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Abstract001

LLMs have demonstrated strong performance002
across a range of tasks—from sentiment anal-003
ysis to factual verification—and are increas-004
ingly used to generate high-quality annotations,005
such as assessing story quality. Most exist-006
ing quality metrics focus on objective proper-007
ties rather than subjective aspects such as en-008
gagement, which captures how much a reader009
is drawn into a story. We introduce a Su-010
pervised Contrastive Distillation (SCD) frame-011
work that distills fine-grained pairwise judg-012
ments—sourced from human annotations—and013
explanatory knowledge from powerful teacher014
models into more efficient student models for015
evaluating story engagement. Our approach016
leverages a contrastive loss that aligns predicted017
preferences with human judgments while pe-018
nalizing confidence mismatches. We validate019
our framework on HANNA, a human-annotated020
benchmark derived from the WritingPrompts021
corpus, and demonstrate its effectiveness in pro-022
ducing accurate and computationally efficient023
comparative evaluations. Our distilled student024
model achieves 40% higher accuracy than GPT-025
4 while reducing inference costs by approxi-026
mately 80%, offering a compact yet precise027
evaluator.028

1 Introduction029

Story evaluation, a critical component of natural030

language generation (NLG), underpins the assess-031

ment and improvement of generative models. Un-032

like constrained tasks such as translation or summa-033

rization, story generation is inherently open-ended:034

multiple valid narratives may respond to the same035

prompt, differing in style, structure, creativity, and036

content. This diversity challenges conventional037

reference- and rule-based metrics, which fail to cap-038

ture the full spectrum of acceptable outputs. Thus,039

effective evaluation methods are essential not only040

for benchmarking but also for guiding model de-041

velopment toward more coherent, engaging, and042

human-like narratives.043

Figure 1: Example from GPT-4

Despite its importance, story evaluation presents 044

several challenges. First, the subjective and multi- 045

dimensional nature of narrative quality complicates 046

the definition of evaluation criteria. Attributes such 047

as coherence, creativity, emotional resonance, and 048

engagement are difficult to formalize and often 049

rely on human interpretation. Second, traditional 050

absolute scoring approaches suffer from low inter- 051

annotator agreement, and story prompts frequently 052

lack a canonical correct answer—making relative 053

comparisons more informative. In particular, for 054

engagement evaluation, pairwise comparisons offer 055

a more grounded and interpretable framework. 056

Large language models (LLMs) are capable of 057

recognizing which author produces higher-quality 058

writing overall (Chhun et al., 2024). They are also 059

proficient at explaining why one story is better than 060

another when provided with a ground-truth label. 061

However, their performance degrades when they 062

are required to make such comparative judgments 063

without any reference. For example, as shown in 064

Figure 1, GPT-4 incorrectly identifies Story B as 065

more engaging than Story A, yet it still can produce 066

a reasonable and reliable explanation supporting 067

the correct (ground-truth) preference. We hypoth- 068

esize that such explanations can serve as effective 069

guidance for improving evaluation models. 070

To address these limitations and leverage the 071

aforementioned characteristics of LLMs, we pro- 072
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pose a novel framework that integrates explana-073

tory signals from LLMs into preference modeling.074

Specifically, we extract high-quality explanations075

by querying a powerful LLM (LLaMA-3.1-70B)1.076

These explanations are incorporated into a prefer-077

ence model trained to learn fine-grained pairwise078

preferences from human annotations. While multi-079

task learning provides a straightforward means080

of incorporating explanations, we instead lever-081

age guidance via KL divergence regularization082

on the total loss, aligning predicted preferences083

with human judgments while penalizing confidence084

mismatches. Our approach captures the nuanced085

preferences of human annotators while leverag-086

ing the interpretability of LLM-generated explana-087

tions. We evaluate our framework on the HANNA088

dataset (Chhun et al., 2022), a human-annotated089

benchmark derived from WritingPrompts (Fan090

et al., 2018), using accuracy against human annota-091

tions as the primary metric. Experimental results092

show that student models guided by LLM explana-093

tions effectively approximate human preferences,094

achieving 40% higher accuracy than GPT-4, thus095

providing a scalable and reliable solution for story096

assessment 2.097

2 Related Works098

Early work on story evaluation relied on overlap-099

based metrics such as BLEU, ROUGE, and chrF,100

which assess surface-level similarity to reference101

texts. However, these metrics often fail to cap-102

ture true narrative quality in open-ended tasks103

like story generation, where diverse but valid104

outputs exist (Guan and Huang, 2021; Wang105

et al., 2020). Embedding-based metrics, includ-106

ing BERTScore (Zhang et al., 2020) and Mover-107

Score (Zhao et al., 2019), compare contextual em-108

beddings instead of raw tokens. While improv-109

ing semantic sensitivity, they remain limited in de-110

tecting higher-level narrative aspects such as co-111

herence and plot progression (Guan and Huang,112

2021). Learned metrics, like BLEURT (Sellam113

et al., 2020) and COMET (Rei et al., 2020), are114

trained on human annotations, often from summa-115

rization or translation domains. These correlate116

better with human judgments than traditional met-117

rics but lose effectiveness when applied to creative118

generation (Wang et al., 2020). Reference-free and119

1Details of the explanation generation process are provided
in Appendix A.2

2The limitation of our method is described in Section 7.

discriminator-based models, such as ADEM (Lowe 120

et al., 2017), RUBER (Tao et al., 2018), and 121

UNION (Wang et al., 2020), assess generation 122

quality without reference texts. UNION uses con- 123

trastive learning on perturbed examples to train 124

classifier identifying low-quality stories, improv- 125

ing robustness but requiring careful error design. 126

Pairwise human comparison has emerged as a pre- 127

ferred evaluation strategy due to higher reliability 128

over Likert-style scoring (See et al., 2019). Ac- 129

tiveEval (Liu et al., 2022) builds on this by effi- 130

ciently selecting story pairs via a dueling-bandit 131

approach, substantially reducing annotation costs. 132

Recent studies leverage LLMs as evaluators, with 133

models like GPT-3.5 and GPT-4 achieving strong 134

agreement with human judgments in story and sum- 135

marization tasks (Zhang et al., 2023; Liu et al., 136

2023). Nonetheless, prompt sensitivity and limited 137

transparency in their decision-making remain key 138

challenges (Liu et al., 2024). 139

3 Proposed Approach 140

We propose a Supervised Contrastive Distillation 141

(SCD) framework to train student models that 142

mimic fine-grained pairwise quality assessments 143

derived from human annotations, with explanations 144

provided by large language model (LLM) teach- 145

ers. Unlike prior work limited to prompt-specific 146

comparisons, our method supports cross-prompt 147

evaluation, broadening narrative-quality coverage. 148

During training, the student conditions on both 149

explanation-augmented and explanation-free in- 150

puts, enabling robust, interpretable inference with- 151

out requiring explanations at test time. 152

3.1 Notation and Input Construction 153

Let each training sample be defined by the tuple: 154(
pA, sA, pB, sB, e, y

)
155

where: 156

• pA, pB are distinct prompt texts, 157

• sA, sB are the corresponding story genera- 158

tions, 159

• e is the teacher-provided natural-language ex- 160

planation, 161

• y ∈ {0, 1} is the binary preference label (y = 162

0 if sA preferred; y = 1 if sB preferred). 163
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The model outputs a probability distribution over164

the two candidate labels (“Story A” and “Story B”),165

denoted by ŷw and ŷwo for inputs with and without166

LLM-provided explanations, respectively.167

3.2 Objective Function168

We optimize a composite loss that combines super-169

vised cross-entropy and distributional consistency:170

Lw
CE = −

∑
c∈{A,B}

⊮[c = y] log ŷw(c), (1)171

Lwo
CE = −

∑
c∈{A,B}

⊮[c = y] log ŷwo(c), (2)172

LKL =
∑

c∈{A,B}

ŷw(c) log
ŷw(c)

ŷwo(c)
. (3)173

The total loss is:174

Ltotal = Lw
CE + Lwo

CE + λLKL, (4)175

with hyperparameter λ controlling the strength of176

the consistency penalty.177

3.3 KL Divergence Regularization178

To enforce consistency between explanation-179

augmented and explanation-free predictions, we180

introduce a KL divergence regularizer. Given181

ŷw =
(
ŷw(A), ŷw(B)

)
,182

183
ŷwo =

(
ŷwo(A), ŷwo(B)

)
,184

The KL divergence is defined as185

KL
(
ŷw ∥ ŷwo

)
=

∑
c∈{A,B}

ŷw(c) log
ŷw(c)

ŷwo(c)
.186

Adding187

λKL
(
ŷw ∥ ŷwo

)
188

to the total loss penalizes shifts in confidence189

caused by omitting explanations; here, λ > 0 con-190

trols regularization strength. By applying this term191

to the total loss, the model is encouraged to align its192

output distribution for inputs without explanations193

with that for inputs with explanations—enabling it194

to learn from the explanatory signal without repro-195

ducing the explanation itself.196

4 Experiments197

We evaluate our proposed method and baselines on198

the HANNA dataset (Chhun et al., 2022)3. The199

explanations are produced by LLaMA-3.1-70B-200

Instruct4.201
3Dataset details are provided in Appendix A.1
4Explanation generation details are reported in Ap-

pendix A.2

4.1 Benchmarked LLM Performance 202

For reference, we evaluate several state-of-the-art 203

large language models (LLMs), including GPT-4 204

and LLaMA-3.1-70B-Instruct, on a held-out sub- 205

set comprising 10% of the pairwise comparison 206

data (2̃K samples). As shown in Table 1, despite 207

their strong general capabilities, these models ex- 208

hibit limited performance on this task without task- 209

specific supervision. This underscores the need for 210

dedicated training and motivates the development 211

of our student models. 212

Model Accuracy F1

LLMs (LLaMA-3.1-70B-Instruct) 0.57 0.54
LLMs (GPT-4) 0.51 0.51

Table 1: Performance of LLMs on the held-out subset
of the dataset. Reported metrics include accuracy and
F1 score.

4.2 Baselines and Comparisons 213

We evaluate two distinct student models that dif- 214

fer in how they leverage the teacher’s judgments 215

and explanatory signals. All models are fine-tuned 216

from LLaMA-3.1-8B-Instruct using a LoRA con- 217

figuration with r = 64, lora_alpha = 16, 4-bit 218

quantization, and a LoRA dropout of 0.5. 219

Pairwise-only Baseline This model is trained ex- 220

clusively as a discriminator based on LLaMA-3.1- 221

8B-Instruct. Given two independently generated 222

story-prompt pairs, it predicts which narrative bet- 223

ter fulfills its prompt for engagement. The input 224

consists solely of the two story-prompt pairs, and 225

the model produces a binary output (“A” or “B”) 226

indicating the preferred example. No explanatory 227

text is generated. Model parameters are optimized 228

using a standard classification loss with binary la- 229

bels provided by the teacher LLM. 230

Multi-task Generative Model We reformulate 231

the evaluation task as a unified sequence-generation 232

problem. Inputs are prefixed with a marker (e.g., 233

‘[cls]‘) to signal the classification phase, during 234

which the model generates a single token—“A” 235

or “B”—to indicate the preferred story. A second 236

marker (e.g., ‘[gen]‘) then prompts the model to 237

continue generating the natural-language explana- 238

tion provided by the teacher. 239
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Model Accuracy F1 Accuracy (H) F1 (H)

Multi-task 0.85 0.83 0.74 0.71
Baseline (P) 0.81 0.78 0.69 0.68
+KL Regularization 0.91 0.91 0.87 0.86

Table 2: Qualitative performance, where ‘P’ denotes the
Pairwise-only model and ‘H’ indicates harder instances
with <1-point difference in human engagement scores.

5 Results & Analysis240

We report the qualitative comparison of model per-241

formance on the dataset in Table 2, using accuracy242

and F1 score as evaluation metrics. All scores are243

averaged over five runs with different random seeds244

for each model.245

5.1 GENERAL PERFORMANCE246

Table 2 reports the performance of distilled stu-247

dent models compared to baselines. The pair-248

wise student achieves 81% accuracy and an F1249

score of 0.78, substantially outperforming GPT-250

4 (51% / 0.51) and LLaMA-3.1-70B-Instruct (57%251

/ 0.54) on the HANNA engagement comparison252

task. The multi-task student, which jointly predicts253

pairwise preferences and generates explanations,254

further improves to 85% accuracy and 0.83 F1.255

Our full proposed approach attains the highest per-256

formance, with 91% accuracy and 0.91 F1. On257

the harder subset—samples with two stories hav-258

ing human-annotated engagement scores differing259

by less than 1—baseline models suffer significant260

drops, whereas our model’s performance declines261

only slightly, demonstrating the effectiveness of262

leveraging guidance from large LLMs. All eval-263

uations are conducted against gold-standard judg-264

ments from expert human annotators.265

Model Inconsistency Rate (%)

Pairwise-only baseline 17.4
Pairwise + KL regularization 4.1

Table 3: Prediction inconsistency rates across input
formats.

5.2 The KL Regularization266

To enhance the robustness of the pairwise-only267

student, we introduce a KL divergence regular-268

ization term enforcing consistency between pre-269

dictions with and without LLM-generated expla-270

nations. This regularization penalizes confidence271

shifts caused by absent explanation input, encourag-272

ing the model to internalize stable decision bound- 273

aries. The KL-regularized student achieves signif- 274

icant gains, with accuracy increasing from 81% 275

to 91% and F1 rising from 0.78 to 0.91 (see Ta- 276

ble 2). Notably, this performance exceeds that of 277

the multi-task model, which benefits from explicit 278

explanation supervision. 279

To better understand the effect of KL regular- 280

ization, we measure prediction agreement between 281

explanation-present and explanation-absent inputs, 282

as reported in Table 3. Without the KL term, 17.4% 283

of test instances yield differing predictions under 284

the two formats. This discrepancy decreases to 285

4.1% with KL regularization, indicating substan- 286

tially improved prediction stability. 287

Furthermore, the KL-regularized model achieves 288

consistent accuracy gains across all confidence 289

bins, with the most notable improvement in the 290

highest bin (0.8–1.0), where accuracy rises from 291

82% to 88%. This suggests not only improved cali- 292

bration, where confidence scores better reflect true 293

correctness, but also stronger performance on high- 294

confidence predictions, reducing overconfidence 295

and enhancing model trustworthiness. 296

These results demonstrate KL regularization ef- 297

fectively aligns student predictions across input 298

variants. Although the model does not require ex- 299

planations during inference, training robustness to 300

their presence fosters stronger inductive bias and 301

improved generalization. In the absence of full ex- 302

planation supervision (as in multi-task setups), KL 303

regularization provides a lightweight yet powerful 304

alternative to leverage explanation-derived signals. 305

Confidence Bin Baseline Accuracy KL-regularized Accuracy

0.4–0.6 50% 55%
0.6–0.8 68% 72%
0.8–1.0 82% 88%

Table 4: Calibration by confidence bin.

6 Conclusion 306

We distill human narrative preferences into a com- 307

pact student model using pairwise supervision and 308

KL regularization, aligning its predictions with 309

LLM-guided reasoning. The model is trained to 310

match its output distribution on inputs without ex- 311

planations to those with explanations, enabling it 312

to benefit from explanatory signals without repro- 313

ducing them. This yields 40% higher accuracy 314

than GPT-4 while cutting inference costs by 80%, 315

offering an efficient and reliable evaluator. 316
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7 Limitation317

• Dependence on Teacher Model Quality:318

The student model’s performance hinges on319

the accuracy and bias of the teacher LLM’s320

explanations, which may propagate errors or321

subjective tendencies.322

• Generalization Constraints: Training on the323

HANNA dataset risks overfitting to its specific324

engagement criteria, limiting applicability to325

diverse genres or cultural contexts.326

• Explainability Trade-off: While explana-327

tions guide training, their absence during in-328

ference reduces decision transparency, com-329

plicating trust in real-world deployment.330

• Scalability Costs: Generating high-quality331

explanations for large datasets requires sub-332

stantial computational resources, offsetting333

some efficiency gains from distillation.334

• Ethical Risks: Biases in human annotations335

or teacher models could perpetuate unfair eval-336

uations, particularly for subjective metrics like337

engagement.338
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A Appendix420

A.1 Dataset421

We evaluate our method on the HANNA dataset422

(Chhun et al., 2022), which contains 1,056 narra-423

tives rated by three independent annotators across424

six quality dimensions using a five-point Likert425

scale. Our experiments focus on the engage-426

ment dimension, measuring how well raters un-427

derstood characters’ emotions, regardless of agree-428

ment. Each story’s engagement score is the average429

of its three ratings.430

To simulate realistic distillation supervision, we431

randomly sample 20,000 prompt–story pairs from432

HANNA and use LLaMA-3.1-70B to generate pair-433

wise explanations justifying why one story is su-434

perior (Meta AI, 2025). The augmented dataset435

is split into 80% training, 10% development, and436

10% test subsets.437

A.2 Explanations from LLMs438

In our framework, LLM-generated explanations439

act as intermediate supervision signals, guiding440

student models to better capture the rationale be-441

hind story preferences. These explanations clarify442

why one story is preferred over another in terms443

of the engagement dimension, highlighting aspects444

such as emotional resonance, character believabil-445

ity, and narrative immersion. To generate these446

explanations, we prompt LLaMA-3.1-70B-Instruct447

with two prompt–story pairs and a binary label in-448

dicating which story is more engaging. The LLM449

then produces a concise, natural-language justifi-450

cation focused exclusively on engagement-related451

attributes. The exact prompting template used to452

elicit these explanations is provided below. The453

bold text is fixed, while the regular text is used to454

fill in different prompts and stories.455

System:456

You are a helpful chatbot who can457

evaluate the quality of stories458

in terms of specific metrics.459

Given two prompts followed by460

two generated stories and an461

indication of which story is462

better, your task is to explain463

why one story is better than the464

other based on their level of465

engagement, which measures how466

much the reader is drawn into467

or emotionally involved with the468

story. Your evaluation should 469

focus solely on engagement, 470

without considering any other 471

metrics. Below are the prompts 472

and the stories. 473

User: 474

Prompt A: 475

When you die the afterlife is 476

an arena where you face every 477

insect and animal you killed in 478

your life. If you win you go 479

to heaven, lose you go to hell. 480

Your job was an exterminator on 481

earth. 482

Story A: 483

3,000 years have I been fighting. 484

Every morning, the raccoons 485

scratch at my eyes. Every 486

evening, the skunks spray me 487

while the opossums chew at my 488

feet. I have never had any tools. 489

I have only my hands. I don’t 490

remember the place I came from 491

before this. All I remember is 492

the daily fight between me and 493

these animals. No matter how 494

many times I kill them, they 495

come back the next day. 496

Prompt B: 497

When you die the afterlife is 498

an arena where you face every 499

insect and animal you killed in 500

your life. If you win you go 501

to heaven, lose you go to hell. 502

Your job was an exterminator on 503

earth. 504

Story B: 505

First of all, not everyone was 506

entitled to be an exterminator. 507

But the ones that were – maybe 508

were, like, *genius*, because, 509

yes, I had once belonged to a less 510

fortunate class of people – had 511

all the opportunity to work for 512

the damn plant killer, and it’s 513

hard work. And the horrifying 514

truth is, once you die, and the 515

entire planet turns into a glade 516

that contains a golden fish 517

6



that would’ve been crushed by a518

million million goldfish just519

moments ago, you’re not really520

good enough for heaven.521

522

Given that story A is better than523

story B in terms of ‘engagement‘,524

which measures how much you were525

engaged with the story, tell me526

why.527

Assistant:528

Story A places the reader529

immediately into a vivid,530

immersive, and emotionally531

charged scenario. The532

protagonist’s daily, brutal533

struggle in the afterlife arena534

is described with concrete535

sensory details—raccoons536

scratching at eyes, skunks537

spraying, opossums chewing538

feet—which evoke a visceral539

reaction. The repetition of540

the torment over 3,000 years,541

combined with the stark image542

of barehanded combat and the543

loss of memory, creates a544

haunting atmosphere that pulls545

the reader in emotionally and546

raises compelling questions547

about perseverance, identity,548

and punishment.549

In contrast, Story B is abstract550

and disjointed. Its ideas are551

harder to follow and the imagery552

(e.g., a glade with a golden553

fish crushed by goldfish) feels554

surreal without clear emotional555

stakes. The tone is also more556

rambling and less immediate,557

making it harder for the reader558

to connect with the narrator’s559

experience or feel invested in560

the outcome. As a result, Story561

B lacks the emotional immediacy562

and narrative clarity that make563

Story A more engaging.564
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