list:
1. No Relevant Constraint
Example: No relevant constraint.
2. Vehicle Capacity Constraint
Example: The total load of each route must not exceed the vehicle capacity.
3. Distance Limit Constraint
Example: Each route’s total length must not exceed 100 units.
4. Time Windows Constraint
Example: The arrival time at the node must meet the time windows.
5. Pickup and Delivery Constraint
Example: At Node [24], 10 units of goods are picked up. Unlike delivery, visiting a pickup
node reduces the vehicle’s available capacity.
6. Same Vehicle Constraint
Example: Nodes [1, 10] must be served by the same vehicle.
7. Priority Constraint
Example: Nodes [17, 19] are priority points.

According to the user input:
The total load of each route must not exceed the vehicle capacity. Nodes [7, 8] must not be on
the same route.
If no constraint types match the user input, respond with: ”No Relevant Constraint”.

Do not give additional explanations.

First Call Output:
————————– Relevant Constraints Type ————————–
1. Constraint type: Vehicle Capacity Constraint
2. Constraint type: Same Vehicle Constraint

The problem description for CVRP-ILS is: The total load of each route must not exceed the vehicle
capacity. Nodes [7, 8] must not be on the same route.

In the first step, the relevant constraints for CVRP-ILS are identified and selected. Therefore, the set
of constraints for CVRP-ILS is S = {”Vehicle Capacity Constraint”, ”Same Vehicle Constraint”}.
These constraints will guide the next step in helping ARS generate constraint checking program for
CVRP-ILS.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Example of Step 1.2: Constraint Checker Program Generation

Second Call Input:
As a Python algorithm expert, please implement a function to check the constraints for the
vehicle routing problem (VRP) based on the provided description and relevant code.

User input:
The total load of each route must not exceed the vehicle capacity. Nodes [7, 8] must not be on
the same route.

Relevant Examples:
See Appendix B.3.

Do not give additional explanations.

Second Call Output:
def check_constraints(solution: VrpState) -> bool:

"""
Check if the solution satisfies the constraints.

Args:
solution (VrpState): An object representing the VRP solution.
- problem_data (dict): A dictionary with problem details:
- "edge_weight": A 2D NumPy array of node distances .
- "demand": A 1D NumPy array of node demands (0 for the

depot).
- "capacity": Maximum load capacity per vehicle.

Return:
bool: True if the solution satisfies the constraints, False

otherwise.

Note:
The above "Args" cannot be added or modified, and no data

outside the "solution" object should be used or added.
"""
Check vehicle capacity constraint
for route in solution.routes:
total_demand = sum(solution.problem_data["demand"][node] for

node in route)
if total_demand > solution.problem_data["capacity"]:
return False

Check nodes [7, 8] not on same route constraint
for route in solution.routes:
if 7 in route and 8 in route:
return False

return True

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Example of Step 2: Constraint Scorer Program Generation

Third Call Input:
As a Python algorithm expert, please implement a function to calculate the constraint
violation score for the Vehicle Routing Problem (VRP) based on the given constraints.

Function Template:
See Appendix C.

Constraints Description:
The total load of each route must not exceed the vehicle capacity. Nodes [7, 8] must not be on
the same route.

Check Constraints Code:
Use the constraint checking code generated in Step 1.2.

Do not give additional explanations.

Third Call Output:
def calculate_violation_score(solution: VrpState) -> float:

"""
Args:
solution (VrpState): An object representing the VRP solution.
- problem_data (dict): A dictionary with problem details; Use

only defined values in "Check Constraints Code".
- routes (list): A list of routes, where each route is a list

of node IDs (integers, excluding the depot).
- cost (Callable[[], float]): Implemented method to compute

and return the total cost of the solution’s routes.
Return:
violation_score (float): The calculated constraint violation

score, where higher scores indicate more severe violations.

Note:
Do not use data or methods that is not contained in the "

solution" object.
"""
violation_score = 0.0

Check vehicle capacity constraint
for route in solution.routes:
total_demand = sum(solution.problem_data["demand"][node] for

node in route)
if total_demand > solution.problem_data["capacity"]:
violation_score += (total_demand - solution.problem_data["

capacity"])

Check nodes [7, 8] not on same route constraint
for route in solution.routes:
if 7 in route and 8 in route:
violation_score += 1.0

return violation_score

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.3 EXAMPLES OF RELEVANT CONSTRAINT

Vehicle Capacity: The total load of each route must not exceed the vehicle capacity.

Verification Code:

1 def check_constraints(solution: VrpState) -> bool:
2 """
3 Check if the solution satisfies the constraints.
4
5 Args:
6 solution (VrpState): An object representing the VRP solution.
7 - problem_data (dict): A dictionary with problem details:
8 - "edge_weight": A 2D NumPy array of node distances.
9 - "demand": A 1D NumPy array of node demands (0 for the depot).

10 - "capacity": Maximum load capacity per vehicle.
11 - routes (list): A list of routes, where each route is a list of

node IDs (integers, excluding the depot node 0).
12
13 Return:
14 bool: True if the solution satisfies the constraints, False

otherwise.
15
16 Note:
17 The above "Args" cannot be added or modified, and no data outside

the "solution" object should be used or added.
18 """
19 for route in solution.routes:
20 total_demand = sum(solution.problem_data["demand"][node] for node in

route)
21 if total_demand > solution.problem_data["capacity"]:
22 return False
23 return True

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Same Vehicle: Nodes [1, 10] must be served by the same vehicle.

Verification Code:

1 def check_constraints(solution: VrpState) -> bool:
2 """
3 Check if the solution satisfies the constraints.
4
5 Args:
6 solution (VrpState): An object representing the VRP solution.
7 - problem_data (dict): A dictionary with problem details:
8 - "edge_weight": A 2D NumPy array of node distances.
9 - routes (list): A list of routes, where each route is a list of

node IDs (integers, excluding the depot node 0).
10
11 Return:
12 bool: True if the solution satisfies the constraints, False

otherwise.
13
14 Note:
15 The above "Args" cannot be added or modified, and no data outside

the "solution" object should be used or added.
16 """
17 for route in solution.routes:
18 if 1 in route and 10 in route:
19 break
20 else:
21 # If no route contains both nodes 1 and 10
22 return False
23
24 return True

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.4 OPERATOR

Local search operators are essential components of heuristic and metaheuristic methods, designed to
explore the neighborhood of a solution and iteratively improve its quality. These operators are the
building blocks for efficiently navigating the search space, balancing exploration and exploitation.
The commonly used operators are as follows:

2-opt Operator (Lin, 1965). The 2-opt operator is a classical approach originally developed for the
Traveling Salesman Problem (TSP). It works by removing two non-adjacent edges in the solution and
reconnecting them in a different way, thereby altering the order of nodes. If the new configuration
reduces the total cost, it is accepted as an improved solution.

Swap Operator (Osman, 1993). The Swap operator is another simple yet powerful tool in local
search methods. It works by exchanging the positions of two elements within the solution. This
operation generates a new configuration, which can help in escaping local optima and promoting
diversity in the solution space.

Shift Operator (Rosenkrantz et al., 1977). The Shift operator involves moving an element from
one position in the solution to another. This operation changes the relative ordering of elements,
redistributing their positions to explore alternative configurations. By shifting elements, the algorithm
can adjust the structure of the solution in a more targeted manner, allowing it to overcome local
optimality and discover new regions of the solution space.

Destroy Operator. The Destroy operator partially disrupts the current solution by selectively
removing some elements. This disruption breaks the local optimality of the solution, allowing for
the exploration of new regions in the search space. There are two common implementations of this
operator: Random Removal and String Removal.

• Random Removal: This method involves removing elements uniformly at random, without
relying on specific heuristics or problem-dependent strategies, making it a straightforward
yet highly effective approach to diversify the search process and introduce variability into
the solution space.

• String Removal: This method targets sequences of consecutive or related elements (strings),
such as partial routes or groups of customers Christiaens & Vanden Berghe (2020). It begins
by randomly selecting a ”center” customer and removing a string of nearby customers from
the route. The string size is randomly determined, constrained by the average route size
and a predefined maximum. If constraints on the number of disrupted routes or previously
disrupted routes are met, further removal is skipped.

Repair Operator. The Repair operator complements the Destroy operator by reinserting removed
elements to reconstruct a complete solution, guided by optimization objectives. This combination
of destruction and repair allows the algorithm to iteratively refine solutions while maintaining the
flexibility to explore new possibilities. One commonly used implementation of the Repair operator is
Greedy Repair:

• Greedy Repair: This method reinserts removed elements one by one, selecting at each step
the position that minimizes the objective function. By considering constraint-aware heuris-
tics during the reinsertion process, it ensures that each step improves solution quality while
adhering to problem-specific constraints, effectively balancing optimality and feasibility
throughout the search process.

In summary, the local search operators discussed above, including 2-opt, Swap, Shift, Destroy, and
Repair, play a crucial role in the design of heuristic and metaheuristic algorithms. These operators
enable targeted adjustments to the solution, facilitating efficient exploration and exploitation of the
solution space. By combining these operators, algorithms can effectively escape local optima and
converge toward high-quality solutions.

In our approach, we adopt these efficient operators within a Backbone heuristic framework, which pro-
vides the structural foundation for solving complex optimization problems. The framework leverages
these operators to iteratively refine solutions, balancing between intensification and diversification.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C FUNCTION TEMPLATE

The following code template serves as a framework to define the checker and scorer functions,
ensuring clarity and proper parameter usage. Within the template, the function name is predefined,
and the roles of relevant parameters are described in detail. The specific implementation details are
generated by the LLM based on the target VRP variant.

Function template for the Constraint Checker:

1 def check_constraints(solution: VrpState) -> bool:
2 """
3 Check if the solution satisfies the constraints.
4
5 Args:
6 solution (VrpState): An object representing the VRP solution.
7 - problem_data (dict): A dictionary with problem details:
8 - "demand": A 1D NumPy array of node demands (0 for the depot).
9 - "capacity": Maximum load capacity per vehicle.

10 - "edge_weight": A 2D NumPy array of node distances.
11 - "service_time": A 1D NumPy array of node service times (0 for

the depot).
12 - "time_window": A list of [earliest start, latest end] time

windows for servicing each node.
13 - routes (list): A list of routes, where each route is a list of

node IDs (integers, excluding the depot node 0).
14 Return:
15 bool: True if the solution satisfies the constraints, False

otherwise.
16
17 Note:
18 The above "Args" cannot be added or modified, and no data outside

the "solution" object should be used or added.
19 """
20 # Your code goes here...
21
22 return True

Function template for the Constraint Scorer:

1 def calculate_violation_score(solution: VrpState) -> float:
2 """
3 Args:
4 solution (VrpState): An object representing the VRP solution.
5 - problem_data (dict): A dictionary with problem details; Use only

defined values in "Check Constraints Code".
6 - routes (list): A list of routes, where each route is a list of

node IDs (integers, excluding the depot).
7 - cost (Callable[[], float]): Implemented method to compute and

return the total cost of the solution’s routes.
8 Returns:
9 violation_score (float): The calculated constraint violation score,

where higher scores indicate more severe violations.
10
11 Note:
12 Do not use data or methods that is not contained in the "solution"

object.
13 """
14 # Your code goes here ...

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D VRP VARIANTS

Common problems in VRP are typically constructed based on a set of fundamental constraints, such
as vehicle capacity, distance limits, time windows, pickup and delivery, same vehicle, and priority.
These problems are widely used to evaluate the performance of multi-task algorithms (Jiang et al.,
2025; Liu et al., 2024a; Li et al., 2024). By combining six representative constraints, excluding
cases where vehicle capacity conflicts with pickup and delivery, a subset of 48 common problems is
generated, as shown in Table 5.

Table 5: The 48 common problems constructed by six representative constraints.

Problems Vehicle Distance Time Pickup and Same Priority
Capacity Limit Windows Delivery Vehicle

VRP
PVRP

√

VRPS
√

PVRPS
√ √

VRPPD
√

PVRPPD
√ √

VRPPDS
√ √

PVRPPDS
√ √ √

VRPTW
√

PVRPTW
√ √

VRPSTW
√ √

PVRPSTW
√ √ √

VRPPDTW
√ √

PVRPPDTW
√ √ √

VRPPDSTW
√ √ √

PVRPPDSTW
√ √ √ √

VRPL
√

PVRPL
√ √

VRPLS
√ √

PVRPLS
√ √ √

VRPPDL
√ √

PVRPPDL
√ √ √

VRPPDLS
√ √ √

PVRPPDLS
√ √ √ √

VRPLTW
√ √

PVRPLTW
√ √ √

VRPLSTW
√ √ √

PVRPLSTW
√ √ √ √

VRPPDLTW
√ √ √

PVRPPDLTW
√ √ √ √

VRPPDLSTW
√ √ √ √

PVRPPDLSTW
√ √ √ √ √

CVRP
√

PCVRP
√ √

CVRPS
√ √

PCVRPS
√ √ √

CVRPTW
√ √

PCVRPTW
√ √ √

CVRPSTW
√ √ √

PCVRPSTW
√ √ √ √

CVRPL
√ √

PCVRPL
√ √ √

CVRPLS
√ √ √

PCVRPLS
√ √ √ √

CVRPLTW
√ √ √

PCVRPLTW
√ √ √ √

CVRPLSTW
√ √ √ √

PCVRPLSTW
√ √ √ √ √

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Examples of constraint descriptions for 24 VRP variants.

Problems Problem Example

CVRP The total load of each route must not exceed the vehicle capacity.

HCVRP The total load of each route must not exceed the vehicle capacity. Specifically, there should be at least
3 routes where the total load is less than 100 units.

MCVRP The total load of each route must not exceed the vehicle capacity. Additionally, nodes [12, 14] require
deliveries of [70, 80] units of a new type of goods. The maximum load capacity for this type of goods
on each route is 100 units, and problem data excludes information about new goods.

DCVRP The total load of each route must not exceed the vehicle capacity. Specifically, for node [19], its base
demand is augmented by 5 times the square root of the accumulated travel distance from the depot [0]
to that node.

VRPL Each route must not exceed 150 units in length.

HVRPL Each route must not exceed 200 units in length, and at least three routes must have a total length of
less than 150 units.

RVRP After visiting node [17], the vehicle’s remaining allowable travel distance for that route is reset to 150
units. At each node, the remaining driving distance cannot be negative.

DVRPL Each route must not exceed 200 units in length. The vehicle’s remaining range decreases with each
visit. After visiting node [17], the remaining range will be halved.

VRPTW The arrival time at each node must meet its specified time window.

HVRPTW The arrival time at each node must meet its specified time window. Specifically, one route must have
its start time is 300, while all other routes start with time 0.

VRPMTW The arrival time at each node must meet its specified time window. For node [4], in addition to its
original time window, an additional time window of [900, 950] is also available.

DVRPTW The arrival time at each node must meet its specified time window. For node [18], the service time
dynamically increases by the amount of time from the start of its time window to the arrival time.

VRPMPD At Node [24], 10 units of goods are picked up. Unlike delivery, visiting a pickup node reduces the
vehicle’s available capacity.

HVRPMPD At Node [24], 10 units of goods are picked up. Unlike delivery, visiting a pickup node reduces the
vehicle’s available capacity. Specifically, there should be at least 3 routes where the total load is less
than 100 units.

MVRPMPD Nodes [12, 14] require deliveries of [70, 80] units of a new type of goods. At Node [24], I pick up 20
units of these goods and 10 units of original goods. Before pick up, it needs to check whether sufficient
goods have been delivered. Both types of goods are stored separately, with a maximum load of 100
units for new goods on each route, and problem data excludes information about new goods.

DVRPMPD At Node [24], 10 units of goods are picked up, along with an additional amount calculated as 5 times
the square root of the accumulated travel distance from the depot [0] to this node. Unlike delivery,
visiting a pickup node reduces the vehicle’s available capacity.

VRPSVC Nodes [13, 23] must be on the same route.

CluVRP Nodes [7, 10] must be on the same route, and these nodes must be visited consecutively.

VRPSO Nodes [13, 23] must be on the same route, and node [13] must be visited before node [23].

VRPILC Nodes [7, 8] must not be on the same route.

PVRP Nodes [5, 7] are priority points.

VRPRP Node [8] is the priority node and must be one of the first three positions in at least one route.

VRPMP Nodes [7, 5, 3] are priority nodes with strictly decreasing priority levels: [7] (highest), [5], and [3]
(lowest). Higher-priority nodes must be visited before lower-priority ones and other nodes.

VRP-dRP Nodes [7, 5, 3] follow the d-relaxed priority rule with decreasing priority: [7] (highest), [5], and [3]
(lowest). Each node can be visited within its level or one level later, but no lower-priority node can be
visited more than one level early. Other nodes are non-priority.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

Experimental environment: Experiments are performed on a computer with an Intel Xeon Gold
6248R Processor (3.00 GHz), 128 GB system memory, and Windows 10.

E.1 ANALYSIS OF ARS IN ROUTBENCH

In RoutBench, the ARS heatmaps illustrate the frequency of simultaneous errors encountered when
solving composite Vehicle Routing Problems (VRPs). The horizontal and vertical axes correspond to
24 specific VRPs, with each cell representing the total number of errors occurring when solving a
composite problem that includes both the row and column problems. The diagonal values indicate
the total number of errors for individual problems, reflecting their inherent difficulty.

Figure 7: The heatmap of ARS within RoutBench-S shows the number of times errors occur
simultaneously for the corresponding row (horizontal axis) and column (vertical axis). The diagonal
values represent the number of errors for each individual problem.

In the RoutBench-S, the number of errors in priority problems is significantly higher than in other
types of problems. This may be due to the inability of LLMs to adequately understand and handle
priority issues. When transitioning to the RoutBench-H, the four time-window-related problems
exhibit a significantly higher number of errors compared to other problem types. This suggests that
time-window problems are inherently more complex. In contrast, regardless of whether the problems
are RoutBench-S or RoutBench-H, our algorithm performs exceptionally well in terms of modeling
success rates for capacity constraints and return point constraints.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 8: The heatmap of ARS within RoutBench-H shows the number of times errors occur
simultaneously for the corresponding row (horizontal axis) and column (vertical axis). The diagonal
values represent the number of errors for each individual problem.

E.2 THE NUMBER OF LLM-SUGGESTED CONSTRAINTS

To better understand the relationship between the real constraint count in VRPs and the constraints
suggested by the LLM agent, we analyze how the LLM adapts its recommendations based on the
problem’s complexity. As shown in Table 7, the data reveals a clear trend where the number of LLM-
suggested constraints increases as the real constraint count grows. This suggests that the LLM agent
effectively adapts its recommendations based on the complexity of the problem. Interestingly, the
LLM agent tends to suggest slightly more constraints than the actual count, likely as a precautionary
measure to ensure no potentially relevant constraints are overlooked.

Table 7: Analysis of the relationship between real constraint counts and LLM-suggested constraints
in various VRPs, including the total number of problems analyzed for each constraint count and the
corresponding average number of suggested constraints by the LLM agent.

Constraint Count Number of Problems Average of LLM-Suggested Constraints

1 8 1.25
2 92 2.43
3 400 3.81
4 263 4.84
5 237 5.63

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.3 PROBLEM SET FOR TEST INSTANCES

As shown in Table 8, two common problems (e.g., CVRP and CVRPTW) and two dynamic problems
(e.g., DCVRP and DCVRP-L) are presented, along with their respective settings and constraints.
In this paper, ”N” represents the number of nodes, ”C” represents the vehicle capacity, and ”L”
represents the length of the maximum travel distance.

Table 8: Detailed problem set and constraints for test instances, including common and dynamic VRP
variants.

Problems Setting Problem Description

CVRP C=200 The total load of each route must not exceed the vehicle capacity.

CVRPTW C=200 The total load of each route must not exceed the vehicle capacity. The arrival time at each
node must meet its specified time window.

DCVRP C=200 The total load of each route must not exceed the vehicle capacity. Specifically, for node [19],
its base demand is augmented by 5 times the square root of the accumulated travel distance
from the depot [0] to that node.

DCVRP-L C=200, L=150 The total load of each route must not exceed the vehicle capacity. Specifically, for node [19],
its base demand is augmented by 5 times the square root of the accumulated travel distance
from the depot [0] to that node. Each route must not exceed 150 units in length.

E.4 ENHANCING ARS WITH OTHER METHODS

Our framework, ARS, is designed to make it easier for LLMs to generate correct code for a wide
range of VRPs, even when using foundation models. To demonstrate its potential and flexibility, we
show that the performance of ARS can be further enhanced in two main ways: by integrating it with
advanced prompting techniques and by leveraging more capable code generation models.

First, we explore improving ARS by incorporating established prompting techniques. Specifically,
we enhance it with two methods: Reflexion (Shinn et al., 2024) and Self-debug (Chen et al., 2023).
Table 9 presents a detailed comparison between the original ARS and these enhanced variants on
the RoutBench benchmark. The results, obtained using the DeepSeek-V3 model, show that both
enhancements lead to a clear improvement in success rate (SR) while simultaneously reducing the
runtime error rate (RER). Notably, ARS+Self-debug achieves the highest success rates and the lowest
error rates, demonstrating its effectiveness in refining the program generation process.

Table 9: Performance comparison of ARS and its enhanced variants (ARS+Reflexion and ARS+Self-
debug) on RoutBench. The best results among these methods are highlighted in grey.

Methods RoutBench-S RoutBench-H

SR ↑ RER ↓ SR ↑ RER ↓

ARS+Reflexion 78.20% 0.20% 63.20% 2.00%
ARS+Self-debug 78.80% 0.00% 68.80% 0.60%
ARS 77.20% 2.80% 61.60% 5.60%

Second, we evaluate the performance of ARS when using a more powerful code generation model.
As shown in Table 10, we compare the results from the baseline DeepSeek-V3 model with those from
Claude 3 Sonnet. The experiment shows that using a more advanced model provides a significant
performance boost, achieving a much higher success rate on both the simple and hard tasks in
RoutBench. These findings suggest that our framework is poised to improve further as language
models and prompting techniques continue to advance.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 10: The performance of ARS is evaluated on more capable code generation models. The best
results among these methods are highlighted in grey.

RoutBench-S RoutBench-H

SR ↑ RER ↓ SR ↑ RER ↓

DeepSeek-V3 77.20% 2.80% 61.60% 5.60%
Claude-Sonnet-4-Thinking 85.80% 2.20% 70.00% 6.40%

E.5 STABILITY AND RELIABILITY OF ARS

To verify the stability and reliability of our framework, we evaluate its performance from two
perspectives: consistency across multiple independent runs and robustness under different LLM
parameters.

First, we conduct three independent runs of ARS on the RoutBench benchmark using the DeepSeek
V3 model. The detailed results are presented in Table 11, which reports the success rates (SR) and
runtime error rates (RER) for each trial. The results show consistent performance across the three
runs, with low standard deviations in both SR and RER, indicating that ARS performs stably and
reliably across different runs and benchmarks.

Table 11: Detailed results of three independent runs of ARS on RoutBench, including success rates,
runtime error rates, averages, and standard deviations to evaluate stability and reliability.

Experiment RoutBench-S RoutBench-H

SR ↑ RER ↓ SR ↑ RER ↓
Run 1 77.20% 2.80% 61.60% 5.60%
Run 2 80.60% 2.00% 64.20% 2.60%
Run 3 76.40% 2.80% 64.80% 5.80%

Average 78.07% 2.53% 63.53% 4.67%
Standard Deviation 3.56% 0.14% 2.14% 2.89%

Second, we examine how ARS performs with various LLM parameters for the DeepSeek-V3. As
shown in Table 12, we test different settings for temperature (T) and top-p. The results demonstrate
that ARS maintains strong and robust performance across these configurations. This suggests that
our framework is not overly sensitive to hyperparameter adjustments and can be effectively used with
a variety of common settings.

Table 12: Performance of ARS on the RoutBench benchmark with different model parameters. The
results for various settings of temperature (T) and top-p are presented to evaluate the reliability of
this framework.

Setting RoutBench-S RoutBench-H

SR ↑ RER ↓ SR ↑ RER ↓

T = 0.3, Top P = 0.8 82.60% 0.60% 73.40% 0.60%
T = 0.7, Top P = 1 77.20% 2.80% 61.60% 5.60%
T = 1, Top P = 1 81.00% 0.40% 69.60% 1.80%

E.6 BEST-KNOWN SOLUTIONS FOR ROUTBENCH

The best-known solutions (BKS) can be accessed through the provided link to the RoutBench
repository. We provide the BKS for all instances in RoutBench, a comprehensive benchmark that
encompasses 1,000 VRP variants with varying problem sizes (25, 50, and 100 nodes). For each
instance, the BKS is obtained using ARS, which applies the correct Constraint-Aware Heuristic to
ensure feasibility and solution quality. The algorithm is executed under rigorous stopping criteria: it

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

terminates when no improvement is observed for 1,000 consecutive generations or when the runtime
exceeds one hour.

E.7 DETAILS OF THE ABLATION STUDY

To further understand the contribution of each component in ARS, we conduct an ablation study
using four different LLMs on common problems. The results are detailed in Table 13.

Table 13: Ablation study of the performance of ARS across four different LLMs. The best results
among these methods are highlighted in grey.

Methods GPT-3.5-Turbo GPT-4o DeepSeek-V3 LLaMA-3.1-70B

w/o Constraint Selection 43.75% 62.50% 91.67% 72.92%
w/o Database 41.67% 41.67% 43.75% 41.67%
ARS (full) 47.92% 91.67% 95.83% 77.08%

First, removing the database (w/o Database) causes a sharp performance drop across all models.
Without access to constraint examples, the LLMs struggle to generate correct code. Second, the
impact of removing the constraint selection module (w/o Constraint Selection) varies by model. The
effect is minimal on a less capable model like GPT-3.5-Turbo but significant for stronger ones like
GPT-4o. Notably, DeepSeek-V3 remains robust to this change, showcasing its ability to handle
unfiltered information. Overall, these results confirm that the full ARS framework, which uses both
the database and constraint selection, achieves the best performance across all four LLMs.

E.8 AN IN-DEPTH ANALYSIS OF FAILURE TYPES

We conducted an in-depth failure analysis. Even when a generated program is free of runtime errors,
it can still produce an incorrect solution due to other, more subtle issues. Our analysis was performed
on the unsuccessful programs generated by DeepSeek-V3 for the RoutBench benchmark.

The results of our analysis are detailed in Table 14. We found that the overwhelming majority of
failures are caused by logical bugs, which were present in over 80% of the failed cases for both
RoutBench-S and RoutBench-H. The second most frequent issue was incorrect constraint handling,
affecting roughly 25% of the failures. In contrast, runtime errors were significantly less common,
accounting for only about 10% of the issues. This clearly indicates that the main challenge is no
longer just generating executable code, but ensuring the code is logically correct and properly adheres
to all problem constraints. Notably, the RoutBench includes verification codes that validate whether
the output produced by the generated program successfully satisfies all problem constraints.

Table 14: Distribution of failure types observed in programs generated for RoutBench-S and
RoutBench-H, categorized into logical bugs, incorrect constraint handling, and runtime errors,
with corresponding counts and rates.

Failure Type RoutBench-S RoutBench-H

Num. Rate Num. Rate

Logical Bugs 96 81.36% 142 80.68%
Incorrect Constraint Handling 32 27.12% 47 26.70%
Runtime Error 14 11.86% 28 15.91%

Failure Problems 118 – 176 –

E.9 ANALYSIS OF END-TO-END RUNTIMES

To provide a complete picture of the latency of the framework, we measure the full end-to-end
runtime, which includes the LLM inference time. We conduct three separate runs for each problem
instance to ensure the results are reliable. Table 15 presents the detailed timings.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

The results show that the LLM inference is a one-time cost that typically takes approximately 1
minute. After this initial code generation step, our framework solves the problem efficiently. On
average, it finds solutions for 25, 50, and 100-node instances in about 5 seconds, 15 seconds, and
under 5 minutes, respectively. Slight variations in these solving times can exist across different runs
because the LLM generates the constraint-handling code. Overall, our framework offers two key
advantages in terms of time:

1) Faster Development Cycle: The total time is significantly shorter compared to the tradi-
tional workflow, which often involves consulting experts and engaging in long development
cycles for each new VRP variant.

2) One-Time Cost: Once the LLM-generated program is successful, it can be deployed across
all problem instances of the same type without needing additional LLM inference.

It is also worth noting that our solver is developed in Python, while many other methods (e.g.,
OR-Tools) are written in C++. Python programs are generally 10 to 100 times slower than compiled
C++ code. In the future, implementing the solver component in C++ can substantially reduce the
computation time of our framework.

Table 15: Performance comparison of ARS execution and total end-to-end latency across various
problem scales.

Problems Run 25 Nodes 50 Nodes 100 Nodes

Solver End-to-End Solver End-to-End Solver End-to-End

CVRP

1 2.3s 41.7s 19.1s 70.3s 2.4m 3.3m
2 2.1s 43.5s 16.9s 58.1s 3.8m 4.8m
3 2.7s 42.8s 17.4s 92.7s 3.3m 4.3m

Avg. 2.4s 42.7s 17.8s 73.7s 3.1m 4.1m

CVRPTW

1 3.7s 49.2s 10.2s 69.2s 4.3m 5.4m
2 2.5s 48.5s 15.4s 50.6s 3.9m 5.1m
3 3.6s 51.6s 17.4s 88.3s 4.2m 5.3m

Avg. 3.3s 49.8s 14.3s 69.4s 4.1m 5.3m

E.10 EVALUATION OF ARS PERFORMANCE ON CVRPLIB

To further validate the effectiveness of ARS in solving real-world instances, we conducted experiments
using five test suites from the CVRPLIB benchmark datasets. These datasets consist of 99 instances
from Sets A, B, F, P, and X (Uchoa et al., 2017), encompassing graph scales ranging from 16 to 200
nodes, diverse node distributions, and varying customer demands.

For context, we show the results of state-of-the-art algorithms (HGS, LKH-3) and recent multi-task
NCO methods (MTPOMO (Liu et al., 2024a), MVMoE (Zhou et al., 2024)), but these are for
reference only. Notably, our approach focuses on enabling existing solvers to handle a wide range of
VRPs, rather than claiming to achieve state-of-the-art (SOTA) results on specific problem types. As
shown in Table 16, these specialized methods typically handle only a few dozen problem variants.
Adapting them to a new problem often requires manual algorithm modifications and significant
time. In contrast, our framework can handle over 1000 different VRP variants (as described in
Appendix E.9) and can process a new variant in about one minute.

Table 16: The number of distinct VRP variants handled by ARS and other solving methods.

HGS LKH-3 MTPOMO MVMoE ARS

Num. of problems 50+ 53 11 16 1000

Table 17 presents a detailed performance comparison against these methods and three general-
purpose solvers (CPLEX, OR-Tools, and Gurobi). As the table shows, ARS achieves the best
performance among the four general solvers, demonstrating its competitive performance in solving
these challenging instances.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 17: Performance comparison of ARS with other methods on CVRPLIB. The best results among
the four solvers (i.e., CPLEX, OR-Tools, Gurobi, and ARS) are highlighted in grey.

HGS LKH-3 MTPOMO MVMoE
Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Set A 1041.9 1042.2 0.00% 1041.9 0.00% 1087.9 5.07% 1071.3 3.07%
Set B 963.7 964.5 0.00% 963.7 0.00% 1006.9 4.86% 999.2 3.94%
Set F 707.7 709 0.00% 707.7 0.00% 820 16.23% 791.3 12.16%
Set P 587.4 586.9 0.00% 587.4 0.00% 629.3 11.10% 614 6.76%
Set X 27220.1 27223.7 0.01% 27281.4 0.02% 28952.5 6.09% 28688.4 5.19%

Avg. 6104.2 6105.3 0.00% 6116.4 0.00% 6499.3 8.67% 6432.8 6.22%

CPLEX OR-Tools Gurobi ARS
Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Set A 1041.9 1096.5 5.24% 1058.9 1.63% 1067.3 2.44% 1055.5 1.31%
Set B 963.7 1003.6 4.14% 973.3 1.00% 990.9 2.82% 973 0.96%
Set F 707.7 789.3 11.53% 728.7 2.97% 728.7 2.97% 727 2.73%
Set P 587.4 612.5 4.27% 592 0.78% 594.9 1.28% 591.1 0.62%
Set X 27220.1 32044.1 17.72% 28209.6 3.64% 28977.7 6.46% 28142.4 3.39%

Avg. 6104.2 7109.2 8.58% 6312.5 2.00% 6471.9 3.19% 6297.8 1.80%

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

F EXAMPLES OF SOLVER CODES

To better analyze different methods for solving VRPs, we provide code examples for four approaches:
our solver, Gurobi, OR-Tools, and CPLEX. As a case study, these methods are applied to the
Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) to illustrate their respective
requirements and complexities.

Our Solver Code:

1 def check_constraints(solution: VrpState) -> bool:
2 """
3 Args:
4 solution (VrpState): An object representing the VRP solution.
5 - problem_data (dict): A dictionary with problem details:
6 - "edge_weight": A 2D NumPy array of node distances.
7 - "demand": A 1D NumPy array of node demands (0 for the depot).
8 - "capacity": Maximum load capacity per vehicle.
9 - "service_time": A 1D NumPy array of node service times (0 for

the depot).
10 - "time_window": A list of [earliest start, latest end] time

windows for servicing each node.
11 - routes (list): A list of routes, where each route is a list of

node IDs (integers, excluding the depot node 0).
12
13 Return:
14 bool: True if the solution satisfies the constraints, False

otherwise.
15
16 Note:
17 The above "Args" cannot be added or modified, and no data outside

the "solution" object should be used or added.
18 """
19 for route in solution.routes:
20 # Check Vehicle Capacity Constraint
21 total_demand = sum(solution.problem_data["demand"][node] for node in

route)
22 if total_demand > solution.problem_data["capacity"]:
23 return False
24
25 # Check Time Windows Constraint
26 current_time = 0 # Start at time 0
27 tour = [0] + route + [0] # Add depot at the beginning and end of

the route
28
29 for idx in range(1, len(tour)):
30 arrive_time = current_time + solution.problem_data[’edge_weight’][

tour[idx - 1]][tour[idx]]
31 wait_time = max(0, solution.problem_data[’time_window’][tour[idx

]][0] - arrive_time) # Wait if early
32 current_time = arrive_time + wait_time
33
34 tw_start, tw_end = solution.problem_data[’time_window’][tour[idx]]
35 if current_time > tw_end:
36 return False
37
38 # Add the service time for the current node after arriving and

waiting
39 current_time += solution.problem_data[’service_time’][tour[idx]]
40
41 return True

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Gurobi Code:

1 from gurobipy import Model, GRB, quicksum
2 from typing import List
3
4 def find_feasible_routes(solution: VrpState) -> List[List[int]]:
5 """
6 Finds feasible routes for a CVRPTW using an optimization solver.
7
8 Args:
9 solution (VrpState): An object representing the VRP solution.

10 - problem_data (dict): A dictionary with problem details:
11 - "demand": A 1D NumPy array of node demands (0 for the depot).
12 - "vehicles": Maximum vehicle.
13 - "capacity": Maximum load capacity per vehicle.
14 - "edge_weight": A 2D NumPy array or matrix of distances

between nodes.
15
16 Return:
17 routes (list): A list of optimized routes, where each route is a

list of node IDs (integers, excluding the depot node 0).
18 """
19 data = solution.problem_data
20 num_nodes = len(data["demand"])
21 demand = data["demand"]
22 capacity = data["capacity"]
23 vehicles = data["vehicles"]
24 edge_weight = data["edge_weight"]
25 service_time = data["service_time"]
26 time_window = data["time_window"]
27
28 model = Model("CVRPTW_PathLength")
29 model.setParam(’TimeLimit’, 50)
30
31 # Decision Variables
32 x = model.addVars(num_nodes, num_nodes, vtype=GRB.BINARY, name="x")
33 u = model.addVars(num_nodes, vtype=GRB.CONTINUOUS, name="u") # For

capacity
34 arrival_time = model.addVars(num_nodes, vtype=GRB.CONTINUOUS, lb=0,

name="arrival_time")
35
36 # Objective: Minimize total distance
37 model.setObjective(
38 quicksum(edge_weight[i][j] * x[i, j] for i in range(num_nodes) for j

in range(num_nodes) if i != j),
39 GRB.MINIMIZE
40)
41
42 # Core Constraints
43 model.addConstrs((quicksum(x[i, j] for i in range(num_nodes) if i != j

) == 1 for j in range(1, num_nodes)),
44 "in_degree")
45 model.addConstrs((quicksum(x[i, j] for j in range(num_nodes) if i != j

) == 1 for i in range(1, num_nodes)),
46 "out_degree")

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

47 model.addConstr(quicksum(x[0, j] for j in range(1, num_nodes)) <=
vehicles, "max_vehicles")

48 model.addConstr(quicksum(x[0, j] for j in range(1, num_nodes)) ==
quicksum(x[j, 0] for j in range(1, num_nodes)),

49 "depot_flow")
50
51 # MTZ Capacity Constraints
52 model.addConstr(u[0] == 0, "u_depot")
53 for j in range(1, num_nodes):
54 model.addConstr(u[j] >= demand[j], f"u_min_{j}")
55 model.addConstr(u[j] <= capacity, f"u_max_{j}")
56 for i in range(num_nodes):
57 if i != j:
58 model.addConstr(
59 u[j] >= u[i] + demand[j] - capacity * (1 - x[i, j]),
60 f"mtz_cap_{i}_{j}"
61)
62
63 # Time window constraints
64 model.addConstr(arrival_time[0] == 0, name="StartTimeDepot")
65 model.addConstrs(
66 (arrival_time[i] + service_time[i] + edge_weight[i][j] <=

arrival_time[j] + (1 - x[i, j]) * 1e6
67 for i in range(num_nodes) for j in range(1, num_nodes) if i != j),

name="TravelTime")
68 model.addConstrs((arrival_time[j] >= time_window[j][0] for j in range

(1, num_nodes)), name="EarliestArrival")
69 model.addConstrs((arrival_time[j] <= time_window[j][1] for j in range(

num_nodes)), name="LatestArrival")
70
71 # Solve
72 model.optimize()
73
74 # Core route extraction logic
75 routes = []
76 if hasattr(model, ’status’) and model.status in [GRB.OPTIMAL, GRB.

TIME_LIMIT]:
77 visited = set()
78 for j in range(1, num_nodes): # Skip depot
79 if x[0, j].x > 0.5 and j not in visited:
80 current, route = j, []
81 while current != 0: # Until return to depot
82 route.append(current)
83 visited.add(current)
84 current = next((k for k in range(num_nodes) if k != current

and x[current, k].x > 0.5), 0)
85 if route:
86 routes.append(route)
87 return routes

From the provided code examples, it is clear that our solver requires the least amount of code to
be generated by an LLM. This is attributed to the simplicity and flexibility of our method, which
avoids the need for verbose or overly rigid programming constructs. In contrast, the code examples
for Gurobi, OR-Tools, and CPLEX are more complex, primarily due to their reliance on strict syntax
rules and detailed configurations.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

OR-Tools Code:

1 def find_feasible_routes(solution: VrpState) -> list[list[int]]:
2 """
3 Finds feasible routes for a VRP problem using an optimization solver.
4
5 Args:
6 solution (VrpState): An object representing the VRP solution.
7 - problem_data (dict): A dictionary with problem details:
8 - "capacity": Maximum load capacity per vehicle.
9 - "demand": 1D numpy array, demand [0]=0.

10 - "time_window": A 2D NumPy array where each row represents the
[earliest, latest] time windows for servicing each node.

11 - "service_time": service time for each node.
12 - "edge_weight": 2D distance matrix.
13 Return:
14 routes (list): A list of optimized routes, where each route is a

list of node IDs (integers, excluding the depot node 0).
15
16 Note:
17 The above "Args" cannot be added or modified, and no data outside

the "solution" object should be used or added.
18 Ensure each node is visited exactly once.
19 """
20 # Data Preprocessing
21 data = solution.problem_data
22 # Ensure all data types are correct
23 edge_weight = data[’edge_weight’].astype(np.int64)
24 demands = [int(x) for x in data[’demand’].astype(np.int64)]
25 time_windows = [[int(tw[0]), int(tw[1])] for tw in data[’time_window’

]]
26 service_times = [int(st) for st in data[’service_time’].astype(np.

int64)]
27 vehicle_capacity = int(data[’capacity’])
28 num_nodes = len(data["demand"])
29 num_vehicles = num_nodes - 1
30
31 # Create the routing index manager
32 manager = pywrapcp.RoutingIndexManager(num_nodes, num_vehicles, 0)
33 # Create Routing Model
34 routing = pywrapcp.RoutingModel(manager)
35
36 # Create and register a transit callback for distance.
37 def distance_callback(from_index, to_index):
38 # Returns the distance between the two nodes.
39 from_node = manager.IndexToNode(from_index)
40 to_node = manager.IndexToNode(to_index)
41 return edge_weight[from_node][to_node]
42
43 transit_callback_index = routing.RegisterTransitCallback(

distance_callback)
44
45 # Define cost of each arc.
46 routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
47
48 # Add Capacity constraint
49 def demand_callback(from_index):

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

50 # Returns the demand of the node.
51 from_node = manager.IndexToNode(from_index)
52 return demands[from_node]
53
54 demand_callback_index = routing.RegisterUnaryTransitCallback(

demand_callback)
55 routing.AddDimensionWithVehicleCapacity(
56 demand_callback_index, 0, [vehicle_capacity] * num_vehicles, True, ’

Capacity’
57)
58
59 # Add Time Window constraint
60 def time_callback(from_index, to_index):
61 # Returns the travel time between the two nodes (excluding service

time).
62 from_node = manager.IndexToNode(from_index)
63 to_node = manager.IndexToNode(to_index)
64 return edge_weight[from_node][to_node] # Only travel time, no

service time
65
66 time_callback_index = routing.RegisterTransitCallback(time_callback)
67 horizon = time_windows[0][1] # Maximum time limit for routes (depot’s

latest end time)
68 routing.AddDimension(
69 time_callback_index, horizon, horizon, False, ’Time’
70)
71
72 # Set time windows for all nodes (including the depot)
73 time_dimension = routing.GetDimensionOrDie(’Time’)
74 for node_index in range(num_nodes): # Include depot node
75 index = manager.NodeToIndex(node_index)
76 time_dimension.CumulVar(index).SetRange(time_windows[node_index][0],

time_windows[node_index][1])
77 # Add service time to the departure time
78 routing.solver().Add(
79 time_dimension.CumulVar(index) + service_times[node_index] <=

time_dimension.CumulVar(index) + service_times[node_index]
80)
81
82 # Solver Configuration
83 search_params = pywrapcp.DefaultRoutingSearchParameters()
84 search_params.first_solution_strategy = (
85 routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
86)
87 search_params.time_limit.seconds = 50 # Timeout protection
88 # Route Extraction
89 routes = []
90 if (result := routing.SolveWithParameters(search_params)):
91 for vehicle_id in range(routing.vehicles()):
92 index = routing.Start(vehicle_id)
93
94 route = []
95 while not routing.IsEnd(index):
96 node = manager.IndexToNode(index)
97 if node != 0: # Filter out depot node
98 route.append(node)
99 index = result.Value(routing.NextVar(index))

100 if route: # Filter out empty routes
101 routes.append(route)
102
103 return routes

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

CPLEX Code:

1 from docplex.mp.model import Model
2
3 def find_feasible_routes(solution: VrpState) -> list[list[int]]:
4 """
5 Finds feasible routes for a CVRPTW using CPLEX/DOcplex.
6
7 Args:
8 solution (VrpState): Contains problem_data dict with keys:
9 - "capacity": Q

10 - "demand": 1D numpy array, demand[0]=0
11 - "edge_weight": 2D distance matrix
12 - "time_window": time window, time_window[i]=(earliest, latest)
13 - "service_time": service time for each node
14 - optionally "num_vehicles": K
15 Returns:
16 List of routes (each a list of customer indices, excluding depot 0).
17 """
18 data = solution.problem_data
19 Q = data["capacity"]
20 demand = data["demand"]
21 edge_weight = data["edge_weight"]
22 time_window = data["time_window"]
23 service_time = data["service_time"]
24 num_nodes = len(demand)
25 V = list(range(num_nodes))
26 N = V[1:]
27 K = data.get("num_vehicles", None)
28
29 # Get the earliest and latest times for time windows
30 earliest = {{i: time_window[i][0] for i in V}}
31 latest = {{i: time_window[i][1] for i in V}}
32
33 # Calculate a large number M as the upper bound for time constraints
34 M = sum(latest[i] + service_time[i] + max(edge_weight[i]) for i in V)
35
36 # Build model
37 model = Model(name="VRPTW")
38 model.parameters.timelimit = {run_time} # Set time limit for solving
39
40 # Decision variables x[i,j]
41 arcs = [(i, j) for i in V for j in V if i != j]
42 x = model.binary_var_dict(arcs, name="x")
43
44 # MTZ load variables u[i] with lb=demand[i], ub=Q
45 u = model.continuous_var_dict(
46 N,
47 lb={{i: float(demand[i]) for i in N}},
48 ub=Q,
49 name="u"
50)
51
52 # Time variables: arrival time at node i
53 t = model.continuous_var_dict(V, lb=0, name="t")
54
55 # Objective: minimize total distance
56 model.minimize(model.sum(edge_weight[i, j] * x[i, j] for i, j in arcs)

)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

57 # Degree constraints: each customer exactly one in and one out
58 for i in N:
59 model.add_constraint(model.sum(x[i, j] for j in V if j != i) == 1)
60 model.add_constraint(model.sum(x[j, i] for j in V if j != i) == 1)
61
62 # Vehicle count limit at depot
63 if K is not None:
64 model.add_constraint(model.sum(x[0, j] for j in N) <= K)
65 model.add_constraint(model.sum(x[i, 0] for i in N) <= K)
66
67 # MTZ sub-tour elimination / capacity constraints
68 for i, j in arcs:
69 if i != 0 and j != 0:
70 model.add_constraint(u[i] + demand[j] <= u[j] + Q * (1 - x[i, j]))
71
72 # Time window constraints
73 # Enforce time window ranges
74 for i in V:
75 model.add_constraint(earliest[i] <= t[i])
76 model.add_constraint(t[i] <= latest[i])
77
78 # Ensure time logic along the route is correct
79 for i, j in arcs:
80 if j != 0: # No need to consider time window for returning to the

depot
81 model.add_constraint(
82 t[i] + service_time[i] + edge_weight[i, j] <= t[j] + M * (1 - x[

i, j])
83)
84
85 # Solve
86 sol = model.solve(log_output=True)
87 if sol is None:
88 logger.error("No solution found.")
89 return []
90
91 # Extract used arcs
92 used = [(i, j) for (i, j) in arcs if x[i, j].solution_value > 0.5]
93
94 # Build successor map
95 succ = {{i: j for i, j in used}}
96
97 # Reconstruct routes from depot
98 routes = []
99 starts = [j for i, j in used if i == 0]

100 for st in starts:
101 route = []
102 cur = st
103 while cur != 0:
104 route.append(cur)
105 cur = succ.get(cur, 0)
106 routes.append(route)
107
108 return routes

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

G POTENTIAL SOCIETAL IMPACT

Automatic Routing Solver (ARS) has the potential to drive significant societal advancements by
addressing complex real-world Vehicle Routing Problems (VRPs) in industries such as logistics,
transportation, and healthcare. ARS leverages Large Language Model (LLM) agents to automate the
design of constraint-aware heuristic solvers, offering flexibility and efficiency in solving diverse VRP
scenarios.

ARS brings two main strengths to VRP solutions: 1) it dynamically adapts to diverse practical
constraints, providing robust solutions without requiring extensive manual design, and 2) it introduces
interpretability, enabling decision-makers to better understand and customize routing solutions for
specific needs. These features make ARS a valuable tool for optimizing operations, reducing costs,
and improving resource utilization across sectors. Additionally, the RoutBench benchmark ensures
rigorous evaluation of ARS, further validating its real-world applicability.

However, ARS is not without challenges. Over-reliance on automated solvers may limit human
oversight, and misinterpretation of results could lead to suboptimal decisions. Furthermore, the use of
LLMs in ARS raises concerns about data security, as sensitive operational or constraint information
could inadvertently be exposed. Addressing these risks will be crucial to ensuring ARS’s safe and
ethical deployment. Lastly, while ARS demonstrates strong performance, its success rate may vary
depending on the complexity of constraints, potentially delaying decision-making in highly intricate
scenarios.

H USE OF LLMS

In this work, we utilize Large Language Models (LLMs) for two primary purposes. First, we use an
LLM as a writing assistant to help refine sentence structure, improve clarity, and correct grammatical
errors throughout the manuscript. Moreover, the LLM plays a crucial role in our experimental
methodology. Specifically, we employ the LLM to automatically generate code for different solving
frameworks, enabling them to handle a wide range of VRP variants.

I LICENSES

The licenses and URLs of the baseline methods are provided in Table 18.

Table 18: A summary of licenses.

Resources Type URL License

CPLEX Code https://www.ibm.com/products/ilog-cplex-optimization-studio Available for academic research use
OR-Tools Code https://github.com/google/or-tools Apache License 2.0
Gurobi Code https://www.gurobi.com/ Available for academic research use

LKH-3 Code http://webhotel4.ruc.dk/˜keld/research/LKH-3/ Available for academic research use
PyVRP-HGS Code https://github.com/PyVRP/PyVRP MIT License

Reflexion Code https://github.com/noahshinn/reflexion MIT License
PHP Code https://github.com/chuanyang-Zheng/Progressive-Hint Available online
CoE Code https://github.com/xzymustbexzy/Chain-of-Experts/tree/main Available online
Self-verification Code https://github.com/Zhehui-Huang/LLM_Routing MIT License

Solomon Dataset http://vrp.atd-lab.inf.puc-rio.br/index.php/en/ Available for academic research use
CVRPLib Dataset http://vrp.atd-lab.inf.puc-rio.br/ Available for academic research use

42

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/google/or-tools
https://www.gurobi.com/
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/PyVRP/PyVRP
https://github.com/noahshinn/reflexion
https://github.com/chuanyang-Zheng/Progressive-Hint
https://github.com/xzymustbexzy/Chain-of-Experts/tree/main
https://github.com/Zhehui-Huang/LLM_Routing
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://vrp.atd-lab.inf.puc-rio.br/

	Introduction
	Problem Formulation
	Automatic Routing Solver
	Database
	Constraint-Aware Heuristic
	Constraint Checker Program Generation
	Constraint Scorer Program Generation
	Constraint-Aware Heuristic Generation

	Augmented Heuristic Solver

	RoutBench
	Dataset Construction
	Analysis

	Experiments
	Comparison with LLM-Based Methods
	Comparison with Different Solvers
	Evaluation with Different LLMs
	Ablation Study

	Conclusion, Limitation, and Future Work
	Related works
	Heuristics for VRPs
	NCO for VRPs
	LLMs for VRPs

	Detailed Methodology
	Prompts of ARS
	Examples of LLM Outputs
	Examples of Relevant Constraint
	Operator

	Function Template
	VRP Variants
	Experimental Details
	Analysis of ARS in RoutBench
	The Number of LLM-Suggested Constraints
	Problem Set for Test Instances
	Enhancing ARS with Other Methods
	Stability and Reliability of ARS
	Best-Known Solutions for RoutBench
	Details of the Ablation Study
	An In-depth Analysis of Failure Types
	Analysis of End-to-End Runtimes
	Evaluation of ARS Performance on CVRPLIB

	Examples of Solver Codes
	Potential Societal Impact
	Use of LLMs
	Licenses

