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Abstract
Collaborative learning enables multiple partici-
pants to learn a single global model by exchang-
ing focused updates instead of sharing data. One
of the core challenges in collaborative learning
is ensuring that participants are rewarded fairly
for their contributions, which entails two key sub-
problems: contribution assessment and reward
allocation. This work focuses on fair reward al-
location, where the participants are incentivized
through model rewards - differentiated final mod-
els whose performance is commensurate with the
contribution. In this work, we leverage the con-
cept of slimmable neural networks to collabo-
ratively learn a shared global model whose per-
formance degrades gracefully with a reduction in
model width. We also propose a post-training
fair allocation algorithm that determines the
model width for each participant based on their
contributions. We theoretically study the con-
vergence of our proposed approach and empiri-
cally validate it using extensive experiments on
different datasets and architectures. We also ex-
tend our approach to enable training-time model
reward allocation. The code can be found at
https://github.com/tnurbek/aequa.

1. Introduction
Collaborative learning (CL) has emerged as a transforma-
tive paradigm for training machine learning models across
data silos while preserving data privacy. Unlike centralized
approaches, CL enables participants (e.g., hospitals, finan-
cial institutions, etc.) to jointly train a shared global model
by exchanging only focused updates rather than raw data
(McMahan et al., 2017). CL mitigates privacy risks and com-
plies with regulations such as GDPR, making it particularly
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useful in domains where data sensitivity is paramount. A
special case of CL is federated learning (FL), where a central
server orchestrates the collaboration. However, CL/FL faces
many challenges such as communication inefficiencies due
to frequent exchange of updates, system heterogeneity re-
sulting from different participant capabilities, and statistical
heterogeneity caused by non-i.i.d. data distributions across
participants (Zhu et al., 2021). These issues often degrade
model performance, scalability, and practical adoption.

A critical yet less explored challenge in CL lies in ensuring
collaborative fairness among participants. Traditional CL
frameworks assume uniform contributions from all parties,
but real-world scenarios involve disparities in data quality,
quantity, and computational resources. For instance, partici-
pants with high-quality data may receive disproportionately
less rewards despite their critical role in model generaliza-
tion. The interplay between fairness and incentivization
is essential to sustaining long-term collaboration. Without
equitable incentives, participants may withhold resources
or disengage entirely, leading to the “free-rider problem”
where some entities benefit without contributing meaning-
fully. To address this issue, recent research has explored
incentivization mechanisms such as Shapley value-based
reward allocation (Xu et al., 2021; Tastan et al., 2024a),
reputation systems (Xu & Lyu, 2020), and game-theoretic
frameworks (Wu et al., 2024). These methods aim to quan-
tify and reward participant contributions transparently.

Achieving collaborative fairness in CL fundamentally
hinges on two key sub-problems: (1) contribution assess-
ment and (2) reward allocation mechanism. Contribution
assessment evaluates the marginal impact (contribution) of
each participant’s data or computational resources on the
overall performance of the global model. Recent efforts (Xu
et al., 2021; Jia et al., 2019; Shi et al., 2022; Jiang et al.,
2023) attempt to quantify the quality of the local model
updates as a proxy for measuring their actual contribution.
Once the marginal contribution of each participant is de-
termined, a reward allocation mechanism is necessary for
incentivizing the participants to collaborate. Rewards can be
in the form of financial compensation (monetary rewards)
or differentiated final models (model rewards). To ensure
fairness, rewards must be commensurate with the contribu-
tion. This work focuses exclusively on fair distribution
of model rewards in CL.
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A critical question arises: How can participants be rewarded
with different models whose performance (accuracy) faith-
fully reflects their heterogeneous contributions? While pre-
vious work has explored this problem (Xu et al., 2021; Wu
et al., 2024), they typically rely on sharing partial updates
with participants, which often lacks rigorous convergence
guarantees. While (Wu et al., 2024) provide convergence
analysis, their approach suffers from the following limita-
tions: (1) The introduction of a stochastic recovery mecha-
nism necessitates occasional broadcasting of the full global
model to all participants, thereby aiding free-riding; (2)
Since participants begin training from divergent starting
points in each round (except the initial broadcast), it leads
to potential instability in model convergence; (3) Finally,
sampling a subset of updates from a pool of gradients does
not inherently ensure that low-contribution participants re-
ceive low-quality models; they may still receive high-quality
gradients originating from high-contribution participants.

To circumvent these problems, we draw inspiration from
the concept of slimmable networks (Yu et al., 2019; Yu &
Huang, 2019b), which were originally proposed to dynami-
cally adjust the width of neural network models for efficient
inference with a graceful degradation in model performance.
By extending this concept to the collaborative/federated set-
ting, we obtain a global model with a nested structure, where
subnetworks of varying widths (e.g. 0.25×, 0.5×, 1.0×) are
embedded. Participants are then assigned subnetworks cor-
responding to their contribution levels – higher contributors
receive wider, higher-performing subnetworks, while lower
contributors obtain narrower ones. Our approach ensures
that model rewards are proportional to client contributions,
achieving both high performance and collaborative fairness
simultaneously. However, there is one significant obstacle
that needs to be surmounted. Collaborative learning in the
plaintext domain exposes the intermediate models to the
participants, thereby re-introducing the free-rider problem.
To overcome this limitation, we assume that each participant
has access to a trusted execution environment (TEE), and
local training happens confidentially within a TEE. While
the use of TEEs has been considered in the FL literature
(Huba et al., 2022; Eichner et al., 2024; Daly et al., 2024),
they are most used on the server side for secure aggregation
and minimization of privacy risks. This work uses TEEs on
the client side to enhance collaborative fairness.

The main contributions of this work are as follows: (1) We
introduce a CL framework called Aequa (Latin: fair) that
leverages slimmable networks to dynamically adapt model
performance to client contributions, serving as a reward
mechanism that complements any contribution assessment
method. (2) We propose a fair allocation mechanism for
post-training distribution of model rewards and then extend
this approach for training-time rewards. (3) We provide con-
vergence analysis demonstrating that our framework retains

optimality guarantees. (4) We also empirically validate the
efficacy of our framework through experiments on bench-
mark datasets, highlighting balanced model performance
and fairness across diverse scenarios.

2. Related Work
Fairness in FL. Fairness in federated learning has been ex-
tensively studied through two primary lenses: performance
fairness (Jiang et al., 2023), which emphasizes uniform
model performance across all participants, often via per-
sonalization strategies such as (Li et al., 2021) that learn
a client-specific model regularized toward a shared global
model, and collaborative fairness (Lyu et al., 2020), which
advocates proportionality between client contributions and
rewards. Our work focuses on collaborative fairness, where
clients receive model rewards commensurate with their con-
tributions. The foundational work of Lyu et al. (2020) op-
erationalizes collaborative fairness by assigning only the
allocated aggregated updates based on their reputations.
Other studies consider fairness by quantifying the impact of
clients on the global model – the naive choice being the self-
reported dataset sizes (self-reported information) (Donahue
& Kleinberg, 2021; Zhang et al., 2020), and similarly, Kang
et al. (2019) employ such self-reported information to build
a fair scheme based on contract theory. Various approaches
also assess client importance through Shapley values (Shap-
ley, 1953; Ghorbani & Zou, 2019), utility games (Gollapudi
et al., 2017; Nishio et al., 2020) and empirical methods
(Shyn et al., 2021). For a complete taxonomy of fairness in
FL, we refer the reader to check (Shi et al., 2024).

Contribution assessment. A substantial body of work has
addressed the problem of evaluating individual client con-
tributions in federated learning. As mentioned earlier, an
initial approach to collaborative fairness (Lyu et al., 2020)
employed a global validation set, applying a function sinh
to the validation accuracy of each client as a penalty mecha-
nism to approximate their contribution or reputation. Sub-
sequently, Xu et al. (2021) removed the need for a global
validation set by approximating game-theoretic Shapley val-
ues with the cosine similarity of shared parameter updates
– thereby capturing each client’s marginal contribution. A
range of follow-up studies (Shi et al., 2022; Jiang et al.,
2023; Lin et al., 2023; Tastan et al., 2024a) further expanded
and refined these strategies for contribution assessment.

Reward mechanisms. Broadly, existing incentive mecha-
nisms in FL fall into two categories: post-training monetary
rewards and training time model rewards. The former em-
ploys frameworks such as Stackleberg games (Zhan et al.,
2020), auctions (Zhang et al., 2021; Cong et al., 2020), and
contract theory (Liu et al., 2022a; Yang et al., 2024) to dis-
tribute monetary compensation post hoc based on client
contributions. The latter focuses on model-based rewards
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during training, incentivizing participation by dynamically
adjusting access to the model’s capabilities. For example,
CGSV (Xu et al., 2021) allocates sparsified model outputs to
clients proportionate to their contributions, while achieving
fairness. Similarly, IAFL (Wu et al., 2024) shares aggre-
gated gradients based on each client’s contribution through
probabilistic sampling, thus restricting highly performing
models from under-contributing clients. Another related ap-
proach is proposed by Lin et al. (2023), who aim to balance
collaborative fairness with long-term equality by introduc-
ing an explore-then-exploit mechanism that estimates client
contributions over time and gradually allocates rewards to
ensure asymptotic parity across clients. While CGSV re-
lies on a heuristic approach and lacks a formal convergence
analysis, IAFL includes a convergence proof but exhibits its
own limitations. Specifically, its stochastic recovery mech-
anism shares the full model updates with all participants
based on a certain probability: setting this probability to
zero yields higher fairness at the expense of performance,
and increasing it boosts performance at the cost of fairness –
yet still falls short of the performance achieved by FedAvg
(McMahan et al., 2017).

Slimmable networks. The seminal work by (Yu et al., 2019)
introduced the idea of training a single neural network that
can operate at multiple widths, enabling dynamic trade-offs
between model size and performance. This innovation led
to numerous follow-up studies and applications in feder-
ated learning, predominantly focused on resource efficiency
(Mei et al., 2022; Horváth et al., 2021), communication and
computational efficiency (Wang et al., 2022), and neural
architecture search (Yu & Huang, 2019a). To the best of our
knowledge, we are the first to leverage slimmable networks
in the context of fair federated learning.

3. Preliminaries
We consider a federated learning (FL) setup with N par-
ticipants collaboratively learning the parameters x ∈ Rd

of a machine learning model. Each client i possesses a
local dataset Di and the overall objective is to minimize a
sum-structured FL optimization problem, given by

x∗ ← arg min
x∈Rd

[
F (x) :=

1

N

N∑
i=1

Fi(x)

]
, (1)

where the local loss components Fi : Rd → R are dis-
tributed among N participants and are expressed in a
stochastic format as Fi(x) := Eξ∼Di

[Fi(x, ξ)].

Our specific task is supervised classification, where we
define a classifier Cx parameterized by x, mapping input
samples to class labels Cx : Z → Y , where Z ⊆ RD

represents the input space, Y = {1, 2, . . . , C} denotes the
label space, D is the input dimensionality, and C is the

Algorithm 1 Aequa: Federated optimization

Input: minimum width pmin, maximum width pmax,
comm. rounds T , number of participants N , randomly
initialized parameters x0, number of local iterations E

1: for each round t← 0, 1, . . . , T − 1 do
2: Server broadcasts xt to each client i, ∀ i ∈ [N ]
3: for each participant i ∈ [N ] do
4: for k ← 0, 1, . . . , E do ▷ Local iterations
5: Sample width p(i,k) ← U([pmin, pmax]),

where U([a, b]) represents uniform distribution in [a, b].
6: Update parameters of the model correspond-

ing to pmax and p(i,k)
7: end for
8: Send the updated parameters xt

(i,E) to the server
9: end for

10: Server updates xt+1 ← 1

N

∑N
i=1 x

t
(i,E)

11: end for

number of classes. The empirical loss function for each
client is defined as Fi(x, ξ) = L(Cx(z), y) where L is the
loss function and ξ := (z, y) is a training sample drawn from
the local dataset of participant i. Additionally, the model
parameters x must be slimmable, i.e., it should be possible
to obtain a subnetwork x(p) ⊆ x by dynamically adjusting
the width parameter p, such that the model performance is
proportional to the width (which in turn is set proportional
to the participant contribution).

4. Proposed Solution
In federated learning, ensuring fairness in model allocation
is a fundamental challenge, as clients contribute to training
with varying levels of data quality, quantity, and computa-
tional resources. To address this, we propose an allocation
mechanism based on slimmable networks, which ensures
fair model rewards by adjusting the model width assigned
to each client commensurate to their contributions. This sec-
tion details our approach to federated optimization (Section
4.1), the allocation algorithm (Section 4.2) and the extension
to training-time model rewards (Section 4.3).

4.1. Federated Optimization

Slimmable networks are a class of deep learning architec-
tures that allow dynamic adjustments of model width, ensur-
ing that different clients can operate with models of varying
capacities without training separate networks. Initially in-
troduced for efficient model scaling (Rippel et al., 2014;
Yu et al., 2019; Yu & Huang, 2019b; Horváth et al., 2021;
Kusupati et al., 2022; Horváth et al., 2023), we repurpose
slimmable networks for fairness in federated learning, ensur-
ing that model allocation reflects each client’s contribution
to training. Each slimmable network can switch between
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different widths p ∈ [pmin, pmax], where pmax represents
the full model and pmin is the smallest subnetwork. In-
termediate widths allow for a smooth transition based on
contribution levels.

Incorporating slimmable networks into FL requires adapting
the optimization process to ensure that all subnetworks con-
tribute effectively to the learning process. In our approach,
clients train with varying model widths at each local itera-
tion, ensuring that all width configurations are updated. The
training process follows a random-width sampling strategy,
where each client trains on different subnetworks in each it-
eration (one forward-backward pass), promoting a balanced
optimization process across all model sizes.

The federated optimization process begins with the server
initializing the global model and setting the minimum and
maximum possible widths. In each communication round,
the server broadcasts the full model to all clients, who then
train locally using a uniformly sampled width from the
allowed range [pmin, pmax]. Clients update both the full
model parameters and the parameters corresponding to their
sampled width, following a strategy similar to the sandwich
rule in (Yu & Huang, 2019b), but with improved efficiency.
Upon completing local training, clients transmit their up-
dated weights to the server, which then aggregates them to
update the global model.

4.2. Fair Allocation Algorithm

The allocation problem. We consider a federated learn-
ing setting with N clients, indexed by i = 1, 2, . . . , N .
Each client has an associated contribution score, represented
by the vector c = (c1, c2, . . . , cN ), where ci denotes the
contribution (e.g., standalone accuracy as a surrogate) of
the client i. Without loss of generality, we assume that
the clients are sorted such that c1 ≤ c2 ≤ · · · ≤ cN .
We have access to a (sufficiently large) family of models
whose performances {ak} lie within a continuous inter-
val [ℓ, u], where u ≥ cN represents the highest achievable
accuracy and ℓ ≤ c1 + (u− cN ) denotes the lowest possi-
ble accuracy to satisfy fairness constraints. An allocation
a = (a1, . . . , aN ) ∈ A ≡ {ak}N assigns exactly one
model with a performance level ai ∈ [ℓ, u] to each client i.
The gain (utility) of client i under allocation a is defined as:

ui(a) = ai − ci. (2)

An ideal allocation algorithm must satisfy the following
three objectives:

1. Individual Rationality (IR): The gain of every client
must be nonnegative, satisfying individual rationality
(Definition 1) and ensuring the participation of all ra-
tional agents.
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Figure 1: Performance vs. network width (p) using CIFAR-
10 and CIFAR-100 datasets on ResNet-18 model.

2. Low variability in utility: The variability of utilities
{ui(a)} should be kept low so that no client’s benefit
is disproportionately high or low compared to others.

3. High average gain: The average gain across clients,
1

N

∑N
i=1 ui(a), should be as large as possible, balanc-

ing overall performance with fairness.

Definition 1 (Individual Rationality (IR)). An allocation
satisfies IR if ui(a) ≥ 0 for all i. This ensures that no client
is worse off than their standalone performance.

The above objectives can be achieved by maximizing the
average gain E[u(a)], while simultaneously minimizing the
variance Var[u(a)] and respecting the IR constraint. For-
mally, we define the optimization problem as minimizing
the cost function:

f(a) = − E[u(a)]
Var[u(a)] + ϵ

, (3)

where f : A → R, and ϵ > 0 is a small constant intro-
duced to prevent division by zero. To solve this constrained
optimization problem, we employ a simulated annealing
algorithm (Granville et al., 1994; Bouttier & Gavra, 2019)
and adapt it to our specific setting.

4.3. Extension to Training-time Rewards

Thus far, our focus has been on post-training model re-
wards. However, our approach can be seamlessly extended
to incorporate training-time rewards as well. The primary
modification involves sending a slimmed-down network (a
subnetwork) to each client during training, rather than the
full model, and dynamically updating their contributions
based on the quality of their shared updates.

A well-established method for the evaluation of contribu-
tions is CGSV (Xu et al., 2021), and our approach can
leverage CGSV to evaluate the contribution of each partici-
pant. Additionally, other contribution assessment methods
(CA), such as FedSV (Wang et al., 2020), GTG-Shapley (Liu
et al., 2022b), ComFedSV (Fan et al., 2022), FedFAIM (Shi
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et al., 2022), ShapFed (Tastan et al., 2024a), among others,
can also be integrated within this framework.

Since some clients, typically low-performing clients, train
only on subnetworks and do not share full gradients, they
instead transmit their trained subnetwork updates. During
the contribution assessment phase, we evaluate the gradients
corresponding to the minimum-width subnetwork selected
by the algorithm (e.g. 0.25× as shown in Figure 1), en-
suring consistency since all clients train on this common
subnetwork.

Furthermore, any incentive mechanism can be employed to
dynamically adjust client contributions. In our approach,
since the maximum width assigned to each participant is
determined on the basis of estimated contributions, we di-
rectly map the normalized contributions to network widths.
This ensures that the highest contributor(s) receive the full
model. The update rule of contributions is given by:

cti = γct−1
i + (1− γ)c̃i, (4)

where γ is a momentum parameter and c̃i is obtained using
the CA method. The reward mechanism is then defined as:

[Mν(c)]i = ν(ci/max
k

ck) (5)

where ν is a utility function that directly maps the contribu-
tions to network widths (pi).

We present experimental results for this approach in Fig-
ures 3 and 4. Further implementation details and a pseudo-
algorithm outlining this extension are provided in Ap-
pendix C.

5. Theoretical Analysis
We now present the convergence analysis of the main algo-
rithm described in Section 4.1, along with the convergence
and fairness analysis of the allocation algorithm in Sec-
tion 4.2.

5.1. Convergence Analysis

Formally, we establish the following assumptions for the
convergence analysis, which pertain to the properties of
local objectives – namely, L-smoothness (Assumption 1),
convexity (Assumption 2), and bounded variance (Assump-
tion 3, Appendix A.5.1). Additionally, we account for the
data similarity across participants through bounded dissimi-
larity (Assumption 4, Appendix A.5.1).

Assumption 1 (L-smoothness). The local objective
Fi(x),∀i ∈ [N ] is L-smooth, then for all x,y ∈ Rd,

Fi(x) ≤ Fi(y) + ⟨∇Fi(x),y − x⟩+ L

2
∥x− y∥2,

∀i ∈ [N ].

Assumption 2 (Convexity). The local objective Fi(x),∀i ∈
[N ] is both convex and L-smooth, then for all x,y, z ∈ Rd,

1

L
∥∇Fi(x)−∇Fi(y)∥2 ≤ ⟨∇Fi(x)− Fi(y),x− y⟩ ,

Fi(x) ≤ Fi(y) + ⟨∇Fi(z),x− y⟩+ L

2
∥x− z∥2,

∀i ∈ [N ].

Next, we present the lemmas that establish the L-smoothness
and convexity properties of the slimmed models.

Lemma 1. Let F : Rd → R be an L-smooth function over
Rd. Consider a selection of d1 ≤ d coordinates from x,
which we denote by x̃ ∈ Rd1 . Define

Fr(x̃) = F (x̃, r), (6)

where r ∈ Rd−d1 contains the fixed (zeros) coordinates of
x. Then Fr is L-smooth in the subspace Rd1 with a constant
L̃ ≤ L.

Proof of Lemma 1. See Appendix A.1

Lemma 2. Let F : Rd → R be a convex function, as per
Assumption 2. Consider a subset of coordinates x̃ ∈ Rd1

(with d1 ≤ d) of the vector x ∈ Rd, and let r ∈ Rd−d1

denote the remaining fixed coordinates. Define

Fr(x̃) = F (x̃, r).

Then Fr is convex in Rd1 .

Proof of Lemma 2. See Appendix A.2

With the established L-smoothness and convexity parame-
ters of the slimmed models, we can now directly derive the
convergence guarantee for Local SGD. For completeness,
we present Theorem 1, which provides a performance guar-
antee under the given assumptions (Stich, 2018; Wang et al.,
2021; Khaled et al., 2020; Woodworth et al., 2020).

Theorem 1 (Performance guarantee). Under the assump-
tions 1, 2, 3, 4, if the participant learning rate satisfies
η ≤ 1

4L , then the performance is bounded by

E

[
1

τT

T−1∑
t=0

τ∑
k=1

F (xt,k)− F (x⋆)

]

≤ D2

2ητT
+

ησ2

N
+ 4τη2Lσ2 + 18τ2η2Lζ2,

where D := ∥x0,0 − x⋆∥.

Proof of Theorem 1. Taking into account Lemmas 1, 2, 5,
and 6, combining them, and telescoping t over T communi-
cation rounds gives us the main theorem.
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5.2. Fairness Analysis

We now analyze the fairness properties of the proposed
allocation algorithm, highlighting key theoretical results
and their practical implications.

Lemma 3. Let a⋆ = (a1, a2, . . . , aN ) be an optimal alloca-
tion that minimizes f(a). Then, it holds that maxi∈[N ] ai =
u. In other words, the client with the highest contribution
always receives the model with the maximum accuracy u.

Proof of Lemma 3. See Appendix A.3.

Lemma 3 ensures that the highest contributor is always re-
warded with the most accurate model available, satisfying
intuitive fairness criteria. Furthermore, under the assump-
tion of continuous availability of model accuracies within
the interval [ℓ, u], the optimal allocation aligns perfectly
with client contributions, as shown by the following lemma:

Lemma 4. Let a⋆ be the optimal allocation minimizing
f(a), and c the vector of client contributions. Under the
assumption of continuous model performance availability,
the Pearson correlation coefficient between allocated accu-
racies a⋆ and client contributions c is exactly one:

ρ(a⋆, c) = 1.

Proof of Lemma 4. See Appendix A.4.

Here, ρ(a⋆, c) denotes the Pearson correlation between vec-
tors a⋆ and c, measuring how well the allocated rewards
match the client contributions. A correlation of exactly
one indicates perfect alignment, thus confirming that the
proposed method achieves the theoretical ideal collabora-
tive fairness (Lyu et al., 2020; Tastan et al., 2025) under
continuous model performance conditions.

In practice, however, model widths and their associated per-
formance values must be discretized due to inherent com-
putational constraints, introducing slight deviations from
perfect correlation. Despite this practical limitation, we
consistently observe near-perfect Pearson correlation coeffi-
cients in empirical evaluations, as shown in Table 2.

5.3. Convergence of the Allocation Algorithm

As described in Section 4.2, we define a cost function

f : A → R, (7)

which we aim to minimize over the space of allocations A.
Under suitable conditions, we can guarantee convergence
of the allocation algorithm to a globally optimal solution.

We now present Theorem 2, which guarantees that, under as-
sumptions 5-9 (provided in Appendix A.6.1), the allocation

algorithm converges asymptotically to the global minimizer
of the cost function f with probability one.

Theorem 2 (Asymptotic convergence). Under Assumptions
5, 6, 7, 8, 9, consider the time-inhomogeneous Markov chain
{Ak} on A with transition probabilities defined by

Pk(a→ a′) =

exp

(
−f(a′)− f(a)

Tk

)
, f(a′) > f(a),

1, f(a′) ≤ f(a),

where Tk is the temperature parameter at iteration k.

Then for any global minimizer a⋆ ∈ A satisfying f(a⋆) =
mina∈A f(a), the following holds:

lim
k→∞

P (Ak = a⋆) = 1.

In other words, the Markov chain {Ak} converges (with
probability 1) to the set of global minimizers of f .

Proof of Theorem 2. See Appendix A.6.

6. Experiments and Results
6.1. Experimental details

Datasets and partition settings. We use the following
datasets to carry out our experiments (following (Li et al.,
2020)): MNIST (LeCun, 1998), Fashion-MNIST (FMNIST)
(Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10
& CIFAR-100 (Krizhevsky et al., 2009), Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), and the feder-
ated handwriting dataset FEMNIST (Caldas et al., 2019).
FEMNIST is already partitioned by writer identities, yield-
ing a naturally heterogeneous distribution that we keep
unchanged. The other datasets are partitioned using the
following strategies: (i) homogeneous, where each partic-
ipant gets an equal number of data points per class; (ii)
heterogeneous, where each client gets a varying number
of data points per class based on a Dirichlet(α) distribution
(concentration parameter α reflects the degree of non-i.i.d.
characteristics within the dataset); (iii) quantity skew al-
locates κ proportion of total data points to each of the m
selected participants and the remaining N −m participants
split the remaining data equally; (iv) label skew, denoted by
#C = m, creates a label imbalance by sampling m classes
for each client and then randomly distributing samples from
class m among selected participants.

Baseline approaches. We compare our approach to a Fe-
dAvg algorithm (McMahan et al., 2017) followed by an
additional epoch of local training to obtain a differentiated
model for each participant, CGSV (Xu et al., 2021) and
IAFL (Wu et al., 2024). We also evaluate standalone accu-
racy (SA), where each client trains its ML model on its local
dataset without any collaboration with others. For a detailed
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Table 1: Predictive performance (%, higher is better) of AEQUA and baselines under different dataset partitioning regimes.

PARTITION DATASET FEDAVG CGSV IAFL AEQUA

HOMOGENEOUS

MNIST 98.67± 0.07 90.62± 2.32 98.40± 0.13 98.60± 0.11
FMNIST 89.45± 0.33 77.01± 2.51 88.54± 0.25 89.63± 0.19
SVHN 90.54± 0.18 77.61± 3.16 89.64± 0.13 90.18± 0.15
CIFAR-10 89.99± 0.23 61.29± 2.92 88.42± 0.07 90.84± 0.26
CIFAR-100 65.92± 0.22 35.36± 0.77 63.23± 0.30 67.83± 0.32
SST 34.44± 1.33 30.12± 1.03 34.02± 0.51 34.44± 1.19

HETEROGENEOUS:
DIRICHLET (α = 0.1)

MNIST 97.38± 0.62 94.06± 1.79 88.45± 7.87 97.30± 0.58
FMNIST 83.32± 1.78 71.51± 8.20 66.46± 4.72 84.60± 1.32
SVHN 86.38± 0.87 72.48± 4.81 68.71± 7.85 86.33± 1.00
CIFAR-10 74.73± 3.65 48.77± 5.02 46.36± 9.31 75.97± 3.36
CIFAR-100 61.16± 0.25 34.16± 1.63 43.38± 4.53 63.42± 0.54
SST 32.17± 1.60 21.54± 1.89 27.28± 3.06 33.54± 1.48

QUANTITY SKEW:
IMBALANCED (0.15, 6)

MNIST 98.69± 0.10 93.22± 0.99 98.40± 0.12 98.62± 0.09
FMNIST 89.53± 0.24 78.73± 2.14 88.53± 0.26 89.72± 0.17
SVHN 90.59± 0.17 77.54± 2.34 89.51± 0.13 90.26± 0.16
CIFAR-10 90.00± 0.13 66.89± 1.85 89.51± 0.15 90.71± 0.14
CIFAR-100 65.88± 0.38 39.62± 0.74 64.60± 0.25 68.24± 0.11
SST 34.26± 0.98 29.53± 1.02 33.70± 0.70 34.64± 1.01

LABEL SKEW: #OC={3, 30}

MNIST 94.37± 3.43 79.19± 7.94 73.10± 15.00 95.37± 1.15
FMNIST 79.73± 3.80 61.54± 8.03 60.10± 8.03 80.51± 3.27
SVHN 79.73± 5.89 64.07± 7.65 55.83± 11.89 80.69± 6.05
CIFAR-10 71.88± 3.28 48.02± 3.88 44.12± 21.15 72.40± 3.17
CIFAR-100 60.95± 1.18 35.09± 0.42 55.26± 3.85 62.84± 1.18
SST 33.96± 0.35 24.88± 2.04 30.33± 1.68 33.01± 0.90

NUMBER OF TIMES THAT PERFORMS THE BEST 7/24 0/24 0/24 17/24

explanation of the baseline approaches, evaluation metrics,
and implementation details, we refer to Appendix B.

6.2. Predictive performance

We begin by benchmarking existing algorithms (FedAvg,
CGSV, and IAFL) across the six datasets introduced in
Section 6.1, using the partitioning strategies detailed in
Table 1. Due to space constraints, we present a summarized
version of the results, while full details can be found in
Table 5, Appendix D.2. We report the accuracy (balanced
accuracy) of the global model as an evaluation metric.

Aequa attains the highest mean accuracy in 17 of the 24
settings, while FedAvg leads in the remaining 7 settings. In
contrast, the fairness-oriented baselines CGSV and IAFL
lag markedly, especially under the more challenging hetero-
geneous partitioning settings (Dirichlet (α = 0.1) and label
skew). Their lower scores reflect an inherent performance-
fairness trade-off. By adaptively allocating capacity, Aequa
mitigates this trade-off and matches or exceeds FedAvg
across all splits, corroborating the established performance
guarantees. We also provide a per-participant performance
analysis on the CIFAR-100 dataset in Appendix D.5.

6.3. Incentivization performance

Correlation to contribution. Following Wu et al. (2024),
we quantify how well each algorithm aligns incentives with

actual usefulness by computing the Pearson correlation co-
efficient (ρ) between the client model accuracies achieved
after T communication rounds and their standalone accu-
racies. This metric also serves as a measure of fairness, as
highlighted in (Xu et al., 2021; Lyu et al., 2020). Following
IAFL (Wu et al., 2024), we use standalone accuracies as a
surrogate for client contributions. Thus, by analyzing the
correlation values, we can directly compare the incentiviza-
tion effectiveness of different algorithms. A high positive ρ
indicates that clients who contribute stronger local models
are rewarded with higher final accuracies, while values near
zero or negative signal poor incentive alignment.

Table 2 summarizes the results. FedAvg-FT fails to es-
tablish a strong correlation, often yielding negative values,
particularly under quantity-skewed splits, while CGSV and
IAFL struggle whenever standalone accuracies show little
variation (e.g., the homogeneous setting). IAFL improves
under quantity skew, yet Aequa delivers both tighter and uni-
formly higher correlations, ranking first in 24/24 cases. For
a comprehensive analysis, we refer the reader to Figure 6,
Appendix D.3, where we present results in 54 different sce-
narios. In particular, our method outperforms all baselines
in all cases, achieving a perfect score of 54/54.

Collaboration gain spread. We evaluate the collabora-
tion gain spread (CGS) achieved by Aequa in compari-
son to other baseline methods. As reported in Table 7 in

7



Aequa: Fair Model Rewards in Collaborative Learning via Slimmable Networks

Table 2: Incentivization performance comparison of our method and baseline approaches across different dataset partitions,
evaluated using the Pearson correlation coefficient between the accuracies of the final model and the accuracies of the
standalone model. The results are averaged over five independent evaluations. For complete results, refer to Appendix D.3.

PARTITION DATASET FEDAVG-FT CGSV IAFL AEQUA

HOMOGENEOUS

MNIST 0.07± 0.24 −0.30± 0.16 0.16± 0.20 0.97± 0.02
FMNIST 0.21± 0.07 −0.09± 0.35 0.27± 0.24 0.98± 0.02
SVHN −0.12± 0.36 0.02± 0.17 0.07± 0.28 0.98± 0.02
CIFAR-10 0.04± 0.27 0.05± 0.42 −0.01± 0.15 0.99± 0.01
CIFAR-100 −0.07± 0.37 −0.19± 0.36 0.02± 0.31 0.96± 0.01
SST 0.06± 0.25 −0.07± 0.32 −0.03± 0.26 0.98± 0.01

HETEROGENEOUS:
DIRICHLET (α = 0.1)

MNIST 0.39± 0.37 0.56± 0.18 0.61± 0.23 0.85± 0.03
FMNIST 0.21± 0.41 0.56± 0.28 0.61± 0.25 0.89± 0.06
SVHN 0.66± 0.24 0.21± 0.46 0.80± 0.18 0.92± 0.02
CIFAR-10 −0.18± 0.35 0.67± 0.14 0.84± 0.15 0.94± 0.02
CIFAR-100 −0.17± 0.46 0.30± 0.52 0.89± 0.07 0.99± 0.01
SST −0.20± 0.35 0.14± 0.50 0.91± 0.09 0.98± 0.01

QUANTITY SKEW:
IMBALANCED (0.15, 6)

MNIST −0.63± 0.18 0.34± 0.80 0.95± 0.04 0.98± 0.01
FMNIST −0.45± 0.28 0.49± 0.71 0.93± 0.02 0.98± 0.01
SVHN −0.76± 0.12 0.42± 0.75 0.99± 0.01 1.00± 0.00
CIFAR-10 −0.37± 0.16 0.98± 0.02 0.99± 0.00 1.00± 0.00
CIFAR-100 0.06± 0.40 0.97± 0.03 1.00± 0.00 1.00± 0.00
SST −0.07± 0.48 −0.23± 0.54 0.90± 0.02 0.94± 0.04

LABEL SKEW: #OC={3, 30}

MNIST 0.03± 0.41 −0.27± 0.27 0.23± 0.24 0.81± 0.13
FMNIST −0.44± 0.27 0.11± 0.45 0.08± 0.26 0.99± 0.01
SVHN 0.43± 0.25 −0.43± 0.42 0.01± 0.25 0.98± 0.00
CIFAR-10 0.19± 0.32 0.12± 0.32 0.22± 0.38 0.97± 0.02
CIFAR-100 −0.38± 0.22 0.00± 0.24 0.31± 0.22 0.98± 0.02
SST 0.45± 0.38 −0.19± 0.48 0.48± 0.37 0.97± 0.03

NUMBER OF TIMES THAT PERFORMS THE BEST 0/24 0/24 1/24 24/24

Table 3: Comparison to baseline methods when the contri-
bution measure corresponds to the participation rate.

METHOD
MNIST CIFAR-10

ρ ACC. ρ ACC.

FEDAVG-FT 0.12± 0.1 97.65± 0.3 0.11± 0.1 83.73± 0.3
CGSV 0.50± 0.2 96.18± 0.7 0.55± 0.1 55.97± 0.3
IAFL 0.79± 0.0 98.04± 0.2 0.69± 0.2 82.58± 0.1

AEQUA 0.98± 0.0 98.19± 0.1 0.99± 0.0 84.59± 0.2

Appendix D.4, Aequa consistently outperforms other ap-
proaches in 42 out of 54 scenarios, demonstrating consis-
tently superior collaboration dynamics.

One scenario in which Aequa underperforms relative to
IAFL is in the quantity skew setting. This is due to the
choice of pmin, which determines the minimum accuracy
level ℓ assigned to low-contributing clients. To address this,
we conducted an additional set of experiments, adjusting
pmin to 0.1, presented in Table 8. Under this configuration,
Aequa outperforms other methods in 11/12 cases, bringing
the overall total to 48/54 cases.

6.4. Alternative contribution measures

Aequa is designed to flexibly incorporate a wide range of
contribution measures. To demonstrate its effectiveness

10 20 30 40 50
Client ID

70

75

80

85

Ac
cu

ra
cy

CIFAR-10 (ResNet-18)

10 20 30 40 50
Client ID

94

96

98
MNIST (CNN)

0.0

0.2

0.4

0.6

0.8

1.0= 0.99 ± 0.00

0.0

0.2

0.4

0.6

0.8

1.0

Pa
rti

cip
at

io
n 

Ra
te= 0.98 ± 0.01

Figure 2: Visualization of the correlation when contribution
measure corresponds to the participation rate on CIFAR-10
and MNIST datasets with N = 50 participants.

under partial participation, we use the client participation
rate as a contribution measure. Following the experimental
setup studied in (Wu et al., 2024), we define the client
participation rate as ri = 0.5 × (1 + i/N), introducing a
mild but controlled variation across clients, as illustrated in
Figure 2.

We conducted experiments on MNIST and CIFAR-10 us-
ing distinct architectures to assess Aequa’s robustness. As
shown in Figure 2, our method yields a very high Pearson
correlation coefficient, demonstrating a strong alignment
between participation rates and the resulting model perfor-
mance. Table 3 presents a comparative analysis with other
baseline algorithms, which confirms that Aequa consistently
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Figure 3: Performance comparison of our proposed methods
on CIFAR-10 under a homogeneous partitioning strategy.
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Figure 4: Performance comparison of our proposed methods
on CIFAR-10 under a quantity skew.

outperforms competitors in both correlation and final per-
formance. In particular, IAFL is the second-best method in
this setting, yet it trails Aequa by a clear margin.

6.5. Training-time model rewards

We evaluate our method in combination with existing con-
tribution assessment algorithms for training-time model re-
wards, comparing against baseline methods. The results,
presented in Figures 3 and 4, illustrate the performance
on the CIFAR-10 dataset under homogeneous and quantity
skew partitioning strategies. The plot presents all evalua-
tion metrics, and the results clearly demonstrate that Aequa
consistently outperforms other approaches across all cases.
Among the variants, Aequa with CGSV ranks as the second-
best in both settings, while Aequa with ShapFed shows
comparable performance, further validating the robustness
of our approach.

6.6. Scalability to large-scale FL

To probe the limits of Aequa under realistic federated condi-
tions, we performed an experiment on the FEMNIST dataset
(Caldas et al., 2019) – a challenging benchmark comprising
3 597 naturally non-IID users and more than 800 thousand
handwritten character images.

Table 4 shows that Aequa not only improves test accuracy

Table 4: Predictive and incentivization performance of Ae-
qua in comparison to FedAvg-FT on FEMNIST dataset.

ALGORITHM ACCURACY PEARSON (ρ) MCG±CGS

FEDAVG-FT 71.48 0.2904 47.02± 5.07

AEQUA 73.10 0.9888 52.19± 2.57

by +1.6 pp over the FedAvg-FT baseline but also yields
markedly better fairness scores (Pearson correlation coef-
ficient of 0.9888(↑) and CGS of 2.57(↓)), confirming its
ability to handle both data heterogeneity and the scale of
thousands of clients.
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Figure 5: Performance vs. network width (p) using FEM-
NIST dataset using a custom CNN architecture composed
of two convolutional layers followed by a fully connected
layer.

Figure 5 further plots accuracy versus model width on
FEMNIST, illustrating that Aequa’s advantage is consis-
tent across a wide range of capacities and that the resulting
accuracy difference is sufficiently large to discourage free-
riding behavior. These findings suggest that the proposed
mechanism scales to large, real-world FL deployments.

Computational overhead. On the same FEMNIST setup,
we recorded wall-clock training time per communication
round on a single GPU. FedAvg finishes a round in 42±2.9 s,
whereas Aequa takes 55±3.1 s – only a 1.309× (≈ 30.9%)
increase that is modest, not significant and well justified by
Aequa’s superior performance and fairness. Communication
cost is unchanged because both methods transmit identically
sized model parameters.

7. Conclusion
Using the concept of slimmable networks, we have pre-
sented Aequa, a framework for achieving a provably fair
model rewards in collaborative learning. While we initially
present TEEs as a means to ensure the confidentiality of
local updates, TEEs are not a strict requirement. Aequa
also operates securely in the absence of trusted hardware by
incorporating contribution assessment methods.
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A. Mathematical proofs
A.1. Proof of Lemma 1

Proof of Lemma 1. Since F is L-smooth over Rd, for any x,x′ ∈ Rd we have

∥∇F (x)−∇F (x′)∥ ≤ L∥x− x′∥. (8)

Let x̃, x̃′ ∈ Rd1 be two points in the reduced space of selected coordinates. We embed each into Rd by defining

x = (x̃, r) , x′ = (x̃′, r) , (9)

where r is held fixed in both cases (e.g. zeros in our case). Note that

∥x− x′∥ = ∥(x̃, r)− (x̃′, r)∥ = ∥x̃− x̃′∥. (10)

Next, write the gradient of F in coordinates:

∇F (x) = (∇x̃F (x),∇rF (x)), ∇F (x′) = (∇x̃′F (x′),∇rF (x′)), (11)

Because x and x′ differ only in the x̃-coordinates (the r-part is the same), it follows that

∥∇Fr(x̃)−∇Fr(x̃
′)∥2 = ∥∇x̃F (x)−∇x̃′F (x′))∥2 ≤ ∥∇F (x)−∇F (x′)∥2. (12)

By the L-smoothness of F in Rd and putting all together, we have

∥∇Fr(x̃)−∇Fr(x̃
′)∥ = ∥∇x̃F (x̃)−∇x̃′F (x̃′)∥ ≤ ∥∇F (x)−∇F (x′)∥ ≤ L∥x− x′∥ = L∥x̃− x̃′∥. (13)

Hence Fr (the restriction of F to the subset x̃) is also L-smooth with respect to x̃. In particular, its smoothness constant L̃
satisfies L̃ ≤ L.

This concludes the proof.

A.2. Proof of Lemma 2

Proof of Lemma 2. Since F is convex over Rd, for any two points x,y ∈ Rd and any λ ∈ [0, 1],

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y). (14)

Now fix r ∈ Rd−d1 .

Let x̃, x̃′ ∈ Rd1 and λ ∈ [0, 1]. Then,

Fr(λx̃+ (1− λ)x̃′) = F (λ(x̃, r) + (1− λ)(x̃′, r)). (15)

Since r is fixed, the interpolation in Rd satisfies

λ(x̃, r) + (1− λ)(x̃′, r) = (λx̃+ (1− λ)x̃′, r) . (16)

By convexity of F in Rd,

F (λ(x̃, r) + (1− λ)(x̃′, r)) ≤ λF (x̃, r) + (1− λ)F (x̃′, r). (17)

Rewriting in terms of Fr,
Fr(λx̃+ (1− λ)x̃′) ≤ λFr(x̃) + (1− λ)Fr(x̃

′). (18)

Hence Fr is convex in Rd1 . This completes the proof.
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A.3. Proof of Lemma 3

Proof. Suppose, for contradiction, that in the optimal allocation a⋆, we have a⋆N < u. Let α = u− a⋆N > 0. Because the
set of achievable accuracies is assumed to be continuous on [ℓ, u], we can attempt to shift all the assigned accuracies in a⋆

upward by α. Define the new allocation ã = (ã1, ã2, . . . , ãN ) by ã = a⋆ + α1 ∈ A.

Then, this gives us

f(ã) = f(a⋆ + α1) = − E[u(a⋆)] + α

Var[u(a⋆)] + ϵ

< − E[u(a⋆)]

Var[u(a⋆)] + ϵ
= f(a⋆),

contradicting the optimality of a⋆. Thus, we must have α = 0 and therefore a⋆
N = u.

A.4. Proof of Lemma 4

Proof. Since model performances are continuous on the interval [ℓ, u] and that a⋆N = u, we define α = u− cN > 0. By
construction, for every client i, the allocation satisfies a⋆i = ci + α. Consequently, the Pearson correlation coefficient is
computed as:

ρ(a⋆, c) = ρ(c+ α1, c) = ρ(c, c) = 1. (19)

This proves the lemma.

A.5. Deferred Lemmas

A.5.1. ASSUMPTIONS

Assumption 3 (Expected stochastic gradient variance). The variance of an unbiased stochastic gradient in participant is
σ2-uniformly bounded in L2 norm, ∀i ∈ [N ],∀k ∈ [τ ],∀t ∈ [T ],

E
[
gi(x

t,k
i ) | xt,k

i

]
= ∇Fi(x

t,k
i ),

E
[∥∥∥gi(xt,k

i )−∇Fi(x
t,k
i )

∥∥∥2∣∣∣∣xt,k
i

]
≤ σ2.

Assumption 4 (Gradient dissimilarity). The difference of local gradient ∇Fi(x) and the global gradient ∇F (x) is
ζ-uniformly bounded in L2 norm, ∀i ∈ [N ],∀k ∈ [τ ],∀t ∈ [T ],

max
i

sup
x

∥∥∥∇Fi(x
t,k
i )−∇F (xt,k

i )
∥∥∥ ≤ ζ.

A.5.2. LEMMAS

Lemma 5. Assuming the participant learning rate satisfies η ≤ 1
4L , then

E

[
1

τ

τ∑
k=1

F (xt,k)− F (x⋆)

∣∣∣∣∣F t,0

]
≤ 1

2ητ

(∥∥∥xt,0 − x⋆
∥∥∥2 − E

[∥∥∥xt,τ − x⋆
∥∥∥2∣∣∣∣F t,0

])

+
ησ2

N
+

L

Nτ

N∑
i=1

τ−1∑
k=0

E
[∥∥∥xt,k

i − xt,k
∥∥∥2∣∣∣∣F t,0

]
,

where F t,0 is the σ-field representing all the historical information up to the start of the t-th round.
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Proof of Lemma 5.

1

N

N∑
i=1

〈
gi(x

t,k
i ),xt,k+1 − x⋆

〉
=

〈
− 1

η

(
xt,k+1 − xt,k

)
,xt,k+1 − x⋆

〉
(20)

=
1

2η

(∥∥∥xt,k − x⋆
∥∥∥2 − ∥∥∥xt,k+1 − xt,k

∥∥∥2 − ∥∥∥xt,k+1 − x⋆
∥∥∥2) . (21)

where (20) uses the update rule xt,k+1 = xt,k − η
1

N

∑N
i=1 gi(x

t,k
i ), (21) uses the parallelogram law, which is ⟨u,v⟩ =

1

2

(
∥u∥2 + ∥v∥2 − ∥u− v∥2

)
,∀u,v ∈ Rd.

By assumptions 1 and 2, we have:

Fi(x
t,k+1) ≤ Fi(x

t,k
i ) +

〈
∇Fi(x

t,k
i ),xt,k+1 − xt,k

i

〉
+

L

2

∥∥∥xt,k+1 − xt,k
i

∥∥∥2 (22)

≤ Fi(x
⋆) +

〈
∇Fi(x

t,k
i ),xt,k+1 − x⋆

〉
+

L

2

∥∥∥xt,k+1 − xt,k
i

∥∥∥2 (23)

= Fi(x
⋆) +

〈
∇Fi(x

t,k
i ),xt,k+1 − x⋆

〉
+

L

2

∥∥∥(xt,k+1 − xt,k)− (xt,k
i − xt,k)

∥∥∥2 (24)

≤ Fi(x
⋆) +

〈
∇Fi(x

t,k
i ),xt,k+1 − x⋆

〉
+ L

∥∥∥xt,k+1 − xt,k
∥∥∥2 + L

∥∥∥xt,k
i − xt,k

∥∥∥2 (25)

where (22) uses the L-smoothness property (see Assumption 1), (23) uses the three points descent lemma, which holds true
when Fi(x) is both convex and L-smooth (see Assumption 2), (24) includes the addition and subtraction of xt,k to the third
term, and (25) applies this inequality ∥u+ v∥2 ≤ 2(∥u∥2 + ∥v∥2),∀u,v ∈ Rd.

By combining (21) and (25), we get:

F (xt,k+1)− F (x⋆) =
1

N

N∑
i=1

(
Fi(x

t,k+1)− F (x⋆)
)

(26)

≤ 1

N

N∑
i=1

〈
∇Fi(x

t,k
i )− gi(x

t,k
i ),xt,k+1 − x⋆

〉
+ L

∥∥∥xt,k+1 − xt,k
∥∥∥2

+
L

N

N∑
i=1

∥∥∥xt,k
i − xt,k

∥∥∥2 + 1

N

N∑
i=1

〈
gi(x

t,k
i ),xt,k+1 − x⋆

〉
(27)

=
1

N

N∑
i=1

〈
∇Fi(x

t,k
i )− gi(x

t,k
i ),xt,k+1 − x⋆

〉
+ L

∥∥∥xt,k+1 − xt,k
∥∥∥2

+
L

N

N∑
i=1

∥∥∥xt,k
i − xt,k

∥∥∥2 + 1

2η

(∥∥∥xt,k − x⋆
∥∥∥2 − ∥∥∥xt,k+1 − xt,k

∥∥∥2 − ∥∥∥xt,k+1 − x⋆
∥∥∥2) (28)

where (27) adds and subtracts
1

N

∑N
i=1

〈
gi(x

t,k
i ),xt,k+1 − x⋆

〉
, (28) replaces the last term with (21).
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Since E
[
∇Fi(x

t,k
i )− gi(x

t,k
i )

∣∣∣F t,k
]
= 0 we have

E

[
1

N

N∑
i=1

〈
∇Fi(x

t,k
i )− gi(x

t,k
i ),xt,k+1 − x⋆

〉∣∣∣∣∣F t,k

]
(29)

= E

[
1

N

N∑
i=1

〈
∇Fi(x

t,k
i )− gi(x

t,k
i ),xt,k+1 − xt,k

〉∣∣∣∣∣F t,k

]
(30)

≤ ηE

∥∥∥∥∥ 1

N

N∑
i=1

(
∇Fi(x

t,k
i )− gi(x

t,k
i )

)∥∥∥∥∥
2
∣∣∣∣∣∣F t,k

+
1

4η
E
[∥∥xt,k+1 − xt,k

∥∥2∣∣∣F t,k
]

(31)

≤ ησ2

N
+

1

4η
E
[∥∥xt,k+1 − xt,k

∥∥2∣∣∣F t,k
]
, (32)

where (31) uses Young’s inequality, which is ⟨u,v⟩ ≤ ϵ∥u∥2 + 1

4ϵ
∥v∥2,∀ϵ > 0 and ∀u,v ∈ Rd, and (32) uses bounded

covariance assumption (see Assumption 3) and independence across clients.

By plugging (32) back to the conditional expectation of (28) with η ≤ 1
4L , we get:

E
[
F (xt,k+1)− F (x⋆)

]
+

1

2η

(
E
[∥∥∥xt,k+1 − x⋆

∥∥∥2∣∣∣∣F t,k

]
−

∥∥∥xt,k − x⋆
∥∥∥2)

≤ ησ2

N
−
(

1

4η
− L

)
E
[∥∥∥xt,k+1 − xt,k

∥∥∥2∣∣∣∣F t,k

]
+

L

N

N∑
i=1

∥∥∥xt,k
i − xt,k

∥∥∥2 (33)

≤ ησ2

N
+

L

N

N∑
i=1

∥∥∥xt,k
i − xt,k

∥∥∥2 (34)

where (34) holds true since η ≤ 1
4L .

Telescoping k from 0 to τ gives us:

E

[
1

τ

τ∑
k=1

F (xt,k)− F (x⋆)

∣∣∣∣∣F t,0

]
≤ 1

2ητ

(∥∥∥xt,0 − x⋆
∥∥∥2 − E

[∥∥∥xt,τ − x⋆
∥∥∥2∣∣∣∣F t,0

])

+
ησ2

N
+

L

Nτ

N∑
i=1

τ−1∑
k=0

E
[∥∥∥xt,k

i − xt,k
∥∥∥2∣∣∣∣F t,0

]
,

which completes the proof.

Lemma 6. Assuming the client learning rate satisfies η ≤ 1
4L , then

E
[∥∥∥xt,k

i − xt,k
∥∥∥2∣∣∣∣F t,0

]
≤ 18τ2η2ζ2 + 4τη2σ2,

where F t,0 is the σ-field representing all the historical information up to the start of the t-th round.

Proof of Lemma 6.

E
[∥∥∥xt,k+1

1 − xt,k+1
2

∥∥∥2∣∣∣∣F t,k

]
= E

[∥∥∥xt,k
1 − xt,k

2 − η
(
g1(x

t,k
1 )− g2(x

t,k
2 )

)∥∥∥2∣∣∣∣F t,k

]
(35)

≤
∥∥∥xt,k

1 − xt,k
2

∥∥∥2 − 2η
〈
∇F1(x

t,k
1 )−∇F2(x

t,k
2 ),xt,k

1 − xt,k
2

〉
+η2

∥∥∥∇F1(x
t,k
1 )−∇F2(x

t,k
2 )

∥∥∥2 + 2η2σ2 (36)
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where the last term in (36) is from Assumption 3 for both g1(x
t,k
1 ) and g2(x

t,k
2 ).

Following Assumption 4, the second term of (36) is bounded as

−
〈
∇F1(x

t,k
1 )−∇F2(x

t,k
2 ),xt,k

1 − xt,k
2

〉
≤ −

〈
∇F (xt,k

1 )−∇F (xt,k
2 ),xt,k

1 − xt,k
2

〉
+
∥∥∥xt,k

1 − xt,k
2

∥∥∥(∥∥∥∇F1(x
t,k
1 )−∇F (xt,k

1 )
∥∥∥+

∥∥∥∇F2(x
t,k
2 )−∇F (xt,k

2 )
∥∥∥) (37)

≤ −
〈
∇F (xt,k

1 )−∇F (xt,k
2 ),xt,k

1 − xt,k
2

〉
+ 2ζ

∥∥∥xt,k
1 − xt,k

2

∥∥∥ (38)

≤ − 1

L

∥∥∥∇F (xt,k
1 )−∇F (xt,k

2 )
∥∥∥2 + 2ζ

∥∥∥xt,k
1 − xt,k

2

∥∥∥ (39)

≤ − 1

L

∥∥∥∇F (xt,k
1 )−∇F (xt,k

2 )
∥∥∥2 + 1

2ητ

∥∥∥xt,k
1 − xt,k

2

∥∥∥2 + 2ητζ2 (40)

where (39) uses smoothness and convexity properties as per Assumption 2, (40) uses AM-GM inequality (weighted sum

version), which is uv ≤ u2

2ϵ
+

ϵv2

2
, with u =

∥∥∥xt,k
1 − xt,k

2

∥∥∥ , v = 2ζ, and ϵ = ητ .

Similarly, the third term of (36) is bounded as∥∥∥∇F1(x
t,k
1 )−∇F2(x

t,k
2 )

∥∥∥2 ≤ (
2ζ +

∥∥∥∇F1(x
t,k
1 )−∇F2(x

t,k
2 )

∥∥∥)2

(41)

= 4ζ2 +
∥∥∥∇F1(x

t,k
1 )−∇F2(x

t,k
2 )

∥∥∥2 + 4ζ
∥∥∥∇F1(x

t,k
1 )−∇F2(x

t,k
2 )

∥∥∥ (42)

≤ 3
∥∥∥∇F1(x

t,k
1 )−∇F2(x

t,k
2 )

∥∥∥2 + 6ζ2, (43)

where (41) uses Assumption 4, (43) is obtained using AM-GM inequality on the last term of (42), which is uv ≤ u2

2ϵ
+

ϵv2

2
,

with u =
∥∥∥∇F1(x

t,k
1 )−∇F2(x

t,k
2 )

∥∥∥ , v = 4ζ, and ϵ =
1

4
.

Putting all these results together gives us

E
[∥∥∥xt,k+1

1 − xt,k+1
2

∥∥∥2∣∣∣∣F t,k

]
≤

(
1 +

1

τ

)∥∥∥xt,k
1 − xt,k

2

∥∥∥2 + 4τη2ζ2 + 6η2ζ2 + 2η2σ2 (44)

≤
(
1 +

1

τ

)∥∥∥xt,k
1 − xt,k

2

∥∥∥2 + 10τη2ζ2 + 2η2σ2. (45)

where (44) drops
∥∥∥∇F1(x

t,k
1 )−∇F2(x

t,k
2 )

∥∥∥2 term, since the resulting term is always negative given that η ≤ 1
4L .

Telescoping gives us

E
[∥∥∥xt,k

1 − xt,k
2

∥∥∥2∣∣∣∣F t,0

]
≤

(
1 + 1

τ

)k − 1
1
τ

·
(
10τη2ζ2 + 2η2σ2

)
(46)

≤ 18τ2η2ζ2 + 4τη2σ2, (47)

where the multiplier in (46) is obtained from
∑k−1

j=0

(
1 + 1

τ

)j
and its numerator is upper bounded by a scalar value of 1.8.

Then, by convexity, we have

E
[∥∥∥xt,k

i − xt,k
∥∥∥2∣∣∣∣F t,0

]
≤ 18τ2η2ζ2 + 4τη2σ2, ∀i ∈ [N ], (48)

which completes the proof.
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A.6. Convergence of the Allocation Algorithm

A.6.1. ASSUMPTIONS

Assumption 5 (Finite state space). The state/allocation space A is finite: |A| = MN <∞.
Assumption 6 (Bounded cost function). The objective function f : A → R is bounded: ∃ξ > 0 such that |f(a)| ≤ ξ for all
a ∈ A.
Assumption 7 (Irreducibility). For each fixed T > 0, the induced Markov chain (with acceptance probabilities depending
on T ) is irreducible on A. That is, for any a,a′ ∈ A, we can reach a′ from a with a positive probability in a finite number
of steps.
Assumption 8 (Aperiodicity). For each fixed T > 0, the chain is aperiodic: there is no integer d > 1 such that transitions
occur only in multipliers of d. Equivalently, for each a ∈ A, gcd{m | Pm

T (a→ a) > 0} = 1.
Assumption 9 (Annealing schedule). The temperature Tk satisfies:

1. Tk → 0 as k →∞.
2.

∑∞
k=1 exp (−∆f/Tk) =∞, where ∆f = mina̸=a′ |f(a)− f(a′)| > 0 is the smallest nonzero gap of f .

A classic example is Tk =
1

log(k + k0)
with k0 > 1.

A.6.2. PROOF OF THEOREM 2

Proof. Let {Ak} be our Markov chain on A. Denote the transition probability at iteration k by Pk(a→ a′). We show that,
almost surely, the chain eventually remains (or keeps returning) to a global minimizer.

First, fix a temperature T > 0. By Assumptions 7 and 8, the homogeneous Markov chain with transitions

PT (a→ a′) =

exp

(
−f(a′)− f(a)

T

)
, f(a′) > f(a),

1, f(a′) ≤ f(a),
(49)

is irreducible and aperiodic on the finite state space A. Therefore, it has a unique stationary distribution πT .

Standard Metropolis-Hastings arguments show that

πT (a) ∝ exp

(
−f(a)

T

)
. (50)

As T → 0, exp (−f(a)/T ) is maximized by allocations/states a ∈ A that minimize f . In fact, if a⋆ is a global minimizer
(with f(a⋆) = fmin), then for any a with f(a) > fmin,

πT (a
⋆)

πT (a)
= exp

(
−f(a⋆)− f(a)

T

)
−−→
T→0

0. (51)

Hence, as T → 0, all stationary mass concentrates on the set of global minima.

However, in our algorithm, T is not fixed but varies with iteration k. Thus {Ak} is a time-inhomogeneous Markov chain
whose transition matrix Pk depends on Tk. The chain does not, in general, admit a single stationary distribution.

If {Tk} decreases slowly enough, the chain nearly equilibrates around each temperature. This ensures we do not remain
trapped in a suboptimal local minimum.

Consider a suboptimal state a where f(a) > fmin. BecauseA is finite, there is a finite path from a to some global minimizer
a⋆ along which max{f(·)} is well-defined. Let ∆(a→ a⋆) be the “energy barrier” above max{f(a), f(a⋆)} along that
path – i.e., the minimal extra cost one must pay to move from a eventually down to a⋆. Formally,

∆(a→ a⋆) = min
γ:a→a⋆

max
x∈γ

[
f(x)−min{f(a), f(a⋆)}

]
. (52)

Because f(a⋆) < f(a), we have ∆(a→ a⋆) > 0. A single uphill step in cost δ has acceptance probability of exp (−δ/Tk).
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Why we need
∑

k exp [−(∆f)/Tk] =∞: Let ∆max be the maximum barrier needed to reach any global minimizer from
any suboptimal state:

∆max = max
a:f(a)>fmin,a⋆:f(a⋆)=fmin

∆(a→ a⋆). (53)

Then any upward move δ ≤ ∆max is accepted with probability at least exp (−∆max/Tk). If

∞∑
k=1

exp

(
−∆max

Tk

)
=∞, (54)

we get infinitely many chances (with positive probability) to surmount each barrier. By the Borel-Cantelli lemma, almost
surely, the chain eventually does surmount every finite barrier and thus can move from any suboptimal state to a strictly
better region. Repeatedly, the chain escapes local minima with probability 1.

Once the chain hits a global minimum a⋆ at sufficiently small Tk, any transition to a higher-cost state is exponentially
unlikely (with probability exp (− [f(a′)− f(a⋆)] /Tk)). As Tk → 0, these moves become negligible, causing the chain to
remain in (or return quickly to) a global minimizer. Consequently,

lim
k→∞

P (Ak ∈ {a : f(a) = fmin}) = 1, (55)

proving convergence to a global minimizer with probability 1.

This completes the proof.

B. Implementation Details
Evaluation metrics. We evaluate our approach and the baseline methods in terms of both predictive performance and
fairness/incentivization. For predictive performance, we use balanced accuracy. Fairness, on the other hand, can be assessed
using several metrics, including the incentivized participation rate (IPR) proposed by (Cho et al., 2022), the Pearson
correlation coefficient and the collaboration gain spread (CGS) proposed by (Tastan et al., 2025). However, we exclude IPR
from our analysis, as our allocation algorithm inherently guarantees a perfect IPR score by design. Instead, we primarily
benchmark our results using Pearson correlation and CGS.

Implementation details. We use cross-entropy loss for all image and language classification tasks and maintain consistent
training hyperparameters across all experiments. The optimizer of choice is SGD with momentum, with a default initial
learning rate of 0.01. A learning rate scheduler is applied, reducing the learning rate by a factor of 0.1 at rounds 50 and 75,
when the total number of communication rounds is set to 100. The total number of communications is set as follows:

• CIFAR-10, CIFAR-100, and SST: T = 100,

• MNIST, FMNIST, and SVHN: T = 50.

In each round, clients perform one local epoch of training. The batch size is fixed at 128 across all experiments. Additionally,
we specify one parameter: the minimum width of the slimmable network, which is set to pmin = 0.25 unless stated otherwise.
The maximum width is always kept at pmax = 1.0. All experiments were carried out on NVIDIA A100-SXM4-40GB GPUs,
with each run utilizing a single GPU.

Architecture details. To ensure the reproducibility of our experiments, we used easily implementable model architectures.
Specifically, we employed four different architectures:

1. Convolutional neural networks (CNN) – a lightweight CNN with one convolutional layer followed by two fully
connected layers, totaling 0.0606M parameters. This model is used for the MNIST and FMNIST datasets.
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Algorithm 2 Aequa (with training-time model rewards)

Input: minimum width pmin, maximum width pmax, number of communication rounds T , number of participants N ,
randomly initialized weights x0, number of local iterations E, momentum factor γ = 0.5, CA - contribution assessment
algorithm (e.g. CGSV, ShapFed, FedFAIM, etc.)

1: for each round t← 0, 1, . . . , T do ▷ Communication rounds
2: if t = 0 then
3: p

(i,t)
max ← pmax,∀i ∈ [N ]

4: Server broadcasts the full-sized model (pmax-model) to each client i ∈ [N ]
5: else
6: Server broadcasts p(i,t)max-submodel to each client i ∈ [N ]
7: end if
8: for each participant i ∈ [N ] do
9: for k ← 0, 1, . . . , E do ▷ Local iterations

10: Sample width p(i,k) ← U(pmin, p
(i,t)
max) uniformly

11: Update the weights of the model corresponding to p
(i,t)
max and p(i,k) widths

12: Send the updated weights of the p
(i,t)
max-submodel

13: end for
14: end for
15: Server computes the contribution of each client c̃i using gradients according to pmin-submodel via the CA algorithm
16: Server updates the contribution of each client using Eq. 4, cti ← γct−1

i + (1− γ)c̃i if t > 0 else cti ← c̃i
17: Server updates the participant widths using the reward mechanism in Eq. 5 ▷ Any reward mechanism
18: Server updates xt+1 using the masked averaging (Mohtashami et al., 2022; Tastan et al., 2024b)
19: end for

2. Enhanced CNN model – A more complex architecture with two convolutional layers followed by two fully connected
layers, comprising 2.0566M parameters. This model is used for the SVHN dataset.

3. ResNet18 (He et al., 2016) – a deeper model with 10.7527M parameters, used for the CIFAR-10 and CIFAR-100
datasets.

4. Long short-term memory network (LSTM) – this model includes an embedding layer of dimension 300, an LSTM
layer, and three fully connected layers, comprising 6.1461M parameters. It is used for the SST dataset.

For slimmable model implementation, we apply width slimming to the following layers: convolutional layers, fully
connected (FC) layers, batch normalization (BatchNorm), and LSTM layers. Slimming convolutional, fully connected, and
LSTM layers is straightforward; however, BatchNorm layers require special treatment due to the inconsistencies between
training and testing. To address this, we implement switchable batch normalization, which maintains multiple sets of batch
normalization statistics corresponding to different model widths. For further details, refer to (Yu et al., 2019).

Baseline approaches. We describe the baseline methods used for comparison.

FedAvg-FT. The standard FedAvg algorithm (McMahan et al., 2017) returns the same model to all clients at each FL
iteration, making the computation of the Pearson correlation coefficient undefined. To address this, following IAFL (Wu
et al., 2024), we introduce a fine-tuning step at the end of collaboration, where each client trains the global model locally for
an additional round without sharing the updates with the server. This approach enables each client to receive a personalized
model, allowing for a valid estimation of the Pearson correlation coefficient.

CGSV. In cosine-gradient Shapley-value (CGSV) (Xu et al., 2021), the server estimates each participant’s contribution using
gradient alignment, computed as the cosine similarity between an individual gradient and the aggregated gradient. During
the broadcasting phase, updates are sparsified based on these estimated contributions before being sent back to clients.

IAFL. For incentive-aware federated learning (IAFL), we adopt the same setting described in (Wu et al., 2024) under the
most fair scenario, which corresponds to setting the hyperparameters κ = 0 (sharing parameter) and q = 0 (stochastic
recovery probability). Additionally, we use standalone accuracies as the contribution measure, which is consistently used in
(Wu et al., 2024).
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ShapFed. We incorporate Shapley-driven federated learning (ShapFed) (Tastan et al., 2024a) and CGSV as a contribution
assessment algorithms within our method. ShapFed estimates contributions using last-layer gradients instead of full-model
parameters, making it an efficient and accurate approach in certain scenarios. To better align with our objective, we modify
the ShapFed algorithm to use the last m layers instead of only the classification layer, as our method does not require
class-specific contribution values. We set m = 10 in CIFAR-10 experiment with ResNet-18 architecture.

C. Extension to Training-time Model Rewards
In this section, we provide Algorithm 2, which extends our proposed Aequa framework to incorporate training-time model
rewards. While our primary allocation mechanism focuses on post-training model distribution, this extension enables
dynamic model adaptation during training, where clients receive real-time adjustments to their assigned model widths based
on their contributions. However, our approach remains flexible and can seamlessly integrate with the primary allocation
mechanism. We showcase this extension to demonstrate that our method is compatible with various reward allocation
algorithms, emphasizing its adaptability.

Algorithm 2 outlines the federated training process with contribution-aware model scaling. The algorithm initializes all
clients with the full-sized model. As training progresses, client contributions are continuously assessed using a contribution
assessment (CA) algorithm, such as CGSV (Xu et al., 2021), ShapFed (Tastan et al., 2024a), or FedFAIM (Shi et al., 2022).
These contributions are then updated iteratively using a momentum-based update rule, ensuring a fair and stable estimation
over miltiple communication rounds.

Based on the updated contributions, the server dynamically adjusts the model width allocated to each client, applying a
reward mechanism that incentivizes higher-performing participants. This ensures that clients who contribute more to the
global model benefit from larger subnetworks, while maintaining fairness in model distribution. The global model update
is performed using masked averaging (Mohtashami et al., 2022; Tastan et al., 2024b), a robust aggregation technique that
ensures stability across varying model widths. The full details of Algorithm 2 are presented below.

D. Additional Experiments
D.1. Performance vs model width

Remaining results of Figure 1. In this section, we present the remaining plots corresponding to Figure 1 from the main
paper, which analyzed CIFAR-10 and CIFAR-100 on the ResNet-18 architecture. Here, we extend the analysis by including
Figure 6, which illustrates the same performance vs. model width relationship for four additional datasets: MNIST, FMNIST,
SVHN, and SST and under a homogeneous partitioning strategy.

As described in Appendix B, these datasets are trained using different model architectures: MNIST and FMNIST utilize
a lightweight CNN, SVHN is trained on a more complex CNN, and SST is trained using an LSTM network. Despite the
differences in model complexity, the width-accuracy relationship remains monotonic, demonstrating that even small-sized
network architectures exhibit a clear relation between model width and predictive performance.
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Figure 6: Performance vs. network width (p ∈ [pmin = 0.25, pmax = 1.0]) on MNIST, FMNIST, SVHN, and SST datasets
using CNN and LSTM models. This figure extends the results presented in Figure 1.
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An important observation is that as the model complexity increases, the range between minimum and maximum accuracy
widens, making the trade-off between model width and accuracy more pronounced.

D.2. Predictive performance

Remaining results of Table 1. For completeness, we present the full results of our approach alongside the baseline
methods across all partitioning strategies. Table 1 previously reported results for a subset of partitions, while the complete
results are provided in Table 5.

From the overall results presented in Table 5, it is evident that our method outperforms all other approaches, including
FedAvg, and significantly surpasses fairness-based methods. Specifically, across 9 partitioning strategies and 6 datasets per
partition, our approach achieves the best performance in 36 cases. In the remaining 18 cases, it ranks as the second-best,
performing on par with the FedAvg algorithm.

D.3. Pearson correlation

Remaining results of Table 2. In Table 6, we present the complete results of the experiments on Pearson correlation,
extending the findings of Table 2, which reported results for only a subset of partitions. The results demonstrate that our
algorithm outperforms all other methods in all 54 cases.

As discussed in the fairness analysis (Section 5.2), our method consistently achieves near-perfect correlation coefficients,
typically in the range of 0.98 to 0.99. While the theoretical analysis guarantees a perfect correlation, in practice, the
continuity assumption slightly violated due to the need for discretizing the accuracy range [ℓ, u].

Additionally, in experiments using the ResNet-18 architecture, we introduce discretization by modifying the uniform
sampling strategy. Instead of continuous sampling, we define a set of model widths sampled from a bucket of predefined
values, starting from 0.25, 0.3, 0.35, and increasing in increments of 0.05, up to 1.0.

D.4. MCG and CGS results

In this section, we provide the detailed results for mean collaboration gain (MCG) and collaboration gain spread (CGS),
expanding upon the summary presented in Section 6.3. Table 7 presents a comprehensive comparison of Aequa against
baseline methods across all experimental settings. The results confirm that Aequa consistently achieves superior performance,
outperforming other methods in 42 out of 54 cases.

For cases where Aequa does not achieve the lowest CGS, we highlight the MCG values in green, demonstrating that Aequa
still significantly outperforms other methods in MCG (by ∼ ×3). This suggests that even when another method achieves a
comparable CGS, it does so at the expense of lower mean collaboration gain, indicating a weaker overall incentivization
effect. Such cases occur in extreme heterogeneous settings.

As explained earlier, another scenario where Aequa underperforms compared to IAFL is in the quantity skew setting. This
performance gap is primarily due to the selected value of pmin, which determines the minimum accuracy ℓ assigned to
low-contributing clients. To examine the impact of this parameter, we conduct an additional set of experiments where pmin

is adjusted to 0.1, specifically for the quantity skew partition. The results, presented in Table 8, show that under this revised
configuration, Aequa outperforms other baselines methods in 11 out of 12 cases, bringing the overall success rate of 48 out
of 54 cases.

The partitioning strategies where Aequa consistently outperforms all methods include homogeneous, Dirichlet (α =
{1.0, 2.0, 5.0}), quantity skew (0.15, 6), and label skew (C = 3). In contrast, CGSV performs well in extremely het-
erogeneous settings, achieving positive MCG values, but it tends to yield negative values in other settings, limiting its
generalizability. FedAvg-FT, on the other hand, consistently achieves positive MCG values but exhibits higher CGS values,
indicating a lack of fairness.

D.5. Per-participant performance

In this section, we present a per-participant performance analysis of Aequa and other baseline methods on the CIFAR-100
dataset under the following partitioning strategies: Dirichlet (α = 0.5), label skew (0.15, 6) and quantity skew (0.4, 2).

From the results, we observe that IAFL exhibits high variability in the first two partitioning strategies, and in some random
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Figure 7: Per-participant performance comparison of Aequa and other baseline methods on CIFAR-100 dataset under
Dirichlet (α = 0.5), label skew (0.15, 6) and quantity skew (0.4, 2) partitions.

seeds, IAFL fails to achieve a positive collaboration gain. On the other hand, CGSV remains very close to standalone
accuracy, significantly limiting the overall collaboration gain of the participants. Meanwhile, Aequa achieves performance
comparable to FedAvg-FT, while precisely capturing the correlation between final model accuracies and client contributions,
reinforcing its fairness properties.

In the quantity skew partition, we observe that Clients 1 and 2 are the highest contributors, as each holds 40% of the dataset.
The goal of a fair allocation algorithm is to match this distribution while expanding the total collaboration gain. Both IAFL
and Aequa produce similar-shaped performance plots to the standalone accuracy, consistently ensuring positive collaboration
gains. However, Aequa provides even better performance to Clients 1 and 2 compared to FedAvg-FT, while also maximizing
the mean collaboration gain (MCG) across all participants, demonstrating its effectiveness in fair model allocation.

D.6. Model width as a reward

In this section, we explore the transferability of Aequa when the server lacks prior knowledge of each sub-model’s
performance (does not possess a validation set). In this scenario, participants are rewarded directly based on the model width
(p), rather than using explicit performance-based allocations (a).

To implement this approach, we use standalone accuracies as the contribution measure, and the allocation problem becomes
mapping model widths to participant contributions. We employ the same allocation algorithm described in Section 4.2, but
modify the utility measure to be computed using normalized contributions, i.e. ci/maxk ck, ensuring that both vectors share
the same range of values before executing the allocation process.

Table 9 presents the results of this experiment, covering three datasets across all partitioning strategies. The results
demonstrate that the correlation coefficient between participant contributions (input) and assigned model widths (output) is
perfectly aligned, consistently achieving a correlation coefficient of 1.0.

Additionally, we report the correlation coefficient between the contribution measure and the assigned sub-model’s corre-
sponding accuracy. The findings indicate that even when the server lacks knowledge of each sub-model’s accuracy, high
fairness performance is still achievable. Compared to the results presented in the main paper, this method still outperforms
all baseline approaches, demonstrating that Aequa maintains strong fairness properties.
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Table 5: The predictive performance of our method and other baselines using different dataset partitions. The results are
averaged over five independent evaluations.

PARTITION DATASET FEDAVG CGSV IAFL AEQUA

HOMOGENEOUS

MNIST 98.67± 0.07 90.62± 2.32 98.40± 0.13 98.60± 0.11
FMNIST 89.45± 0.33 77.01± 2.51 88.54± 0.25 89.63± 0.19
SVHN 90.54± 0.18 77.61± 3.16 89.64± 0.13 90.18± 0.15
CIFAR-10 89.99± 0.23 61.29± 2.92 88.42± 0.07 90.84± 0.26
CIFAR-100 65.92± 0.22 35.36± 0.77 63.23± 0.30 67.83± 0.32
SST 34.44± 1.33 30.12± 1.03 34.02± 0.51 34.44± 1.19

HETEROGENEOUS:
DIRICHLET (α = 0.1)

MNIST 97.38± 0.62 94.06± 1.79 88.45± 7.87 97.30± 0.58
FMNIST 83.32± 1.78 71.51± 8.20 66.46± 4.72 84.60± 1.32
SVHN 86.38± 0.87 72.48± 4.81 68.71± 7.85 86.33± 1.00
CIFAR-10 74.73± 3.65 48.77± 5.02 46.36± 9.31 75.97± 3.36
CIFAR-100 61.16± 0.25 34.16± 1.63 43.38± 4.53 63.42± 0.54
SST 32.17± 1.60 21.54± 1.89 27.28± 3.06 33.54± 1.48

HETEROGENEOUS:
DIRICHLET (α = 0.5)

MNIST 98.45± 0.13 93.18± 1.70 97.69± 0.44 98.29± 0.16
FMNIST 87.86± 0.42 79.24± 3.28 85.42± 1.67 88.20± 0.49
SVHN 89.33± 0.25 80.20± 2.10 87.08± 0.79 89.14± 0.28
CIFAR-10 87.74± 0.23 65.12± 1.82 81.99± 2.46 88.75± 0.39
CIFAR-100 64.54± 0.30 32.19± 0.96 62.37± 1.35 66.39± 0.41
SST 33.52± 0.80 23.82± 2.03 29.64± 2.15 34.21± 1.08

HETEROGENEOUS:
DIRICHLET (α = 1.0)

MNIST 98.52± 0.14 92.71± 1.53 98.17± 0.15 98.48± 0.13
FMNIST 88.72± 0.36 78.76± 1.40 87.67± 0.22 89.09± 0.23
SVHN 89.96± 0.30 79.53± 2.50 88.51± 0.26 89.75± 0.22
CIFAR-10 88.76± 0.26 65.88± 5.02 84.02± 1.12 89.67± 0.28
CIFAR-100 65.06± 0.29 33.92± 1.32 64.37± 0.68 67.06± 0.44
SST 34.00± 0.87 25.24± 2.55 31.26± 1.22 34.15± 1.07

HETEROGENEOUS:
DIRICHLET (α = 2.0)

MNIST 98.58± 0.15 92.56± 1.54 98.22± 0.13 98.50± 0.09
FMNIST 89.12± 0.36 79.42± 2.17 88.27± 0.28 89.46± 0.18
SVHN 90.19± 0.10 78.16± 2.46 88.91± 0.14 89.94± 0.13
CIFAR-10 89.35± 0.28 68.60± 3.36 88.09± 0.33 90.30± 0.18
CIFAR-100 65.56± 0.22 36.14± 1.66 64.71± 0.70 67.51± 0.29
SST 33.45± 1.32 27.55± 0.62 33.25± 0.27 34.58± 0.49

HETEROGENEOUS:
DIRICHLET (α = 5.0)

MNIST 98.64± 0.12 91.73± 2.95 98.31± 0.13 98.54± 0.11
FMNIST 89.35± 0.31 77.03± 2.66 88.44± 0.24 89.60± 0.15
SVHN 90.48± 0.16 80.52± 1.94 89.32± 0.15 90.08± 0.29
CIFAR-10 89.56± 0.29 68.09± 5.05 88.47± 0.50 90.35± 0.14
CIFAR-100 65.79± 0.29 37.28± 0.66 65.61± 0.39 67.77± 0.16
SST 34.26± 1.01 28.75± 0.31 33.41± 1.17 34.47± 0.55

QUANTITY SKEW:
IMBALANCED (0.15, 6)

MNIST 98.69± 0.10 93.22± 0.99 98.40± 0.12 98.62± 0.09
FMNIST 89.53± 0.24 78.73± 2.14 88.53± 0.26 89.72± 0.17
SVHN 90.59± 0.17 77.54± 2.34 89.51± 0.13 90.26± 0.16
CIFAR-10 90.00± 0.13 66.89± 1.85 89.51± 0.15 90.71± 0.14
CIFAR-100 65.88± 0.38 39.62± 0.74 64.60± 0.25 68.24± 0.11
SST 34.26± 0.98 29.53± 1.02 33.70± 0.70 34.64± 1.01

QUANTITY SKEW:
IMBALANCED (0.4, 2)

MNIST 98.69± 0.09 92.73± 1.34 98.42± 0.16 98.63± 0.12
FMNIST 89.58± 0.29 76.14± 4.79 88.51± 0.25 89.78± 0.19
SVHN 90.69± 0.15 79.11± 1.35 89.49± 0.07 90.35± 0.17
CIFAR-10 89.78± 0.14 69.13± 3.26 88.50± 0.13 90.86± 0.15
CIFAR-100 66.30± 0.23 38.35± 1.01 63.67± 0.10 68.80± 0.16
SST 35.45± 1.11 26.10± 0.65 34.65± 0.56 35.29± 0.76

LABEL SKEW: #OC={3, 30}

MNIST 94.37± 3.43 79.19± 7.94 73.10± 15.00 95.37± 1.15
FMNIST 79.73± 3.80 61.54± 8.03 60.10± 8.03 80.51± 3.27
SVHN 79.73± 5.89 64.07± 7.65 55.83± 11.89 80.69± 6.05
CIFAR-10 71.88± 3.28 48.02± 3.88 44.12± 21.15 72.40± 3.17
CIFAR-100 60.95± 1.18 35.09± 0.42 55.26± 3.85 62.84± 1.18
SST 33.96± 0.35 24.88± 2.04 30.33± 1.68 33.01± 0.90

NUMBER OF TIMES THAT PERFORMS THE BEST 18/54 0/54 0/54 36/54
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Table 6: The incentivization performance of our method and other baselines under different dataset partitions, measured
using the Pearson correlation coefficient between the final model accuracies and standalone accuracies. The results are
averaged over five independent evaluations.

PARTITION DATASET FEDAVG-FT CGSV IAFL AEQUA

HOMOGENEOUS

MNIST 0.07± 0.24 −0.30± 0.16 0.16± 0.20 0.97± 0.02
FMNIST 0.21± 0.07 −0.09± 0.35 0.27± 0.24 0.98± 0.02
SVHN −0.12± 0.36 0.02± 0.17 0.07± 0.28 0.98± 0.02
CIFAR-10 0.04± 0.27 0.05± 0.42 −0.01± 0.15 0.99± 0.01
CIFAR-100 −0.07± 0.37 −0.19± 0.36 0.02± 0.31 0.96± 0.01
SST 0.06± 0.25 −0.07± 0.32 −0.03± 0.26 0.98± 0.01

HETEROGENEOUS:
DIRICHLET (α = 0.1)

MNIST 0.39± 0.37 0.56± 0.18 0.61± 0.23 0.85± 0.03
FMNIST 0.21± 0.41 0.56± 0.28 0.61± 0.25 0.89± 0.06
SVHN 0.66± 0.24 0.21± 0.46 0.80± 0.18 0.92± 0.02
CIFAR-10 −0.18± 0.35 0.67± 0.14 0.84± 0.15 0.94± 0.02
CIFAR-100 −0.17± 0.46 0.30± 0.52 0.89± 0.07 0.99± 0.01
SST −0.20± 0.35 0.14± 0.50 0.91± 0.09 0.98± 0.01

HETEROGENEOUS:
DIRICHLET (α = 0.5)

MNIST 0.32± 0.40 −0.22± 0.48 0.67± 0.16 0.87± 0.03
FMNIST 0.67± 0.19 0.34± 0.48 0.50± 0.10 0.88± 0.05
SVHN 0.80± 0.09 −0.18± 0.54 0.59± 0.41 0.90± 0.04
CIFAR-10 −0.16± 0.21 0.44± 0.38 0.93± 0.03 0.94± 0.03
CIFAR-100 0.19± 0.29 0.38± 0.14 0.58± 0.23 0.99± 0.00
SST −0.15± 0.07 −0.10± 0.34 0.88± 0.05 0.94± 0.04

HETEROGENEOUS:
DIRICHLET (α = 1.0)

MNIST 0.55± 0.20 0.13± 0.48 0.48± 0.40 0.91± 0.03
FMNIST 0.42± 0.51 0.27± 0.30 0.46± 0.37 0.95± 0.03
SVHN 0.52± 0.28 0.08± 0.19 0.69± 0.08 0.94± 0.03
CIFAR-10 −0.05± 0.15 0.50± 0.41 0.89± 0.04 0.94± 0.02
CIFAR-100 −0.08± 0.35 −0.23± 0.51 0.65± 0.37 0.99± 0.00
SST 0.09± 0.29 −0.16± 0.33 0.71± 0.12 0.94± 0.04

HETEROGENEOUS:
DIRICHLET (α = 2.0)

MNIST 0.49± 0.32 −0.07± 0.57 0.37± 0.41 0.96± 0.03
FMNIST 0.50± 0.24 0.03± 0.52 0.51± 0.27 0.96± 0.03
SVHN 0.67± 0.10 0.09± 0.06 0.72± 0.16 0.95± 0.02
CIFAR-10 0.17± 0.28 0.58± 0.21 0.83± 0.15 0.97± 0.03
CIFAR-100 −0.26± 0.25 0.05± 0.46 0.65± 0.26 0.99± 0.00
SST −0.19± 0.36 0.08± 0.36 0.59± 0.28 0.95± 0.04

HETEROGENEOUS:
DIRICHLET (α = 5.0)

MNIST 0.26± 0.32 −0.10± 0.40 0.39± 0.46 0.96± 0.03
FMNIST 0.26± 0.32 −0.32± 0.22 0.12± 0.29 0.97± 0.02
SVHN 0.09± 0.18 0.14± 0.37 0.62± 0.05 0.98± 0.01
CIFAR-10 0.01± 0.16 0.22± 0.54 0.80± 0.08 0.98± 0.02
CIFAR-100 0.11± 0.25 0.04± 0.26 0.18± 0.50 0.99± 0.01
SST −0.04± 0.21 0.21± 0.32 0.37± 0.36 0.98± 0.01

QUANTITY SKEW:
IMBALANCED (0.15, 6)

MNIST −0.63± 0.18 0.34± 0.80 0.95± 0.04 0.98± 0.01
FMNIST −0.45± 0.28 0.49± 0.71 0.93± 0.02 0.98± 0.01
SVHN −0.76± 0.12 0.42± 0.75 0.99± 0.01 1.00± 0.00
CIFAR-10 −0.37± 0.16 0.98± 0.02 0.99± 0.00 1.00± 0.00
CIFAR-100 0.06± 0.40 0.97± 0.03 1.00± 0.00 1.00± 0.00
SST −0.07± 0.48 −0.23± 0.54 0.90± 0.02 0.94± 0.04

QUANTITY SKEW:
IMBALANCED (0.4, 2)

MNIST −0.61± 0.13 −0.33± 0.76 0.76± 0.04 0.96± 0.03
FMNIST −0.21± 0.26 0.51± 0.38 0.90± 0.04 0.99± 0.01
SVHN −0.54± 0.20 −0.06± 0.79 0.93± 0.01 0.98± 0.01
CIFAR-10 −0.41± 0.35 0.20± 0.96 0.92± 0.04 1.00± 0.00
CIFAR-100 0.05± 0.25 0.47± 0.75 0.98± 0.01 1.00± 0.00
SST −0.05± 0.61 −0.97± 0.01 0.90± 0.07 0.97± 0.01

LABEL SKEW: #OC={3, 30}

MNIST 0.03± 0.41 −0.27± 0.27 0.23± 0.24 0.81± 0.13
FMNIST −0.44± 0.27 0.11± 0.45 0.08± 0.26 0.99± 0.01
SVHN 0.43± 0.25 −0.43± 0.42 0.01± 0.25 0.98± 0.00
CIFAR-10 0.19± 0.32 0.12± 0.32 0.22± 0.38 0.97± 0.02
CIFAR-100 −0.38± 0.22 0.00± 0.24 0.31± 0.22 0.98± 0.02
SST 0.45± 0.38 −0.19± 0.48 0.48± 0.37 0.97± 0.03

NUMBER OF TIMES THAT PERFORMS THE BEST 0/54 0/54 1/54 54/54
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Table 7: The average collaboration gain (MCG) (↑) and the collaboration gain spread (CGS) (↓) results of our method and
other baselines under different dataset partitions. The results are averaged over five independent evaluations.

PARTITION DATASET
FEDAVG-FT CGSV IAFL AEQUA

MCG CGS MCG CGS MCG CGS MCG CGS

HOMOGENEOUS

MNIST 1.58 0.29 −6.63 0.18 1.64 0.18 1.64 0.04
FMNIST 3.05 0.77 −7.90 0.68 3.13 0.68 3.43 0.17
SVHN 5.08 0.81 −5.26 0.39 6.57 0.39 6.68 0.08
CIFAR-10 13.62 0.65 −15.08 0.48 13.62 0.59 13.31 0.09
CIFAR-100 31.54 0.64 −2.02 0.43 31.54 0.56 31.14 0.14
SST 8.77 1.48 4.74 0.81 8.96 0.81 8.11 0.22

HETEROGENEOUS:
DIRICHLET (α = 0.1)

MNIST 29.27 14.60 43.72 12.46 16.41 11.77 47.63 12.50
FMNIST 15.56 14.75 31.43 9.80 8.48 10.21 40.89 9.07
SVHN 11.97 12.15 36.77 11.81 9.47 9.63 49.85 9.92
CIFAR-10 25.51 16.13 7.63 7.00 3.77 6.87 39.91 4.73
CIFAR-100 41.13 3.02 8.09 1.91 10.79 4.99 40.65 0.39
SST 9.19 3.80 −0.89 2.24 1.26 1.01 8.65 0.88

HETEROGENEOUS:
DIRICHLET (α = 0.5)

MNIST 9.48 7.37 7.27 6.00 8.93 4.59 11.56 5.23
FMNIST 6.81 4.60 6.24 5.92 5.86 6.05 14.34 4.41
SVHN 12.90 5.85 14.37 7.75 12.85 6.11 21.79 6.33
CIFAR-10 28.88 9.52 6.34 6.56 13.97 3.26 28.25 5.73
CIFAR-100 37.35 1.74 4.99 1.23 27.71 7.99 37.00 0.23
SST 9.81 2.45 −0.15 2.53 3.52 1.48 9.49 1.15

HETEROGENEOUS:
DIRICHLET (α = 1.0)

MNIST 4.69 2.84 −0.38 2.75 4.55 2.53 5.19 2.10
FMNIST 4.20 2.55 −1.17 2.74 4.35 2.39 7.06 1.22
SVHN 8.10 7.11 4.08 4.53 9.72 3.38 13.36 3.13
CIFAR-10 22.69 6.54 −2.38 4.75 14.94 3.50 20.39 3.50
CIFAR-100 35.46 2.00 3.37 1.22 31.08 2.94 34.60 0.22
SST 9.48 1.97 0.77 2.12 4.74 1.73 8.50 0.88

HETEROGENEOUS:
DIRICHLET (α = 2.0)

MNIST 2.64 1.10 −3.39 1.13 2.54 1.04 2.59 0.52
FMNIST 2.54 2.13 −3.53 1.58 3.84 1.33 4.63 0.52
SVHN 6.97 1.94 −1.63 2.48 7.36 1.72 8.79 1.15
CIFAR-10 17.99 4.31 −7.89 3.06 14.08 2.30 15.70 1.47
CIFAR-100 33.68 1.92 1.12 1.24 29.58 5.11 32.89 0.22
SST 8.32 2.14 2.87 1.55 6.02 1.49 8.53 0.76

HETEROGENEOUS:
DIRICHLET (α = 5.0)

MNIST 1.84 0.40 −4.23 0.37 1.78 0.32 1.65 0.09
FMNIST 3.05 2.58 −6.74 1.62 3.74 1.64 4.45 0.67
SVHN 5.26 4.35 −1.12 1.16 6.78 0.93 7.06 0.21
CIFAR-10 15.38 3.03 −11.04 2.34 9.29 7.61 13.04 0.78
CIFAR-100 32.47 1.04 0.58 0.66 31.92 1.33 32.01 0.17
SST 8.73 1.17 3.66 1.02 7.36 1.20 8.28 0.27

QUANTITY SKEW:
IMBALANCED (0.15, 6)

MNIST 2.83 2.50 −2.23 2.09 2.33 1.73 2.43 1.56
FMNIST 3.96 2.85 −4.98 2.17 3.59 1.42 3.72 0.49
SVHN 7.91 5.00 −3.56 4.47 6.25 1.73 7.98 2.84
CIFAR-10 19.88 14.02 −5.85 8.96 13.67 7.01 17.62 10.31
CIFAR-100 34.13 13.63 2.87 7.93 21.23 1.26 29.56 5.07
SST 9.16 2.46 4.78 2.40 6.85 1.75 8.62 1.21

QUANTITY SKEW:
IMBALANCED (0.4, 2)

MNIST 4.60 2.38 −1.13 2.33 2.58 1.58 3.44 1.58
FMNIST 5.71 3.00 −5.93 2.72 3.28 1.73 3.76 1.25
SVHN 11.80 5.04 1.30 4.77 5.94 2.21 10.08 3.49
CIFAR-10 29.65 14.70 −2.20 10.60 13.88 8.03 24.88 11.76
CIFAR-100 41.66 19.02 6.92 11.84 10.63 5.59 30.96 12.42
SST 11.08 3.56 3.63 4.16 3.85 1.69 9.64 2.39

LABEL SKEW: #OC={3, 30}

MNIST 18.99 10.86 50.04 0.71 17.88 11.98 64.34 0.06
FMNIST 11.61 9.64 34.63 2.35 13.22 9.58 51.80 0.20
SVHN 1.13 1.07 38.59 1.13 9.21 8.47 51.45 0.09
CIFAR-10 24.11 6.38 5.79 4.86 5.57 11.68 39.42 0.18
CIFAR-100 40.28 1.40 5.25 0.84 23.16 9.93 40.75 0.16
SST 8.86 1.70 −0.89 1.97 5.55 1.92 7.60 0.65

NUMBER OF TIMES THAT PERFORMS THE BEST 1/54 0/54 11/54 42/54
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Table 8: The average collaboration gain (MCG) (↑) and the collaboration gain spread (CGS) (↓) results of our method and
other baselines under different dataset partitions. The results are averaged over five independent evaluations. Continuation
of Table 7 with different minimum width (pmin = 0.1).

PARTITION DATASET
FEDAVG-FT CGSV IAFL AEQUA

MCG CGS MCG CGS MCG CGS MCG CGS

QUANTITY SKEW:
IMBALANCED (0.15, 6)

MNIST 2.83 2.50 −2.23 2.09 2.33 1.73 1.70 1.02
FMNIST 3.96 2.85 −4.98 2.17 3.59 1.42 2.82 0.45
SVHN 7.91 5.00 −3.56 4.47 6.25 1.73 5.38 0.75
CIFAR-10 19.88 14.02 −5.85 8.96 13.67 7.01 13.46 3.04
CIFAR-100 34.13 13.63 2.87 7.93 21.23 1.26 24.72 1.16
SST 9.16 2.46 4.78 2.40 6.85 1.75 7.71 0.58

QUANTITY SKEW:
IMBALANCED (0.4, 2)

MNIST 4.60 2.38 −1.13 2.33 2.58 1.58 2.59 1.28
FMNIST 5.71 3.00 −5.93 2.72 3.28 1.73 2.69 1.09
SVHN 11.80 5.04 1.30 4.77 5.94 2.21 5.89 1.71
CIFAR-10 29.65 14.70 −2.20 10.60 13.88 8.03 14.20 6.62
CIFAR-100 41.66 19.02 6.92 11.84 10.63 5.59 21.08 7.64
SST 11.08 3.56 3.63 4.16 3.85 1.69 8.80 1.66

NUMBER OF TIMES THAT PERFORMS THE BEST 0/12 0/12 1/12 11/12

Table 9: Incentivization performance of Aequa on CIFAR-10, CIFAR-100, and MNIST datasets under various partitioning
strategies, evaluated using the Pearson correlation coefficient between (1) assigned model widths and contributions and (2)
final model accuracies and contributions. Results are averaged over five independent runs.

DATASET PARTITION ρ(c,p) (CONTRIBUTION, WIDTH) ρ(c,a) (CONTRIBUTION, ACC.)

CIFAR-10

HOMOGENEOUS 1.00± 0.00 0.94± 0.01
DIRICHLET (α = 0.1) 1.00± 0.00 0.91± 0.04
DIRICHLET (α = 0.5) 1.00± 0.00 0.95± 0.02
DIRICHLET (α = 1.0) 1.00± 0.00 0.95± 0.02
DIRICHLET (α = 2.0) 1.00± 0.00 0.96± 0.02
DIRICHLET (α = 5.0) 1.00± 0.00 0.92± 0.04
QUANTITY SKEW (0.15, 6) 1.00± 0.00 1.00± 0.00
QUANTITY SKEW (0.4, 2) 1.00± 0.00 0.99± 0.01
LABEL SKEW (#C = {3, 30}) 1.00± 0.00 0.96± 0.02

CIFAR-100

HOMOGENEOUS 1.00± 0.00 0.95± 0.01
DIRICHLET (α = 0.1) 1.00± 0.00 0.96± 0.02
DIRICHLET (α = 0.5) 1.00± 0.00 0.92± 0.02
DIRICHLET (α = 1.0) 1.00± 0.00 0.94± 0.03
DIRICHLET (α = 2.0) 1.00± 0.00 0.95± 0.03
DIRICHLET (α = 5.0) 1.00± 0.00 0.96± 0.02
QUANTITY SKEW (0.15, 6) 1.00± 0.00 1.00± 0.00
QUANTITY SKEW (0.4, 2) 1.00± 0.00 1.00± 0.00
LABEL SKEW (#C = {3, 30}) 1.00± 0.00 0.95± 0.02

MNIST

HOMOGENEOUS 1.00± 0.00 0.91± 0.04
DIRICHLET (α = 0.1) 1.00± 0.00 0.90± 0.03
DIRICHLET (α = 0.5) 1.00± 0.00 0.92± 0.04
DIRICHLET (α = 1.0) 1.00± 0.00 0.92± 0.03
DIRICHLET (α = 2.0) 1.00± 0.00 0.94± 0.04
DIRICHLET (α = 5.0) 1.00± 0.00 0.88± 0.03
QUANTITY SKEW (0.15, 6) 1.00± 0.00 0.95± 0.04
QUANTITY SKEW (0.4, 2) 1.00± 0.00 0.94± 0.04
LABEL SKEW (#C = {3, 30}) 1.00± 0.00 0.90± 0.04
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