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ABSTRACT

Federated learning enables the distributed training paradigm, where multiple local
clients jointly train a global model without needing to share their local training
data. However, recent studies have shown that federated learning provides an
additional surface for backdoor attacks. For instance, an attacker can compromise
a subset of clients and thus corrupt the global model to incorrectly predict an
attacker-chosen target class given any input embedded with the backdoor trigger.
Existing defenses for federated learning against backdoor attacks usually detect
and exclude the corrupted information from the compromised clients based on
a static attacker model. Such defenses, however, are less effective when faced
with dynamic attackers who can strategically adapt their attack strategies. In
this work, we model the strategic interaction between the (global) defender and
attacker as a minimax game. Based on the analysis of our model, we design an
interactive defense mechanism that we call FLGAME. Theoretically, we prove that
under mild assumptions, the global model trained with FLGAME under backdoor
attacks is close to that trained without attacks. Empirically, we perform extensive
evaluations on benchmark datasets and compare FLGAME with multiple state-of-
the-art baselines. Our experimental results show that FLGAME can effectively
defend against strategic attackers and achieves significantly higher robustness than
baselines.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017a) aims to train machine learning models (called
global models) over training data that is distributed across multiple clients (e.g., mobile phones, IoT
devices). FL has been widely used in many real-world applications such as finance (Long et al.,
2020) and healthcare (Long et al., 2022). FL trains a global model in an iterative manner. In each
communication round, a cloud server shares its global model with selected clients; each selected
client uses the global model to initialize its local model, then utilizes its local training dataset to train
the local model, and finally sends the local model update to the server; the server uses an aggregation
rule to aggregate local model updates from clients to update its global model.

Due to the distributed nature of FL, many recent studies (Bhagoji et al., 2019; Bagdasaryan et al.,
2020; Baruch et al., 2019; Wang et al., 2020; Kairouz et al., 2021) have shown that it is vulnerable
to backdoor attacks. For instance, an attacker can compromise a subset of clients and manipulate
their local training datasets to corrupt the global model such that it predicts an attacker-chosen target
class for any inputs embedded with a backdoor trigger (Bagdasaryan et al., 2020). To defend against
backdoor attacks, many defenses (Sun et al., 2019; Cao et al., 2021a) have been proposed. For
example, Sun et al. (2019) proposed to clip the norm of the local model update from each client such
that its L2-norm was no larger than a defender-chosen threshold. Cao et al. (2021a) proposed FLTrust
in which a server computes a local model update itself and computes its similarity with that of a client
as the trust score, which is leveraged when updating the global model. However, all of those defenses
consider a static attack model where an attacker does not adapt its attack strategies. As a result, they
are less effective under adaptive attacks, e.g., Wang et al. (2020) showed that the defenses proposed
in (Sun et al., 2019; Blanchard et al., 2017) can be bypassed by appropriately designed attacks.

Our contribution: In this work, we propose FLGAME, a game-theoretic defense against backdoor
attacks to FL. Specifically, we formulate FLGAME as a minimax game between the server (defender)

1



Under review as a conference paper at ICLR 2023

and attacker, which enables them to strategically adapt their defense and attack strategies. In the rest
of the paper, we use the terms benign client to denote a valid/un-compromised client and genuine
score to quantify the extent to which a client is benign. Our key idea is that the server can compute a
genuine score for each client whose value is large (or small) if the client is benign (or compromised)
in each communication round. The genuine score serves as a weight for the local model update of the
client when used to update the global model. The goal of the defender is to minimize the genuine
scores for compromised clients and maximize them for benign ones. To solve the resulting minimax
game for the defender, we follow a three-step process consisting of 1) building an auxiliary global
model, 2) exploiting it to reverse engineer a backdoor trigger and target class, and 3) inspecting
whether the local model of a client will predict an input embedded with the reverse engineered
backdoor trigger as the target class to compute a genuine score for the client. Based on the deployed
defense, the goal of the attacker is to optimize its attack strategy by maximizing the effectiveness of
the backdoor attack. Our key observation is that the attack effectiveness is determined by two factors:
genuine score and the local model of the client. We optimize the attack strategy with respect to those
two factors to maximize the effectiveness of backdoor attacks against our defense.

We perform both theoretical analysis and empirical evaluations for FLGAME. Theoretically, we
prove that the global model trained with our defense under backdoor attacks is close to that trained
without attacks (measured by L2-norm of global model parameters difference). Empirically, we
evaluate FLGAME on benchmark datasets to demonstrate its effectiveness under state-of-the-art
backdoor attacks. Moreover, we compare it with state-of-the-art baselines. Our results indicate that
FLGAME outperforms them by a significant margin. Our key contributions can be summarized as
follows:

• We propose a game-theoretic defense FLGAME. We formulate FLGAME as a minimax game
between the defender and attacker, which enables them to strategically optimize their defense and
attack strategies.

• We theoretically analyze the robustness of FLGAME. In particular, we show that the global model
trained with FLGAME under backdoor attacks is close to that without attacks.

• We perform a systematic evaluation of FLGAME on benchmark datasets and demonstrate that
FLGAME significantly outperforms state-of-the-art baselines.

2 RELATED WORK

Backdoor attacks on federated learning: In backdoor attacks to FL (Bhagoji et al., 2019; Bag-
dasaryan et al., 2020; Baruch et al., 2019; Wang et al., 2020; Zhang et al., 2022b), an attacker aims
to make a global model predict a target class for any input embedded with a backdoor trigger via
compromised clients. For instance, Bagdasaryan et al. (2020) proposed scaling attack in which an
attacker uses a mix of backdoored and clean training examples to train its local model and then
scales the local model update by a factor before sending it to the server. Xie et al. (2019) proposed
distributed backdoor attack to FL. Roughly speaking, the idea is to decompose a backdoor trigger into
different sub-triggers and embed each of them to the local training dataset of different compromised
clients. In our work, we will leverage those attacks to perform strategic backdoor attacks to our
defense.

Defenses for Federated learning against backdoor attacks: Many defenses (Sun et al., 2019; Cao
et al., 2021a; Ozdayi et al., 2021; Wu et al., 2020; Rieger et al., 2022; Nguyen et al., 2022) were
proposed to mitigate backdoor attacks to FL. For instance, Sun et al. (2019) proposed norm-clipping
which clips the norm of the local model update of a client such that its norm is no larger than a
threshold. They also extended differential privacy (Dwork et al., 2006; Abadi et al., 2016; McMahan
et al., 2017b) to mitigate backdoor attacks to federated learning. The idea is to clip the local model
update and add Gaussian noise to it. Cao et al. (2021a) proposed FLTrust which leveraged the
similarity of the local model update of a client with that computed by the server itself on its clean
dataset. Other defenses include Byzantine-robust FL methods such as Krum (Blanchard et al., 2017),
Trimmed Mean (Yin et al., 2018), and Median (Yin et al., 2018). However, all of those defenses
consider a static attacker model. As a result, they become less effective against dynamic attackers
who strategically adapt their attack strategies.
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Another line of research focuses on detecting malicious clients (Li et al., 2020a; Zhang et al.,
2022a). For instance, Li et al. (2020a) proposed to train a variational autoencoder (VAE) and use its
reconstruction loss on the local model update of a client to detect malicious clients. However, those
defenses need to collect many local model updates from a client to make confident detection. As a
result, the global model may already be backdoored before those clients are detected. Two recent
studies (Cao et al., 2021b; Xie et al., 2021) proposed certified defenses against compromised clients.
However, they can only tolerate a moderate fraction of malicious clients (e.g., less than 10%) as
shown in their experimental results.

3 BACKGROUND ON FEDERATED LEARNING AND THREAT MODEL

3.1 FEDERATED LEARNING

Suppose S is a set of clients. We use Di to denote the local training dataset of the client i ∈ S. In
the tth communication round, the server first sends the current global model (denoted as Θt) to each
client. Then, each client i trains a local model (denoted as Θt

i) by finetuning the global model Θt

using its local training dataset Di. For simplicity, we use z = (x, y) to denote a training example
in Di, where x is the training input (e.g., an image) and y is its ground truth label. Given Di and
the global model Θt, we denote a loss function L(Di; Θ

t) = 1
|Di|

∑
z∈Di

ℓ(z; Θt) where ℓ is a loss
function (e.g., cross-entropy loss). The client can use gradient descent to update its local model
based on the global model and its local training dataset, i.e., Θt

i = Θt − ηl
∂L(Di;Θ

t)
∂Θt , where ηl is the

learning rate of the local model. Note that the client can also use stochastic gradient descent to update
its local model on its local training dataset as illustrated in our experiments. Then, the client sends
gti = Θt

i − Θi (called local model update) to the server. Note that it is equivalent for the client to
send a local model or local model update to the server as Θt

i = Θt + gti . After receiving the local
model updates from all clients, the server can aggregate them based on an aggregation ruleR (e.g.,
FedAvg) to update its glocal model, i.e., we have:

Θt+1 = Θt + ηR(gt1, gt2, · · · , gt|S|), (1)
where |S| represents the number of clients and η is the learning rate of the global model.

3.2 THREAT MODEL

We consider the backdoor attack proposed in previous work (Bagdasaryan et al., 2020; Xie et al.,
2019). In particular, we assume an attacker can compromise a set of clients (denoted as Sa). To
perform the backdoor attack, the attacker first selects a backdoor trigger δ and a target class ytc. For
each client i ∈ Sa in the tth (t = 1, 2, · · · ) communication round, the attacker can choose an arbitrary
fraction (denoted as rti) of training examples from the local training dataset of the client, embed the
backdoor trigger δ to those training inputs, and relabel them as the target class ytc. Those backdoored
training examples are used to augment the local training dataset of the client. In our game-theoretic
framework, we will optimize rti for the compromised client i in each communication round to make
the backdoor attack more effective under our defense.

We consider that the server itself has a small clean training dataset (denoted as Ds), which could
be collected from the same or different domains of the local training datasets of clients. Moreover,
we consider the case that the server does not have any information on each client except their local
model updates in each communication round.

4 FLGAME: A GAME-THEORETIC DEFENSE AGAINST BACKDOORS

Overview: Our idea is to formulate FLGAME as a minimax game between the defender and attacker,
solving which enables them to respectively optimize their strategies. In particular, the defender
computes a genuine score for each client in each communication round. The goal of the defender is
to maximize the genuine score for a benign client and minimize it for a compromised one. Given the
genuine score for each client, we use a weighted average over all the local model updates to update
the global model, i.e., we have

Θt+1 = Θt + η
1∑

i∈S pti

∑
i∈S

ptig
t
i , (2)
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where pti is the genuine score for client i in the tth communication round and η is the learning rate of
the global model. The goal of the attacker is to maximize its attack effectiveness, which is determined
by two components based on Equation 2: genuine scores and local models of compromised clients.
In our framework, the attacker will optimize the tradeoff between those two components to maximize
the effectiveness of its backdoor attacks against our defense.

4.1 FORMULATING FLGAME AS A MINIMAX GAME

Computing the genuine score for client i: To compute pti, our key observation is that the local
model of a compromised client is more likely to predict the target class for a trigger-embedded input
compared with that of a benign client. However, the key challenge is that the server does not know
the backdoor trigger and target class adopted by the attacker. To overcome the challenge, the server
can reverse engineer a backdoor trigger δre and target class ytcre (we will discuss more details in the
next subsection). Recall that the client i sends its local model update gti to the server, the local model
of the client i can be computed as Θt

i = Θt + gti . Then, we can compute pti as follows:

pti = 1− 1

|Ds|
∑
x∈Ds

I(G(x⊕ δre; Θ
t
i) = ytcre), (3)

where I is an indicator function, Ds is the clean training dataset of the server, x ⊕ δre is a trigger-
embedded input, and G(x⊕ δre; Θ

t
i) represents the predicted label of the local model Θt

i for x⊕ δre.
Roughly speaking, the genuine score for a client is small if its local model predicts a large fraction of
inputs embedded with the reverse engineered backdoor trigger as the target class.

The optimization problem for the defender: The server aims to reverse engineer the backdoor
trigger δre and target class ytcre such that the genuine scores for compromised clients are minimized
while those for benign clients are maximized. Formally, we have the following optimization problem:

min
δre,ytc

re

∑
i∈Sa

pti −
∑

j∈S\Sa

ptj . (4)

The optimization problem for the attacker: The goal of an attacker is to maximize its attack
effectiveness. Based on Equation 2, the attacker needs to: 1) maximize the genuine scores for
compromised clients while minimizing them for benign ones, i.e., max(

∑
i∈Sa

pti−
∑

j∈S\Sa
ptj), and

2) make the local models of compromised clients predict an input embedded with the attacker-chosen
backdoor trigger δ as the target class ytc. To perform the backdoor attack in the tth communication
round, the attacker embeds the backdoor to a certain (denoted as rti) fraction of training examples in
the local training dataset of the client and uses them to augment it. A larger rti is more likely to make
the local model of the client i predict a trigger-embedded input as the target class but also make its
genuine score smaller. Therefore, rti measures a tradeoff between them. Formally, the attacker can
find the desired tradeoff by solving the following optimization problem:

max
Rt

(
∑
i∈Sa

pti −
∑

j∈S\Sa

ptj + λ
∑
i∈Sa

rti), (5)

where Rt = {rti |i ∈ Sa} and λ is a hyperparameter to balance the two terms.

Minimax game between the defender and the attacker: Given the optimization problems solved
by the defender and attacker, we have the following minimax game:

min
δre,ytc

re

max
Rt

(
∑
i∈Sa

pti −
∑

j∈S\Sa

ptj + λ
∑
i∈Sa

rti). (6)

Note that rti (i ∈ Sa) is chosen by the attacker and thus we can add rti to the objective function in
Equation 4 without influencing its solution given the local model updates of clients.

4.2 SOLVING THE MINIMAX GAME BY THE DEFENDER

To solve the minimax game in Equation 6 for the defender, our idea is to construct an auxiliary global
model and then reverse engineer the backdoor trigger and target class based on it.
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Constructing an auxiliary global model: Suppose gti is the local model update from each client
i ∈ S . Our auxiliary global model is constructed as follows: Θt

a = Θt + 1
|S|

∑
i∈S gti . Our intuition

is that such aggregated global model is very likely to predict an input embedded with the backdoor
trigger δ as the target class ytc under backdoor attacks.

Reverse engineering the backdoor trigger and target class: Given the auxiliary global model, we
can use arbitrary methods to reverse engineer the backdoor trigger and target class. Roughly speaking,
the goal is to find the backdoor trigger and target class such that the genuine scores for benign
clients are large but they are small for compromised clients. For instance, we can leverage Neural
Cleanse (Wang et al., 2019), which is the state-of-the-art method to reverse engineer a backdoor
trigger and target class. Roughly speaking, Neural Cleanse views each class (c = 1, 2, · · · , C and
C is the total number of classes in the classification task) as a potential target class and finds a
perturbation δc with a small L1-norm such that any inputs embedded with it will be classified as
the class c. We view the trigger with the smallest L1-norm as the backdoor trigger and view the
corresponding class as the target class. Formally, we have ytcre = argminc ∥δc∥1 and δre = δytc

re
.

The complete algorithm of our FLGAME is shown in Algorithm 1 in Appendix.

4.3 SOLVING THE MINIMAX GAME BY THE ATTACKER

The goal of the attacker is to find rti for each client i ∈ Sa such that the loss function in Equation 6
is maximized. As the attacker does not know the genuine scores of benign clients, the attacker can
find rti to maximize pti + λrti for client i ∈ Sa to approximately solve the optimization problem in
Equation 6. However, the key challenge is that the attacker does not know the reverse engineered
backdoor trigger δre and the target class ytcre of the defender to compute the genuine score for client i.
In response, the attacker can use the backdoor trigger δ and target class ytc chosen by itself. Moreover,
the attacker reserves a certain fraction (e.g., 10%) of training data from its local training dataset Di as
the validation dataset (denoted as Drev

i ) to find the best rti .

Estimating a genuine score for a given rti: For a given rti , the client i can embed the backdoor to
rti fraction of training examples in Di \ Drev

i and then use those backdoored training examples to
augment Di \ Drev

i to train a local model (denoted as Θ̃t
i). Then, the genuine score can be estimated

as p̃ti = 1− 1
|Drev

i |
∑

x∈Drev
i

I(G(x⊕ δ; Θ̃t
i) = ytc), where G(x⊕ δ; Θ̃t

i) is the predicted label by

the global model Θ̃t
i for the trigger-embedded input x⊕ δ.

Searching an optimal rti: The client can use grid search to find rti that achieves the largest p̃ti + λrti .
After estimating the optimal rti , client i can embed the backdoor to rti fraction of training examples to
augment the local training dataset, train a local model, and send the local model update to the server.

The complete algorithm for each compromised client is shown in Algorithm 2 in Appendix.

5 THEORETICAL ANALYSIS OF FLGAME

This section provides a theoretical analysis of FLGAME under backdoor attacks. In particular, we
derive an upper bound for the L2-norm of the difference between the parameters of the global models
with and without attacks. To analyze the robustness of FLGAME, we make the following assumptions
on the loss function used by the clients, which are commonly used in the analysis of previous studies
(Li et al., 2020b; Wang & Joshi, 2021; Fallah et al., 2020; Reisizadeh et al., 2020) on federated
learning.
Assumption 1. The loss function is µ-strongly convex with L-Lipschitz continuous gradient. Formally,
we have the following for arbitrary Θ and Θ′:

(∇Θℓ(z; Θ)−∇Θ′ℓ(z; Θ′))T (Θ−Θ′) ≥ µ ∥Θ−Θ′∥22 , (7)

∥∇Θℓ(z; Θ)−∇Θ′ℓ(z; Θ′)∥2 ≤ L ∥Θ−Θ′∥2 , (8)

where z is an arbitrary training example.
Assumption 2. We assume the gradient∇Θℓ(z; Θ) is bounded with respect to L2-norm for arbitrary
Θ and z, i.e., there exists some M ≥ 0 such that

∥∇Θℓ(z; Θ)∥2 ≤M. (9)
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Suppose Θt
c is the global model trained by FLGAME without any attacks in the tth communication

round, i.e., each client i ∈ S uses its clean local training dataset Di to train a local model. Moreover,
we assume gradient descent with a local model learning rate 1 is used by each client to train its
local model. Suppose qti is the genuine score for client i without attacks. Moreover, we denote
βt
i =

qti∑
i∈S qti

as the normalized genuine score for client i. To perform the backdoor attack, we

assume a compromised client i can embed the backdoor trigger to rti fraction of training examples
in the local training dataset of the client and relabel them as the target class. Those backdoored
training examples are used to augment the local training dataset of the client. Suppose Θt is the
global model under the backdoor attack in the tth communication round with our defense. We denote
αt
i =

pt
i∑

i∈S pt
i

as the normalized genuine score for client i with attacks in the tth communication
round. We prove the following robustness guarantee for FLGAME:
Lemma 1 (Robustness Guarantee for One Communication Round). Suppose Assumptions 1 and 2
hold. Moreover, we assume (1− rt)βt

i ≤ αt
i ≤ (1 + rt)βt

i , where i ∈ S and rt =
∑

j∈Sa
rtj . Then,

we have: ∥∥Θt+1 −Θt+1
c

∥∥
2
≤
√

1− ηµ+ 2ηγt + η2L2 + 2η2Lγt
∥∥Θt −Θt

c

∥∥
2

+
√
2ηγt(1 + ηL+ 2ηγt) + 2ηrtM, (10)

where η is the learning rate of the global model, L and µ are defined in Assumption 1, γt =∑
i∈Sa

αt
ir

t
iM , and M is defined in Assumption 2.

Proof sketch. Our idea is to decompose
∥∥Θt+1 −Θt+1

c

∥∥
2

into two terms. Then, we derive an upper
bound for each term based on the change of the local model updates of clients under backdoor attacks
and the properties of the loss function. As a result, our derived upper bound relies on rti for each
client i ∈ Sa, parameters µ, L, and M in our assumptions, as well as the parameter difference of
the global models in the previous iteration, i.e., ∥Θt −Θt

c∥2. Our complete proof can be found in
Appendix A.1.

In the above lemma, we derive an upper bound of
∥∥Θt+1 −Θt+1

c

∥∥
2

with respect to ∥Θt −Θt
c∥2 for

one communication round. In the next theorem, we derive an upper bound of ∥Θt −Θt
c∥2 as t→∞.

We iterative apply Lemma 1 for successive values of t and have the following theorem:
Theorem 1 (Robustness Guarantee). Suppose Assumptions 1 and 2 hold. Moreover, we assume
(1 − rt)βt

i ≤ αt
i ≤ (1 + rt)βt

i for i ∈ S, γt ≤ γ and rt ≤ r hold for all communication round t,
and µ > 2γ, where rt =

∑
j∈Sa

rtj and γt =
∑

i∈Sa
αt
ir

t
iM . Let the global model learning rate by

chosen as 0 < η < µ−2γ
L2+2Lγ . Then, we have:

∥∥Θt −Θt
c

∥∥
2
≤

√
2ηγ(1 + ηL+ 2ηγ) + 2ηrM

1−
√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ

(11)

holds as t→∞.

Proof sketch. Given the conditions that γt ≤ γ and rt ≤ r as well as the fact that the right-hand side
of Equation 10 is monotonic with respect to γt and rt, we can replace γt and rt in Equation 10 with
γ and r. Then, we iterative apply the equation for successive values of t. When 0 < η < µ−2γ

L2+2Lγ ,
we have 0 < 1− ηµ+ 2ηγ + η2L2 + 2η2Lγ < 1. By letting r →∞, we can reach the conclusion.
The complete proof can be found in Appendix A.2.

When rti = 0 for ∀i,∀t, we have γ = 0 and r = 0. Thus, the upper bound in Equation 11 becomes 0.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets and global models: We use two datasets: MNIST (LeCun et al., 2010) and CIFAR10
(Krizhevsky, 2009) for FL tasks. MNIST has 60,000 training and 10,000 testing images, each of
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which has a size of 28 × 28 belonging to one of 10 classes. CIFAR10 consists of 50,000 training
and 10,000 testing images with a size of 32 × 32. Each image is categorized into one of 10 classes.
For each dataset, we randomly sample 90% of training data for clients, and the remaining 10% of
training data is reserved to evaluate our defense when the clean training dataset of the server is from
the same domain as those of clients. We use a CNN with two convolution layers (detailed architecture
can be found in Table 5 in Appendix) and ResNet-18 (He et al., 2016) which is pre-trained on
ImageNet (Deng et al., 2009) as the global models for MNIST and CIFAR10.

FL settings: We consider two settings: local training datasets of clients are independently and
identically distributed (i.e., IID), and not IID (i.e., non-IID). In IID setting, we randomly distribute the
training data to each client. In non-IID, we follow the previous work (Fang et al., 2020) to distribute
training data to clients. In particular, they use a parameter q to control the degree of non-IID, which
models the probability that training images from a class are distributed to a particular client (or a
set of clients). We set q = 0.5 by following (Fang et al., 2020). Unless otherwise mentioned, we
consider the IID setting. Moreover, we train a global model based on 10 clients for 200 iterations with
a global model learning rate η = 1.0. In each communication round, we use SGD to train the local
model of each client for two epochs with a local model learning rate 0.01. Moreover, we consider all
clients are selected in each communication round.

Backdoor attack settings: We consider state-of-the-art backdoor attacks to federated learning, i.e.,
Scaling attack Bagdasaryan et al. (2020) and DBA (Xie et al., 2019). We use the same backdoor
trigger and target class as used in those works. By default, we assume 60% of clients are compro-
mised by an attacker. We set the scaling parameter to be #total clients/(η×#compromised clients)
following Bagdasaryan et al. (2020). When the attacker solves the minimax game in Equation 6,
we set the default λ = 1. We will explore its impact in our experiments. We randomly sample 10%
of the local training data of each compromised client as validation data to search for an optimal rti .
Moreover, we set the granularity of grid search to be 0.1 when searching for rti .

Baselines: We compare our defense with the following methods: FedAvg (McMahan et al., 2017a),
Krum (Blanchard et al., 2017), Median (Yin et al., 2018), Norm-Clipping (Sun et al., 2019), Differ-
ential Privacy (DP) (Sun et al., 2019), and FLTrust (Cao et al., 2021a). FedAvg is non-robust while
Krum and Median are two Byzantine-robust baselines. Norm-Clipping clips the L2-norm of local
model updates to a given threshold TN . We set TN = 0.01 for MNIST and TN = 0.1 for CIFAR10.
DP first clips the L2-norm of a local model update to a threshold TD and then adds Gaussian noise.
We set TD = 0.05 for MNIST and TD = 0.5 for CIFAR10. We set the standard deviation of noise
to be 0.01 for both datasets. In FLTrust, the server uses its clean dataset to compute a server model
update and assigns a trust score to each client by leveraging the similarity between the server model
update and the local model update. We set the clean training dataset of the server to be the same as
FLGAME in our comparison. Note that FLTrust is not applicable when the clean training dataset of
the server is from a different domain from those of clients.

Evaluation metrics: We use testing accuracy (TA) and attack success rate (ASR) as evaluation
metrics. TA is the fraction of clean testing inputs that are correctly predicted. ASR is the fraction of
backdoored testing inputs that are predicted as the target class.

Defense setting: We consider two settings: in-domain and out-of-domain. For the in-domain setting,
we consider the clean training dataset of the server is from the same domain as the local training
datasets of clients. We use the reserved data as the clean training dataset of the server for each
dataset. For the out-of-domain setting, we consider the server has a clean training dataset that is
from the different domains of FL tasks. In particular, we randomly sample 6,000 images from
FashionMNIST (Xiao et al., 2017) for MNIST and sample 5,000 images from GTSRB (Houben et al.,
2013) for CIFAR10 as the clean training dataset of the server. We adopt Neural Cleanse (Wang et al.,
2019) to reverse engineer the backdoor trigger and target class.

6.2 EXPERIMENTAL RESULTS

Our FLGAME consistently outperforms existing defenses: Table 1 and Table 2 show the results
of FLGAME compared with existing defenses under IID and non-IID settings. We have the following
observations from the experimental results. First, FLGAME outperforms all existing defenses in
terms of ASR. In particular, FLGAME can reduce ASR to random guessing (i.e., ASR of FedAvg
under no attacks) in both IID and non-IID settings for clients as well as both in-domain and out-of-
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Table 1: Comparison of FLGAME with existing defenses under Scaling attack. The total
number of clients is 10 with 60% compromised. The best results for defense are bold.

Datasets Metrics FedAvg
(No attacks)

Defenses (Under attacks)

FedAvg Krum Median Norm-
Clipping DP FLTrust

FLGAME
In-

domain
Out-of-
domain

MNIST
TA (%) 99.04 98.77 98.78 99.17 95.48 92.97 97.93 98.53 98.56

ASR (%) 9.69 99.99 99.99 99.97 98.54 99.45 16.01 9.72 9.68

CIFAR10
TA (%) 81.08 80.51 76.44 80.17 80.38 43.22 75.71 74.81 67.42

ASR (%) 8.39 99.8 99.94 99.82 99.87 99.58 99.46 8.92 9.57

Table 2: Comparison of FLGAME with existing defenses under Scaling attack. The total
number of clients is 10 with 60% compromised. The local training datasets of clients are
non-IID. The best results for defense are bold.

Datasets Metrics FedAvg
(No attacks)

Defenses (Under attacks)

FedAvg Krum Median Norm-
Clipping DP FLTrust

FLGAME
In-

domain
Out-of-
domain

MNIST
TA (%) 98.98 99.15 96.88 99.12 94.54 91.52 97.68 98.28 98.34

ASR (%) 9.73 99.99 85.03 99.98 98.16 99.54 19.61 10.42 10.88

CIFAR10
TA (%) 80.25 75.35 67.66 79.54 70.18 50.79 75.08 73.43 72.37

ASR (%) 9.67 99.92 99.92 99.99 99.63 95.01 99.82 11.51 10.62

Table 3: Comparison of FLGAME with existing defenses under Scaling attack. The total
number of clients is 30 with 60% compromised. The best results for defense are bold.

Datasets Metrics FedAvg
(No attacks)

Defenses (Under attacks)

FedAvg Krum Median Norm-
Clipping DP FLTrust

FLGAME
In-

domain
Out-of-
domain

MNIST
TA (%) 99.02 99.09 98.16 99.01 92.77 89.77 95.27 97.81 97.64

ASR (%) 9.74 99.98 99.98 99.98 98.2 98.83 11.04 9.95 9.95

CIFAR10
TA (%) 80.08 79.73 72.23 79.58 79.2 50.86 67.84 73.29 60.1

ASR (%) 9.14 99.82 99.97 99.85 99.87 96.53 99.28 10.44 12.87

Table 4: Comparison of FLGAME with existing defenses under DBA attack. The total number
of clients is 10 with 60% compromised. The best results for defense are bold.

Datasets Metrics FedAvg
(No attacks)

Defenses (Under attacks)

FedAvg Krum Median Norm-
Clipping DP FLTrust

FLGAME
In-

domain
Out-of-
domain

MNIST
TA (%) 99.02 99.03 98.87 98.98 98.99 98.99 97.98 97.84 98.05

ASR (%) 9.74 100 10.06 99.81 99.75 99.73 10.02 9.56 9.68

CIFAR10
TA (%) 81.08 80.9 76.09 80.0 80.21 41.36 75.17 73.18 72.93

ASR (%) 8.39 93.44 94.97 91.60 91.90 86.96 66.58 8.81 9.00
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domain settings for the server. Intrinsically, FLGAME performs better because our game-theoretic
defense enables the defender to optimize its strategy against dynamic, adaptive attacks. We note
that FLTrust outperforms other defenses (except FLGAME) in most cases since it exploits a clean
training dataset from the same domain as local training datasets of clients. However, FLTrust is not
applicable when the server only holds an out-of-domain clean training dataset, while FLGAME can
relax such an assumption and will still be applicable. Moreover, our experimental results indicate that
FLGAME achieves comparable performance even if the server holds an out-of-domain clean training
dataset. In Appendix C.2, we visualize the average genuine (or trust) scores computed by FLGAME
(or FLTrust) for compromised and benign clients to further explain why our FLGAME outperforms
FLTrust. Second, our FLGAME achieves comparable TA with existing defenses, indicating that our
FLGAME preserves the utility of global models.

Table 3 shows the comparison results of FLGAME with existing defenses when the total number
of clients is 30. Table 4 shows the comparison results of FLGAME with existing defenses under
DBA attack. Our observations are similar, which indicates that FLGAME consistently outperforms
existing defenses under different numbers of clients and backdoor attacks.

Impact of λ: λ is a hyperparameter used by an attacker when searching for the optimal rti for each
compromised client i in each communication round t. Figure 1 shows the impact of λ on ASR of
our FLGAME. The results show that our FLGAME is insensitive to different λ’s. The reason is
that the genuine score for a compromised client is small when λ is large, and the local model of a
compromised client is less likely to predict a trigger-embedded input as the target class when λ is
small. As a result, backdoor attacks with different λ are ineffective under our FLGAME.

Impact of the fraction of compromised clients: Figure 2 shows the impact of the fraction of
compromised clients on ASR of our FLGAME and FLTrust. As the results show, our FLGAME is
effective for a different fraction of compromised clients in both in-domain and out-of-domain settings.
In contrast, FLTrust is ineffective when the fraction of compromised clients is large. For instance, our
FLGAME can achieve 9.84% (in-domain) and 10.12% (out-of-domain) ASR even if 80% of clients
are compromised on MNIST. Under the same setting, the ASR of FLTrust is 99.95%, indicating that
the defense fails.
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Figure 1: Impact of λ on ASR of FLGAME
under Scaling attack. FLGAME is insensitive
to various choices of λ.
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Figure 2: Impact of the fraction of com-
promised clients on ASR of FLGAME and
FLTrust under Scaling attack.

7 CONCLUSION AND FUTURE WORK

In this work, we propose FLGAME, a general game-theoretic defense against adaptive backdoor
attacks to federated learning. Our formulated minimax game enables the defender and attacker to
dynamically optimize their strategies. Moreover, we respectively design solutions for both of them
to solve the minimax game. Theoretically, we show that the parameters of the global model with
the backdoor attack under our FLGAME is close to that without attacks. Empirically, we perform
systematic evaluations on benchmark datasets and compare FLGAME with multiple state-of-the-art
baselines. Our results demonstrate the effectiveness of FLGAME under strategic backdoor attacks.
Moreover, FLGAME achieves significantly higher robustness than baselines.

Interesting future work includes: 1) extending our FLGAME to defend against other attacks to
federated learning, and 2) improving FLGAME by designing new methods to reverse engineer the
backdoor trigger and target class via exploiting the historical local model updates sent by each client.
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ETHICS STATEMENT

We propose a game-theoretic defense against backdoor attacks to federated learning in this work. One
potentially harmful effect is that an attacker may leverage our defense to enhance its attack. However,
our defense already considers strategic attacks. Therefore, we do not see any explicit ethical issues
with our work.

REPRODUCIBILITY STATEMENT

We discuss the reproducibility of our work from two aspects: theoretic analysis and empirical results.
For theoretic analysis, we explicitly explain the assumptions that we make in Section 5. We also
include the complete proofs for our lemmas and theorems in Appendix. For empirical results, we
discuss the details of our experimental setup in Section 6.1, including datasets and global models,
federated learning settings, backdoor attack settings, baselines, and their parameter settings, as well
as our FLGAME settings. The datasets used in this work are all publicly available. We also add the
link to the publicly available codes used in our experiments. We will release our code upon paper
acceptance.
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APPENDIX

A COMPLETE PROOFS

A.1 PROOF OF LEMMA 1

We first present some preliminary lemmas that will be invoked for proving Lemma 1.

Lemma 2. Suppose Di is the clean local training dataset of the client i. An attacker can inject the
backdoor trigger to rti fraction of training examples in Di and relabel them as the target class. We
use D′

i to denote the set of backdoored training examples where rti =
|D′

i|
|Di| . Given two arbitrary Θ

and Θc, we let gi = 1
|Di∪D′

i|
∇Θ

∑
z∈Di∪D′

i
ℓ(z; Θ) and hi =

1
|Di|∇Θc

∑
z∈Di

ℓ(z; Θc). We then
have that

(Θ−Θc)
T (gi − hi) ≥ (0.5µ− rtiM) ∥Θ−Θc∥22 − rtiM, (12)

∥gi − hi∥2 ≤ L∥Θ−Θc∥2 + 2rtiM. (13)

Proof. We first prove Equation 12. We have the following relations:

(Θ−Θc)
T (gi − hi)

=(Θ−Θc)
T (

1

|Di ∪ D′
i|

∑
z′∈Di∪D′

i

∇Θℓ(z
′; Θ)− 1

|Di|
∑
z∈Di

∇Θc
ℓ(z; Θc)) ▷ definition of gi and hi

(14)

=(Θ−Θc)
T (

1

(1 + rti)|Di|
∑

z′∈Di∪D′
i

∇Θℓ(z
′; Θ)− 1

|Di|
∑
z∈Di

∇Θc
ℓ(z; Θc)) ▷ rti =

|D′
i|

|Di|
(15)

=
1

|Di|(1 + rti)
(Θ−Θc)

T (
∑

z′∈Di∪D′
i

∇Θℓ(z
′; Θ)− (1 + rti)

∑
z∈Di

∇Θcℓ(z; Θc)) (16)

=
1

|Di|(1 + rti)
(Θ−Θc)

T (
∑

z′∈Di

∇Θℓ(z
′; Θ)−

∑
z∈Di

∇Θc
ℓ(z; Θc)

+
∑

z′∈D′
i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc)) (17)

=
1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θcℓ(z; Θc))

+ (Θ−Θc)
T (

∑
z′∈D′

i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θcℓ(z; Θc))) (18)

≥ 1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θc

ℓ(z; Θc))

− ∥(Θ−Θc)
T (

∑
z′∈D′

i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc))∥1) ▷ ∀x, x ≥ −∥x∥1 (19)

≥ 1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θc

ℓ(z; Θc))

− ∥Θ−Θc∥2 · ∥
∑

z′∈D′
i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2) ▷ Cauchy–Schwarz inequality

≥ 1

|Di|(1 + rti)
(
∑
z∈Di

(Θ−Θc)
T (∇Θℓ(z; Θ)−∇Θc

ℓ(z; Θc))

− ∥Θ−Θc∥2 · (
∑

z′∈D′
i

∥∇Θℓ(z
′; Θ)∥2 + rti

∑
z∈Di

∥∇Θcℓ(z; Θc)∥2) ▷ triangle inequality

13



Under review as a conference paper at ICLR 2023

≥ 1

|Di|(1 + rti)
(µ|Di| ∥Θ−Θc∥22 − 2rti |Di|M ∥Θ−Θc∥2) ▷ Assumption 1 (20)

=
µ

1 + rti
∥Θ−Θc∥22 −

1

1 + rti
2rtiM ∥Θ−Θc∥2) (21)

≥0.5µ ∥Θ−Θc∥22 − 2rtiM ∥Θ−Θc∥2 ▷ rti ∈ [0, 1] (22)

≥0.5µ ∥Θ−Θc∥22 − rtiM ∥Θ−Θc∥22 − rtiM) (23)

=(0.5µ− rtiM) ∥Θ−Θc∥22 − rtiM, (24)

where Equation 23 holds based on the fact that −2rtiM ∥Θ−Θc∥2 ≥ −rtiM ∥Θ−Θc∥22 − rtiM for
∀rti ≥ 0 and ∀M ≥ 0.

In the following, we prove inequality 13. We have that

∥gi − hi∥2

=
1

|Di|(1 + rti)
∥

∑
z′∈Di∪D′

i

∇Θℓ(z
′; Θ)− (1 + rti)

∑
z∈Di

∇Θcℓ(z; Θc)∥2 ▷ definition of gi and hi

(25)

=
1

|Di|(1 + rti)
∥

∑
z′∈D′

i

∇Θℓ(z
′; Θ) +

∑
z′∈Di

∇Θℓ(z
′; Θ)− (1 + rti)

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2 (26)

≤ 1

|Di|(1 + rti)
∥

∑
z′∈D′

i

∇Θℓ(z
′; Θ)− rti

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2

+
1

|Di|(1 + rti)
∥

∑
z′∈Di

∇Θℓ(z
′; Θ)−

∑
z∈Di

∇Θc
ℓ(z; Θc)∥2 ▷ triangle inequality (27)

≤ 1

1 + rti
(2rtiM + L∥Θ−Θc∥2) (28)

≤2rtiM + L∥Θ−Θc∥2 ▷ rti ∈ [0, 1] (29)

where Equation 28 is due to Assumption 1 and 2.

Given Lemma 2, we prove Lemma 1 as follows. Recall that we have αt
i =

pt
i∑

i∈S pt
i

and βt
i =

qti∑
i∈S qti

.

∥Θt+1 −Θt+1
c ∥2 (30)

=∥Θt − η
∑
i∈S

αt
ig

t
i − (Θt

c − η
∑
i∈S

βt
ih

t
i)∥2 ▷ gradient descent for Θt+1 and Θt+1

c (31)

=∥Θt − η
∑
i∈S

αt
ig

t
i − (Θt

c − η
∑
i∈S

(αt
i + βt

i − αt
i)h

t
i)∥2 (32)

=∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i) + (η
∑
i∈S

(βt
i − αt

i)h
t
i)∥2 ▷ rearranging Equation 32 (33)

≤∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥2 + ∥η
∑
i∈S

(βt
i − αt

i)h
t
i∥2. ▷ triangle inequality (34)

Next, we respectively derive an upper bound for the first and second terms in Equation 34. To derive
the upper bound for the first term, we have that

∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥22

=∥Θt −Θt
c∥22 − 2η(Θt −Θt

c)
T (

∑
i∈S

αt
i(g

t
i − ht

i)) + η2∥
∑
i∈S

αt
i(g

t
i − ht

i)∥22 (35)
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=S1 + S2 + S3, (36)

where S1 = ∥Θt −Θt
c∥

2
2, S2 = −2η(Θt − Θt

c)
T (

∑
i∈S αt

i(g
t
i − ht

i)), and S3 =

η2
∥∥∑

i∈S αt
i(g

t
i − ht

i)
∥∥2
2
. Next, we will bound S2 and S3. We denote γt =

∑
i∈Sa

αt
ir

t
iM . Note

that we have γt =
∑

i∈S αt
ir

t
iM since rti = 0 for ∀i ∈ S \ Sa. We bound S2 as follows.

S2

=− 2η(Θt −Θt
c)

T (
∑
i∈S

αt
i(g

t
i − ht

i)) (37)

=− 2η
∑
i∈S

αt
i(Θ

t −Θt
c)

T (gti − ht
i) (38)

≤− 2η
∑
i∈S

αt
i((0.5µ− rtiM)

∥∥Θt −Θt
c

∥∥2
2
− rtiM) (39)

=− 2η((0.5µ−
∑
i∈S

αt
ir

t
iM)

∥∥Θt −Θt
c

∥∥2
2
−

∑
i∈Sa

αt
ir

t
iM) (40)

=(−ηµ+ 2ηγt)
∥∥Θt −Θt

c

∥∥2
2
+ 2ηγt, ▷definition of γt (41)

where inequality 39 holds by Lemma 2 and the fact that η, αt
i ≥ 0. We bound S3 as follows.

S3

=η2∥
∑
i∈S

αt
i(g

t
i − ht

i)∥22 (42)

≤η2(
∑
i∈S

αt
i

∥∥(gti − ht
i)
∥∥
2
)2 (43)

≤η2(
∑
i∈S

αt
i(2r

t
iM + L∥Θ−Θc∥2)2 ▷ Lemma 2 (44)

=η2(2γt + L∥Θ−Θc∥2)2 (45)

=η2(L2 ∥Θ−Θc∥22 + 4γtL ∥Θ−Θc∥2 + 4[γt]2) (46)

≤η2(L2 ∥Θ−Θc∥22 + 2γtL ∥Θ−Θc∥22 + 2Lγt + 4[γt]2) (47)

=η2 · ((L2 + 2Lγt) · ∥Θ−Θc∥22 + 2Lγt + 4[γt]2) (48)

where Equation 47 is based on the fact that 4γtL ∥Θ−Θc∥2 ≤ 2γtL ∥Θ−Θc∥22 + 2γtL when
γtL ≥ 0.

Given the upper bounds of S2 and S3, we can bound
∥∥Θt −Θt

c − η
∑

i∈S αt
i(g

t
i − ht

i)
∥∥2
2

as follows.

∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥22 (49)

=S1 + S2 + S3 (50)

≤∥Θ−Θc∥22 + (−ηµ+ 2ηγt)
∥∥Θt −Θt

c

∥∥2
2
+ 2ηγt

+ (η2L2 + η22Lγt)
∥∥Θt −Θt

c

∥∥2
2
+ η22Lγt + η24[γt]2 (51)

=(1− ηµ+ 2ηγt + η2L2 + 2η2Lγt)
∥∥Θt −Θt

c

∥∥2
2
+ 2ηγt + 2η2Lγt + 4η2[γt]2 (52)

Next, we will derive an upper bound for
∥∥η∑i∈S(β

t
i − αt

i)h
t
i

∥∥
2
. We denote rt =

∑
i∈Sa

rti . Note
that we have that rt =

∑
i∈S rti also holds since rti = 0 for ∀i ∈ S \ Sa. Given the assumption that

(1− rt)αt
i ≤ βt

i ≤ (1 + rt)αt
i, we have

∥η
∑
i∈S

(βt
i − αt

i)h
t
i∥2 ≤ η

∑
i∈S
|βt

i − αt
i|
∥∥ht

i

∥∥
2
≤ 2ηrtM, (53)
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where the first inequality is due to triangle inequality and the second inequality is based on the
assumption that ∥ht

i∥2 ≤M . Therefore, we have:

∥Θ(t+1) −Θ(t+1)
c ∥2

≤∥Θt −Θt
c − η

∑
i∈S

αt
i(g

t
i − ht

i)∥22 + ∥η
∑
i∈S

(βt
i − αt

i)h
t
i∥2 ▷ Equation 30, 34 (54)

≤
√
(1− ηµ+ 2ηγt + η2L2 + 2η2Lγt) ∥Θt −Θt

c∥
2
2 + 2ηγt(1 + ηL+ 2ηγt) (55)

+ 2ηrtM ▷ Equation 49, 52, 53 (56)

≤
√
1− ηµ+ 2ηγt + η2L2 + 2η2Lγt

∥∥Θt −Θt
c

∥∥
2
+
√

2ηγt(1 + ηL+ 2ηγt) + 2ηrtM, (57)

where the last inequality holds due to the fact that
√
a+ b ≤

√
a+
√
b for ∀a ≥ 0 and ∀b ≥ 0, which

completes our proof for Lemma 1.

A.2 PROOF OF THEOREM 1

We denote At =
√

1− ηµ+ 2ηγt + η2L2 + 2η2Lγt, A =
√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ,

Bt =
√
2ηγt(1 + ηL+ 2ηγt) + 2ηrtM , and B =

√
2ηγ(1 + ηL+ 2ηγ) + 2ηrM . Since γt ≤ γ

and rt ≤ r, we have At ≤ A and Bt ≤ B. Thus, based on Lemma 1, we have:∥∥Θt −Θt
c

∥∥
2
≤ A

∥∥Θt−1 −Θt−1
c

∥∥
2
+B. (58)

Then, we can iteratively apply the above equation to prove our theorem. In particular, we have:∥∥Θt −Θt
c

∥∥
2

≤A
∥∥Θt−1 −Θt−1

c

∥∥
2
+B (59)

≤A(A
∥∥Θt−2 −Θt−2

c

∥∥
2
+B) +B (60)

=A2
∥∥Θt−2 −Θt−2

c

∥∥
2
+ (A1 +A0)B (61)

≤At
∥∥Θ0 −Θ0

c

∥∥
2
+ (At−1 +At−2 + · · ·+A0)B (62)

=At
∥∥Θ0 −Θ0

c

∥∥
2
+

1−At

1−A
B (63)

=(
√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ)t

∥∥Θ0 −Θ0
c

∥∥
2

+
1− (

√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ)t

1−
√
1− ηµ+ 2ηγ + η2L2 + 2η2Lγ

(
√

2ηγ(1 + ηL+ 2ηγ) + 2ηrM), (64)

When the learning rate satisfies 0 < η < µ−2γ
L2+2Lγ , we have that 0 < 1−ηµ+2ηγ+η2L2+2η2Lγ < 1.

Therefore, the upper bound becomes
√

2ηγ(1+ηL+2ηγ)+2ηrM

1−
√

1−ηµ+2ηγ+η2L2+2η2Lγ
as t→∞. Hence, we prove our

Theorem 1.

B COMPLETE ALGORITHMS

B.1 COMPLETE ALGORITHM OF FLGAME

Algorithm 1 shows the complete algorithm of FLGAME. In Line 1, we construct an auxiliary global
model. In Line 2, the function REVERSEENGINEER is used to reverse engineer the backdoor trigger
and target class. In Line 4, we compute the local model of client i based on its local model update.
In Line 5, we compute a genuine score for client i. In Line 6, we update the global model based on
genuine scores and local model updates of clients.

B.2 COMPLETE ALGORITHM FOR A COMPROMISED CLIENT

Algorithm 2 shows the complete algorithm for a compromised client. In Line 1, we randomly
subsample ρi fraction of training data from Di. In Line 5, the function CREATEBACKDOOREDDATA
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Algorithm 1: FLGAME
Input: Θt (global model in the tth communication round), gti , i ∈ S (local model updates of

clients), Ds (clean training dataset of server), η (learning rate of global model).
Output: Θt+1 (global model for the (t+ 1)th communication round)

1 Θt
a = Θt + 1

|S|
∑

i∈S gti
2 δre, y

tc
re = REVERSEENGINEER(Θt

a)
3 for i ∈ S do
4 Θt

i = Θt + gti
5 pti = 1− 1

|Ds|
∑

x∈Ds
I(G(x⊕ δre; Θ

t
i) = ytcre)

6 Θt+1 = Θt + η 1∑
i∈S pt

i

∑
i∈S ptig

t
i

7 return Θt+1

is used to generate backdoored training examples by embedding the backdoor trigger δ to ⌊min(j ∗
ζ, 1)|Di \ Drev

i |⌋ training examples in Di \ Drev
i and relabel them as ytc, where | · | measures the

number of elements in a set. In Line 6, the function TRAININGLOCALMODEL is used to train the
local model on the training dataset D′

i ∪ Di \ Drev
i . In Line 7, we estimate a genuine score. In

Line 11, we use the function CREATEBACKDOOREDDATA to generate backdoored training examples
by embedding the backdoor trigger δ to ⌊min(o ∗ ζ, 1)|Di|⌋ training examples in Di and relabel
them as ytc. In Line 12, we use the function TRAININGLOCALMODEL to train a local model on the
training dataset D′

i ∪ Di.

Algorithm 2: ALGORITHM FOR A COMPROMISED CLIENT

Input: Θt (global model in the tth communication round), Di (local training dataset of client i),
ρi (fraction of reserved data to find optimal rti), ζ (granularity of searching for rti), δ
(backdoor trigger), ytc (target class), and λ (hyperparameter).

Output: gti (local model update)
1 Drev

i = RANDOMSAMPLING(Di, ρi)

2 count = ⌈ 1ζ ⌉
3 max value, o← 0, 0
4 for j ← 0 to count do
5 D′

i = CREATEBACKDOOREDDATA(Di \ Drev
i , δ, ytc,min(j ∗ ζ, 1))

6 Θij = TRAININGLOCALMODEL(Θt,D′
i ∪ Di \ Drev

i )

7 pij = 1− 1
|Drev

i |
∑

x∈Drev
i

I(G(x⊕ δ; Θij) = ytc)

8 if pij + λmin(j ∗ ζ, 1) > max value then
9 o = j

10 max value = pij + λmin(j ∗ ζ, 1)
11 D′

i = CREATEBACKDOOREDDATA(Di, δ, y
tc,min(o ∗ ζ, 1))

12 Θt
i = TRAININGLOCALMODEL(Θt,D′

i ∪ Di)
13 return Θt

i −Θt

C ADDITIONAL EXPERIMENTAL SETUP AND RESULTS

C.1 ARCHITECTURE OF GLOBAL MODEL

Table 5 shows the global model architecture on MNIST dataset.

C.2 VISUALIZATION OF GENUINE SCORE OF FLGAME AND TRUST SCORE OF FLTRUST (CAO
ET AL., 2021A)

Our FLGAME computes a genuine score for each client which quantifies the extent to which a client
is benign in each communication round. Intuitively, our FLGAME would be effective if the genuine
score is small for a compromised client but is large for a benign one. FLTrust (Cao et al., 2021a)
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Table 5: Architecture of the convolutional neural network for MNIST.

Type Parameters

Convolution 3× 3, stride=1, 16 kernels
Activation ReLU

Max Pooling 2× 2

Convolution 4× 4, stride=2, 32 kernels
Activation ReLU

Max Pooling 2× 2

Fully Connected 800× 500

Activation ReLU
Fully Connected 500× 10

computes a trust score for each client in each communication round. Similarly, FLTrust would be
effective if the trust score is small for a compromised client but is large for a benign one. Figure 3
visualizes the average genuine or trust scores for compromised and benign clients of FLGAME and
FLTrust on MNIST dataset. We have the following observations from the figures. First, the average
genuine score computed by FLGAME drops to 0 quickly for compromised clients. In contrast, the
average trust score computed by FLTrust drops slowly. Second, the average genuine score computed
by FLGAME for benign clients first increases and then becomes stable. In contrast, the average
genuine score computed by FLTrust for benign clients decreases as the number of iterations increases.
As a result, our FLGAME outperforms FLTrust.
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(a) FLTrust (IID)
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(b) FLTrust (non-IID)
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(c) FLGAME (IID)
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Figure 3: (a)(b): Average trust scores computed by the server for benign and compromised
clients of FLTrust on MNIST in IID and non-IID settings under Scaling attack. (c)(d): Average
genuine scores computed by the server for benign and compromised clients of FLGAME on
MNIST in IID and non-IID settings under Scaling attack. The clean training dataset of the
server is the same for FLTrust and FLGAME.
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