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Abstract

Graph neural networks have re-defined how we model and predict on network data but
there lacks a consensus on choosing the correct underlying graph structure on which to
model signals. CoVariance Neural Networks (VNN) address this issue by using the sample
covariance matrix as a Graph Shift Operator (GSO). Here, we improve on the performance
of VNNs by constructing a Density Matrix where we consider the sample Covariance matrix
as a quasi-Hamiltonian of the system in the space of random variables. Crucially, using this
density matrix as the GSO allows components of the data to be extracted at different scales,
allowing enhanced discriminability and performance. We show that this approach allows
explicit control of the stability-discriminability trade-off of the network, provides enhanced
robustness to noise compared to VNNs, and outperforms them in useful real-life applications
where the underlying covariance matrix is informative. In particular, we show that our
model can achieve strong performance in subject-independent Brain Computer Interface
EEG motor imagery classification, outperforming EEGnet while being faster. This shows
how covariance density neural networks provide a basis for the notoriously difficult task of
transferability of BCIs when evaluated on unseen individuals, while providing a principled,
tuneable control over the stability–discriminability trade-off via the inverse temperature
parameter β."

1 Introduction

Graph Neural Networks (GNN) have served as an essential platform for the modelling of Network data
(Gama et al., 2020; Scarselli et al., 2008; Veličković et al., 2018; Ruiz et al., 2021; Defferrard et al., 2016; Isufi
et al., 2020; Kipf & Welling, 2017; Vignac et al., 2020). Much of the recent developments in GNNs have
stemmed from Graph Signal Processing (GSP)(Ortega et al., 2018; Sandryhaila & Moura, 2013) and other
areas of Network Science (Peixoto, 2015; Guimerà & Sales-Pardo, 2009; Domenico et al., 2013; Lambiotte
et al., 2014; Arenas et al., 2006). A key component of GSP is the Graph Shift Operator (GSO), whose
eigen-decomposition underlies spectral filtering operations analogous to the Discrete Fourier Transform.

However, in many application domains, including neuroscience, finance, and genomics, we observe multivariate
signals without a known underlying graph topology. Standard GNNs require a pre-specified graph, and
learning one from data can introduce instability, overfitting, and noise sensitivity, especially under limited
samples. A fundamental limitation of GSP is that the GSO is typically unrelated to the graph signal data
itself (Smith et al., 2019).

CoVariance Neural Networks (VNNs) (Sihag et al., 2022) address this by using the sample covariance matrix,
computed directly from the data, as the GSO. This approach has intuitive links to Principal Component
Analysis (PCA) and inherits desirable transferability properties of GNNs to data of different dimensions
(Sihag et al., 2022). However, VNNs face two key limitations:

1. No control over the stability–discriminability trade-off : VNNs inherently discriminate signal
differences lying in the low-variance eigenspace, while high-variance principal components remain
indistinguishable. There is no mechanism to tune which spectral components the network can resolve.
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2. Noise sensitivity: Since VNNs discriminate in the low-variance subspace, noise concentrated in
these directions common in low signal-to-noise ratio (SNR) settings (such as EEG data) directly
degrades performance.

In this work, we propose Covariance Density Neural Networks (CDNNs), which resolve both limitations.
We construct a density matrix ρ(C) = e−βC/Tr(e−βC) from the sample covariance matrix C, treating C
as a quasi-Hamiltonian in the space of random variables. Using this density matrix as the GSO introduces
qualitatively new capabilities.

Density matrices have long been used in Quantum Mechanics and information theory (Borst & Theunissen,
1999; Wilde, 2013) to describe physical systems as Quantum States (Domenico & Biamonte, 2016; Acín
et al., 2007; Braunstein & Caves, 1994; Zdeborová & Krzakala, 2016; Hübner, 1992). A density matrix is a
positive semi-definite, self-adjoint matrix with a trace of one acting on the Hilbert Space of the system (Acín
et al., 2007). This gives a probabilistic interpretation to the eigenvalues of the matrix where the eigenmodes
represent different probabilistic states while also allowing an entropic interpretation. The Hamiltonian of the
system determines the evolution of the system defined by a density matrix. Naturally, the graph Laplacian
has appeared as a candidate to represent this Hamiltonian operator. However, the question remains, what if
the true underlying graph structure is unknown?

In this vein, we show that the sample covariance matrix, under reasonable assumptions, can act as spectral
surrogate to the Graph Laplacian and thus play the role of a Quasi-Hamiltonian. We propose a novel density
matrix constructed from the sample covariance matrix and define convolutions on this operator as the basis
of our Covariance Density Neural Networks (CDNN). As a consequence of this formulation we present novel
information theoretic tools such as the multi-scale Von Neumann entropy for Covariance matrices, a measure
of entropy that can be applied to singular, low-rank covariance matrices. We also create multi-scale filter
banks on the sample covariance matrix which we show improves performance. Further, we show empirically
and theoretically the importance of the β (inverse temperature) parameter and how it allows us to control
the discriminability and stability of the network.

Empirically, we show that CDNNs outperform VNNs in financial forecasting where the underlying covariance
matrix may be informative (Wu et al., 2020). CDNNs also show enhanced performance in the analysis of
neurological signals, in particular, we demonstrate strong performance in classifying unseen individuals’ EEG
brain signals in Motor Imagery (MI) tasks (Tangermann et al., 2012; Xu et al., 2022). This leverages the
transferability Property of VNNs and combines it with the increased stability and discriminability of CDNNs
to classify 4-class motor imagery signals when evaluation is done on a test individual not seen in training
(Tangermann et al., 2012). We show that our approach outperforms benchmarks in the field of EEG signal
classification such as EEGNet(Keutayeva et al., 2024) while being faster. This is a step towards real-time
Brain Computer Interfaces (BCI) (Xu et al., 2022; Yang et al., 2021; Zhang & Liu, 2018; Zhang et al., 2019;
2023) where high accuracy on unseen individuals coupled with low training times are highly desirable.

2 Background and Motivation

Overview

Graph Signal Processing in brief. In classical signal processing, a time series is a sequence of values
indexed by time, and the shift operator (delay by one sample) underpins the Fourier transform and filtering.
Graph Signal Processing (GSP) generalises this idea: a graph signal assigns a value to each node of a
graph, and the Graph Shift Operator (GSO), typically the adjacency or Laplacian matrix, plays the role
of the shift. Multiplying a signal by the GSO “propagates” values along edges, and repeated application
(powers of the GSO) defines graph convolution filters that mix information at increasing neighborhoods. The
eigen-decomposition of the GSO provides a graph Fourier basis analogous to the DFT, enabling spectral
analysis and filtering of signals on graphs.

Graph Neural Networks as learnable graph filters. Graph Neural Networks (GNNs) are essentially
graph filters with learnable coefficients. A typical GNN layer can be written as σ

(∑K
k=0 hkSkx

)
, where S is

the GSO, hk are trainable filter coefficients, and σ(·) is a point-wise non-linearity (e.g., ReLU). The coefficients
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{hk} determine the spectral response of the filter (how strongly different graph frequencies are amplified or
attenuated) and are learned from data via backpropagation. Thus, GNNs combine the representational power
of polynomial graph filters with the flexibility of learned parameterization and non-linear activation functions.

Covariance as a graph operator. When no graph topology is available, the sample covariance matrix Cn

offers a natural data-driven alternative: its (i, j)-th entry measures the linear association between variables
i and j, providing implicit “edge weights.” Using Cn as the GSO means that filtering a signal propagates
information according to the statistical dependencies in the data, and the eigenvectors of Cn, which are the
principal components, serve as the graph Fourier basis.

Why a density matrix? A standard covariance-based filter can only discriminate signal differences in
the low-variance eigenspace (see Theorem 1). The density matrix transformation ρ(C) = e−βC/Tr(e−βC)
inverts this: for β > 0, large covariance eigenvalues map to small density eigenvalues, shifting high-variance
components into the discriminable region. The parameter β thus provides explicit, tuneable control over
which spectral components the network resolves and provides a noise-discriminability tradeoff. By combining
multiple β values in a filter bank, CDNNs can discriminate across all spectral scales simultaneously. The
normalization by the trace induces scale invariance and stability to the operator while allowing interpretability
and transfer of information-theoretic measures.

We now introduce formal definitions that link these frameworks together.
Definition 1 (Graph Convolutional Filter). Let h = [h0, . . . , hK ]⊤ be filter coefficients. Let S be the GSO.
A graph convolutional filter of order K is the linear map

H(x) =
K∑

k=0
hk Skx = H(S) x,

where H(S) =
∑K

k=0 hkSk.
Definition 2 (Graph Fourier Transform (GFT) (Isufi et al., 2024)). For a diagonalizable GSO S = VΛV−1

with eigenvectors V and eigenvalues Λ, the GFT of a graph signal x is x̃ = V−1x, and the inverse GFT is
x = V x̃.

Definition 3 (Covariance and Sample Covariance). Let X ∈ Rd with mean µ. The covariance matrix is
given by

C = E[(X − µ)(X − µ)⊤]. (1)

From n samples X(1), . . . , X(n), the sample covariance is defined as

Cn = 1
n

n∑
k=1

(
X(k) − X̄

)(
X(k) − X̄

)⊤
, (2)

where

X̄ = 1
n

n∑
k=1

X(k). (3)

As n → ∞, the sample covariance converges to the true covariance: Cn → C.
Definition 4 (coVariance Fourier Transform (VFT) (Sihag et al., 2022)). Let Ĉn = UΣU⊤ be the
eigendecomposition of the sample covariance. Then the VFT of a random sample x is x̃ = U⊤x.

Quantum mechanical density matrices establish a probability structure for system states (Rao, 1945; Domenico
& Biamonte, 2016). They must be Hermitian (ρ = ρ†), positive semi-definite (ρ ≥ 0), and have unit trace
(Tr(ρ) = 1).

Importantly, the following density matrix has recently been Proposed(Domenico & Biamonte, 2016):

ρ = e−βL

Z
, Z = Tr(e−βL),

where L is the graph Laplacian, and β > 0 is a parameter controlling the diffusion.
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This allows the calculation of the spectral entropy of these matrices where eigenmodes define probabilistic
routes of diffusion and β allows the calculation of the entropy at different scales. Importantly, the sub-
additivity of entropy is also maintained, a feat not achieved previously (Araki & Lieb, 1970; Anand et al.,
2011). Taking inspiration from this we observe that there is a distinct relationship between graph Laplacian’s
and inverse covariance (precision) matrices and that graph learning is linked to sparse covariance estimation
(Dittrich & Matz, 2020).

It is established that the estimation of the combinatorial graph Laplacian (CGL) matrix from observed signals
is usually performed via the CGL estimator (CGLE) (Pavez, 2022). Specifically, the estimated Laplacian
matrix L̂ is obtained as

L̂ = arg min
L∈Lp(E)

(
− log

†
det(L) + tr(LCn)

)
, (4)

where Lp(E) denotes the set of valid combinatorial graph Laplacian matrices consistent with the edge set E,
and Cn is the sample covariance matrix of the observed graph signals.

Note that the estimation problem in equation 4 is grounded in a tight spectral connection between the graph
Laplacian and the covariance of graph–stationary signals. Under the Gaussian–Markov assumption Cn = L†,
the covariance can be expressed as a spectral function of L and therefore shares the same eigenvectors (Dong
et al., 2019; Pavez & Ortega, 2016). This means that, when the number of observations n greatly exceeds the
graph order N , the sample covariance Cn forms a consistent surrogate for the Laplacian eigenspace. The
CGLE in equation 4 can thus be interpreted as selecting edge weights so that L aligns with the empirical
second-order statistics while retaining the common eigenbasis. It is thus intuitive to interpret the sample
covariance matrix as a signed or dual data-driven Laplacian. We refer the reader to Appendix A.6 for more
details.

It has also been shown that the eigenvectors of the Laplacian optimally decorrelate signals in a GMRF
model where the precision matrix (inverse covariance matrix) is defined as the Laplacian (Zhang & Florencio,
2013). This Property makes precision matrix eigenvectors valuable for tasks like signal compression. However,
the covariance matrix C shares the same eigenvectors as the precision matrix (up to eigenvalue scaling),
retaining the decorrelation Properties without requiring explicit inversion of the covariance matrix. Moreover,
C directly encodes global pairwise dependencies and serves as a more practical graph shift operator in graph
neural networks (GNNs) (Keriven & Peyré, 2019; Zügner & Günnemann, 2019; Isufi et al., 2024; Bruna et al.,
2014), as it avoids the sparsity constraints of the precision matrix and the numerical instability associated
with its estimation (lou, 2017; Mestre, 2008).

A real signal xi on a graph has Dirichlet energy

x⊤Lx =
∑

(i,j)∈E

wij(xi − xj)2 =
∑

i

dix
2
i︸ ︷︷ ︸

self

+
(
−
∑

(i,j)∈E

wij xixj

)
︸ ︷︷ ︸

interaction

,

where di =
∑

j wij is the vertex degree. For centred random variables xi with covariance matrix C,

x⊤Cx =
∑

i

Var(xi) x2
i +

∑
i̸=j

Cov(xi, xj) xixj ,

the diagonal variances Var(xi) supply node potentials while off-diagonal covariances provide pairwise couplings.
Thus C may be viewed as a quasi-Hamiltonian; its spectrum governs the same collective modes that minimise
Dirichlet energy for L.
1

In certain use cases when the covariance matrix is used as a ’graph’ constructed from the data itself (i.e
brain networks) the conceptualization of the covariance matrix as a ’quasi-hamiltonian’ makes intuitive sense

1We emphasise that the term “quasi-Hamiltonian” is used as a spectral analogy—highlighting the role of C in shaping the
system’s spectral modes and governing signal diffusion,rather than implying a strict quantum-mechanical interpretation. The
analogy is grounded in the shared mathematical structure: just as the Hamiltonian determines the Gibbs state in statistical
mechanics, C determines our density operator.

4



Under review as submission to TMLR

and may have practical benefits (the Hamiltonian is usually considered the energy operator of the system in
quantum mechanics). Furthermore, when there is no predefined underlying graph structure the covariance
matrix can act as a spectral surrogate to the graph Laplacian. This is the motivation of Covariance Density
Neural Networks. 2

Takeaway

When no graph topology is available, we demonstrate that the sample covariance matrix can serve as a
spectral proxy for the true graph Laplacian, effectively functioning as a quasi-Hamiltonian or energy
operator in our density-matrix formulation.

3 Covariance Density Neural Networks

In this section we introduce the theoretical foundations of Covariance Density Neural Networks. We first
introduce the Covariance Density Matrix and Filter.
Definition 5 (Covariance Density Operator and Filter). Define the density operator associated with a
covariance matrix C as:

ρ(C) = e−βC

Tr(e−βC) .

For an input vector x and real-valued parameters {hk}K
k=0, the output of the Covariance Density filter is

defined as:

z = H(ρ(C))x =
K∑

k=0
hk [ρ(C)]kx.

Analogously, we can define the Covariance Density Perceptron and its filter bank representation as follows:
Definition 6 (Covariance Density Perceptron). Consider a Covariance Density filter H(ρ(C)) and a given
nonlinear activation function σ(·). For an input x, the Covariance Density Perceptron is defined as:

Φ(x; C, H) = σ(H(ρ(C))x).

Definition 7 (Multi-Scale Covariance Density Filter Bank/Layer). For a covariance density filter bank
consisting of Fout scales with Fin m-dimensional inputs for each βm the m-th scale is defined as:

xout[m] = σ

(Fin∑
g=1

H(m)
g

(
ρ(C)

)
xin[g]

)
,

and the final multi-scale output of the layer is

xfinal = A
(
xout[1], xout[2], . . . , xout[Fout]

)
,

where A is an aggregation operator (e.g., concatenation, summation, or mean).

In order to show that graph neural networks are stable, the assumptions of integral Lipschitz continuity of
the network’s GSO frequency response is traditionally assumed. For Covariance Density Networks however,
we explicitly derive the Composite Lipschitz constant with respect to the density transformation as it is
instructive for explaining the role of the inverse temperature β in the network.

2While they exist, graph learning or pruning approaches can introduce instability, over-fitting, and noise sensitivity, especially
when the true connectivity is uncertain or the number of samples is limited. By contrast, using the sample covariance (and thus
the density matrix) as a fixed surrogate (similar to the Laplacian) provides a stable, interpretable operator without the risk of
learning spurious edges.
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Theorem 1 (Composite Lipschitz Conditions for covariance density Filters). The composite frequency
response of a Covariance Density Filter is given by

h(ρ(λ)) =
K∑

k=1

hke−βλk

Zk
,

where hk are finite coefficients, β > 0 is a tunable parameter, Zk =
∑m

i=1 e−βλik is the partition function,
and {λi}m

i=1 are the eigenvalues of the covariance matrix C. Assuming β and hk are finite constants, the
covariance density filter satisfies:

The Lipschitz condition:
|h(ρ(λ2)) − h(ρ(λ1))| ≤ α|λ2 − λ1|

The Integral Lipschitz condition:

|h(ρ(λ2)) − h(ρ(λ1))| ≤ θ
|λ2 − λ1|

|λ1+λ2|
2

, α ≤ θ

sup
(

|λ1+λ2|
2

)
For some θ > 0 with α =

∑K
k=0 |hk||βk|.

Figure 1: Composite Lipschitz Condition Empirical Validation

3

Importantly, the theorem
holds for both positive and
negative β. We assume
composite Lipschitz bounds
on the density-transformed
eigenvalues, treating filter
coefficients as fixed, even
though learned filters may
violate integral Lipschitz.
Viewing ρ(C) as a GSO, linear
filters cannot remain stable
and distinguish signals beyond
their Lipschitz cutoff—i.e.,
high-variance principal com-
ponents stay indistinguishable.
Pointwise nonlinearities can
help (Ruiz et al., 2020), but
some high-frequency content

still eludes discrimination (Pfrommer et al., 2021).

Observe, in the covariance density context, that the eigenvalues of the covariance matrix C determine
high-variance vs low-variance directions in the eigenbasis. If we denote these eigenvalues by {λi}N

i=1 in
ascending order (i.e. λ1 ≤ · · · ≤ λN ), then the density operator has eigenvalues {ρi} that are decreasing
functions of λi when β > 0 and increasing when β < 0 .

For the Covariance matrix itself larger λi corresponds to higher variance directions. Consequently, for the
covariance density filter H(ρ(C)), the composite integral Lipschitz condition is equivalent to

∣∣ρi ∂ρi

(
h(ρ(λi))

)∣∣ ≤ |β|
K∑

k=0
|hk||k|sup

(
|λ1 + λ2|

2

)
3Although it is rather un-intuitive to consider negative values of β, allowing its use allows a greater exploration of the spectral

profile, nevertheless such interpretations are not missing in the literature, i.e consider the communicability matrix introduced by
Estrada et al. (Estrada et al., 2012) or even the Softmax function (LeCun et al., 2015; Goodfellow et al., 2016).
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this forces the derivative of the filter to shrink as ρi grows. Consider the case when β > 0, larger λi leads to
smaller ρi, so one sees a role reversal, i.e. large λi are mapped to small density-eigenvalue ρi. and small λi

are mapped to large density-eigenvalue ρi.

Hence, imposing an integral Lipschitz bound in the covariance density setting tends to flatten the filter for
the large values of ρi—i.e. for the low-variance eigenvalues λi.

Figure 2: Discrimination of two singular Gaus-
sians using CVNE. We sampled N=5×104 triples
(X, Y, Z), estimated covariances on sliding windows
(W=128) and computed Snaive, Sβ (β = 2). Back-
ground: 2D LDA decision regions. Dashed: best 1D
splits—Naive fails (AUC 0.5), von Neumann succeeds
(AUC 1.0).

This leads to a different notion of “cut-off” frequency:
instead of failing to distinguish signals whose dif-
ference lie in the highest-variance subspace, here
the filter has trouble distinguishing components ly-
ing in the lowest-variance subspace. These non-
discriminable subspaces are spanned by the eigen-
vectors whose variance in the covariance matrix is
lower. In a PCA interpretation, the high-variance
principal components become the “low-ρi modes" and
the covariance-density filter is able to discriminate
signals that differ primarily in these high-variance
directions.

The trade-off between stability and discriminability
thus flips, precisely because λi and ρi are inversely
related under the inverse exponential map.

For positive β the exponential map ensures a ’com-
pression’ of high variance components into the dis-
criminable region of the integral Lipschitz filter while
for β < 0 we return to the original covariance setting
where signal differences that lie in the low variance
components eigenbasis can be discriminated but this
time with a larger eigenvalue gap for higher variance
components. i.e. the filter behaves similarly to a
covariance filter. Importantly we can now construct
multi-scale filter banks (and thus networks) that are
discriminative in both high and low frequencies while
being simultaneously more stable, although this in-
creased discriminability could introduce noise into
the system. The set of discriminable signals for a

CDNN is thus (Pfrommer et al., 2021):

DΦ =


{

(x, y) ∈ RN : Φ(x; ρ(C)) − Φ(y; ρ(C)) ∈ (Vlow-λ)
}

, β > 0,{
(x, y) ∈ RN : Φ(x; C) − Φ(y; C) ∈ (Vhigh-λ)

}
, β < 0.

where (VK) corresponds to the eigenspace associated to those density-eigenvalues ρi above the relevant cut-off.
As these two spaces are orthogonal complements of each other, CDNNs constructed using multi-scale filter
banks consisting of positive and negative β values can discriminate signal differences in both high and low
frequencies.

In this sense, it is also intuitive to allow the network to learn β values from the data itself. In this vein, we
show that there is no significant drop in performance when this parameter is learned from the data and not
hand-picked using domain knowledge (Appendix A.3.1).

As shown in Theorem 1 the Lipschitz constant of the filter frequency response is explicitly controlled by β
and the filter coefficients. This is particularly useful as we can now directly manage the trade-off between the
discriminability of the eigenvalues of the covariance matrix and the filters stability by tuning β.
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Another benefit of the density matrix formulation is that it enables the use of information-theoretical methods.

Given that the eigenvalues of the density matrix now form a probability distribution (i.e. summing to 1) we
can now define a multi-scale Von Neumann Entropy for Covariance matrices (CVNE).

Multiscale von Neumann Entropy for Co-
variance Matrices

Let C ∈ RN×N be a positive semidefinite co-
variance matrix. The Multiscale von Neumann
Entropy of C is

Sβ(C) = − Tr
(

ρ(C) log ρ(C)
)

.

This allows us to determine the ‘regularity’ of a covariance
matrix. we show several desirable properties of this formula-
tion, such as its ability to provide entropy values for low-rank,
singular matrices, thus the CVNE and consequently CDNN’s
behave as inherent regularizers, stabilizing ill-conditioned co-
variance structures. We also prove the sub-additivity of CVNE
(Appendix A.7) and show cases where it can be discriminative
compared to naively normalizing the covariance matrix by its trace. For example, such an entropy is less
effective when near global variance fluctuations occur (Appendix A.8). As the limiting extreme case of pure
global scaling Figure 2 shows that it is in fact scale-blind.

For completeness Theorem 2 shows that Covariance Density Neural networks are permutation equivariant,
another typical requirement of a suitable GNN.
Theorem 2 (Permutation Equivariance of the Covariance Density Filter). For any permutation matrix
T ∈ Rm×m, define the permuted Covariance matrix Ĉ = TT CT and the permuted signal x̂ = TT x. Then the
filter H(ρ) is permutation equivariant, i.e.,

H((ρ(Ĉ))x̂ = TT H((ρ(C))x.

While the sensitivity of the ensemble covariance matrix to perturbations is well-studied we must derive new
bounds in this new covariance density representation.

For this, we begin by relating the operator norm of the covariance matrix with the covariance density matrix.
Lemma 1 (Error Bound for Covariance Density Matrix). Let C be a covariance matrix and δC its perturbation.
Then

∥E∥ ≤ |β| ∥δC∥ F (β, C, δC)
R

(
1 + m e1{β<0}|β| ∥C∥

)
,

where R > 0, m = dim(C), 1{β<0} is the indicator of β < 0, and

F (β, C, δC) =


1, β ≥ 0,

e|β|∥C∥(e|β|(∥C+δC∥−∥C∥) − 1
)

|β| (∥C + δC∥ − ∥C∥) , β < 0,

with limβ→0 F (β, C, δC) = 1.
Theorem 3 (Stability of Covariance–Density Network). Consider an L-layer, F -channel multi-scale CDNN
Φ(x; P̂N , H) with Lipschitz constants {αi} and inverse-temperatures {βi}. Let Q > 0 be a constant. Assume
|h(ℓ)

fg (ρ)| ≤ 1, σ is 1-Lipschitz, and let κ be as in (Sihag et al., 2022). For any ε ∈ (0, 1
2 ], with probability

≥ 1 − n−2ε − 2κm/n,

∥∥Φ(x; P̂N , H) − Φ(x; P, H)
∥∥ ≤ L

( F∏
i=1

αi. Q
(∥δC∥

R

penalty for β<0︷ ︸︸ ︷
F (βi, C, δC)︸ ︷︷ ︸

density estimation error

×
√

m
(
1 + m

penalty for β<0︷ ︸︸ ︷
e1{βi<0}|βi|∥C∥)︸ ︷︷ ︸

density estimation error

+ m

n
1
2 −ε︸ ︷︷ ︸

dimensionality impact

)
+ O

(
n−1))L−1

.

From the stability bound, the terms F (β, C, δC) and exp
{

1{β<0}|β|∥C∥
}

quantify penalties associated with
negative β in the uncertainty in the covariance density estimate, amplifying the covariance uncertainty. These
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terms vanish for positive beta indicating the network is more stable for positive values of beta. As expected,
the uncertainty of the covariance density estimate is controlled by the Lipschitz constant α which, recall,
is controlled completely by the filter coefficients and beta. Thus as beta tends to 0 the network becomes
increasingly stable. However each filter in the filter bank of size F can have a different βi thus including
larger or negative values of β will reduce the stability of the network. Also note, that even if there are large
errors in the estimation of the true covariance matrix (indicated by δC) this can be offset by using smaller
values of β, confirming the de-noising effect. The dimensionality impact term m

n
1
2 −ε

reflects the relationship
between the sample size n, the dimensionality m, and the convergence rate.

Takeaway

We propose multi-scale Covariance Density Neural Networks (CDNNs), show that β controls the
stability-discriminability tradeoff of the network, and formulate the Multiscale Von Neumann Entropy
for Covariance Matrices.

4 Experimental Results

4.1 Covariance Matrix Construction

Financial data. Each asset/feature constitutes a random variable (node), and each time step within a
sliding window constitutes one observation. The sample covariance matrix is computed once over the full
training set and captures cross-asset correlations.

EEG data. Each EEG channel is a random variable (node), and each time step in a trial constitutes one
observation. The covariance matrix is computed once over all training subjects’ trials timesteps, repeated for
all participants and averaged over, producing a global cross-channel covariance that captures shared spatial
patterns across individuals.

4.2 Financial Forecasting

Covariance matrices have been deemed useful in predicting financial asset behaviour, offering insights into
asset interactions and enabling better risk management strategies. Building on this, covariance-based neural
networks show significant promise, this promise however, is largely affected by the low signal to noise ratio
(SNR) present in financial data and thus the estimates of it’s underlying covariance structure.

The S&P 500 dataset(Jander, 2023) spans 10 years of multivariate time series data, including features like
stock volatility and daily option volumes. The Exchange Rate dataset (Wu et al., 2020) consists of daily
exchange rates for different currencies across 7588 open days. Covering the period from January 2, 2020, to
February 2, 2024, the US Stock dataset(Kumar, 2024) includes various variables across major stocks, indices,
commodities, and cryptocurrencies, offering insights into pricing and trading activity.

Table 1 compares traditional graph-based models (e.g., Graph Attention Networks (GAT), Graph Isomorpshism
Network (GIN), Graph Convolutional Networks (GCN))) with covariance-based models (VNN, CDNN). We
also include a hybrid model that first applies the covariance density filter at multiple scales before applying
an attention layer.

We attribute the improved performance of CDNN over a standard VNN to the versatility of the multi-scale
filter bank, capturing information at different scales. Over all datasets, either the CDNN or hybrid model
performed the best. This indicates that the added covariance information is indeed informative and that
enhancing attention based models with this information improves performance.

The robustness of covariance models likely stems from their ability to leverage stable cross-asset correlations
driven by macroeconomic or sector factors. This inductive bias makes them inherently risk-aware, ensuring
better diversification and consideration of correlated risks. In addition, the noise-robustness of CDNNs shows
improved performance over all datasets.
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Table 1: Mean Absolute Error (MAE) ± std dev over 3 seeds ↓ for horizons 1, 3, 5. Best; second best.

Data Mthd H1 H3 H5

Exchange

VNN 0.1336±0.0075 0.1677±0.0212 0.1786±0.0070
CDNN 0.1102±0.0033 0.1231±0.0065 0.1359±0.0137
GCN 0.2415±0.0109 0.2334±0.0034 0.2371±0.0177
GIN 0.1939±0.0089 0.1950±0.0031 0.2075±0.0151
GAT 0.1819±0.0245 0.1852±0.0239 0.2075±0.0228
Hybrid 0.1057±0.0073 0.1171±0.0120 0.1257±0.0077

S&P 500

VNN 0.6198±0.0184 0.6392±0.0016 0.6553±0.0095
CDNN 0.5848±0.0031 0.5983±0.0049 0.6090±0.0026
GCN 0.6031±0.0193 0.6399±0.0007 0.6719±0.0094
GIN 0.6682±0.0115 0.7314±0.0123 0.7103±0.0090
GAT 0.5930±0.0245 0.6309±0.0151 0.6503±0.0198
Hybrid 0.5772±0.0038 0.6000±0.0075 0.6111±0.0027

US Stock

VNN 0.4244±0.0159 0.4822±0.0083 0.6056±0.0063
CDNN 0.3412±0.0179 0.4375±0.0129 0.5290±0.0185
GCN 0.5572±0.0366 0.5934±0.0259 0.6592±0.0615
GIN 0.6532±0.1248 0.6627±0.0955 0.7113±0.0907
GAT 0.4346±0.0503 0.5141±0.0542 0.5832±0.0275
Hybrid 0.3542±0.0058 0.4506±0.0115 0.5547±0.0211

4.3 Transferability of covariance density Networks in Brain Computer Interfaces

Brain-Computer Interfaces (BCIs) have long faced challenges in transferability (Zhang et al., 2019; Zhang &
Liu, 2018; Yang et al., 2021), i.e., ensuring a model trained on multiple individuals generalizes to unseen
individuals’ brain signals. The sample covariance matrix computed purely over training individuals offers a
promising solution by capturing stable, global correlations common across individuals. Using this as a shift
operator for unseen individuals allows individual differences to be "filtered" by these shared patterns (Roy
et al., 2024; 2023), this can be best related to the neuro-scientific concept known as functional alignment
(Bazeille et al., 2021).

Our model is bench-marked on two BCI tasks: the 4-class BCI-2A motor imagery dataset (9 subjects) and
the PhysioNet 2-class dataset (105 subjects). For BCI-2A, we train on data from all but one held-out subject,
rotating through each as the test individual. On PhysioNet, we evaluate across 10 non-overlapping folds,
ensuring each fold’s subjects are unseen during training. In both cases, we compute a global covariance
matrix from the training subjects and use it as a graph-shift operator to classify the held-out test data.
Table 2: Average Classification accuracies (%) ± std dev over subjects/folds and training speed (s/epoch) on
BCI 2A (4 Class). Best; Second best.

Method 2A (2) 2A (4) PhysioNet Average Speed
GIN 51.1 ± 3.33 32.6 ± 2.78 78.9 ± 4.03 54.20 0.91
GAT 62.67 ± 9.36 44.1 ± 6.77 81.0 ± 5.02 64.10 2.20
VNN 59.3 ± 4.86 30.1 ± 2.72 79.4 ± 3.01 56.30 0.90
CDNN 73.4 ± 8.53 50.4 ± 7.13 80.02 ± 2.74 67.90 1.10
EEGNet 61.4 ± 6.09 45.2 ± 5.47 75.1 ± 0.29 60.60 4.40
CSP+LDA 56.1 ± 4.21 33.37 ± 8.99 52.08 ± 3.86 47.20 N/A

Table 2 presents our results, comparing CDNNs with a VNN, more traditional Graph Based approaches such
as GIN and GAT, a CSP approach and the lightweight EEGNet benchmark. For each graph model, we take
the convolved signals—one time series per channel—and concatenate every channel’s full sequence of time
points into a single long feature vector in order to retain the high temporal resolution of EEG signals. That
flattened vector is then fed into a simple fully-connected network (MLP), and we apply a Tanh nonlinearity
followed by the classification layer.

The classical CSP + LDA approach performed the worst, EEGnet in fact underperformed on the PhysioNet
dataset compared to simpler graph based models highlighting that, for subject-independent BCIs, less complex
models are preferable to avoid over-fitting. While GAT tops the PhysioNet leader board, CDNNs are the
strongest model overall, outdoing VNN both in accuracy and efficiency (1.1 s/epoch vs. EEGNet’s 4.5 s),
making them a suitable choice for rapid retraining and real-world BCI deployment.
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Figure 3: Contour Plot showing distribution of Covariance and Covariance Density Matrix on the Scalp
at different scales. The top row indicates the averaged training covariance matrix (Excluding the Unseen
Individual) and the bottom row indicates the unseen Individuals test covariance matrix. We can see that
the training covariance matrix is relatively similar to the Unseen Individual and that different scales unveil
further potential similarities thus increasing classification performance

The large gains on the BCI-2A 2-class and 4-class datasets are explained by the multi-scale filter bank’s
ability to capture patterns at different spectral scales of the cross-subject covariance matrix (Figure 3) while
also being robust to noise at positive values of β (Theorem 3).

4.4 Computational cost.

The primary additional cost of CDNNs over VNNs is the matrix exponential exp(−βCn). Since the covariance
matrix is fixed, this is computed once via eigen-decomposition at O(m3) cost and cached. Subsequent forward
and backward passes have identical per-step cost to VNNs: O(Km2) per order-K filter, where m is the
number of channels/variables. Memory overhead is a single additional m × m matrix per β scale. Empirically,
with caching enabled, CDNN runtime matches VNN even for m > 1000 (see Appendix A.5, Figure 7).
Compared to non-graph baselines, CDNN trains at 1.1 s/epoch on BCI-2A versus EEGNet’s 4.4 s/epoch—a
4× speedup (Table 2).

5 Conclusions and Limitations

We introduce Covariance Density Neural Networks (CDNNs), which treat the covariance matrix as a
Hamiltonian-like object to build a density matrix that acts as a graph shift operator in a Graph Neural
Network. We showed that the sample Covariance Matrix can act as a spectral surrogate to the true graph
Laplacian and thus constructed a novel density matrix, allowing us to use tools from information theory to
define a new entropy measure for covariance matrices with notable benefits. We’ve also established rigorous
stability bounds for the Covariance Density Filter and the network itself, showing how β explicitly controls
the stability of the network.

In real-world applications where covariance structures matter (e.g., financial or neurological networks),
CDNNs show strong performance against traditional benchmarks and deliver significant gains over VNNs. In
subject-independent motor imagery classification for Brain-Computer Interfaces (BCIs), they outperform
EEGNet while being significantly faster. Although we relied on simple low-parameter architectures here, we
believe that folding CDNNs into more complex neural network architectures can yield further benefits.
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There are some clear limitations in the use of the Covariance matrix as it only encodes second-order statistics,
it misses higher-order or non-linear dependencies. Future work could integrate mutual-information matrices
or Gaussian-process kernels into the density matrix formulation. Furthermore, time-varying or non-stationary
signals (e.g. drift in EEG) need dynamic covariance models or online adaptation and exploration beyond
static matrices should be explored and can be particularly beneficial in the study of Dynamic Functional
Connectivity (DFC) in the brain. We have to also consider that the computational cost scales with the size
of the covariance matrix and matrix exponentials thus may become harder to compute. Since we only need
the product of the matrix-vector multiplication approaches such as Krylov Subspace Approximation methods
may be useful.

6 Impact Statement

This work may enhance Brain-Computer Interfaces (BCIs) by enabling more reliable brain signal decoding
for assistive technologies. However, ensuring secure, anonymized handling of neurological data and addressing
fairness across diverse users remain important challenges to prevent biases in medical and neuro-technological
applications.
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A Appendix

A.1 Hardware Specifications

All experiments were performed on an NVIDIA A100 Tensor Core GPU. The A100 features 6 912 CUDA
cores, 3 456 FP64 CUDA cores, and 432 third-generation Tensor Cores, delivering up to 19.5 TFLOPS of
FP32 throughput. It is equipped with 40 GB of HBM2e memory and offers a peak memory bandwidth of
approximately 1.6 TB/s

A.2 Hyperparamter Selection and Model Details

Table 3: Hyperparameters for Financial Datasets

Model Learning Rate Epochs Batch Size Hidden Dim Num Layers Activation Dropout Betas
GAT 0.001 500 64 128 1 ELU 0.2 N/A
VNN 0.001 500 64 128 1 ELU 0.2 N/A
CDNN 0.001 500 64 128 1 ELU 0.2 Learned 4 β filterbank, init: [-0.01,0.01,0,0]
GIN 0.001 500 64 128 1 ELU 0.2 N/A

4

Table 4: Hyperparameters for BCI 2A and PhysioNet Datasets

Model Learning Rate Epochs Batch Size Hidden Dim Num Layers Activation Functions Dropout Betas/Order
EEGNet 0.001 500 as in (Lawhern et al., 2018) as in (Lawhern et al., 2018) as in (Lawhern et al., 2018) as in (Lawhern et al., 2018) as in (Lawhern et al., 2018) N/A
VNN 0.0001 50 64 128 1 Tanh 0.7 N/A
CDNN 0.0001 50 64 128 1 Tanh 0.7 [0.1, 5.0, 15.1]

A.3 Data Availability

We used the TorchEEG Python package (Zhang et al., 2024) with the Mother of all BCI Bench-
marks (MOABB)(Aristimunha et al., 2023) wrapper for the Motor Imagery data. The BCI 2A data
is also available freely at https://www.bbci.de/competition/iv/. The Physionet dataset is available at
https://physionet.org/about/database/. The exchange rate dataset is from (Wu et al., 2020) and was
obtained from the Github repository for (Cavallo et al., 2024).The S&P 500 and US Stock market and
commodities data are available freely from (Jander, 2023) and (Kumar, 2024). For the US Stock dataset only
the price columns for each commodity was kept.

PhysioNet Dataset

This dataset comprises EEG recordings from 109 healthy volunteers. In each trial, a visual target appears
on either the left or right side of a display. The participant then mentally rehearses opening and closing
the corresponding hand until the target disappears, and subsequently relaxes. Data were acquired using
the BCI2000 system with 64 EEG channels, sampled at 160 Hz, and each trial has a duration of 3.1 s.
Recordings from subjects 88, 89, 92, and 100 were excluded due to technical issues and excessive rest-state
activity, resulting in a final cohort of 105 participants, each completing approximately 45 trials. We ran
experiments on a 10 fold split of all individuals, where the test fold participants are unseen during training.
All experiments were performed on the same randomization seed for all models for reproducible results.Raw
EEG measurements without any preprocessing were used on this data set excpet what was already done in
(Goldberger et al., 2000).

4All Graph Based models treats temporal data as node features on the underlying graph. For GAT and GIN the underlying
graph a fully-connected network. For CDNN and VNN the underlying graph is the sample covariance matrix and is computed
once over the complete training set and fixed during training.This matrix is then untouched and used for both training and testing.
For VNN’s the matrix is trace normalized for a fair comparison with CDNN’s. For the BCI 2A and Physionet datasets,after
graph convolution, we concatenate every channel’s full sequence of time points into a single long feature vector which is fed into
a simple fully-connected network (MLP), and we apply a Tanh nonlinearity followed by the classification layer.This is done for
all graph models. For CDNN in all Datasets we ignore the first un-filtered term (k = 0) to reduce noise.

The financial datasets were z-score normalized and involve the same architecture except we use an ELU activation for all
models . The Adam (72) optimizer was used in all cases. For the financial data we use a 60/20/20 Train/Val/Test split and for
all datasets we evaluate on test data using the model with lowest validation loss during training.
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BCI Competition IV 2a Dataset

This dataset contains EEG data from nine healthy participants performing a four-class motor imagery task
(tongue, feet, right hand, left hand). Signals were recorded from 22 electrodes at 250 Hz. Each participant
completed two sessions (training and testing) on separate days, with each session comprising 288 trials of
4 s each. Model evaluation employed leave-one-subject-out cross-validation: for each fold, all trials (both
sessions) of one subject were held out as the test set, while the trials of the remaining eight subjects formed
the training set.

The raw EEG recordings are first reduced to include only the channels of interest: all non-EEG channels
(such as MEG and stimulus lines) are removed, leaving only the EEG signals. Next, the remaining signals are
scaled by a factor of 106 to convert from volts to microvolts, ensuring numerical stability and consistency in
subsequent processing. A zero-phase Butterworth band-pass filter between 0.01 Hz and 38 Hz is then applied
to eliminate slow drifts and high-frequency artifacts. Following filtering, each channel is standardized over
time using an exponential moving estimate of its mean and variance, with an adaptation rate α = 1×10−3 and
an initialization block of 1000 samples; this continuous normalization mitigates changes in signal amplitude
and variance across the recording. Finally, fixed-length epochs are extracted around each event marker by
applying a trial start offset of −0.5 s before cue onset (with no post-cue offset), producing uniform windows
ready for feature extraction and classification.

A.3.1 Learnable β Filter Bank

We evaluate a filter bank of three learnable β values and observe no degradation in accuracy compared to
hand picking β values. We note that choosing values beforehand based on domain-knowledge can reduce
training cost.

Table 5: Accuracy (%) with learnable β filter bank

Dataset Accuracy
BCI 2A 49.48
PhysioNet 80.09
Avg 64.78

A.4 Ablation Analysis

A.4.1 EEG

We perform our ablation study on the most challenging dataset, the BCI-2A MI dataset. We repeat the exact
analysis over each independent participant using CDNNs with different values of β and finally with a filter
bank of β’s. We also compare this to the same model without the covariance-density transform (i.e. VNN).
To correct for chance agreement in this multi-class task, we report Cohen’s kappa score.
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Figure 4: Ablation over different configurations for each subject.

Figure 5: Mean Cohen’s kappa for each ablation configuration.

We can clearly see that the covariance-density transform gives us a substantial improvement. Lower β values,
in general, correspond to higher kappa (noise robustness), yet β = 5 outperforms β = 0.1 due to increased
discriminability. Very large β remains noise-sensitive. Filter banks inherit both benefits, yielding the best
performance.

Financial Forecasting

We perform an ablation study on the US Stock dataset (horizon h = 3) to analyze the role of the diffusion
parameter β.
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Figure 6: Ablation on the US Stock Exchange Dataset

In the left panel of Fig. 6, we sweep over fixed values of β in a single–scale CDNN and report the mean
absolute error (MAE) on the US Stock dataset. Performance steadily improves as β increases, with the best
score obtained at β = 5. This indicates that stronger diffusion improves performance in this dataset.

In the right panel, we initialize a multi–scale CDNN with four distinct learnable β values close to zero and
plot their trajectories during training. Interestingly, the β values initially drift slightly negative before steadily
increasing towards small positive values (≈ 0.05–0.075 by epoch 500).

A.5 Scalability Analysis

Figure 7: Runtime scalability of CDNN vs. VNN. Mean ± standard deviation of per-step runtime (ms)
as a function of the number of channels (C). CDNNs scale linearly up to about C=1024, after which the cost
of repeatedly computing the matrix exponential exp(−βL) grows rapidly. When caching the exponential,
CDNN performance matches the near-linear scaling of VNNs, confirming that the additional cost can be
effectively handled in practice.

We evaluated the computational scalability of CDNNs compared to standard VNNs by measuring the average
per-step runtime (forward + backward) across varying numbers of channels (C). Four configurations were
tested: (1) VNN, (2) VNN with cached Laplacian, (3) CDNN computing exp(−βL) at each step, and
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(4) CDNN using a precomputed exponential (cached exp). Results are averaged over multiple seeds with
standard deviation shown as error bars.

Overall, CDNNs maintain efficient scaling behaviour for moderate graph sizes, and caching exp(−βL) restores
runtime similarity with VNNs even for large-scale settings (C > 1000). Given that in all our experiments we
pre-compute the covariance matrix exponential only once this shows that CDNN’s are indeed fairly scalable.

A.6 Relationship between Covariance and Laplacian Eigenbasis

Figure 8: Using signals generated from an Erdős-Rényi Laplacian convolution show convergence of the
eigenvectors of the sample covariance matrix to those of the underlying graph Laplacian

Let L ∈ RN×N be a (combinatorial or normalized) graph Laplacian with eigen-decomposition

L = U Λ U⊤, Λ = diag
(
λ1, . . . , λN

)
, (5)

where the columns of U are the Laplacian eigenvectors and 0 = λ1 ≤ λ2 ≤ · · · ≤ λN are the Laplacian
eigenvalues. Throughout, E[·] denotes statistical expectation and I is the identity matrix.
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Following the graph–stationary framework of Dong et al. (Dong et al., 2019), assume the graph signal x is
produced by filtering white noise w ∼ N (0, I) through an order-K polynomial graph filter

x =
K∑

k=0
ak Lk w = g(L) w, g(z) =

K∑
k=0

ak zk. (6)

Because L and g(L) commute, they are simultaneously diagonalizable by U:

C = E
[
x x⊤] = g(L)E

[
w w⊤] g(L)⊤ = g(L) g(L) = h(L), (7)

where h(z) = g(z)2. Equation equation 7 implies the covariance matrix C and Laplacian L share the same
eigenvectors U; their eigenvalues are merely rescaled. (Dong et al., 2019)

If the graph arises as the precision matrix of a GMRF, x ∼ N
(
0, L†), then the covariance is the (Moore–Penrose)

pseudo-inverse L†. Therefore

L† = U Λ† U⊤, Λ† = diag
(
0, λ−1

2 , . . . , λ−1
N

)
, (8)

so the eigenbasis is exactly preserved and the eigenvalues are reciprocals (up to the zero mode). Estimating
L under Laplacian constraints is therefore equivalent to learning a sparse inverse-covariance matrix. (Pavez
& Ortega, 2016) Conversely, if one has a well-conditioned sample covariance, its inverse supplies a valid
Laplacian candidate.

More generally, any graph operator S that is a spectral function of L, i.e. S = f(L) for some analytic f ,
commutes with L and shares its eigenvectors:

SL = LS =⇒ S = U f(Λ) U⊤. (9)

Hence, whenever the true covariance can be expressed (or approximated) as f(L), the sample covariance
obtained from sufficiently many realisations inherits the Laplacian eigenbasis. Results quantifying the
perturbation of eigenvectors under finite-sample noise (e.g. matrix–Bernstein or Davis–Kahan bounds) then
show that Ĉ converges to C not only in Frobenius norm but also in the subspace spanned by U (Fontan &
Altafini, 2021).
Proposition 4 (Shared eigenbasis of covariance and Laplacian). Let L be symmetric and C = g(L) for some
function g with g(λi)≥0. Then C and L are simultaneously diagonalisable by the same orthonormal matrix
U, and rank C = |{ i | g(λi) > 0}|. Moreover, if g is monotone decreasing, the ordering of variances in C is
the reverse of the Laplacian frequency ordering.

Proof. Since C = g(L) is a polynomial (or analytic) function of L, it commutes with L. Any two real
symmetric matrices that commute are simultaneously diagonalisable by an orthogonal matrix; hence they
share U. The rank statement follows because g(λi) = 0 if and only if the corresponding eigenvalue of C
vanishes. If g is decreasing, then λi < λj =⇒ g(λi) > g(λj), reversing the order.

When the number of available graph-signal realisations n is much larger than the graph order N , the sample
covariance Ĉn itself becomes a spectral surrogate for the Laplacian L. Hence, one can substitute its leading
eigenvectors for those of L and thereby circumvent the combinatorial optimisation required by sparse-Laplacian
estimation procedures (Pavez & Ortega, 2016). Moreover, because graph filters implemented in the covariance
domain remain diagonal in the shared eigenbasis U, frequency responses may be designed interchangeably on
either operator, allowing practitioners to work with whichever spectrum is numerically better conditioned
or easier to estimate in a given application. Finally, even when the inverse covariance C−1 fails to satisfy
the strict degree-constraints of a Laplacian and is merely positive-semidefinite, its pseudo-inverse L† still
admits a meaningful signed-Laplacian interpretation that preserves the common eigenbasis while relaxing
node-degree constraints.

Under broad conditions, stationary graph processes, GMRFs with Laplacian precision, or any model where
the covariance is a spectral function of L the eigenvectors of the sample covariance converge to those of
the graph Laplacian. Consequently, algorithms that exploit the covariance matrix inherit a graph-spectral
interpretation, while graph filters may be implemented directly in the covariance eigenbasis.
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Proof of Theorem 1

We aim to prove that the density filter frequency response h(ρi) satisfies the Lipschitz condition:

|h(ρ(λ2) − h(ρ(λ2)| ≤ α|λ2 − λ1|

for a constant α that depends on the filter parameters. The frequency response is defined as:

h(ρ(λi) =
K∑

k=0

hke−βλk

Zk
,

where:
Z =

n∑
i=1

e−βλi .

Our focus is to bound the difference |h(ρ(λ2)) − h(ρ(λ1))| and derive a meaningful constant α.

The difference between h(ρ(λ2)) and h(ρ(λ1)) is:

|h(ρ(λ2)) − h(ρ(λ1))| =
∣∣∣∣∣

K∑
k=0

(
hke−βλ2k

Zk
− hke−βλ1k

Zk

)∣∣∣∣∣ .
Factoring out the common terms, this becomes:

|h(ρ(λ2)) − h(ρ(λ1))| =
∣∣∣∣∣

K∑
k=0

hk

Zk

(
e−βλ2k − e−βλ1k

)∣∣∣∣∣ .
Using the Mean Value Theorem, we know that for each k, there exists a ξ ∈ (λ1, λ2) such that:

e−βλ2k − e−βλ1k = −βk(λ2 − λ1)e−βξk.

Substituting this into the expression, we have:

|h(ρ(λ2)) − h(ρ(λ1))| =
∣∣∣∣∣

K∑
k=0

hk

Zk

(
−βk(λ2 − λ1)e−βξk

)∣∣∣∣∣ .
Using the Triangle inequality: ∣∣∣∣∣

K∑
k=0

ak

∣∣∣∣∣ ≤
K∑

k=0
|ak|,

we can bound the summation:

|h(ρ(λ2)) − h(ρ(λ1))| ≤
K∑

k=0

∣∣∣∣ hk

Zk

(
−βk(λ2 − λ1)e−βξk

)∣∣∣∣ .
Now, factor out |λ2 − λ1|:

|h(ρ(λ2)) − h(ρ(λ1))| ≤ |λ2 − λ1|
K∑

k=0

∣∣∣∣hkβke−βξk

Zk

∣∣∣∣ .
By definition of the partition function, Zk is at least as large as e−βξk, ensuring that e−βξk

Zk ≤ 1. Using this
bound, we simplify: ∣∣∣∣hkβke−βξk

Zk

∣∣∣∣ ≤ |hk||βk|.
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Substituting this into the inequality, we get:

|h(ρ(λ2)) − h(ρ(λ1))| ≤ |λ2 − λ1|
K∑

k=0
|hk||βk|.

Define the constant α as:

α =
K∑

k=0
|hk||βk|.

Thus, we have:

|h(ρ(λ2)) − h(ρ(λ1))| ≤ α|λ2 − λ1|.

Thus the covariance density filter is Lipchitz Continuous with respect to the denisty transformation, assuming
constant filter coefficients.

While stability bounds can be obtained for relative perturbations using Lipschitz filters more illuminating
bounds can be obtained using integral Lipschitz filters. It can be shown that under certain conditions the
covariance density filter satisfies being integral Lipschitz continuous.

The Integral Lipschitz condition imposes the additional requirement:

|h(λ2) − h(λ1)| ≤ θ · |λ2 − λ1|
|λ1+λ2|

2

.

To satisfy this condition, the constant α must be bounded by:

α ≤ 1
sup

(
|λ1+λ2|

2

) ,

where the supremum is taken over all pairs of eigenvalues λ1 and λ2.

I.e the following condition must hold:
K∑

k=0
|hk||βk| ≤ 1

sup
(

|λ1+λ2|
2

) .

If this condition is satisfied, the filter satisfies the Composite Integral Lipschitz condition with a constant of
1. Further observe The Integral Lipschitz condition can be generalized to allow any real positive constant
θ > 0. In this case, the condition becomes:

α ≤ θ

sup
(

|λ1+λ2|
2

) .

This means that the filter satisfies the Integral Lipschitz condition with a constant θ as long as α satisfies the
above bound.

It follows that as long as α is finite, the filter will satisfy the Integral Lipschitz condition for some choice of
theta. The constant θ can be tuned by adjusting the parameters |hk| (the filter coefficients) and β.

Proof of Theorem 2

We aim to prove that the filter

H(ρ(S)) =
K∑

k=0
hk

e−βSk

(Tr(e−βS))k
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is permutation equivariant in the vertex domain. Specifically, for a permutation matrix T, we want to show:

H(ρ(Ŝ))x̂ = TT H(ρ(S))x,

where Ŝ = TT ST is the permuted graph shift operator and x̂ = TT x is the permuted input signal.

This demonstrates that applying a permutation to the graph and the graph signal results in a permutation of
the filter output.

For the permuted graph, the shift operator is Ŝ = TT ST. Substituting this into the filter definition, we have:

H(ρ(Ŝ)) =
K∑

k=0
hk

e−βŜk

(Tr(e−βŜ))k
.

Using the Property of matrix exponentials under similarity transformations:

e−βŜk = e−β(TT ST)k = TT e−βSkT.

The trace of a matrix is invariant under cyclic permutations:

(Tr(e−βŜ))k = (Tr(TT e−βST))k = (Tr(e−βS))k.

Substituting these Properties into the filter definition:

H(ρ(Ŝ)) =
K∑

k=0
hk

TT e−βSkT
(Tr(e−βS))k

.

Factor TT and T outside the summation:

H(Ŝ) = TT

(
K∑

k=0
hk

e−βSk

(Tr(e−βS))k

)
T = TT H(S)T.

Let the input signal x and its permuted version x̂ satisfy x̂ = TT x. Applying H(Ŝ) to x̂:

ẑ = H( ˆρ(S))x̂ = TT H(ρ(S))TTT x.

Using the orthogonality of P, where TTT = I, this simplifies to:

ẑ = TT H(S)x.

Thus, the filter output for the permuted graph and signal is the permuted version of the original filter output:

ẑ = TT z,

where z = H(ρ(S))x.

Proof of Lemma 1

Proof. We decompose the error as

E = e−βĈ − e−βC

Z ′ + e−βC
( 1

Z ′ − 1
Z

)
.
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Taking the operator norm and applying the triangle inequality yields

∥E∥ ≤ ∥e−βĈ − e−βC∥
Z ′ + ∥e−βC∥ ·

∣∣∣∣ 1
Z ′ − 1

Z

∣∣∣∣ .
Next, after an application of Duhamel’s formula (Kato, 1966) we have

e−β(C+δC) − e−βC = −
∫ β

0
e−s(C+δC) δC e−(β−s)C ds.

Changing the variable via s = βt (so that ds = β dt, t ∈ [0, 1]) yields

e−β(C+δC) − e−βC = −β

∫ 1

0
e−βt(C+δC) δC e−β(1−t)C dt.

Taking the operator norm and using submultiplicativity gives

∥e−β(C+δC) − e−βC∥ ≤ |β| ∥δC∥
∫ 1

0
∥e−βt(C+δC)∥ · ∥e−β(1−t)C∥ dt.

Define
I :=

∫ 1

0
∥e−βt(C+δC)∥∥e−β(1−t)C∥ dt.

We now consider the two cases:

(a) If β ≥ 0: Since C and C + δC are positive semidefinite,

∥e−βt(C+δC)∥ ≤ 1, ∥e−β(1−t)C∥ ≤ 1, ∀ t ∈ [0, 1].

Hence,

I ≤
∫ 1

0
1 dt = 1.

(b) If β < 0: Write β = −|β|. Then

∥e−βt(C+δC)∥ = ∥e|β|t(C+δC)∥ ≤ e|β|t ∥C+δC∥,

and
∥e−β(1−t)C∥ ≤ e|β|(1−t) ∥C∥.

Thus,

I ≤
∫ 1

0
e|β|t ∥C+δC∥ e|β|(1−t) ∥C∥ dt.

Since
|β|t ∥C + δC∥ + |β|(1 − t) ∥C∥ = |β|∥C∥ + |β|t

(
∥C + δC∥ − ∥C∥

)
,

we factor out the constant term:

I ≤ e|β|∥C∥
∫ 1

0
exp
{

|β|t
(

∥C + δC∥ − ∥C∥
)}

dt.

Setting
a := |β|

(
∥C + δC∥ − ∥C∥

)
,

we have ∫ 1

0
eat dt = ea − 1

a
.
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Thus, for β < 0

I ≤ e|β|∥C∥ e|β|(∥C+δC∥−∥C∥) − 1
|β|
(

∥C + δC∥ − ∥C∥
) .

We now define the unified factor

F (β, C, δC) =


1, β ≥ 0,

e|β|∥C∥ e|β|(∥C+δC∥−∥C∥) − 1
|β|
(

∥C + δC∥ − ∥C∥
) , β < 0.

To find the limit as β → 0:

lim
β→0

F (β, C, δC)

For the Right-Hand Limit(β → 0+):

lim
β→0+

F (β, C, δC) = 1

For the Left-Hand Limit (β → 0−), Let β = −x where x → 0+:

F (−x, C, δC) = ex∥C∥ · ex(∥C+δC∥−∥C∥) − 1
x(∥C + δC∥ − ∥C∥)

Let a = ∥C + δC∥ − ∥C∥:

F (−x, C, δC) = ex∥C∥ · exa − 1
xa

Taking the limit as x → 0+ a standard result gives us:

lim
x→0+

ex∥C∥ = 1

lim
x→0+

exa − 1
xa

= 1

Therefore:

lim
β→0−

F (β, C, δC) = 1 × 1 = 1

Both the right-hand and left-hand limits as β → 0 are equal to 1. Hence,

lim
β→0

F (β, C, δC) = 1

Continuing,
∥e−β(C+δC) − e−βC∥ ≤ |β| ∥δC∥ F (β, C, δC).

In particular, setting Ĉ = C + δC,

∥e−βĈ − e−βC∥ ≤ |β| ∥δC∥ F (β, C, δC).

27



Under review as submission to TMLR

Hence, the first term in our error decomposition is bounded by

∥e−βĈ − e−βC∥
Z ′ ≤ |β| ∥δC∥ F (β, C, δC)

Z ′ .

Next, we bound the partition function difference. We have∣∣∣∣ 1
Z ′ − 1

Z

∣∣∣∣ = |Z − Z ′|
Z Z ′ .

Since
Z ′ = Tr

(
e−β(C+δC)

)
= Z + Tr

(
e−β(C+δC) − e−βC

)
,

and applying Tr(A) ≤ m ∥A∥ yields∣∣∣Tr
(

e−β(C+δC) − e−βC
)∣∣∣ ≤ m ∥e−β(C+δC) − e−βC∥ ≤ m |β| ∥δC∥ F (β, C, δC).

Thus,
|Z − Z ′| ≤ m |β| ∥δC∥ F (β, C, δC).

We assume Z ′ = R Z with R ≥ 1 and Z ≥ 1 (this holds in high dimensional settings where the covariance
matrix is not of full rank and in any case this condition can by regularizing the covariance matrix such that
its smallest eigenvalue is 0), i.e the perturbed partition function is some multiple of the true partition function
and thus it follows that∣∣∣∣ 1

Z ′ − 1
Z

∣∣∣∣ ≤ m |β| ∥δC∥ F (β, C, δC)
Z Z ′ ≤ m |β| ∥δC∥ F (β, C, δC)

R
.

Thus, combining the two parts gives

∥E∥ ≤ |β| ∥δC∥ F (β, C, δC)
Z ′ + ∥e−βC∥ · m |β| ∥δC∥ F (β, C, δC)

R
.

Since Z ′ = R Z and Z ≥ 1 implies 1/Z ′ ≤ 1/R, we obtain

∥E∥ ≤ |β| ∥δC∥ F (β, C, δC)
R

(
1 + m ∥e−βC∥

)
.

Thus ∀β

m ∥e−βC∥ ≤ m exp
{

1{β<0} |β| ∥C∥
}

.

Finally, the error bound is given as

∥E∥ ≤ |β| ∥δC∥ F (β, C, δC)
R

(
1 + m exp

{
1{β<0} |β| ∥C∥

})
.

Lemma 2 (Perturbation Theory for the Density Matrix). Consider an ensemble density matrix P and a
sample density matrix P̂. For any eigenvalue ρi > 0 of P, the perturbation E satisfies:

E vi = γi δvi + δρi vi + (δρiIm − E) δvi,

where
γi = (ρiIm − P), δvi = ui − vi, δρi = wi − ρi.
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Proof. Note this proof follows analogously to the standard result in the perturbations of eigenvalues of the
covariance matrix from (Sihag et al., 2022). As the density matrix shares the same eigenbasis as the covariance
matrix the proof is straightforward with the only differences being in the transformed eigenvalues.

From the definition of eigenvectors and eigenvalues, we have

P̂ ui = wi ui.

We rewrite this in terms of perturbations with respect to the ensemble density matrix P and the outputs of
its eigendecomposition as:

(P̂ − P)(vi + δvi) + P(vi + δvi) = (ρi + δρi)(vi + δvi),

where wi = ρi + δρi and ui = vi + δvi.

Using the fact that P vi = ρi vi and rearranging terms, we have:

(P̂ − P)vi = (ρiIm − P)δvi + δρi(vi + δvi) − (P̂ − P)δvi.

By setting E = P̂ − P and γi = ρiIm − P, this simplifies to:

E vi = γi δvi + δρi vi + (δρiIm − E) δvi.

Proof of Theorem 3

We note that the density filters with respect to P̂ and P are given by

H(P̂) =
m∑

k=0
hkP̂k and H(P) =

m∑
k=0

hkPk. (1)

We aim to study the stability of the density filters by analyzing the difference between H(P̂) and H(P). For
this purpose, we next establish the first-order approximation for P̂k in terms of P and E. Using P̂ = P + E,
the first-order approximation of P̂k is given by

(P + E)k = Pk +
k−1∑
r=0

PrE Pk−r−1 + Ẽ, (2)

where Ẽ satisfies ∥Ẽ∥ ≤
∑k

r=2
(

k
r

)
∥E∥r∥P∥k−r. Using (2), we have

H(P̂) − H(P) =
m∑

k=0
hk

[
(P + E)k − Pk

]
, (3)

=
m∑

k=0
hk

k−1∑
r=0

PrE Pk−r−1 + D̃, (4)

where D̃ satisfies ∥D̃∥2 = O(∥E∥2). The focus of our subsequent analysis will be the first term in (4). For a
random data sample x = [x1, . . . , xm]T , such that ∥x∥ < R, for some R > 0 and x ∈ Rm×1, its VFT with
respect to P is given by x̃ = VT x, where x̃ = [x̃1, . . . , x̃m]T . The relationship between x̃ and x can be
expressed as

x =
m∑

i=1
x̃ivi. (5)
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Multiplying both sides of (4) by x and leveraging (5), we get

[H(P̂) − H(P)]x =
m∑

k=0
hk

k−1∑
r=0

PrE Pk−r−1x + D x̃, (6)

=
m∑

i=1
x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i E vi + D x̃, (7)

=
m∑

i=1
x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i γi δvi+

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i δρi vi+

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i (δρiIm−E) δvi.

(8)

Where we leveraged the result from Lemma 1 that expands E vi.

Term 1:

This follows very similarly from (Sihag et al., 2022). Using γi = ρiIm − P and δvi = ui − vi in the first term
in (39), we have

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i (ρiIm − P)(ui − vi). (9)

Finally, using Pr = VΛrVT in (9), the first term in (8) is equivalent to:

m∑
i=1

x̃i

m∑
k=0

hk

k−1∑
r=0

ρk−r−1
i VΛr(ρiIm − Λ)VT (ui − vi), (10)

=
m∑

i=1
x̃i VLiVT (ui − vi), (11)

where Li is a diagonal matrix whose j-th element is given by:

[Li]j =
m∑

k=0
hk

k−1∑
r=0

(ρi − ρj)ρk−r−1
i ρr

j , (12)

=
m∑

k=0
hk(ρi − ρj)

ρk
i − ρk

j

ρi − ρj
, (13)

=
m∑

k=0
hkρk

i −
m∑

k=0
hkρk

j , (14)

= h(ρi) − h(ρj). (15)

After applying the operator norm:∥∥∥∥∥
m∑

i=1
x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i γi δvi

∥∥∥∥∥ ≤
√

m

m∑
i=1

|x̃i| max
j,i̸=j

|h(ρi) − h(ρj)|∥vT
j ui∥.

Here, vT
j ui is the inner product between the eigenvector vj of the ensemble density matrix P and the

eigenvector ui of the sample density matrix P̂.

Using the result from [(Vershynin, 2018), Theorem 4.1 and (lou, 2017)], we conclude that if

sgn(λj − λi)2wj > sgn(λj − λi)(λj − λi),
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for λi ̸= λj , the following condition holds:∥∥∥∥∥
m∑

i=1
x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i γi δvi

∥∥∥∥∥ ≤
√

m

m∑
i=1

|x̃i| max
j,i̸=j

|h(ρi) − h(ρj)|
|λi − λj |

2ki

N1/2−ε
,

with probability at least
1 − 1

N2ε
,

for some ε ∈ (0, 1/2], where
ki =

√
E [∥XXT vi∥2

2] − ρ2
i .

From Theorem 1 we know that

|h(ρ2) − h(ρ1)| ≤ α|λ2 − λ1|, α =
K∑

k=0
|hk||βk|,

Note now that we can always choose α (i.e by adjusting β) such that:

|h(ρi) − h(ρj)| ≤ α

ki
|λi − λj |.

Substituting this bound into the above condition and applying a union bound, we have:∥∥∥∥∥
m∑

i=1
x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i γi δvi

∥∥∥∥∥ ≤
2
∑K

k=0 |hk||βk|
N1/2−ε

m∑
i=1

|x̃i|,

with probability at least
1 − 1

N2ε
− 2κm

N
,

where κ is as defined in [(Vershynin, 2018), Corollary 4.2 and (Sihag et al., 2022)].

Furthermore, note that
√

m
∑m

i=1 |x̃i| ≤ m∥x∥2. If the random sample x satisfies ∥x∥2 ≤ Q, then

P

(∥∥∥∥∥
m∑

i=1
x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i γi δvi

∥∥∥∥∥ ≤
2
∑K

k=0 |hk||βk|mQ

N1/2−ε

)
≥ 1 − 1

N2ε
− 2κm

N
.

Term 2:

We start with:
m∑

i=1
x̃i

m∑
k=0

hk

k−1∑
r=0

Prρk−r−1
i δρi vi =

m∑
i=1

x̃i

m∑
k=0

hkkρk−1
i δρi vi.

Since ρk−1
i ≤ 1 for all ρi (as eigenvalues of P lie within the unit range of the covariance density matrix), we

simplify:
m∑

i=1
x̃i

m∑
k=0

hkkρk−1
i δρi vi ≤

m∑
i=1

x̃i

m∑
k=0

|hk|kδρi vi.

Using the triangle inequality, we relate
∑m

k=0 |hk||k| to the constant α from Theorem 1, where:

m∑
k=0

|hk||k| ≤ α

|β|
.
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Substituting this bound, we get:
m∑

i=1
x̃i

m∑
k=0

hkkδρi vi ≤ α

|β|

m∑
i=1

|x̃i||δρi|∥vi∥.

Since ∥vi∥ = 1, this simplifies further to:
m∑

i=1
x̃i

m∑
k=0

hkkδρi vi ≤ α

|β|

m∑
i=1

|x̃i||δρi|.

From Lemma 2, we have the bound

∥E∥ ≤ |β| ∥δC∥ F (β, C, δC)
R

(
1 + m exp

{
1{β<0} |β| ∥C∥

})
.

By Weyl’s theorem, |δρi| ≤ ∥E∥ (Golub & Loan, 2013), so:

|δρi| ≤ |β| ∥δC∥ F (β, C, δC)
R

(
1 + m exp

{
1{β<0} |β| ∥C∥

})
.

Substituting this bound into our inequality:
m∑

i=1
x̃i

m∑
k=0

hkkδρi vi ≤ α

|β|

m∑
i=1

|x̃i|
|β| ∥δC∥ F (β, C, δC)

R

(
1 + m exp

{
1{β<0} |β| ∥C∥

})
.

Canceling the |β| terms, we obtain
m∑

i=1
x̃i

m∑
k=0

hk k δρi vi ≤ α∥δC∥ F (β, C, δC)
R

(
1 + m exp

{
1{β<0} |β| ∥C∥

}) m∑
i=1

|x̃i|.

Finally, noting that
∑m

i=1 |x̃i| ≤
√

m∥x∥2 and if ∥x∥2 ≤ Q, we have:
m∑

i=1
x̃i

m∑
k=0

hk k δρi vi ≤ α∥δC∥ F (β, C, δC)
R

(
1 + m exp

{
1{β<0} |β| ∥C∥

})√
mQ.

Term 3: With the same argument regarding the invariance to shifts in eigenbasis it follows from [3] that:

∥δρiIm − E∥ ≤ 2 ∥E∥ ,

∥δvi∥ = O
(

1√
N

)
with high probability.

Furthermore using the fact that for a random instance x of random vector X whose probability distribution is
supported within a bounded region w.l.o.g, such that ||x|| ≤ 1, for some constant B > 0 and u > 0, we have

P

(
∥δC∥ ≤ B ∥C∥

√
log m + u

N
+
(
1 + ∥C∥

) log m + u

N

)
≥ 1 − 2−u,

We can expand out Lemma 1 as:

32



Under review as submission to TMLR

∥E∥ ≤ |β|
R

∥δC∥ F (β, C, δC)
(

1 + m exp
[

1{β<0} |β| ∥C∥
])

≤ |β|
R

[
B ∥C∥

√
log m + u

N
+
(
1 + ∥C∥

) log m + u

N

]
F (β, C, δC) R

(
1 + m exp

[
n 1{β<0} |β| ∥C∥

])

= |β|
R

B ∥C∥
√

log m + u

N
F (β, C, δC)

(
1 + m exp

[
1{β<0} |β| ∥C∥

])
+ |β|

R

(
1 + ∥C∥

) log m + u

N
F (β, C, δC)

(
1 + m exp

[
1{β<0} |β| ∥C∥

])
.

Thus:

∥E∥ = O
(

1√
N

)
with high probability.

Which in turns implies:

(δρiIm − E) δvi = O
(

1
N

)
,

Note that for positive β this always holds and for negative β since from Lemma 1 F (β, C, δC) tends to 1
as β tends to 0 we can always pick small β to ignore the F term. Thus term 3 diminishes faster with N as
compared to terms 1 and terms 2 and thus terms 1 and 2 dominate the scaling behaviour of the overall upper
bound.

The overall proof is completed by noting that the condition on ∥[H(P̂) − H(P)]x∥ simplifies to the condition
on the operator norm ∥[H(P̂) − H(P)]∥ for any ∥x∥ ≤ 1.

By unrolling this bound through L layers, and noting that each layer can at most amplify the perturbation
by a factor of F , we obtain the overall network stability bound. The factor LF L−1 appears naturally from
composing L layers each with at most F -fold channel combination where for each i ∈ F there are potentially
different αi and βi. The filter-level bound then carries through all layers.

Since the probability bounds and constants are inherited from the filter-level analysis, the final network-level
bound follows directly, concluding the proof.

A.7 Sub-Additivity for Multi-Scale Von Neumann Entropy for Covariance Matrices

For this definition of entropy for covariance matrices to hold we would like to achieve the desirable sub-
additivity Property of a valid entropy measure. The following theorem shows that this Property does indeed
hold.
Theorem 5. Let C1, . . . , Cn ∈ RN×N be Individual Covariance Matrices. Define

Σn =
n∑

j=1
Cj .

For each matrix X, let

ρX = e−βX

Tr[ e−βX
] , ZX = Tr[ e−βX], S(X) = β Tr[X ρX] + ln

(
ZX
)
.
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Then

S
(

Σn =
n∑

j=1
Cj
)

≤
n∑

j=1
S
(
Cj
)
.

I.e. the Von-Neumann Entropy for Covariance Matrices satisfies the sub-additivity Property.

Proof. The main chunk of this proof is the same as the one provided by Domenico et al. (Domenico &
Biamonte, 2016) for the Laplacian-based density matrix, however we use a regularization trick to ensure that
the partition function of the covariance density matrix is always ≥ 1, ensuring non-negativity.

We will prove this by induction:

Base case (n = 2). We first prove the result for two covariance matrices C1 and C2. Let us set Σ2 := C1 +C2.
We want to show

S
(
C1 + C2) ≤ S(C1) + S(C2).

We first regularize each matrix so that min λ = 0. For j = 1, 2, define

mj = min
{

λ | λ is an eigenvalue of Cj
}

(≥ 0 since Cj is p.s.d.).

Let
C̃j = Cj − mjI.

Then minλ(C̃j) = 0.

Observe:

S(C̃j) = S(Cj),

because shifting by mjI only multiplies e−βCj by a factor e+βmj which cancels in the normalized density
matrix. Concretely,

e−β(C̃j) = e+βmj

e−βCj

=⇒ ρC̃j = e−β(C̃j)

Tr[ e−β(C̃j)]
= e+βmj

e−βCj

e+βmj Tr[ e−βCj
] = ρCj , S(C̃j) = S(Cj).

We define
Σ̃2 = C̃1 + C̃2.

We rename:
A := C̃1, B := C̃2, C := A + B.

All three A, B, C now have min (λ) = 0. Also

S(A) = S(C1), S(B) = S(C2), S(A + B) = S(C1 + C2).

Define
ρA = e−βA

ZA
, ρB = e−βB

ZB
, ρA+B = e−β(A+B)

ZA+B
,

where ZX = Tr[ e−βX] and S(X) = β Tr[X ρX] + ln(ZX). Because A, B each has a zero eigenvalue (or rank
deficiency), ZA, ZB, ZA+B ≥ 1.

We now consider two KL divergences:

D
(
ρA+B ∥ ρA

)
= Tr

[
ρA+B (ln ρA+B − ln ρA)

]
≥ 0,

D
(
ρA+B ∥ ρB

)
≥ 0.

Expanding each yields:
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Hence
ln ρA+B = −β(A + B) − ln ZA+B, ln ρA = −βA − ln ZA.

So
ln ρA+B − ln ρA = −β

[
(A + B) − A

]
− ln ZA+B + ln ZA = −βB − ln ZA+B + ln ZA.

Thus
D
(
ρA+B∥ρA

)
= Tr

[
ρA+B

(
ln ρA+B − ln ρA

)]
= Tr

[
ρA+B

(
−βB − ln ZA+B + ln ZA

)]
.

Because Tr[ρA+B] = 1,

D
(
ρA+B∥ρA

)
= − β Tr[B ρA+B] − ln ZA+B + ln ZA.

Meanwhile S(A + B) = β Tr[(A + B) ρA+B] + ln ZA+B. Observe

− β Tr[B ρA+B]−ln ZA+B = − β Tr[(A+B) ρA+B]+β Tr[A ρA+B]−ln ZA+B = − S(A+B)+β Tr[A ρA+B].

Hence
D
(
ρA+B∥ρA

)
= − S(A + B) + β Tr[A ρA+B] + ln ZA.

Since D(ρA+B∥ρA) ≥ 0 we get

− S(A + B) + β Tr[A ρA+B] + ln ZA ≥ 0. (1)

Likewise,
ρB = e−βB/ZB, D

(
ρA+B∥ρB

)
= Tr

[
ρA+B (ln ρA+B − ln ρB)

]
≥ 0.

One finds (by the same step):

D
(
ρA+B∥ρB

)
= − S(A + B) + β Tr[B ρA+B] + ln ZB ≥ 0. (2)

We now have:
(1) : − S(A + B) + β Tr[A ρA+B] + ln ZA ≥ 0,

(2) : − S(A + B) + β Tr[B ρA+B] + ln ZB ≥ 0.

Further consider the fact that covariance matrices and their covariance density counterparts are always
positive semi-definite. Therefore, the terms

(3) : Tr[A ρA] ≥ 0,

(4) : Tr[B ρB] ≥ 0
are always non-negative.

Since at least one eigenvalue of the covariance matrix is 0 due to the regularization trick (and thus their sum),
the term

(5) : ln ZC

is also always non-negative because e0 = 1, ensuring that the trace term is always at least 1 resulting in
ln(1) = 0.

We now add the non-negative terms (1), (2), (3), (4), (5) and observe that the inequality:

D
(
ρA+B∥ρB

)
+ D

(
ρA+B∥ρA

)
+ ln ZC + β Tr[A ρA] + β Tr[B ρB] ≥ 0

We then exploit the fact that for a Gibbs-like state the Von Neumann entropy is given by S(A + B) =
β Tr[(A + B)ρA+B] + ln ZA+B. After expanding out the KL divergences, recalling that C = A + B, and
re-arranging, we get:

− 2 S(A + B) + β Tr[(A + B)ρA+B] + ln ZA+B + S(A) + S(B) ≥ 0.
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This, after some basic algebraic manipulation, allows us to conclude

S(A + B) ≤ S(A) + S(B).

Thus S(A + B) ≤ S(A) + S(B) .

Finally, recall A = C̃1 and B = C̃2, so

S(C̃1 + C̃2) ≤ S(C̃1) + S(C̃2).

But each C̃j has the same entropy as Cj , and C̃1 + C̃2 has the same entropy as C1 + C2. So

S
(
C1 + C2) = S(C̃1 + C̃2) ≤ S(C̃1) + S(C̃2) = S(C1) + S(C2).

This completes the base case n = 2 in all detail.

Inductive Step. Suppose for some k ≥ 2, S
(∑k

j=1 Cj
)

≤
∑k

j=1 S(Cj). We show it for k + 1:

k+1∑
j=1

Cj =
( k∑

j=1
Cj
)

+ Ck+1.

By the n = 2 sub-additivity (applying it to
∑k

j=1 Cj and Ck+1),

S
( k∑

j=1
Cj + Ck+1

)
≤ S

( k∑
j=1

Cj
)

+ S(Ck+1).

But by induction hypothesis, S
(∑k

j=1 Cj
)

≤
∑k

j=1 S(Cj). Therefore

S
(k+1∑

j=1
Cj
)

≤
k∑

j=1
S(Cj) + S

(
Ck+1) =

k+1∑
j=1

S(Cj).

Hence by induction, for any n,

S
( n∑

j=1
Cj
)

≤
n∑

j=1
S
(
Cj
)
.

This completes the proof.
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Figure 9: We sample covariance matrices from Gaussian,Exponential and Gamma distributions and observe
the behaviour for different values of beta. Higher values of β relate to increased diffusion across the covariance
matrix and thus reduced regularity and thus entropy, smaller values have higher entropy. We can thus
conclude that CDNN’s in a higher entropy state are more stable, corresponding to traditional thermodynamical
principles.

A.8 Multi–scale Von–Neumann Entropy for Singular Gaussians

Let X = (X, Y, Z)⊤ ∼ N (0, Σ) with rank(Σ) = r < p = 3. The classical differential entropy

h(X) = p

2

[
1 + log(2π)

]
+ 1

2 log det Σ (10)

is defined w.r.t. Lebesgue measure on R3. If det Σ = 0 the right term diverges to −∞, so every closed-form
Gaussian entropy estimator explodes. We show that the multi-scale Von–Neumann entropy (VNE) overcomes
this obstruction and can distinguish singular covariances that differ only by a global scale.
Proposition 6 (Density matrix “lifts” singular covariances). Let Σ ⪰ 0 be a p × p covariance matrix with
rank Σ = r < p (hence det Σ = 0). For any finite β ̸= 0 define the density matrix

ρβ(Σ) = exp(−βΣ)
tr exp(−βΣ) .

Then
ρβ(Σ) ≻ 0 and det ρβ(Σ) > 0.

Proof. Diagonalise Σ = Q diag(λ1, . . . , λr, 0, . . . , 0︸ ︷︷ ︸
p−r

)Q⊤ with Q orthogonal and λi > 0 for i ≤ r. Ma-

trix–exponential in the same basis is

exp(−βΣ) = Q diag
(
e−βλ1 , . . . , e−βλr , 1, . . . , 1︸ ︷︷ ︸

p−r

)
Q⊤,

whose eigen-values are e−βλ1 , . . . , e−βλr and 1 (repeated p − r times). All of them are strictly positive, hence
exp(−βΣ) ≻ 0 and

det
[
exp(−βΣ)

]
= e−β

∑p

i=1
λi > 0.
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Dividing by the positive scalar tr exp(−βΣ) =
∑p

i=1 e−βλi preserves positive–definiteness and scales every
eigen-value by the same constant c−1. Therefore

ρβ(Σ) ≻ 0, det ρβ(Σ) = e−β
∑

i
λi(∑

i e−βλi
)p > 0.

Proposition 6 guarantees that the Von–Neumann entropy Sβ(Σ) is finite even when Σ is rank–deficient,
circumventing the divergence of the classical 1

2 log det Σ term.

Take two different rank-2 covariances (both det = 0):

Σ1 =

2 0 0
0 0 0
0 0 0

 , Σ2 =

1 0 0
0 1 0
0 0 0

 .

For β = 1 their Von–Neumann entropies are

S1(Σ1) = 1.28 bits, S1(Σ2) = 1.41 bits.

Both matrices are singular, hence the log–det term diverges, but the VNE still produces finite, different
values—lower for the “collapsed” Σ1, higher for the more evenly spread Σ2. Thus VNE distinguishes degrees
of randomness even among rank-deficient covariances where classical formulas fail.

Now consider a commonly used naive estimator of the entropy of the covariance matrix.

Snaive(Σ) = −
p∑

i=1
πi log2 πi, πi = λi

tr Σ , (11)

We begin by noting the following observation
Proposition 7 (Scale blindness of the trace–normalised surrogate). Let Σ1 ⪰ 0 have rank r < p and
Σ2 = αΣ1 with α > 0. Then Snaive(Σ2) = Snaive(Σ1).

Proof. Scaling each non-zero eigen-value by α multiplies TrΣ by the same factor, leaving every ratio
πi = λi/TrΣ unchanged; hence equation 11 is invariant.
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Figure 10: Scatter of naïve entropy Snaive versus von Neumann entropy Sβ=2 for two covariance regimes Σ1
(blue) and Σ2 (orange) at near–global scale (eigenvalues multiplied by (1.3, 1.2, 1.1)).

At the extreme global-scale limit (e.g. uniform multiplication of all eigenvalues by a large factor), the naïve
entropy remains exactly constant and is therefore blind to any change in overall variance magnitude. Even
when the scale change is mild,as in Figure 10, where the spectrum shifts by a element wise multiplication of
(1.3, 1.2, 1.1),both regimes overlap almost perfectly along the Snaive axis, indicating that normalized-spectrum
methods cannot distinguish them.

By contrast, von Neumann entropy at β = 2, remains sensitive to absolute eigenvalue differences even when
ratios are nearly equal. In the same near–global-scale setting, Sβ=2 cleanly separates the two clusters into
distinct vertical bands, capturing both the slight change in global variance and the subtle reshaping of the
spectrum.

Quantitatively, a simple LDA classifier thresholded on Snaive yields an AUC of only 0.4992, essentially chance,
whereas using Sβ=2 achieves an AUC of 0.9869, demonstrating that von Neumann entropy vastly outperforms
the naïve measure at detecting even mild global-scale changes. In cases such as spike detection in neurological
signals, the naive entropy estimator may miss out crucial near global changes that are common neural
responses.

Of course, there may be cases where invariance to scale may be desirable, thus CVNE acts as a complement
to existing entropic measures, rather than a replacement.
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A.9 Reconstructing the True Covariance Matrix

Reconstructing the original covariance matrix involves formulating and solving an optimization problem that
connects the spectral Properties of the covariance matrix to a density-like representation.

Begin with a symmetric positive-definite covariance matrix C that can be decomposed as

C = U Λ UT ,

where U is orthogonal and Λ = diag(λ1, . . . , λn) contains the eigenvalues. The target distribution is obtained
by normalising the eigenvalues,

pi = λi∑
j λj

, i = 1, . . . , n.

At the same time we define the covariance–density distribution parameterised by an inverse temperature
β ∈ R,

qβ,i = exp(−βλi)∑
j exp(−βλj) .

Definition 8 (Moment objective). Let

f(β) = β

n∑
i=1

piλi + log
( n∑

j=1
e−βλj

)
,

obtained by dropping the constant term
∑

i pi log pi from the Kullback–Leibler divergence DKL(p ∥ qβ).
Proposition 8 (Strict convexity). The function f : R → R of Definition 8 is twice continuously differentiable
and strictly convex. Explicitly,

f ′(β) =
n∑

i=1
piλi −

∑n
j=1 λje−βλj∑n

j=1 e−βλj
, f ′′(β) = Varqβ

[λ] > 0,

unless all eigenvalues are identical (a degenerate case).

Proof. Let Z(β) =
∑

j e−βλj . Then f ′(β) =
∑

i piλi − Z ′(β)
Z(β) . Because Z ′(β) = −

∑
j λje−βλj ,

f ′(β) =
∑

i

piλi −
∑

j λje−βλj∑
j e−βλj

=
∑

i

piλi − Eqβ
[λ].

Differentiating once more and applying the quotient rule gives f ′′(β) = Eqβ
[λ2]−Eqβ

[λ]2 = Varqβ
[λ]. Because

the eigenvalues are not all equal, this variance is strictly positive, so f is strictly convex and C2.

Theorem 9 (Existence and uniqueness of the global minimiser). There exists a unique value β⋆ ∈ R satisfying

f ′(β⋆) = 0 ⇐⇒
n∑

i=1
piλi =

∑n
j=1 λje−β⋆λj∑n

j=1 e−β⋆λj
= Eqβ⋆ [λ].

This β⋆ is the global minimiser of f(β) and therefore also minimises DKL(p ∥ qβ).

Proof. By Theorem 8, f is strictly convex, hence possesses at most one stationary point. Because f ′(β)
is continuous and limβ→−∞ f ′(β) = +∞ while limβ→+∞ f ′(β) = −∞, the intermediate value theorem
guarantees the existence of a β⋆ with f ′(β⋆) = 0. Strict convexity then makes this point unique and
global.
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With β⋆ obtained (e.g. numerically via Gradient Descent), the optimal covariance-density distribution is

qβ⋆,i = exp(−β⋆λi)∑
j exp(−β⋆λj) ,

and the associated density matrix is reconstructed as

M = exp(−β⋆C)
tr
(
exp(−β⋆C)

) .

We generate a covariance matrix from a standard Gaussian matrix and use a BFGS routine to recover
β⋆. Figures 11 and 12 display the original matrix, its reconstruction, and the alignment of the eigenvalue
distribution. Consequently, a Covariance Density Network equipped with the multi-scale filter bank {β⋆}
is generally capable of matching (and often surpassing) the representational power of a classic Covariance
Neural Network.

Figure 11: Original and reconstructed covariance matrices.

Figure 12: Eigenvalues of reconstructed and original covariance matrix.
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Figure 13: Synthetic example: Gaussian data generate Ctrue; additive noise yields Cnoisy. Matching the noisy
and true eigenspectra via β produces a density matrix that closely approximates Ctrue. See the connection to
Minimum Probability Flow Learning (Sohl-Dickstein et al., 2011).

We can also match realistic distributions by optimizing the beta parameter. For example, we can construct a
Covariance Density Matrix with a noisy estimate of the true Covariance and optimize beta to match the
noisy estimate to the true one (See Figure 10).

While Figure 13 shows the case when we recreate a covariance matrix from standard normal distrbution. We
can also consider more challenging cases i.e covariance matrices from auto-regressive processes with non-trivial
off-diagonal elements. A more intuitive approach could also be to reconstruct the precision matrix as this
would lie in the positive β domain.

Figure 14 shows the eigenvalue distribution reconstruction of the true precision and covariance matrix from
highly correlated auto-regressive data. We note that while the actual entry by entry reconstruction of the
covariance matrix was not ideal but the eigenvalue distribution was well recovered. We encourage future
work in this domain.

Empirical Stability Analysis

A.9.1 Stability Analysis of the Operator Norm

The Operator norm difference between original and perturbed matrices is used to evaluate stability.

In particular we measure:
∥∆∥ = ∥Coriginal − Cperturbed∥,

and similarly for the density matrices:

∥∆P∥ = ∥Poriginal − Pperturbed∥.

Where Pperturbed is a perturbation only in the covariance matrix used to compute P.
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Figure 14: Reconstructing the eigenvalue distribution of a (Standard Normal vs highly correlated) Covariance
and Precision matrix from a noise perturbed estimate using our moment matching routine.
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Figure 15: Stability of Covariance Density matrices to perturbations in the sample covariance matrix under
the Operator norm.

We generate covariance matrices from Gaussian data and add noise perturbations at different levels. Observe
that we pay large penalties for negative β; however, this tends to decrease as β tends to 0. Positive values of
β show enhanced stability compared to the trace-normalized covariance matrix, although as β increases, the
stability decreases. This decrease is much less pronounced than in the negative β scenario. Figure 10 thus
corresponds well with Lemma 1.

A.9.2 Stability of CDNN in Synthetic Regression problem

After a Taylor Expansion P can be expressed as:

P =
I − βC + β2C2

2! − β3C3

3! + · · ·
Z

. (12)

As we purely want to observe the effect of C and its transformations on the stability to the sample size of the
covariance matrix, we update x as:

xshifted = Px − x
Z

, (13)

where P applies the density matrix P to the input x.

As in Sihag et al. we compare the stability of CDNNs relative to perturbations in the sample covariance
matrix, i.e. we vary the number of samples used for the construction of the covariance matrix. We replicate
the exact conditions in Sihag et al. and compare our approach with VNNs, Linear regression with PCA
components, and PCA with a Radial Basis Function (RBF) Kernel on random linear regression problems
using the routine sklearn.datasets.make_regression in Python, which lets us specify various parameters.
We generate two cases, one with no external noise and one with a noise level of 5 (a parameter we can tune
directly in the Python dataset generation).

Figure 6 shows the regression performance under no noise. We see that at smaller values of β we maintain
almost perfect stability; however, the MAE performance is weaker than VNNs. We conjecture that in
the Friedmann regression problem (Breiman, 1996), eigenmodes corresponding to lower-variance principal
components are the most discriminating, and since VNNs inherently discriminate these components better,
they achieve strong performance. At small values of β these low-variance components are not as discriminable
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and thus the performance suffers, but as β increases to larger values we can clearly see that as more low-
variance components are shifted to the discriminable eigenspace the performance improves, and at β = 15 we
see improved performance compared to VNNs.

Figure 16: Regression performance under noise-free conditions.

Under noisy conditions, regression models based on density matrices (ρ) showed superior stability compared
to covariance neural networks.
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Figure 17: Regression performance under noisy conditions.

Figure 7 repeats the experiment with the same conditions but the noise level is increased to 5. We can see
that VNNs now suffer a significant drop in performance. This can be attributed to the noise being mostly
concentrated in the low-variance components (i.e. the eigenspace that VNNs are best able to discriminate),
significantly reducing performance. CDNNs discriminate best in the high-variance eigenspace, so the noise is
less likely to affect performance. Thus, even at small β we see stable and stronger performance than VNNs.
PCA also operates in this high-variance space and thus does not suffer from noise as much. This suggests
that CDNNs inherently exhibit a greater robustness to external noise, regardless of the value of positive β.
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