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ABSTRACT

Deep neural networks have become the standard solution for designing models that
can perform multiple dense computer vision tasks such as depth estimation and
semantic segmentation thanks to their ability to capture complex correlations in high
dimensional feature space across tasks. However, the cross-task correlations that are
learned in the unstructured feature space can be extremely noisy and susceptible to
overfitting, consequently hurting performance. We propose to address this problem
by introducing a structured 3D-aware regularizer which interfaces multiple tasks
through the projection of features extracted from an image encoder to a shared 3D
feature space and decodes them into their task output space through differentiable
rendering. We show that the proposed method is architecture agnostic and can be
plugged into various prior multi-task backbones to improve their performance; as
we evidence using standard benchmarks NYUv2 and PASCAL-Context.

1 INTRODUCTION

Learning models that can perform multiple tasks coherently while efficiently sharing computation
across tasks is the central focus of multi-task learning (MTL) (Caruana, 1997). Deep neural networks
(DNNs), which have become the standard solution for various computer vision problems, provide
at least two key advantages for MTL. First, they allow for sharing a significant portion of features
and computation across multiple tasks, hence they are computationally efficient for MTL. Second,
thanks to their hierarchical structure and high-dimensional representations, they can capture complex
cross-task correlations at several abstraction levels (or layers).

Yet designing multi-task DNNs that perform well in all tasks is extremely challenging. This often
requires careful engineering of mechanisms that allow for the sharing of relevant features between
tasks, while also maintaining task-specific features. Many recent multi-task DNNs (Vandenhende
et al., 2021) can be decomposed into shared feature encoder across all tasks and following task-
specific decoders to generate predictions. The technical challenge here is to strike a balance between
the portion of the shared and task-specific features to achieve good performance-computation trade-
off. To enable more flexible feature sharing and task-specific adaptation, Liu et al. (2019) propose
to use ‘soft’ task-specific attention modules appended to the shared encoder that effectively shares
most features and parameters across the tasks while adapting them to each task through light-weight
attention modules. However, these attention modules are limited to share features across tasks only
within each layer (or scale). Recent works (Vandenhende et al., 2020b; Bruggemann et al., 2021)
propose to aggregate features from different layers and to capture cross-task relations from the
multi-scale features. More recently, capturing long-range spatial correlations across multiple tasks
has been shown to further improve MTL performance through use of vision transformer modules (Ye
& Xu, 2022).

Our central hypothesis is that the high-dimensional and unstructured features, shared across tasks, in
the recent MTL models are prone to capturing noisy cross-task correlations and hence hurt perfor-
mance. To this end, we propose regulating the feature space of shared representations by introducing
a structure that is valid for all considered tasks. In particular, we look at dense prediction computer
vision problems such as monocular depth estimation, semantic segmentation where each input pixel is
associated with a target value, and represent their shared intermediate features in a 3D-aware feature
space by leveraging recent advances in 3D modeling and differentiable rendering (Niemeyer et al.,
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2020; Mildenhall et al., 2020; Chan et al., 2022; 2023). Our key intuition is that the physical 3D
world affords us inherent and implicit consistency between various computer vision tasks. Hence, by
projecting high-dimensional features to a structured 3D-aware space, our method eliminates multiple
geometrically-inconsistent cross-task correlations.

To this end, we propose a novel regularization method that can be plugged into diverse prior MTL
architectures for dense vision problems including both convolutional (Vandenhende et al., 2020b) and
transformer (Ye & Xu, 2022) networks. Prior MTL architectures are typically composed of a shared
feature extractor (encoder) and multiple task-specific decoders. Our regularizer, instantiated as a deep
network, connects to the output of the shared feature encoder, maps the encodings to three groups of
feature maps and further uses these to construct a tri-plane representing planes x−y, x−z, y−z as
in Chan et al. (2022). We are able to query any 3D position by projecting it onto the tri-plane and
retrieve a corresponding feature vector through bi-linear interpolation across the planes, passing them
through light-weight, task-specific decoders and then rendering the outputs as predictions for each
task by raycasting, as in Mildenhall et al. (2020). Once the model has been optimized by minimizing
each task loss for both the base model and regularizer, the regularizer is removed. Hence our method
does not bring any additional inference cost. Importantly, the regularizer does not require multiple
views for each scene and learns 3D-aware representations from a single view. Additionally, our model
generalizes to unseen scenes, as the feature encoder is shared across different scenes.

Our method relates to both MTL and 3D modeling work. It is orthogonal to recent MTL contributions
that focus rather on designing various cross-task interfaces (Vandenhende et al., 2020a; Liu et al.,
2019), or optimization strategies that may obtain more balanced performance across tasks (Kendall
et al., 2018; Chen et al., 2018). Alternatively, our main focus is to learn better MTL representations by
enforcing 3D structure upon them, through our 3D-aware regularizer. Our method can be incorporated
to several recent MTL methods and improve their performance. Most related to ours, Zhi et al. (2021)
and Kundu et al. (2022) extend the well-known neural radiance field (NeRF) (Mildenhall et al., 2020)
to semantic segmentation and panoptic 3D scene reconstruction, respectively. Unlike them, our main
focus is to jointly perform multiple tasks that include depth estimation, boundary detection, surface
normal estimation, in addition to semantic segmentation. Uniquely, our method does not require
multiple views. Finally, our method is not scene-specific, can learn multiple scenes in a single model
and generalizes to unseen scenes.

To summarize, our main contribution is a novel 3D-aware regularization method for the MTL of
computer vision problems. Our method is architecture agnostic, does not bring any additional
computational cost for inference, and yet can significantly improve the performance of state-of-the-art
MTL models as evidenced under two standard benchmarks; NYUv2 and PASCAL-Context.

2 RELATED WORK

Multi-task Learning MTL (Caruana, 1997) commonly aims to learn a single model that can
accurately generate predictions for multiple desired tasks, given an input (see Fig. 1 (a)). We refer
to Ruder (2017); Zhang & Yang (2017); Vandenhende et al. (2021) for comprehensive literature
review. The prior works in computer vision problems can be broadly divided into two groups. The
first group (Kokkinos, 2017; Ruder et al., 2019; Vandenhende et al., 2020a; Liang et al., 2018;
Bragman et al., 2019; Strezoski et al., 2019; Xu et al., 2018; Zhang et al., 2019; Bruggemann et al.,
2021; Bilen & Vedaldi, 2016; Zhang et al., 2018; Xu et al., 2018) focuses on improving network
architecture via more effective information sharing across tasks by designing cross-task attention
mechanisms Misra et al. (2016), task-specific attention modules (Liu et al., 2019; Bhattacharjee et al.,
2023), cross-tasks feature interaction (Ye & Xu, 2022; Vandenhende et al., 2020b), gating strategies
or mixture of experts modules (Bruggemann et al., 2020; Guo et al., 2020; Chen et al., 2023; Fan
et al., 2022; Ye & Xu, 2023b), visual prompting (Ye & Xu, 2023a; Liu et al., 2023). The second group
aims to address the unbalanced optimization for joint minimization of multiple task-specific loss
functions, where each may exhibit varying characteristics. This is achieved through either actively
changing loss term weights (Kendall et al., 2018; Liu et al., 2019; Guo et al., 2018; Chen et al., 2018;
Lin et al., 2019; Sener & Koltun, 2018; Liu et al., 2021b), modifying the gradients of loss functions
w.r.t. shared network weights to alleviate task conflicts (Yu et al., 2020; Liu et al., 2021a; Chen et al.,
2020; Chennupati et al., 2019; Suteu & Guo, 2019) or knowledge distillation (Li & Bilen, 2020; Li
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Figure 1: Illustration of (a) vanilla multi-task learning, (b) standard neural radiance fields (NeRFs)
and (c) our 3D-aware multi-task learning method.

et al., 2023). Unlike these methods, our work aims to improve MTL performance by regularizing
DNNs through the introduction of 3D-aware representations (see Fig. 1 (c)).

Neural Rendering Our approach also relates to the line of work that learns a 3D scene represen-
tations for performing novel view synthesis (Lombardi et al., 2019; Meshry et al., 2019; Sitzmann
et al., 2019; Thies et al., 2019; Mildenhall et al., 2020; Chan et al., 2021; Cai et al., 2022; Gu et al.,
2021), creating explicit 3D object (Lin et al., 2023), view editing (Zhang et al., 2023). Prior methods
with few exceptions can represent only a single scene per model, require many calibrated views, or
are not able to perform other tasks than novel view synthesis such as semantic segmentation, depth
estimation (see Fig. 1 (b)). PixelNeRF (Yu et al., 2021) conditions a NeRF (Mildenhall et al., 2020) on
image inputs through an encoder, allows for the modeling of multiple scenes jointly and generalizes
to unseen scenes, however, the work focuses only on synthesizing novel views. Zhi et al. (2021)
extend the standard NeRF pipeline through a parallel semantic segmentation branch to jointly encode
semantic information of the 3D scene, and obtain 2D segmentations by rendering the scene for a
given view using raycasting. However, their model is scene-specific and does not generalize to unseen
scenes. Panoptic Neural Fields (Kundu et al., 2022) predict a radiance field that represents the color,
density, instance and category label of any 3D point in a scene through the combination of multiple
encoders for both background and each object instance. The work was designed for predicting those
tasks only on novel views of previously seen scenes, hence it cannot be applied to new scenes without
further training on them and is also limited to handle only rigid objects (c.f . non-rigid, deformable).
In contrast, our method can be used to efficiently predict multiple tasks in novel scenes, without any
such restrictions on object type, can be trained from a single view and is further not limited to a fixed
architecture or specific set of tasks. Finally, our work harnesses efficient triplane 3D representations
from (Chan et al., 2022) that is originally designed to generate high-quality, 3D-aware representations
from a collection of single-view images. Our method alternatively focuses on the joint learning of
dense vision problems and leverages 3D understanding to bring a beneficial structure to the learned
representations.

3 METHOD

We next briefly review the problem settings for MTL and neural rendering to provide required
background and then proceed to describe our proposed method.

3.1 MULTI-TASK LEARNING

Our goal is to learn a model ŷ that takes in an RGB image I as input and jointly predicts ground-truth
labels Y = {y1, . . . ,yT } for T tasks. In this paper, we focus on dense prediction problems such as
semantic segmentation, depth estimation where input image and labels have the same dimensionality.
While it is possible to learn an independent model for each task, a more efficient design involves
sharing a large portion of the computation across the tasks, via a common feature encoder f . Encoder
f takes in an image as input and outputs a high-dimensional feature map which has smaller width
and height than the input. In this setting, the encoder is followed by multiple task-specific decoders
ht that each ingests f(I) to predict corresponding task labels i.e., ht(f(I)), as depicted in Fig. 1 (a).
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Figure 2: Diagram of 3D-aware regularizer g. The regularizer g takes as input the features from the
shared encoder and transforms it to a tri-plane using a tri-plane encoder e. Given a 3D point (x, y, z)
on a given ray, we project the coordinates onto three planes and aggregate features from three planes
using summation to obtain the 3D representations, which are then fed into a light-weight MLP nt to
estimate predictions of each task or the density of the 3D point. Finally, in volume rendering r, we
integrate the predictions over the ray to render the predictions of each task.

Given a labeled training set D with N image-label pairs, the model weights can be optimized as:

min
f,{ht}T

t=1

1

N

∑
(I,Y )∈D

∑
yt∈Y

Lt(ht ◦ f(I),yt), (1)

where Lt is the loss function for task t, i.e., cross entropy loss for semantic segmentation, L1 loss for
depth estimation. We provide more details in Sec. 4,

3.2 3D-AWARE MULTI-TASK LEARNING

An ideal feature extractor f is expected to extract both task-agnostic and task-specific information,
towards enabling the following task-specific decoders to solve their respective target tasks accurately.
However, in practice, the combination of high-dimensional feature space and highly non-linear
mappings from input to output is prone to overfitting to data and learning of noisy correlations.
To mitigate these issues, we propose a new 3D-aware regularization technique that first maps
extracted features to 3D neural codes, projects them to task-specific fields and finally renders them
to obtain predictions for each target task through differentiable rendering (see Fig. 2). In the
regularization, outputs for all tasks are conditioned on observations that lie on a low-D manifold (the
density (Mildenhall et al., 2020)), enforcing 3D consistency between tasks.

3D representations. Training the recent MTL models (e.g. Vandenhende et al. (2020b); Ye &
Xu (2022)) on high resolution input images for multiple dense prediction tasks simultaneously
is computation and memory intensive. Hence, naively mapping their multi-scale high-resolution
features to 3D is not feasible due to memory limitations in many standard GPUs. Hence, we adopt
the hybrid explicit-implicit tri-plane representations of Chan et al. (2022). In particular, we first feed
I into a shared encoder and obtain a W×H×C-dimensional feature map where H and W are the
height and width. Then, through a tri-plane encoder e, we project the feature map to three explicit
W×H×C ′ dimensional feature maps, exy, eyz, exz , that represent axis aligned orthogonal feature
planes. We can query any 3D coordinate (x, y, z) by projecting it onto each plane, then retrieve the
respective features from three planes via bi-linear interpolation and finally aggregate features using
summation to obtain the 3D representation (e(x, y, z) = exy(x, y)+eyz(y, z)+exz(x, z)) as in Chan
et al. (2022).

Neural task fields. For each task, we use an additional light-weight network nt, implemented
as a small MLP, to estimate both a density value and task-specific vector, where this element pair
can be denoted as a neural task field for the aggregated 3D representation. We are then able to
render these quantities via neural volume rendering Max (1995); Mildenhall et al. (2020) through
a differentiable renderer r to obtain predictions for each task. In particular, for the tasks including
semantic segmentation, part segmentation, surface normal estimation, boundary detection, saliency
prediction, we estimate prediction for each point of a given ray (e.g. logits for segmentation) and
integrate them over the ray. We normalize the predictions after rendering for surface normal and
apply softmax after rendering for segmentation tasks. For depth estimation task, we use the raw
prediction as depth maps.
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The sequence of mappings can be summarized as: firstly mapping the shared feature encoding f(I)
to tri-plane features through e, further mapping it to neural task fields through nt, finally rendering
these to obtain predictions for task t, i.e. gt ◦ f(I) where gt = r ◦ nt ◦ e is the regularizer for task t.

Discussion. While novel view synthesis methods such as NeRF require the presence of multiple views
and knowledge of the camera matrices, here we assume a single view to extract the corresponding 3D
representations and to render them as task predictions. For rendering, we assume that the camera
is orthogonal to image center here, and depict r as a function that takes only the output of nt but
not the viewpoint as input. In the experiments, we show that our model consistently improves the
MTL performance, even when learned from a single view per scene, thanks to the 3D structure of
representations imposed by our regularizer.

Optimization. We measure the mismatch between ground-truth labels and the predictions obtained
from our 3D-aware model branch, and use this signal to jointly optimize the model along with the
original common task losses found in Eq. (1):

min
f,{ht,gt}T

t=1

1

N

∑
(I,Y )∈D

∑
yt∈Y

Lt(ht ◦ f(I),yt) + αt Lt(gt ◦ f(I),yt)︸ ︷︷ ︸
3D-aware regularizer

, (2)

where αt is a hyperparameter balancing loss terms.

Cross-view consistency. Though our 3D-aware regularizer does not require multiple views of the
same scene to be presented, it can be easily extended to penalize the cross-view inconsistency on the
predictions when multiple views of the same scene are available, e.g. video frames. Given two views
of a scene I and I ′ with their camera respective viewpoints V and V ′, we compute predictions for I ′

but by using I as the input and render it by using the relative camera transformation ∆V from V to
V ′. Then we further penalize the inconsistency between this prediction and ground-truth labels of I ′:

min
f,{ht,gt}T

t=1

1

N

∑
{(I,Y ),

(I′,Y ′)}∈D

∑
yt∈Y,
y′
t∈Y ′

Lt(ht ◦ f(I),yt) + αt Lt(gt ◦ f(I),yt)︸ ︷︷ ︸
3D-aware regularizer

+α′
t Lt(g

∆V
t ◦ f(I),y′

t)︸ ︷︷ ︸
cross-view regularizer

,

(3)
where αt and α′

t are hyperparameters balancing loss terms. We set αt = α′
t. Note that in this case

g∆V
t is a function of ∆V , as the relative viewpoint ∆V is used by the renderer r.

4 EXPERIMENTS

Here we first describe the benchmarks used and our implementation details, then present a quantitative
and qualitative analysis of our method.

4.1 DATASET

NYUv2 (Silberman et al., 2012): It contains 1449 RGB-D images, sampled from video sequences
from a variety of indoor scenes, which we use to perform four tasks; namely 40-class semantic
segmentation, depth estimation, surface normal estimation and boundary detection in common with
prior work (Ye & Xu, 2022; Bruggemann et al., 2021). Following the previous studies, we use the true
depth data recorded by the Microsoft Kinect and surface normals provided in the prior work (Eigen
& Fergus, 2015) for depth estimation and surface normal estimation tasks.

NYUv2 video frames: In addition to the standard data split, NYUv2 (Silberman et al., 2012)
also provides additional video frames1 which are labeled only for depth estimation. Only for the
cross-view consistent regularization experiments, we merge the original split with video frames, and
train MTL models by minimizing loss on available labeled tasks, i.e. all four tasks on the original data
and only the depth on video frames. To estimate the relative camera pose ∆V between the frames,
we use COLMAP (Schönberger & Frahm, 2016; Schönberger et al., 2016).

1https://www.kaggle.com/datasets/soumikrakshit/nyu-depth-v2
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PASCAL-Context (Chen et al., 2014): PASCAL (Everingham et al., 2010) is a commonly used
image benchmark for dense prediction tasks. We use the data splits from PASCAL-Context (Chen
et al., 2014) which has annotations for semantic segmentation, human part segmentation and semantic
edge detection. Additionaly, following (Vandenhende et al., 2021; Ye & Xu, 2022), we also consider
surface normal prediction and saliency detection using the annotations provided by Vandenhende
et al. (2021).

4.2 IMPLEMENTATION DETAILS

Our regularizer is architecture agnostic and can be applied to different architectures. In our exper-
iments, it is incorporated into two state-of-the-art (SotA) MTL methods; MTI-Net (Vandenhende
et al., 2020b) and InvPT (Ye & Xu, 2022) which builds on the convolutional neural network (CNN),
HRNet-48 (Wang et al., 2020) and transformer based ViT-L (Dosovitskiy et al., 2020) respectively. In
all experiments, we follow identical training, evaluation protocols (Ye & Xu, 2022). We append our
3D-aware regularizer to these two models using two convolutional layers, followed by BatchNorm
and ReLU, to project feature maps to the tri-plane space resulting in a common size and channel
width (64). A 2-layer MLP is used to render each task as in Chan et al. (2022). We use identical
hyper-parameters; learning rate, batch size, loss weights, loss functions, pre-trained weights, opti-
mizer, evaluation metrics as MTI-Net and InvPT, respectively. We jointly optimize the task-specific
losses and losses arising from our 3D regularization. During inference, the regularizer is discarded.
We refer to the supplementary material for further details.

4.3 RESULTS

Comparison with SotA methods. We compare our method with the SotA MTL methods on
NYUv2 and PASCAL-Context datasets and report results in Tab. 1 and Tab. 2, respectively. Follow-
ing Bruggemann et al. (2021), we use HRNet-48 (Wang et al., 2020) as backbone when comparing to
CNN based methods; Cross-Stitch (Misra et al., 2016), PAP (Zhang et al., 2019), PSD (Zhou et al.,
2020), PAD-Net (Xu et al., 2018), ATRC (Bruggemann et al., 2021), MTI-Net (Vandenhende et al.,
2020b). We use ViT-L (Dosovitskiy et al., 2020) as backbone when comparing to InvPT (Ye & Xu,
2022).

In NYUv2 (see Tab. 1), when using HRNet-48 as backbone, we observe that ATRC (Bruggemann
et al., 2021) and MTI-Net (Vandenhende et al., 2020b) obtain the best performance. By incorporating
our method to MTI-Net (Vandenhende et al., 2020b), we improve its performance on all tasks and
outperform all CNN based MTL methods. In comparison, the InvPT approach (Ye & Xu, 2022)
achieves superior MTL performance by leveraging both the ViT-L (Dosovitskiy et al., 2020) backbone
and multi-scale cross-task interaction modules. Our method is also able to quantitatively improve
upon the base InvPT by integrating our proposed 3D-aware regularizer, e.g. +1.31 mIoU on Seg.
The results evidence that the geometric information is beneficial for jointly learning multiple dense
prediction tasks.

Method Backbone Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
Cross-Stitch (Misra et al., 2016) HRNet-48 36.34 0.6290 20.88 76.38
PAP (Zhang et al., 2019) HRNet-48 36.72 0.6178 20.82 76.42
PSD (Zhou et al., 2020) HRNet-48 36.69 0.6246 20.87 76.42
PAD-Net (Xu et al., 2018) HRNet-48 36.61 0.6270 20.85 76.38
ATRC (Bruggemann et al., 2021) HRNet-48 46.33 0.5363 20.18 77.94

MTI-Net (Vandenhende et al., 2020b) HRNet-48 45.97 0.5365 20.27 77.86
Ours HRNet-48 46.67 0.5210 19.93 78.10
InvPT (Ye & Xu, 2022) ViT-L 53.56 0.5183 19.04 78.10
Ours ViT-L 54.87 0.5006 18.55 78.30

Table 1: Quantitative comparison of our method to the SotA methods; NYUv2 dataset.

Tab. 2 depicts experimental results on the PASCAL-Context dataset where previous method results
are reproduced from Ye & Xu (2022). We also report results from our implementation of the MTI-Net,
denoted by ‘MTI-Net*’, where we found that our implementation obtains better performance. We
observe that the performance of existing methods is better than in the previous NYUv2 experi-
ment (Tab. 1), as PASCAL-Context has significantly more images available for training. From Tab. 2
we observe that our method, incorporating our proposed regularizer to MTI-Net (Vandenhende et al.,
2020b), can improve the performance on all tasks with respect to our base MTI-Net implementation,
e.g. +2.29 mIoU on Seg, and obtains the best performance on most tasks compared with MTL
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methods that use the HRNet-48 backbone. As in NYUv2, the InvPT model (Ye & Xu, 2022) achieves
better performance on a majority of tasks over existing methods. Our method with InvPT again
obtains improvements on all tasks over InvPT, e.g. +1.51 mIoU on PartSeg and +1.00 odsF on
Boundary. This result further suggests that our method is effective for enabling the MTL network to
learn beneficial geometric cues and that the technique can be incorporated with various MTL methods
for comprehensive task performance improvements.

Method Backbone Seg. (mIoU) ↑ PartSeg (mIoU) ↑ Sal (maxF) ↑ Normal (mErr) ↓ Boundary (odsF) ↑
ASTMT (Maninis et al., 2019) HRNet-48 68.00 61.10 65.70 14.70 72.40
PAD-Net (Xu et al., 2018) HRNet-48 53.60 59.60 65.80 15.30 72.50
MTI-Net (Vandenhende et al., 2020b) HRNet-48 61.70 60.18 84.78 14.23 70.80
ATRC (Bruggemann et al., 2021) HRNet-48 62.69 59.42 84.70 14.20 70.96

MTI-Net* (Vandenhende et al., 2020b) HRNet-48 64.42 64.97 84.56 13.82 74.30
Ours HRNet-48 66.71 65.20 84.59 13.71 74.50
InvPT (Ye & Xu, 2022) ViT-L 79.03 67.61 84.81 14.15 73.00
Ours ViT-L 79.53 69.12 84.94 13.53 74.00

Table 2: Quantitative comparison of our method to the SotA methods; PASCAL-Context dataset.

3D regularizer with multiple views. Here we investigate whether learning stronger 3D consistency
across multiple views with our regularizer further improves the performance in multiple tasks. To this
end, we merge the NYUv2 dataset with the additional video frames possessing only depth annotation
and train the base InvPT, our method and our method with cross-view consistency on the merged
data. For InvPT, we train the model by minimizing losses over the labeled tasks. We train our method
by minimizing both the supervised losses and the 3D-aware regularization loss. We further include
the cross-view consistency loss as in Eq. (3).

Method Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
InvPT (Ye & Xu, 2022). 53.44 0.4927 18.78 77.90
Ours 54.93 0.4879 18.47 77.90
Ours with cross-view consistency 54.99 0.4850 18.52 78.00

Table 3: Quantitative comparison of our method on NYUv2 dataset + extra video frames with multiple
views.

Results of the three approaches are reported in Tab. 3. Compared with the results in Tab. 1, we
can see that including video frames for training improves the performance of InvPT on depth and
surface normal tasks while yielding comparable performance on remaining tasks. We also see that
our method obtains consistent improvement over the InvPT on four tasks with applying 3D-aware
regularization using only a single view. Adding the cross-view consistency loss term to our method,
we can observe further performance improvement beyond using only single view samples. This
suggests that better 3D geometry learning through multi-view consistency is beneficial, however, the
improvements are modest. We argue that coarse 3D scene information obtained from single views
can be sufficient to learn more structured and regulate inter-task relations.

We also note that this experimental setting is also related to the recent MTL work (Li et al., 2022)
that can learn from partially annotated data by exploiting cross-task relations. However we here focus
on an orthogonal direction and believe our complementary works have scope to be integrated together.
We leave this as a promising direction for future work.

Comparison with auxiliary network heads. Prior work suggests that the addition of auxiliary
heads performing the same task with identical head architectures yet with different weight initializa-
tions can be further helpful to performance (Meyerson & Miikkulainen, 2018). To verify whether the
improvements obtained by our regularizer is not due to the additional heads solely but introduced 3D
structure, we conduct a comparison with our baseline and report results in Tab. 4. The results show
that adding auxiliary heads (‘InvPT + Aux. Heads’) does not necessarily lead to better performance on
all tasks; e.g. Seg, whereas our method can be seen to outperform this baseline on all tasks suggesting
the benefit of introducing 3D-aware structure across tasks.

Method Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04 78.10
InvPT + Aux. Heads 52.45 0.5131 18.90 77.60
Ours 54.87 0.5006 18.55 78.30

Table 4: Quantitative comparison of our method to the baseline of adding auxiliary heads to InvPT;
NYUv2 dataset.
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3D-aware regularizer predictions. Though we discard the regularizer during inference, the regu-
larizer can also be used to produce predictions for the tasks. To investigate their estimation utility, we
report task performance using the default task specific heads ht, the regularizer output (regularizer)
and finally using the averaged predictions over two in Tab. 5. We observe that the regularizer alone
estimations are worse than the task-specific heads, however, the performance of their averaged output
yields marginal improvements to the boundary detection task. The lower performance of using the
regularizer alone may be explained by the fact that the rendering image size is typically small (e.g.
we render 56×72 images for NYUv2). The addition of a super-resolution module, similar to previous
work (Chan et al., 2022), can further improve the quality of the related predictions. We leave this to
future work.

outputs Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
task-specific heads 54.87 0.5006 18.55 78.30
regularizer 51.79 0.5282 18.90 74.80
avg 54.68 0.5062 18.70 78.50

Table 5: Quantitative results of the predictions from the task-specific heads, regularizer or the average
of both the task-specific heads and regularizer in our method; NYUv2 dataset.

Tasks for 3D-aware regularizer. Our regularizer renders predictions for all learning tasks by
default. We further study the effect of isolating different tasks for rendering with the regularizer in
Tab. 6. Specifically; we jointly optimize the MTL network with a regularizer that renders only one
individual task predictions. From Tab. 6 we observe that rendering different individual tasks in the
regularizer leads to only marginally differing results and yet using all tasks for rendering can help to
better learn the geometric information for MTL, i.e. ‘All tasks’ obtains the best performance on the
majority of tasks.

render tasks Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
Seg. 55.04 0.5038 18.78 77.90
Depth 54.62 0.5041 18.93 77.50
Normal 53.43 0.5117 18.59 77.50
Edge 53.97 0.5022 18.97 77.50
All tasks 54.87 0.5006 18.55 78.30

Table 6: Quantitative results of our method isolating different tasks for rendering with the regularizer;
NYUv2 dataset.

Using less data. We further investigate the performance gain obtained by our method when trained
with fewer training samples. To this end, we train the baseline InvPT (Ye & Xu, 2022) and our
method on 25% and 50% of the NYUv2 data after randomly subsampling the original training set.
The results are reported in Tab. 7. As expected, more training samples result in better performance
in all cases. Our method consistently outperforms the baseline on all tasks in all label regimes with
higher margins when more data is available. As the full NYUv2 training set is relatively small,
contains only 795 images, our regularizer learns better 3D consistency across tasks from more data
too, hence resulting enhanced task performance.

# images Method Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑

795 (100%) InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04 78.10
Ours 54.87 0.5006 18.55 78.30

397 (50%) InvPT (Ye & Xu, 2022) 49.24 0.5741 20.60 74.90
Ours 49.30 0.5656 20.30 76.50

198 (25%) InvPT (Ye & Xu, 2022) 43.83 0.6060 21.76 74.80
Ours 44.79 0.5972 21.57 74.80

Table 7: Quantitative comparison of the baseline InvPT and our method in the NYUv2 dataset for
varying training set sizes.

4.4 QUALITATIVE RESULTS

We visualize the task predictions for both our method and the base InvPT method on an NYUv2
sample in Fig. 3. Our method can be observed to estimate better predictions consistently for four tasks.
For example, our method estimates more accurate predictions around the boundary of the refrigerator,
stove and less noisy predictions within objects like curtain and stove. The geometric information
learned in our method helps distinguish different adjacent objects, avoids noisy predictions within

8



Published as a conference paper at ICLR 2024

G
ro
un

dT
ru
th

O
ur
s

In
vP

T
R
eg

ul
ar
is
er

Figure 3: Qualitative results on NYUv2. Each column shows the image or predictions and per-
formance for each task. The last row shows the ground-truth of four tasks. The first to the third
row shows the predictions of InvPT, the regularizer in our method and task-specific decoders of our
method, respectively.

object boundaries and also improves the consistency across tasks as in the regularizer, all tasks
predictions are rendered based on the same density.

We then visualize the predictions of our method’s regularizer and the task-specific decoder NYUv2
in Fig. 3. As shown in the figure, our regularizer can also render high quality predictions for different
tasks yet it was observed to obtain worse quantitative performance than the task-specific decoders. As
discussed, this is due to the rendering image size being usually small (e.g. we render 56×72 images
for NYUv2).

5 CONCLUSION AND LIMITATIONS

We demonstrate that encouraging 3D-aware interfaces between different related tasks including depth
estimation, semantic segmentation and surface normal estimation consistently improves the multi-
task performance when incorporated to the recent MTL techniques in two standard dense prediction
benchmarks. Our model can be successfully used with different backbone architectures and does
not bring any additional inference costs. Our method has limitations too. Despite the efficient 3D
modeling through the triplane encodings, representing 3D representations for higher resolution 3D
volumes is still expensive in terms of memory or computational cost. Rendering specular objects
will require different rendering or objects with high frequency 3D details may require more accurate
3D modeling. Furthermore, we balance loss functions with fixed cross-validated hyperparameters,
while it would be more beneficial to use adaptive loss balancing strategies (Kendall et al., 2018) or
discarding conflicting gradients (Liu et al., 2021a). Finally, in the cross-view consistency experiments
where only a portion of images are labeled for all the tasks, our method does not make use of
semi-supervised learning or view-consistency for the tasks with missing labels which can further
improve the performance of our model.
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A IMPLEMENTATION DETAILS

We implement our approach in conjunction with state-of-the-art multi-task learning methods; MTI-
Net (Vandenhende et al., 2020b) and InvPT (Ye & Xu, 2022) while following identical training,
evaluation protocols (Ye & Xu, 2022). We use HRNet-48 (Wang et al., 2020) and ViT-L (Dosovitskiy
et al., 2020) to serve as shared encoders and append our 3D-aware regularizer to MTI-Net and InvPT
using two convolutional layers, followed by BatchNorm, ReLU, and dropout layer with a dropout
rate of 0.15 to transform feature maps to the tri-plane dimensionality, resulting in a common size and
channel width (64). A 2-layer MLP with 64 hidden units as in Chan et al. (2022) and a LeakyReLU
non-linearity with the negative slope of -0.2 as in Skorokhodov et al. (2022), is used to render each
task as in Chan et al. (2022). We use identical hyper-parameters; learning rate, batch size, loss
weights, loss functions, pre-trained weights, optimizer, evaluation metrics as MTI-Net and InvPT,
respectively. We jointly optimize task-specific losses and losses arising from our 3D regularization.
During inference, the regularizer is discarded. We use the same task-specific loss weights as in Ye &
Xu (2022). We train all models for 40K iterations with a batch size of 6 for experiments of using InvPT
as in Ye & Xu (2022) and a batch size of 8 for experiments of using MTI-Net as in (Vandenhende
et al., 2020b). We ramp up the αt from 0 to 4 linearly in 20K iterations and keep αt = 4 for the rest
20K iterations. In the regularizer, we assume that the camera is orthogonal to image center, and depict
r as a function that takes only the output of nt but not the viewpoint as input. In a 3D coordinates
(x, y, z), the x and y coordinates are aligned with pixel locations and z is the depth value. We further
use a two-pass importance sampling as in NeRF (Mildenhall et al., 2020). For the majority of the
experiments in the manuscript, we use 128 total depth samples per ray. We render 56×72 predictions
for NYUv2 and 64×64 for PASCAL-Context and resize the predictions via bilinear interpolation to
the groundtruth resolution. Our code and models will be made public based upon acceptance.

B TRAINING COST ANALYSIS

Method Time Memory Params. FLOPS

MTI-Net (Vandenhende et al., 2020b) 1.000 1.000 1.000 1.000
Ours 1.489 1.638 1.005 1.263

InvPT (Ye & Xu, 2022) 1.000 1.000 1.000 1.000
Ours 1.318 1.397 1.016 1.114

Table 8: Training Cost Comparisons to MTI-Net and InvPT; NYUv2 dataset. Note that our method
has no additional inference cost as the regularizer is discarded during testing.

C RESULTS OVER MULTIPLE RUNS

Here, we report the results of our method over 3 runs on NYUv2 and PASCAL-Context and report
the results in Tabs. 9 and 10. From the results, we can see that our method is stable (i.e. the std is
very small on each task) and improves over the baseline consistently on all tasks.

Method Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04 78.10
Ours 54.86 ± 0.29 0.5000 ± 0.0010 18.49 ± 0.09 78.17 ± 0.09

Table 9: Quantitative comparison of our method to the InvPT over 3 runs; NYUv2 dataset.

Method Seg. (mIoU) ↑ PartSeg (mIoU) ↑ Sal (maxF) ↑ Normal (mErr) ↓ Boundary (odsF) ↑
InvPT (Ye & Xu, 2022) 79.03 67.61 84.81 14.15 73.00
Ours 79.92 ± 0.32 69.08 ± 0.15 84.85 ± 0.06 13.70 ± 0.14 73.83 ± 0.17

Table 10: Quantitative comparison of our method to the InvPT over 3 runs; PASCAL-Context dataset.

Here, we analyze memory and computational cost during training for tackling four tasks in NYUv2
and report them in Tab. 8. As shown in Tab. 8, our method that incorporates the regularizer to the MTL
baseline slightly increases the number of parameters (Ours vs InvPT: 1.016 vs 1) and FLOPS (Ours
vs InvPT: 1.114 vs 1) during training, training time (Ours vs InvPT: 1.318 vs 1), and training memory
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(Ours vs InvPT: 1.397 vs 1). We highlight that there is *NO additional cost* during inference, since
the regularizer will be discarded during inference.

D COMPARISONS WITH MORE RECENT SOTA

Method Seg. (mIoU) ↑ Depth (RMSE) ↓ Normal (mErr) ↓ Boundary (odsF) ↑
TaskPromper (Ye & Xu, 2023a) 55.30 0.5152 18.47 78.20
TaskExpert (Ye & Xu, 2023b) 55.35 0.5157 18.54 78.40
InvPT (Ye & Xu, 2022) 53.56 0.5183 19.04 78.10
Ours 54.87 0.5006 18.55 78.30

Table 11: Quantitative comparison of our method to more SotA methods; NYUv2 dataset.

Method Seg. (mIoU) ↑ PartSeg (mIoU) ↑ Sal (maxF) ↑ Normal (mErr) ↓ Boundary (odsF) ↑
TaskPrompter (Ye & Xu, 2023a) 80.89 68.89 84.83 13.72 73.50
TaskExpert (Ye & Xu, 2023b) 80.64 69.42 84.87 13.56 73.30

InvPT (Ye & Xu, 2022) 79.03 67.61 84.81 14.15 73.00
Ours 79.53 69.12 84.94 13.53 74.00

Table 12: Quantitative comparison of our method to the SotA methods; PASCAL-Context dataset.

We include the comparisons of our method incorporated with InvPT to more recent state-of-the-art
methods, including TaskPrompter (Ye & Xu, 2023a) and TaskExpert (Ye & Xu, 2023b) and report the
results in Tabs. 11 and 12. Methods from Liu et al. (2023) and Chen et al. (2023) are not compared as
they did not reported results on NYUv2 and PASCAL benchmarks with the same backbone. Note
that TaskExpert (Ye et al., 2023b) is published after we submitting the manuscript. From the results
shown in Tab. 11, we can see that, our method incorporated with InvPT achieves much better result
on Depth while comparable results on the rest of tasks in NYUv2 compared with TaskPrompter and
TaskExpert. In PASCAL benchmark, from Tab. 12 we can see that our method obtains much better
results on saliency, surface normal and boundary estimation while obtaining comparable result on
Human part segmentation and slightly worse on semantic segmentation. TaskPrompter adds learnable
prompts for refining the feautures and the TaskExpert emsembles task-specific features from multiple
task-specific experts for final task predictions and they all increase the capacity of the network to
achieve better results. Also, they can potentially be complementary to our method and we believe
incorporating our method with them can further improve the performance in multi-task learning by
regulating the shared features to be 3D-aware with no additional cost during inference.

E DISCUSSION

Camera parameters. In our paper, the 3D coordinates and strategy of projecting the 3D coordinates
onto the feature planes are similar to the ones in PiFU (Saito et al., 2019) and (Yao et al., 2023).
The feature planes are generated by the feature encoder and it is pixel-wise feature map instead of a
global pooled feature vector. The x and y coordinates are aligned with pixel locations and z is the
depth value. We follow Chan et al. (2022) that projects the coordinates (x, y, z) onto three planes
exy, eyz, exz , retrieving the features via bilinear interpolation, and aggregates features from three
planes instead of taking the 2D features and the z values as representations in PiFU (Saito et al.,
2019) or dividing the dimension of the feature map channel into D groups (D is the number of depth
bins) in (Yao et al., 2023). So our method has similar property as in PiFU (Saito et al., 2019) and
(Yao et al., 2023) and does not overfit to the camera parameters.

Also, as we first feed the image into the feature encoder, which should be scaling the 3D coordinates
accordingly and the coordinates will not be absolute but at the right scale for rendering. After training,
the 3D-aware regularizer is discarded and we only use the multi-task learning branch for generating
predictions for different tasks. We also visualize multiple images’ predictions of the regularizers on
PASCAL in Fig. 4. The PASCAL dataset consists of annotated consumer photographs collected from
the flickr photo-sharing web-site, taken by various cameras with different intrinsics. From Fig. 4, we
can see that the regularizer can render good quality predictions for all tasks on all images which also
indicates that it does not overfit to the camera parameters.

Limitations and future work. Despite the efficient 3D modeling through the triplane encodings,
representing 3D representations for higher resolution 3D volumes is still expensive in terms of
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Figure 4: Qualitative results on PASCAL. Each column shows the image or predictions of our
method’s regularizer branch or the groundtruth for each task, respectively.

memory or computational cost. Some common efficient sampling strategies such as random sampling
and pixel binning can be useful for reducing the cost. The tri-plane generated from the feature encoder
can be relatively small resolution due to the feature downsampling and requires upsampling strategies
for generating higher resolution feature planes for better rendering while it will inevitably increase the
training cost. Additionally, rendering specular objects will require different rendering or objects with
high frequency 3D details may require more accurate 3D modeling. Though our proposed method
obtains performance gains consistently over multiple tasks, we balance loss functions with fixed
cross-validated hyperparameters, while it would be more beneficial to use adaptive loss balancing
strategies (Kendall et al., 2018) or discarding conflicting gradients (Liu et al., 2021a). Finally, in
the cross-view consistency experiments where only some of the images are labeled for all the tasks,
our method does not make use of semi-supervised learning or view-consistency for the tasks with
missing labels which can be further improve the performance of our model. We believe that more
advanced techniques in 3D modeling can further improve our method for rendering higher resolution
predictions with higher efficiency and better regulating the cross-task correlations and cross-view
consistency.
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