

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DOES LLM DREAM OF DIFFERENTIAL EQUATION DISCOVERY?

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large Language Models (LLMs) show promise in symbolic regression tasks.
 012 However, applying them to partial differential equation (PDE) discovery presents
 013 significant challenges. Unlike traditional symbolic regression, which allows for
 014 quick feedback by directly generating data, PDE discovery involves solving im-
 015 plicit equations and deriving data from physical fields, capabilities LLMs cur-
 016 rently lack. Our method bridges the gap between LLMs’ theoretical under-
 017 standing of differential equations from textbooks and the practical needs of scientific
 018 discovery, where textbooks are less helpful. We show that when physical field data
 019 are appropriately formatted and coupled with code generation prompts, general-
 020 purpose LLMs can effectively engage in the equation discovery process, even
 021 without specific training for this task. This research lays the groundwork for
 022 utilizing pre-trained LLMs in automated scientific discovery, while recognizing
 023 current limitations and the necessity of hybrid human-AI validation.

1 INTRODUCTION

028 The field of symbolic regression for partial differential equations (PDEs), starting from PDE-FIND
 029 Rudy et al. (2017), has experienced remarkable innovation Brunton & Kutz (2024), driven by the
 030 convergence of Large Language Models (LLMs) Lorsung & Farimani (2024), advanced evolutionary
 031 algorithms Ivanchik & Hvatov (2025); Chen et al. (2022), and physics-informed neural approaches
 032 Sun et al. (2025). The most significant trend is the emergence of hybrid methodologies that combine
 033 LLM scientific knowledge with evolutionary robustness, fundamentally changing how we approach
 034 automated equation discovery from complex data.

035 In symbolic regression, we observe a paradigm shift from combinatorial search to knowledge-guided
 036 generation. While evolutionary algorithms, such as PySR Cranmer (2023), navigate vast hypothesis
 037 spaces, LLM-based approaches, like LLM-SR Shojaee et al. (2024), leverage pre-trained scientific
 038 knowledge. The main differences in restoring an expression from a differential equation are that
 039 the model generates data by itself, i.e., we have direct (and fast) feedback from the model for the
 040 evolutionary algorithm or for LLM. For LLM, we note that significant advances have been made by
 041 shifting the problem toward the code-generation domain Wang et al. (2025).

042 In differential equation discovery, we try to find an implicit expression in the form of a differential
 043 equation. In contrast, (a) we cannot extract the data field directly from the differential equation (we
 044 basically have to ”solve” the equation somehow, which is generally a problem by itself) and (b) we
 045 cannot easily unpack differential symbols into the data domain. The latter means that if the equation
 046 solver is not used, differentiation should be performed within the differential equation discovery
 047 algorithm using numerical methods to indirectly assess the discovered equation.

048 Recent algorithms solve the problem basically in two directions. First, we discuss the numerical
 049 difference and how to mitigate the errors associated with it. We use neural networks to filter the
 050 data and also differentiate them Du et al. (2024b) as weak forms to make the error weight-averaged
 051 Stephany & Earls (2024). For example, classically, the error at the boundaries is larger than that
 052 within the bounded domain. The second direction is to develop a differentiation ”agnostic” algo-
 053 rithm that can solve equations to form feedback. The solution to the differential equation, in general,
 makes the process unarguably slower but more robust.

054 The ambiguity of equation solution necessity creates a fundamental validation crisis - without automated
 055 methods to assess physical plausibility, discovered equations require extensive human expertise
 056 to verify, thereby limiting their practical deployment. For example, Shojaee et al. (2025) shows
 057 the 31.5 % of quality at the top in the physical data for all models. However, recent advances in
 058 neural operators show that differentiation (and sometimes the whole differential equation solution
 059 process) could be learned Hao et al. (2024). The recent paper demonstrates that a solution can be
 060 obtained without relying on solvers Herde et al. (2024). However, most of the success is achieved
 061 when we make numerous preliminary assumptions and rely on them.

062 The LLM, as a portmanteau for any problem nowadays, theoretically contains a wealth of knowledge
 063 about differential equations. It can effectively cite and apply the knowledge from the textbook
 064 Grayeli et al. (2024). However, differential equation discovery operates on physical field data, creating
 065 significant challenges: any LLM or VLM does not often meet the physical data "pictures"
 066 (equation solutions) in the training dataset. It is not able to handle the differentiation of such data
 067 out of the box. There is initial research on how LLM could be adjusted to the equation discovery
 068 problem Du et al. (2024a).

069 In this paper, we **aim** to test these abilities of general LLM. We formulate differential equation
 070 discovery as a code generation problem, and we develop an optimal format of data that enables
 071 LLM to extract the connection between differentials and data. The data must not be too compressed
 072 to retain physics, and on the other hand, must be compressed to fit the context. Ultimately, we utilize
 073 LLM as an oracle to infer the initial possible forms of the equation, which are then passed to the
 074 algorithm in a meta-learning loop.

075 **Contribution:** We formulate PDE discovery as a code-generation task for LLMs, introduce a compact
 076 physics-preserving textual representation for field+derivatives, and integrate LLMs as oracles
 077 inside an EPDE meta-learning loop.

078 **Limitation:** - We consider the EPDE single equation discovery framework. However, it could be
 079 replaced if necessary. Essentially, we need to find a way to pass the string form into the algorithm,
 080 which is a technical task.

081 - The models with large context, fine-tuned models, etc., may perform better. It is actually a separate
 082 task to find a physics-aware pre-training. We use only the publicity available pre-trains.

083 - We consider only grid-spaced data without missing values. However, we use noise to simulate the
 084 real-case scenario.

085 **Code and data** are available in the GitHub repository https://anonymous.4open.science/r/EPDE_LLM-2028/

089 2 DIFFERENTIAL EQUATION DISCOVERY BACKGROUND

091 In all cases for the equation discovery problem, it is assumed that the data are placed on a discrete
 092 grid $X = \{x^{(i)} = (x_1^{(i)}, \dots, x_{\dim}^{(i)})\}_{i=1}^N$, where N is the number of observations and \dim is the
 093 dimensionality of the problem. We mention a particular case of time series, for which $\dim = 1$ and
 094 $X = \{t_j\}_{j=1}^N$.

095 It is also assumed that for each point on the grid, there is an associated set of observations $U =$
 096 $\{u^{(i)} = (u_1^{(i)}, \dots, u_L^{(i)})\}_{i=1}^N$ to define a grid map $u : X \subset \mathbb{R}^{\dim} \rightarrow U \subset \mathbb{R}^L$.

098 There are two further ways. First is when we formally determine symbols in form:

$$100 \quad J^r = (x_1, \dots, x_{\dim}; u; D_1 u; D_2 u; \dots; D_r u) \quad (1)$$

102 ,where $D_r = \bigcup_{|\alpha|=r} \{\frac{\partial^r u}{\partial x_1^{\alpha_1} \dots \partial x_r^{\alpha_r}}\}$ is the set of all partial differentials of order r and $\alpha =$
 103 $\{\alpha_1, \dots, \alpha_{\dim}\}$, $|\alpha| = \sum_{i=1}^{\dim} \alpha_i$ is just a differential multi-index. *Simply speaking*, equation 1 is a
 104 set of symbols that represent differentials up to a given order r . Since we usually have a single
 105 observation set u we omit it from the notation $J^r(u)$

108 From these symbols, we get a formal symbolic expression using a possible set of actions \mathcal{T} (monomials, products, powers) acting on J^r . Then $S \subset \mathcal{T}$ represents selected terms (equation structure),
 109 and P is the set of admissible coefficients. Coefficients by themselves could be a function of inde-
 110 pendent coordinates or just constants. Then the equation has the following form:
 111

$$113 \quad M(S, P) = \sum_{s \in S} p_s \cdot s(J^r) = 0 \quad (2)$$

116 The described process has two differences from symbolic regression: we have an implicit depen-
 117 dency in the form of the equation $M(S, P) = 0$, and also, this equation is differential. To assess
 118 any quality measure, we must use a solver to extract a solution from equation 2 and then compare it
 119 with the data U on a grid X . Using a solver is a computationally intensive approach, even for non-
 120 differential expressions; however, for differential equations, it also requires expert solver tuning.
 121

122 Second way is to use numerical differentiation D_h of data $\bar{J}^r = \{(x^{(i)}, u^{(i)}, D_h u^{(i)}, \dots (D_h)^r u^{(i)})\}_{i=1}^N$. In this case, we can replace symbols with their
 123 numerical counterparts, which are essentially tensors of the same dimensionality as the input data.
 124 Therefore, numerical differentiation is used to form a resulting tensor that can be used to indirectly
 125 assess the equation, for example, by using the mean error, which in the case of the equation is
 126 referred to as discrepancy.
 127

128 For the SINDy case, we manually determine the longest sentence Σ_{long} possible and fix it. The
 129 optimization is performed only by P , which is essentially a vector of the numerical coefficients near
 130 each word of Σ_{long} . We need to make P as sparse as possible, which is done with classical LASSO
 131 regression. In SINDy, we compute the loss function by using the discrepancy over the discrete grid.
 132

$$132 \quad P^* = \underset{P \in \Pi}{\operatorname{argmin}} \|M(\Sigma_{\text{long}}, P)\|_2 + \alpha \|P\|_1 \quad (3)$$

134 In equation 3 we denote by $\|\cdot\|_2$ the mean discrepancy in the computation grid X and by $\|\cdot\|_1$
 135 is the l_1 norm. Since SINDy usually works with constant coefficients, we could use the l_1 norm to
 136 determine the sparsity of the set of parameters P . In some sense, it is a measure of the complexity
 137 of the surface in terms of the number of symbols needed to describe it.
 138

139 Evolutionary approaches and reinforcement learning have their own rules to construct S for a model.
 140 Every equation S_i appearing within the optimization process is evaluated using the SINDy approach
 141 equation 3 with discrepancy or, as is done in EPDE, by constructing the Pareto frontier over the dis-
 142 crepancy and complexity criteria. Both discrepancy computation and Patero frontier formation are
 143 performed as part of the fitness function computation or to generate a reward for the reinforcement
 144 learning agent.
 145

146 There are also more robust measures. For a given surface $M(S, P)$, we try to restore the continuous
 147 function u that exactly generates the surface and then compare it with observations U . It, of course,
 148 requires the solution of the equation. We note that in this case, we do not need to consider jets J^r ;
 149 instead, we begin working with the fibers u and no longer need to consider the differentials D_r . In
 150 that case, all surfaces are single-connected, i.e., the solution of the equation is unique, which is, of
 151 course, a limitation, but it is more robust than a discrepancy measure.
 152

153 There are also some intermediate cases, such as PIC. Here we spatially handle jets, but temporally
 154 restore continuous paths. It could be considered as jet factorization and partial fiber projection.
 155

3 DIFFERENTIAL EQUATION DISCOVERY PIPELINES

156 In this paper, we focus on the differential equation discovery part. That means we do not use a
 157 solver to handle the equation, thereby avoiding the need for tuning. Additionally, we do not focus
 158 solely on differentiation. All differential fields are obtained equally for both evolutionary algorithms
 159 and LLMs. As a result, we pass only the observation data field and differentials to the algorithm to
 160 assess its ability to form an equation with indirect equation quality.
 161

We compare the performance of three distinct algorithms (see Fig. 1): the purely evolutionary EPDE
 framework, the LLM-based discovery approach, and a novel hybrid EPDE+LLM pipeline. The

162 EPDE framework optimizes equation structures through evolutionary principles, treating each equa-
 163 tion as an individual subject to mutation and crossover. In contrast, our LLM method relies on
 164 generative symbolic reasoning. The hybrid EPDE+LLM approach is a sequential pipeline: the LLM
 165 first generates an initial population of candidate equations, which is then refined by the EPDE al-
 166 gorithm using its evolutionary operations. The following sections delve into the specifics of each
 167 method.

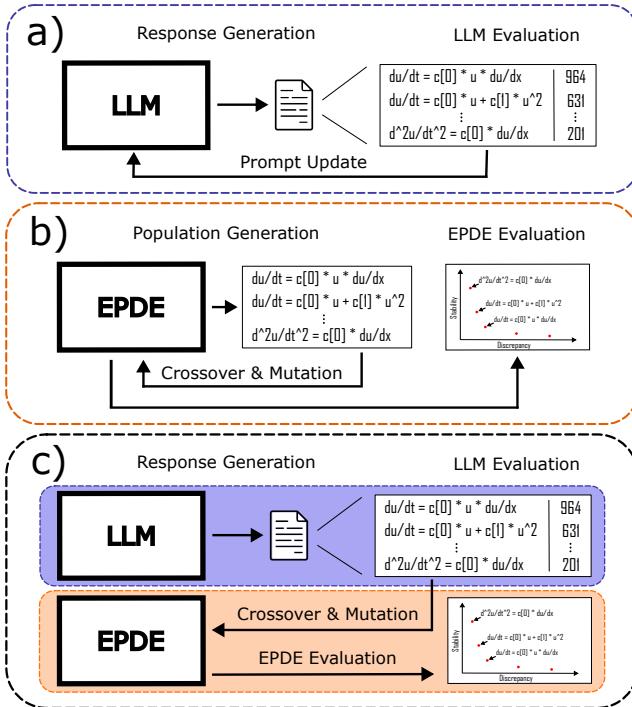


Figure 1: An overview of compared algorithms: a) LLM-based approach, b) EPDE-based approach, c) joint EPDE+LLM approach.

3.1 INPUT DATA FIELD PREPARATION

Presenting the raw, high-dimensional data fields directly to the LLM was infeasible due to constraints on the context window. To address this, we evaluated several strategies, including visual language models (VLMs), alternative data transformations, and tensor decomposition techniques. The most effective and viable solution was found to be a significant but careful dimensionality reduction. The original data was downsampled via interpolation to a coarse spatial resolution of approximately 20×20 to 30×30 grid points. This approach preserves the essential structural information of the physical fields while drastically reducing token consumption, making the data tractable for LLM processing. A preliminary analysis of how VLMs handle such physical data was also conducted.

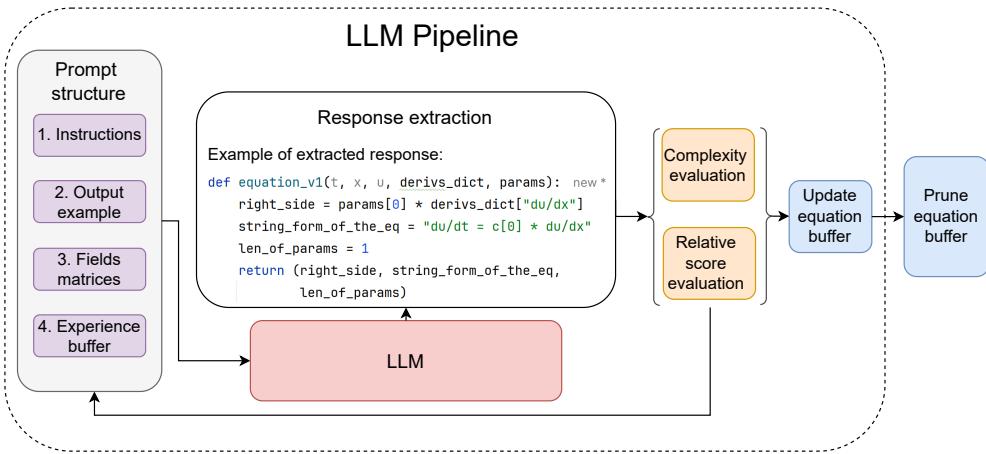
Critical to the success of PDE discovery is the accurate calculation of partial derivatives. For clean data, derivatives were computed using a spectral method based on Chebyshev polynomials. In cases with significant noise, this method was combined with a Butterworth low-pass filter to suppress high-frequency artifacts before differentiation, ensuring numerical stability. The specifics of how the prepared text and numerical data were formatted for the LLM are detailed in Appendix C.

3.2 LLM-GENERATED EQUATIONS PIPELINE OVERVIEW

The inspiration for the algorithm came from Shojaee et al. (2025), where they suggest leveraging LLMs' programming skills to compile the desired equation into a Python function. Similar to Shojaee et al. (2025), we also utilize the equation buffer so that the LLM is aware of which attempts improve the approximation.

216 In every other aspect, the proposed algorithm differs from the LLM-SR approach. All in all, it
 217 includes these stages (depicted in Fig. 2):
 218

- 219 (1) Response generation;
- 220 (2) Equation extraction;
- 221 (3) Evaluation of the extracted equation;
- 222 (4) Recompilation of the prompt;
- 223 (5) Equation buffer pruning.



240 Figure 2: The pipeline of the LLM-based algorithm.
 241

242 **Response generation** A pivotal factor in this step of the algorithm is prompt engineering. The
 243 prompt is divided into the following sections:
 244

- 245 1. Instructions. They include problem statement, requirements, and restrictions.
- 246 2. A code snippet that defines an evaluator for the LLM-generated solutions.
- 247 3. Input data.
- 248 4. Experience buffer. Provides the LLM with a performance history of previously proposed
 249 equation structures. This buffer, updated iteratively, is implemented as a dictionary where
 250 keys are string representations of equations and values are their corresponding relative per-
 251 formance scores (discussed in detail in **Evaluation of the extracted solution** below).
- 252 5. An example of input data.

253 In reality, we use two prompts, depending on the current iteration of the LLM. The prompt for
 254 the first iteration is much simpler than those for the subsequent ones, although it also adheres to
 255 the structure described above. The second prompt is enhanced, with greater complexity, added
 256 constraints, and a refined problem statement.

257 **Equation extraction** This stage of the algorithm is responsible for extracting, refining, and cor-
 258 recting the solutions generated by the LLM. Despite explicit constraints defined in the prompt, LLM
 259 outputs can be unstable and often require post-processing to ensure structural validity and adherence
 260 to requirements.

262 This extraction pipeline significantly improves reliability but cannot guarantee a valid solution in
 263 every instance. To ensure overall algorithmic robustness, a failure mode is implemented where
 264 iterations containing irresolvable outputs are discarded, following the precedent set by LLM-SR
 265 Shojaee et al. (2024).

266 **Evaluation of the extracted solution** The evaluation mechanism quantifies the quality of an ex-
 267 tracted solution through two distinct scores: complexity (Alg. 1) and a relative score (equation 4).
 268 The relative score may be defined as a normalized Mean Absolute Error (MAE), assessing predictive
 269 accuracy. In contrast, the complexity score evaluates the structural intricacy of the equation based
 on the number and type of terms that comprise it.

270 In the proposed algorithm, the left-hand side term s_{left} is fixed, following the methodology estab-
 271 lished in the SINDy approach. This design choice was made to initially probe the capabilities of
 272 the LLMs under the assumption that the algorithm has correctly identified the balancing term. Each
 273 constructed equation is then assigned a normalized Mean Absolute Error (relative score) R , defined
 274 using the mean l_2 norm ($\|\cdot\|_2$) over all grid points. This score inversely represents quality, with val-
 275 ues near 0 indicating high accuracy and a ceiling of 1000 representing the worst-case performance.
 276

$$277 \quad R = \frac{\|M(S, P)\|_2}{\|s_{\text{left}}\|_2} \cdot 1000 \quad (4)$$

278

280 The algorithm for complexity evaluation is formalized in App. B. It operates by parsing each equa-
 281 tion into its tokens and then assigning a complexity weight based on the token’s class and power p .
 282 The scoring policy is defined as follows: derivative terms are weighted according to $\frac{(n+1) \cdot \beta_d}{2} \cdot p$,
 283 where n is the derivative order and β_d is a base cost for derivatives. Elementary functions (e.g.,
 284 sin, cos) incur a cost of $\beta \cdot p$ plus the complexity of their inner terms. Finally, basic variables and
 285 constants contribute a cost of $\beta \cdot p$, where β is a base cost for simple tokens.
 286

287 **Recompilation of the prompt** The prompt provided in App. D is dynamically updated at each
 288 iteration to incorporate the latest state of the experience buffer. This buffer serves as a cumulative
 289 record of solution performance, implemented as a dictionary where keys are string-based equation
 290 descriptors and values are their corresponding relative scores (i.e., normalized mean absolute error,
 291 or MAE). The complexity metric is intentionally omitted from this feedback to present the LLM
 292 with a single, unambiguous performance objective, as LLMs lack the inherent capability to interpret
 293 and optimize within a multi-dimensional fitness space natively.
 294

295 **Equation buffer pruning** Following the completion of all iterations, a final refinement stage is
 296 applied to the accumulated solution buffer. This stage leverages the previously unused complexity
 297 metric to address a key limitation of the relative score: its high sensitivity to noise, which can cause
 298 equations with artifacts to outperform correct ones.
 299

300 To mitigate this, we employ a two-step process. To eliminate the terms that capture noise, we
 301 enrich the solution space through a combinatorial expansion. With this method, one of the generated
 302 variants is bound to exclude the noisy term, making it highly probable that a correct version of the
 303 equation will be discovered.
 304

305 All equations are then evaluated to form a two-dimensional Pareto front based on complexity and
 306 relative score. Finally, a knee detection algorithm identifies the optimal trade-off frontier. The
 307 solution space is pruned to retain only those equations lying on or below the calculated supporting
 308 line, and the length of the perpendicular distance from this line subsequently ranks these solutions.
 309

307 3.3 EPDE-GENERATED EQUATIONS PIPELINE OVERVIEW

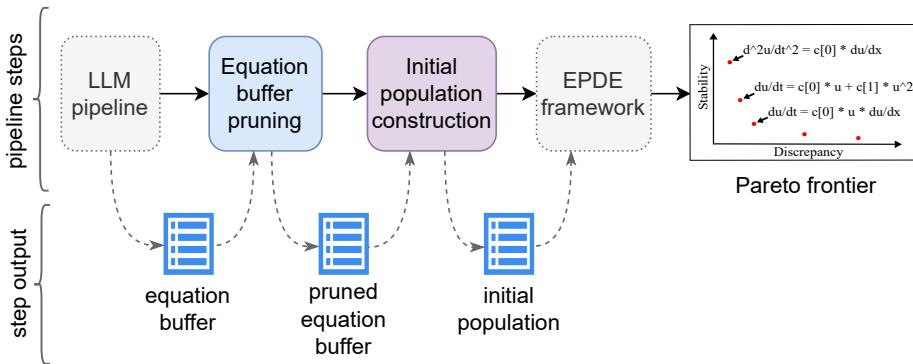
309 The EPDE (Evolutionary Partial Differential Equation) discovery framework is based on an evolu-
 310 tionary optimization paradigm. A detailed discussion of its capabilities and limitations is available
 311 in Maslyaev et al. (2021). Since it is a rather technical detail, we have included it in Appendix A.
 312 Main takeaways from the equation discovery algorithm: it can take initial assumptions in the form
 313 of an equation string and transform its output back into the string using specific code generation
 314 adapters.
 315

316 3.4 JOINT EPDE+LLM PIPELINE OVERVIEW

317 The joint EPDE+LLM pipeline was designed to leverage the LLM’s ability to generate an insightful
 318 initial candidate population from the data. This pipeline provides the evolutionary EPDE framework
 319 with a high-quality starting population, significantly boosting its capabilities.
 320

321 As depicted in Fig. 3, the methodology chains together the LLM and EPDE frameworks. The process
 322 begins with the LLM generating a broad set of candidate equations. Subsequently, a pruning step
 323 enriches this set and then performs filtering to enhance quality. The surviving equations are then
 324 mapped into the EPDE framework’s representation, serving as the initial population for the final
 325

324 stage: evolutionary optimization. This stage converges to a Pareto frontier, representing the trade-
 325 off between equation accuracy and complexity.
 326



327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 176

$$E(\hat{\xi}_i) = \frac{1}{N} \sum_{i=1}^N \frac{|\hat{\xi}_i - \xi_i^*|}{|\xi_i^*|} \quad (6)$$

where N is the total number of terms in the equation, $\hat{\xi}_i$ is the coefficient identified in the discovered equation, and ξ_i^* represents the corresponding coefficient in the true equation.

Furthermore, the hyperparameters used in all experiments are detailed in the supplementary material in App. F. The exact prompts used are listed in App. D.

In the following, we show aggregated tables; more detailed experimental results are in App. G

4.2 CLEAN DATA PERFORMANCE COMPARISON

The performance of the EPDE, standalone LLM, and hybrid EPDE+LLM frameworks on clean data is summarized in Table 1. The metrics of interest are the discovery rate (DR), where a higher value is better, and the complexity error (CE), where a lower value is better. The hybrid EPDE+LLM framework consistently achieved the highest discovery rate across all datasets. Notably, for the challenging KdV dataset, the hybrid method’s discovery rate (0.37) was more than double that of the standalone EPDE (0.10) and LLM (0.13) approaches. While the standalone LLM showed a higher DR than EPDE on the Burgers A and B datasets, it did so at the cost of a significantly higher CE.

Table 1: Comparison of performance of the frameworks with clean data

Dataset	EPDE		LLM		EPDE+LLM	
	DR	CE	DR	CE	DR	CE
Wave	0.97	$7.54 \cdot 10^{-4}$	0.97	$6.57 \cdot 10^{-2}$	1.00	$7.54 \cdot 10^{-4}$
Burgers A	0.53	$8.57 \cdot 10^{-5}$	0.86	$3.94 \cdot 10^{-4}$	0.90	$8.57 \cdot 10^{-5}$
Burgers B	0.50	$4.55 \cdot 10^{-4}$	0.53	$9.05 \cdot 10^{-3}$	0.90	$4.55 \cdot 10^{-4}$
KdV	0.10	$1.54 \cdot 10^{-2}$	0.13	$1.92 \cdot 10^{-2}$	0.37	$1.54 \cdot 10^{-2}$

The results demonstrate that integrating LLM-generated candidate equations into the EPDE search process robustly enhances discovery performance. The LLM framework serves as an effective hypothesis generator for equation structures, while the EPDE methodology provides refined numerical optimization for parameter identification.

4.3 NOISY DATA PERFORMANCE COMPARISON

The performance of the frameworks under significant noise levels (25% to 100%) is presented in Table 2. The hybrid EPDE+LLM framework demonstrates superior robustness, achieving the highest discovery rate in 10 out of 16 dataset-noise combinations. A key observation is that the LLM’s contribution is not contingent on its ability to find the correct equation itself. For instance, on the Wave and Korteweg-de Vries equations, the standalone LLM failed (DR = 0.00 across most noise levels). Nevertheless, its equation suggestions substantially improved the performance of the hybrid EPDE+LLM model, indicating that the LLM acts as an effective generator of meaningful candidate equations, even when its own symbolic regression fails to do so.

An interesting anomaly is observed for the Burgers A dataset, where the LLM-based approach outperforms both EPDE and the hybrid approach. For this specific equation, the LLM’s search strategy is less susceptible to a local minimum that traps the EPDE algorithms—a phenomenon where an incorrect equation form achieves a deceptively optimal objective function value given the noisy data. Despite this, the hybrid approach maintains competitive performance across the other three datasets, confirming its overall robustness.

While the discovery rate indicates the frequency of finding the correct equation form, the accuracy of the identified coefficients is equally critical. Table 3 presents the mean coefficient errors (in units of 10^{-4}) alongside their standard deviations, providing a complementary view of performance. The results reveal that a high discovery rate does not always guarantee precise parameter estimation. For instance, on the Burgers B dataset at 50% noise, the standalone LLM achieves a high DR of

432
433
Table 2: Comparison of discovery rates of the frameworks with noisy data
434

Noise level	Framework	Dataset			
		Wave	Burgers A	Burgers B	KdV
25%	EPDE	0.17	0.20	0.17	0.10
	LLM	0.00	0.73	0.63	0.06
	EPDE+LLM	0.73	0.26	0.66	0.57
50%	EPDE	0.17	0.23	0.10	0.23
	LLM	0.00	0.73	0.50	0.00
	EPDE+LLM	0.36	0.10	0.30	0.40
75%	EPDE	0.07	0.13	0.07	0.13
	LLM	0.00	0.76	0.07	0.00
	EPDE+LLM	0.23	0.16	0.16	0.30
100%	EPDE	0.03	0.03	0.03	0.03
	LLM	0.07	0.80	0.07	0.00
	EPDE+LLM	0.20	0.23	0.20	0.30

445
446 0.50 (Table 2), but its coefficient error is significantly larger than that of the EPDE+LLM hybrid,
447 indicating less stable and accurate parameter fits. Conversely, the hybrid EPDE+LLM framework
448 demonstrates remarkable consistency; its leading or competitive discovery rates are often paired
449 with the lowest or most stable coefficient errors, as seen prominently in the Wave and KdV datasets.
450 The LLM+EPDE hybrid has dual advantage: it not only finds the correct equation structure more
451 reliably but also converges to more accurate and robust parameter estimates, a crucial characteristic
452 for practical applications with noisy data.

453
454 Table 3: Comparison of coefficient errors (10^{-4}) of the frameworks with noisy data
455

Noise level	Framework	Dataset			
		Wave	Burgers A	Burgers B	KdV
25%	EPDE	40.7 \pm 5.00	44.0 \pm 11.0	39.0 \pm 2.96	1334 \pm 4775
	LLM	-	17.4\pm1.39	56.9 \pm 1.42	1778 \pm 106
	EPDE+LLM	40.4\pm3.51	37.7 \pm 28.5	27.3\pm2.66	169\pm65.0
50%	EPDE	8.42 \pm 2.31	162 \pm 13.7	242 \pm 22.2	298\pm1.39
	LLM	-	4.17\pm1.55	400 \pm 3.77	-
	EPDE+LLM	5.92\pm2.65	95.7 \pm 12.3	242\pm9.33	326 \pm 0.82
75%	EPDE	8.33\pm65.4	358 \pm 51.8	532 \pm 63.8	282\pm2.71
	LLM	-	37.9\pm5.17	4997 \pm 3.94	-
	EPDE+LLM	13.9 \pm 2.50	212 \pm 4.51	520\pm3.50	289 \pm 51.4
100%	EPDE	998	576	858	262
	LLM	2546 \pm 809	86.1\pm6.20	4967 \pm 8.69	-
	EPDE+LLM	18.2\pm11.2	376 \pm 12.3	1206 \pm 953	291 \pm 2.71

466
467 These complementary strengths suggest promising avenues for integrating the framework. A hybrid
468 methodology that leverages LLMs’ structural discovery capabilities for initial equation identifica-
469 tion, followed by EPDE’s precision optimization for parameter refinement, could yield superior
470 overall performance in noisy environments. This synergistic approach would combine the noise
471 resilience of linguistic processing with the precision of evolutionary computation, potentially ad-
472 dressing the limitations observed in both individual frameworks.

473
474

5 CONCLUSION

475
476 The trivial results are that LLM could be used to replace evolutionary optimization. It has its own
477 advantages and drawbacks. With proper instruction, for example, it can generate compact forms, as
478 is partially done in PDE-READ. However, apart from the success of structural optimization, there is
479 a failure in determining the numerical coefficient.

480
481 We show that EPDE+LLM form a practical, complementary pair: we pass a small field snapshot
482 to an LLM to generate compact structural hypotheses, then pass the full dataset and a simple initial
483 coefficient guess to EPDE for numerical differentiation, structure refinement, and coefficient fitting.
484 This two-stage workflow narrows the search space and yields cleaner, more reliable discovered PDEs
485 than either component alone. We did not evaluate the LLM for numerical differentiation and do not
expect it to replace dedicated numerical modules, which remain necessary for accurate residual
evaluation and coefficient estimation.

486 REFERENCES
487488 Steven L Brunton and J Nathan Kutz. Promising directions of machine learning for partial differen-
489 tial equations. *Nature Computational Science*, 4(7):483–494, 2024.490 Yuntian Chen, Yingtao Luo, Qiang Liu, Hao Xu, and Dongxiao Zhang. Symbolic genetic algorithm
491 for discovering open-form partial differential equations (sga-pde). *Physical Review Research*, 4
492 (2):023174, 2022.493 Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
494 *arXiv preprint arXiv:2305.01582*, 2023.495 Mengge Du, Yuntian Chen, Zhongzheng Wang, Longfeng Nie, and Dongxiao Zhang. Llm4ed: Large
496 language models for automatic equation discovery. *arXiv preprint arXiv:2405.07761*, 2024a.497 Mengge Du, Yuntian Chen, and Dongxiao Zhang. Discover: Deep identification of symbolically
498 concise open-form partial differential equations via enhanced reinforcement learning. *Physical
499 Review Research*, 6(1):013182, 2024b.500 Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Sym-
501 bolic regression with a learned concept library. *Advances in Neural Information Processing Sys-
502 tems*, 37:44678–44709, 2024.503 Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
504 kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-
505 scale pde pre-training. *arXiv preprint arXiv:2403.03542*, 2024.506 Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
507 de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. *Advances
508 in Neural Information Processing Systems*, 37:72525–72624, 2024.509 Elizaveta Ivanchik and Alexander Hvatov. Knowledge-aware differential equation discovery with
510 automated background knowledge extraction. *Information Sciences*, 712:122131, 2025.511 Cooper Lorsung and Amir Barati Farimani. Explain like i'm five: Using llms to improve pde surro-
512 gate models with text. *arXiv preprint arXiv:2410.01137*, 2024.513 Mikhail Maslyaev, Alexander Hvatov, and Anna V Kalyuzhnaya. Partial differential equations dis-
514 covery with epde framework: application for real and synthetic data. *Journal of Computational
515 Science*, pp. 101345, 2021.516 Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
517 partial differential equations. *Science advances*, 3(4):e1602614, 2017.518 Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
519 LLM-SR: Scientific equation discovery via programming with large language models. *arXiv
520 preprint arXiv:2404.18400*, 2024.521 Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
522 Chandan K Reddy. LLM-SRbench: A new benchmark for scientific equation discovery with large
523 language models. *arXiv preprint arXiv:2504.10415*, 2025.524 Robert Stephany and Christopher Earls. Weak-pde-learn: A weak form based approach to discover-
525 ing pdes from noisy, limited data. *Journal of Computational Physics*, 506:112950, 2024.526 Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation model for
527 partial differential equations: Multioperator learning and extrapolation. *Physical Review E*, 111
528 (3):035304, 2025.529 Runxiang Wang, Boxiao Wang, Kai Li, Yifan Zhang, and Jian Cheng. Drsr: Llm based sci-
530 entific equation discovery with dual reasoning from data and experience. *arXiv preprint
531 arXiv:2506.04282*, 2025.

540 A EPDE ALGORITHM DETAILS
541542 This section provides a brief overview of the algorithm’s core evolutionary operators: mutation and
543 crossover, as well as the internal equation representation and fitness evaluation scheme.
544545 **Model definition** Evolutionary algorithms construct model structures through the application of
546 elementary operations. To minimize the computational cost associated with structural optimization,
547 the EPDE framework utilizes building blocks known as *tokens*. These tokens represent parametrized
548 families of functions and operators. A token is formally defined by the equation 7.
549

550
$$t = t(\pi_1, \dots, \pi_n) \quad (7)$$

551

552 In equation 7, the symbols π_1, \dots, π_n denote the parameters of the token, which will be elaborated
553 below.
554555 To differentiate between an individual token and a product of tokens—referred to as a *term* — we
556 introduce the notation $T = t_1 \cdot \dots \cdot t_{T_{length}}$, where the term length T_{length} satisfies $0 < T_{length} \leq$
557 T_{max} . Here, T_{max} is a hyperparameter of the algorithm. It is crucial to note that although T_{max}
558 influences the final form of the discovered model, a reasonable value for the number of tokens
559 per term (typically 2 or 3) is often sufficient to represent the structure of most actual differential
560 equations.561 Tokens t_i are organized into *token families* Φ_j to facilitate finer control over the model’s form. All
562 tokens within a given family share a fixed set of parameters π_1, \dots, π_n . For instance, a family of
563 differential operators can be defined as $\Phi_{der} = \{\frac{\partial^{\pi_n+1} u}{\partial \pi_1 x_1 \dots \partial \pi_n x_n}\}$ to enable the discovery of linear
564 or nonlinear equations with constant coefficients. Similarly, a trigonometric token family $\Phi_{trig} =$
565 $\{\sin(\pi_1 x_1 + \dots + \pi_n x_n),$
566 $\cos(\pi_1 x_1 + \dots + \pi_n x_n)\}$ can be introduced to search for forcing functions or variable coefficients.
567568 Token parameters can be either optimizable or non-optimizable. It is often advantageous to fix cer-
569 tain parameters, grouping tokens with identical fixed values into a single family as non-optimizable
570 entities. This approach allows, for example, differential tokens to appear multiple times within a
571 single term to represent nonlinearity. In contrast, trigonometric tokens are typically optimized and,
572 if required, appear only once per term. The algorithm accepts as input the unified set $\Phi = \bigcup_j \Phi_j$ of
573 token families, which is specified by the user.
574575 For simplicity, we operate under the assumption that all tokens are pre-computed on a fixed discrete
576 grid. The specific choice of grid does not affect the fundamental description of the algorithm. Con-
577 sequently, the structure of the equation and the parameters of its tokens remain the sole variables in
578 the differential equation model presented in equation 8.
579

580
$$M(S, \{C, P\}) = \sum_{j=1}^{j \leq N_{terms}} C_j T_j \quad (8)$$

581

582 In equation 8, the structure S comprises a set of terms $\{T_j\}_{j=1}^{j=N_{terms}}$, each constructed from a prod-
583 uct of distinct tokens. The model parameters are partitioned into two sets: (1) the term coefficients
584 $C = \{C_j\}_{j=1}^{j=N_{terms}}$, where each C_j is a scalar coefficient for term T_j , and (2) the optimizable pa-
585 rameters $P = \{\pi_1, \dots\}$ of variable length. The composition and cardinality of P may differ for each
586 model and can be modified by the evolutionary operators during the optimization process.
587588 The maximum number of terms, N_{terms} , is a hyperparameter of the algorithm. It is important to
589 note that N_{terms} serves not a directive but a restrictive function. The actual number of terms in the
590 final model may be less than N_{terms} , as it is subject to reduction through the fitness-based selection
591 procedure described below.
592593 To facilitate visualization of the following evolutionary operator schemes (Fig. 4), we employ a
594 simplified individual representation. Each individual in this context corresponds to an instance of
595 the model defined in equation 8.
596

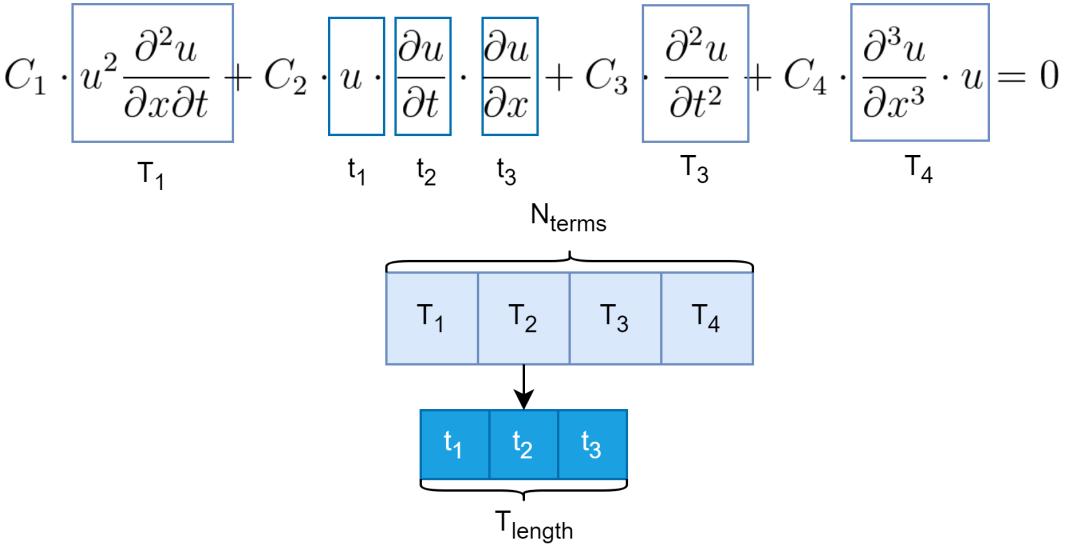


Figure 4: Model visualization: T_i are the token products from equation 8 and t_i are the tokens from equation 7.

The optimization process is conducted in two stages: structural and parametric. The population is initialized following equation 8 and possessing distinct, randomly generated structures. After the initialization step, the parametric optimization stage computes a fitness value for each individual.

Fitness evaluation Fitness evaluation fulfills two objectives: (1) determining the parameters $\{C, P\}$ for each model, and (2) providing a standard fitness metric. The evaluation procedure involves selecting one term from the structure S as a "target", which requires transforming the individual model into the form given by equation 9 prior to fitness computation.

$$T_{target} = \sum_{j=1, \dots, target-1}^{j=target+1, \dots, N_{terms}} C_j T_j \quad (9)$$

The variable $target$ in equation 9 represents a randomly selected index. This random selection prevents the algorithm from converging to the trivial solution where $\forall j C_j = 0$. For the purpose of fitness computation, the terms T_j are held fixed. The objective is to determine the coefficients $C = \{C_1, \dots, C_{target}, \dots, C_{N_{terms}}\}$ and the optimizable parameters $P = \{P_1, \dots, P_{target}, \dots, P_{N_{terms}}\}$ (if they exist). A key constraint is that $C_{target} \equiv -1$, and the parameters in the set P_{target} are always fixed.

The optimal term coefficients C_{opt} and the optimal parameter sets P_{opt} are computed using LASSO regression, as formalized in equation 10.

$$C_{opt}, P_{opt} = \arg \min_{C, P} \left\| T_{target} - \sum_{j=1, \dots, target-1}^{j=target+1, \dots, N_{terms}} C_j T_j \right\|_2 + \lambda (\|C\|_1 + \|P\|_1) \quad (10)$$

In equation 10, $\|\cdot\|_p$ designates the l_p norm. After performing LASSO regression, coefficients are compared to a minimal coefficient value threshold. Terms with $|C_j|$ below this threshold are removed, thereby refining the model and preventing the excessive growth of redundant terms.

After obtaining the final set of optimal coefficients from equation 10, the fitness function F is calculated as defined in equation 11.

648

649

650

651

$$F = \frac{1}{\left\| M(S, \{P_{opt}, C_{opt}\}) \right\|_X} \quad (11)$$

652

653

In essence, the denominator in equation 11 represents the average discrepancy over the computation grid X .

654

Evolutionary operators To ensure valid equation generation in the population initialization step, cross-over and mutation operators, expert rules are designed for each S_{ind} . These rules prevent ill-formed equations (e.g., $0 = 0$) and redundant terms, such as those generated by commutative multiplication, without constraining the overall solution space. Each model structure S_{ind} has an associated set of forbidden tokens that are excluded from crossover and mutation events.

660

661

The selection of tokens during mutation and the exchange of terms during crossover are both equiprobable, with the only limitation presented by expert rules.

662

663

The crossover operator is defined as the exchange of terms between two individuals, as illustrated in Fig. 5. The terms selected for this exchange are chosen from a uniform distribution, meaning every term has an equal probability of being involved.

666

667

668

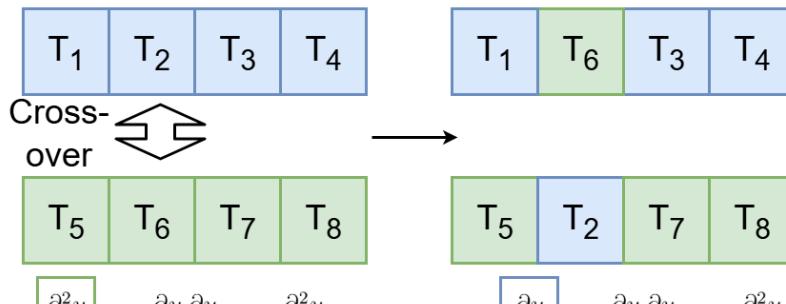
669

$$C_1 u \frac{\partial u}{\partial t} + C_2 \frac{\partial u}{\partial x} + C_3 \frac{\partial^2 u}{\partial t^2} + C_4 \frac{\partial u}{\partial t} = 0 \quad C_1 u \frac{\partial u}{\partial t} + C_2 \frac{\partial^2 u}{\partial x^2} + C_3 \frac{\partial^2 u}{\partial t^2} + C_4 \frac{\partial u}{\partial t} = 0$$

670

671

672



673

674

675

676

677

678

$$C_1 u^2 + C_2 \frac{\partial^2 u}{\partial x^2} + C_3 \frac{\partial u}{\partial t} \frac{\partial u}{\partial x} + C_4 \frac{\partial^2 u}{\partial t^2} = 0 \quad C_1 u^2 + C_2 \frac{\partial u}{\partial x} + C_3 \frac{\partial u}{\partial t} \frac{\partial u}{\partial x} + C_4 \frac{\partial^2 u}{\partial t^2} = 0$$

679

680

681

682

683

Figure 5: EPDE cross-over operator scheme.

684

685

The mutation operator, demonstrated in Fig. 6, has two modes: term exchange and token exchange.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
704

$$C_1 \cdot u^2 \frac{\partial^2 u}{\partial x \partial t} + C_2 \cdot u \cdot \frac{\partial u}{\partial t} \cdot \frac{\partial u}{\partial x} + C_3 \cdot \frac{\partial^2 u}{\partial t^2} + C_4 \cdot \frac{\partial^3 u}{\partial x^3} \cdot u = 0$$

705
706

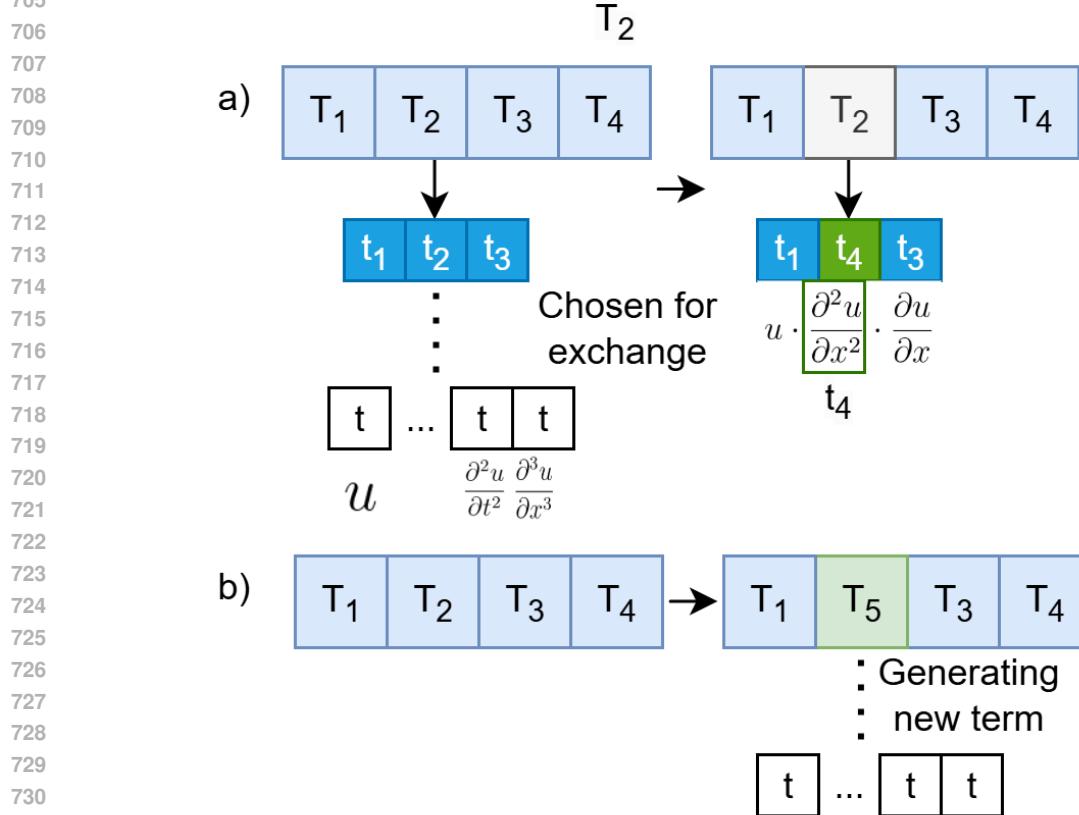


Figure 6: EPDE mutation operator scheme.

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

As shown in Fig. 6a), token exchange replaces one token with another from a homogeneous pool. Term exchange (Fig. 6b) generates a new term from the same pool by first randomly selecting a term length and then populating it with tokens chosen uniformly from the pool.

To summarize, the inputs are the observational data U on grid X and the token families Φ . The output is a differential equation of the form $Lu = f$, whose type (ODE, PDE, or system) depends on the dimensionality of U and X .

756 B COMPLEXITY EVALUATION
757

758
Data: List of terms - *terms*
Result: Complexity score
759 $\beta_d = 0.5$;
760 $\beta = 0.2$;
761 *complexity* = 0;
762 **for** *term* in *terms* **do**
763 **for** *token* in *term* **do**
764 $p = \text{extract_power}(\text{token})$;
765 **if** *token* is derivative **then**
766 $n = \text{extract_derivative_order}(\text{token})$;
767 *complexity* = *complexity* + $\frac{(n+1) \cdot \beta_d}{2} \cdot p$;
768 **else**
769 **if** *token* is function **then**
770 *complexity* = *complexity* + $\beta \cdot p + \text{eval_complexity}(\text{inner_terms})$;
771 **else**
772 *complexity* = *complexity* + $\beta \cdot p$;
773 **end**
774 **end**
775 **end**
776 **end**
777

Algorithm 1: The pseudo-code of complexity evaluation

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 C INITIAL TESTS ON LLM'S UNDERSTANDING OF THE DATA
811812 The fundamental question of our research was whether Large Language Models (LLMs) could
813 discern functional dependencies within numerical data fields, presented, in our case, as two-
814 dimensional data, and to identify which class of LLMs is best suited for this task. Given the spatial
815 nature of the data, where u is a matrix defined over discrete x and t , our initial hypothesis inclined
816 towards visual LLMs (VLLMs), which are designed to process image data.817 A series of preliminary experiments, however, demonstrated that these visual LLMs struggled sig-
818 nificantly with the core requirement of the task. They exhibited a notable inability to accurately
819 interpret the content of even basic visual representations of the data (see the subsection below). The
820 models failed to reliably identify data values from the heatmaps, let alone discover the underlying
821 mathematical relationships between variables.822 In contrast, experiments with textual representations of the data revealed that even small-scale tex-
823 tual LLMs could often propose equation structures that approximated the underlying function. This
824 critical result - that textual models showed a surprising aptitude for the provided task - justified our
825 pivot to textual LLMs and encouraged the development of the current pipeline.826 A detailed analysis of these experiments is provided in the following subsections.
827828 C.1 SPACE PERCEPTION TESTS ON VISUAL LLMs
829830 The tests were performed mainly on the heatmaps derived from functions $\cos(C \cdot x)$, cho-
831 sen for their clear periodic structure, with the exception of the last test which was based on
832 a hypothesis that the problem lies in the nature of the images and not in characteristics of
833 VLLM. The models evaluated were: `gemini-pro-vision`, `qwen-2-vl-72b-instruct`,
834 `llama-3.2-90b-vision-instruct`.835 The experimental design, illustrated in Fig. 7, systematically examined different potential failure
836 modes:
837838

- 839 • Test (a) and (b) assessed basic pattern recognition ability by varying the frequency of os-
840 cillation ($\cos(2.5x)$ and $\cos(10x)$).
- 841 • Test (c) hypothesized that the monochromatic color scheme of standard heatmaps might
842 be a limiting factor and tested the same high-frequency function ($\cos(10x)$) with a color
843 mapping.
- 844 • Test (d) served as a core control. This test was used as a primal indicator of models' ability
845 to understand periodic structures while accounting for their training data distribution, which
846 consists largely of human-recognizable scenes.

847 The image resolution was mostly set to 128×128 pixels. An exception was the control image in
848 case (d), which was rendered at a higher resolution of 512×512 to ensure clarity. Furthermore,
849 to systematically rule out resolution-based limitations, case (c) was tested across multiple scales:
850 128×128 , 256×256 , 512×512 , and 1024×1024 . This range of resolutions was selected to test
851 the models' limits, with the baseline set to a low resolution of 128×128 to reflect the typical scale
852 of our numerical datasets, which does not exceed 512×512 pixels.853 The experimental results revealed significant limitations in the visual LLMs' capabilities. In case
854 (a), they misclassified a cosine gradient as linear and could not correctly count two minima. In
855 the higher-frequency case (b), all models underestimated the count of extrema (reporting 5 or less
856 vs. a true count of 6-7 for each type of extrema). Altering resolution and adding a color mapping
857 in case (c) produced no substantial improvement, with a faint positive effect only at the maximum
858 tested size of 1024×1024 pixels, where the 7th maximum was sometimes noted. Lastly, in (d)
859 case the models reported the existence of 20 to 30 elements on the image with the only exception of
860 `qwen-2-vl-72b-instruct`, which correctly identified 25.861 These experiments led us to conclude that visual LLMs are ill-suited for this specific task. Conse-
862 quently, we pivoted to textual LLMs. While raw numerical data is also non-ideal for these models,
863 we hypothesized that a transformation of the data into a suitable textual format could leverage their
864 strengths in symbolic reasoning and pattern recognition.

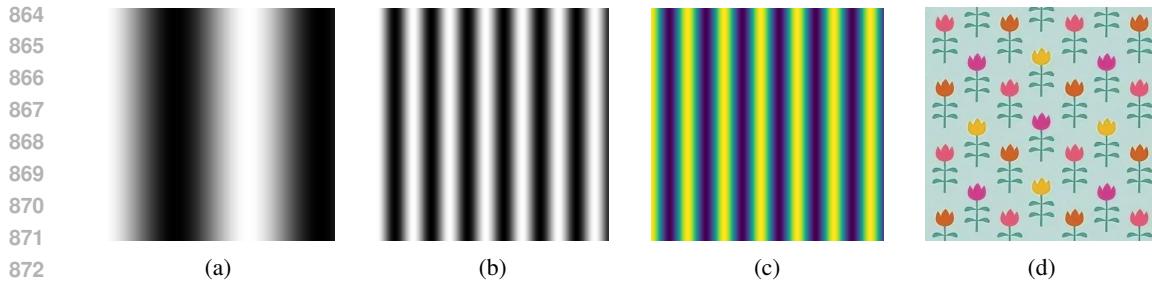


Figure 7: The input data for space perception tests on Visual LLMs: (a) A heatmap of $\cos(2.5x)$, (b) A heatmap of $\cos(10x)$, (c) A heatmap of $\cos(10x)$ in colours, (d) An image containing an unambiguous periodic pattern of floral elements. The recognizability of these elements to a human observer establishes a baseline for expected model performance.

C.2 SPACE PERCEPTION TESTS ON TEXTUAL LLMs

To evaluate the inherent pattern recognition capabilities of textual LLMs, we conducted initial experiments on one-dimensional data generated from the function $u(x) = \sin(2.5x)$ (see the prompt template in Appendix D.3). The models tested were `qwen2.5-72b-instruct` and `mixtral-8x7b-instruct`. Both models correctly identified the sinusoidal nature of the function, demonstrating their ability to recognize periodic patterns from numerical data. Although they made errors in estimating the precise oscillation parameters, their successful relation identification provides initial validation of our core hypothesis: that textual LLMs can serve as effective tools for extracting functional relationships from structured numerical data.

We subsequently extended our investigation to two-dimensional functions. The test case was designed to be partially periodic: $u(t, x) = 2 \sin(2.5x) + 0.07t^2$. The models tested were `qwen2.5-72b-instruct`, `mixtral-8x7b-instruct`, and the larger `mixtral-8x22b-instruct`. The results were promising yet incomplete. The `qwen2.5-72b-instruct` model, for instance, correctly identified the sinusoidal component along the x -dimension in 9 out of 10 trials. While it never explicitly identified the quadratic term t^2 , it consistently recognized the non-periodic, increasing trend along the t -dimension. This demonstrates a capacity for discerning composite spatial structures, albeit with limited parametric precision.

The other models yielded similar results, though `mixtral-8x7b-instruct` performed noticeably worse - as a rule, the model insisted on a polynomial structure, occasionally suggesting a sinusoidal function along x dimension; while the `mixtral-8x22b-instruct` performed on par with `qwen2.5-72b-instruct`, producing responses of equivalent quality and insight.

An essential aspect of our testing involved determining the optimal data representation for textual LLMs. We evaluated two distinct formats:

- (1) Structured Tabular Data: A three-column format with headers "x, t, u", where each subsequent row represented a single data point (the prompt is given in Appendix D.4).
- (2) Raw array data: The direct string representation of the two-dimensional NumPy array for u , provided in a row-major format (the prompt is showcased in Appendix D.5).

This comparison was crucial for assessing whether the models benefited from explicit feature structuring or could infer relationships from raw numerical arrays. The results demonstrated a significant advantage for the structured tabular format. When presented with the "x, t, u" table, the top-performing models (`qwen2.5-72b-instruct` and `mixtral-8x22b-instruct`) successfully identified the sinusoidal relation along the x -dimension in approximately 90% of cases (9/10 trials). In contrast, the same models achieved only a 60% success rate (6/10 trials) when the data was presented as a raw numerical array. This clear performance gap underscores the importance of feature-label structuring for enabling textual LLMs to perform spatial reasoning tasks.

918 D PROMPTS
919920 D.1 PROMPT FOR THE ZEROTH ITERATION OF THE LLM PIPELINE
921

922 What is a possible function with the general equation form $\{\text{full_form}\}$ that could be described \leftrightarrow
 923 \leftrightarrow with the set of points named points_set , that have the form of ' $\{\text{dots_order}\}$ '. Give an \leftrightarrow
 924 \leftrightarrow answer in the function equation_v1 constructing it in a way described by equation_v1 \leftrightarrow
 925 \leftrightarrow in the end.

926 Note that although the general equation form is $\{\text{full_form}\}$, the resulting equation may take on \leftrightarrow
 927 \leftrightarrow simpler forms, for ex., $\{\text{left_deriv}\} = F(t, du/dx)$ or $\{\text{left_deriv}\} = F(du/dx)$. Suggest \leftrightarrow
 928 \leftrightarrow some simple structure, that roughly describe the relationships in data, for example \leftrightarrow
 929 \leftrightarrow $\{\text{left_deriv}\} = c[0] * du/dx$.

930 Requirements:

931 1. Only output your reasoning and the code starting from "def equation_v1... " DO NOT recite \leftrightarrow
 932 \leftrightarrow the other functions (like loss_function evaluate etc.)

```
934 import numpy as np
935 from scipy.optimize import minimize
936
937 def loss_function(params, t, x, u, derivs_dict):
938     u_pred = equation_v1(t, x, u, derivs_dict, params)[0]
939     return np.mean((u_pred - derivs_dict["{left_deriv}"]))**2
940
941 def evaluate(data: dict) -> float:
942     """ Evaluate the constructed equation"""
943     inputs, derivs_dict = data['inputs'], data["derivs_dict"]
944
945     # Optimize equation skeleton parameters
946     loss_partial = lambda params: loss_function(params, *inputs, derivs_dict)
947     params_initial_guess = np.array([1.0]*P)
948     result = minimize(loss_partial, params_initial_guess, method='BFGS')
949     optimized_params = result.x
950
951     # Return evaluation score
952     score = loss_function(optimized_params, *inputs, derivs_dict)
953     return score if not np.isnan(score) and not np.isinf(score) else None
954
955 #/Input data
956
957 points_set =
958 {points_set}
959
960 #/end of input data
961
962 # An example of desired output:
963 ``python
964 def equation_v1(t: np.ndarray, x: np.ndarray, u: np.ndarray, derivs_dict: dict(), params: np.ndarray):
965     right_side = params[0] * derivs_dict["du/dx"]
966     string_form_of_the_equation = "{left_deriv} = c[0] * du/dx"
967     len_of_params = 1
968     return right_side, string_form_of_the_equation, len_of_params
969
970 ``
```

971 D.2 PROMPT FOR THE SUBSEQUENT ITERATIONS OF THE LLM PIPELINE

972 What is a possible function with the general equation form `{full_form}` that could be described ←
 973 → with the set of points named `points_set`, that have the form of '`{dots_order}`'? Give an ←
 974 → answer in the function `equation_v1` constructing it in a way described by the example ←
 975 → in the end.
 976 Your goal is to explore the equations space (in relation to their scores) and to examine any ←
 977 → inexplicit interactions between the input variables (for ex. $du/dx * u^2$).
 978 The dictionary `exp_buffer` stores previous attempts to find the equation evaluated with `evaluate` ←
 979 → function. Refer to it in order to understand what is yet to be explored and what might ←
 980 → be worth more exploration. The best score is 0.
 981 Also, keep in mind, if it seems like t or x are involved in the equation do not forget that u and ←
 982 → its derivatives are dependent on them, and thus the involvement of t and x might be ←
 983 → expressed through u or its derivatives. Your goal is to find any possible inexplicit ←
 984 → interactions.
 985 Start by exploring simpler structures and then gradually move on to more complicated ones IF ←
 986 → you see the need to do so.
 987 Note that although the general equation form is `{full_form}`, the resulting equation may take on ←
 988 → simpler forms (BUT IT DOESN'T HAVE TO!), like `{left_deriv}` = $F(t, du/dx)$.
 989 Make sure the suggested equation is dependent on at least one derivative, (e.g, in case of du/dt ←
 990 → = $F(t, x, u, du/dx)$, du/dx must be included).
 991 Requirements:
 992 1. First look at the `exp_buffer` and then suggest the equation, the string form of which is not ←
 993 → already there!
 994 2. Do not copy the equations from the `exp_buffer`!
 995 3. Only give a simplified version of the equation in `string_form_of_the_equation`: always open ←
 996 → the brackets, for ex. instead of ' $du/dt = c[0] * (1 + du/dx) * t$ ' return ' $du/dt = c[0] * t + c[1] * du/dx * t$ '.
 997 4. Higher order derivatives must be referenced as $d^n u/dx^n$ or $d^n u/dt^n$, where n is an integer ←
 998 → (for example, $d^2 u/dx^2$ and NOT du^2/dx^2). Anything like du^n/dx^n refer to the ←
 999 → multiplication of du/dx and should be written as $(du/dx)^n$ or $(du/dx)^{**n}$ (same apply ←
 1000 → to du/dt).
 1001 5. Do not put `{left_deriv}` into the right side of the equation as a standalone term, you can ←
 1002 → though use it as part of a term: $.. + \{left_deriv\} * u + ..$ for example
 1003
 1004 import numpy as np
 1005 from scipy.optimize import minimize
 1006
 1007 def loss_function(params, t, x, u, derivs_dict):
 1008 u_pred = equation_v1(t, x, u, derivs_dict, params)[0]
 1009 return np.mean((u_pred - derivs_dict["{left_deriv}"])**2)
 1010
 1011 def eval_metric(params, t, x, u, derivs_dict, left_side):
 1012 u_pred = equation_v1(t, x, u, derivs_dict, params)[0]
 1013 return np.mean(np.fabs(u_pred - derivs_dict[left_side]))
 1014
 1015 def evaluate(data: dict) -> float:
 1016 """ Evaluate the constructed equation """
 1017 inputs, derivs_dict = data['inputs'], data['derivs_dict']
 1018 # Optimize equation skeleton parameters
 1019 loss_partial = lambda params: loss_function(params, *inputs, derivs_dict)
 1020 params_initial_guess = np.array([1.0]*P)
 1021 result = minimize(loss_partial, params_initial_guess, method='BFGS')
 1022 optimized_params = result.x
 1023 # Return evaluation score
 1024 score = eval_metric(optimized_params, *inputs, derivs_dict, left_side)
 1025 return score if not np.isnan(score) and not np.isinf(score) else None

```

1026 #/Input data
1027
1028 points_set =
1029 {points_set}
1030 exp_buffer = {{}}
1031 {}
1032
1033 #/end of input data
1034
1035 # An example of desired output:
1036 ``python
1037 def equation_v1(t: np.ndarray, x: np.ndarray, u: np.ndarray, derivs_dict: dict(), params: np.ndarray):
1038     right_side = params[0] * derivs_dict["du/dx"]
1039     string_form_of_the_equation = "{left_deriv} = c[0] * du/dx"
1040     len_of_params = 1
1041     return right_side, string_form_of_the_equation, len_of_params
1042 """
1043
1044 D.3 1D CASE OF TEXTUAL LLMs' TESTING
1045
1046 What is a possible function (e.g.  $u(x) = x^{**2} + 5$ ) that could be described
1047 with this set of points, that have the form of "x u(x)":
```

1048	0.00 0.00
1049	0.21 0.50
1050	0.42 0.87
1051	0.63 1.00
1052	0.84 0.86
1053	1.05 0.49
1054	1.26 -0.02
1055	1.47 -0.52
1056	1.68 -0.88
1057	1.89 -1.00
1058	2.11 -0.85
1059	2.32 -0.47
1060	2.53 0.03
1061	2.74 0.53
1062	2.95 0.88
1063	3.16 1.00
1064	3.37 0.84
1065	3.58 0.46
1066	3.79 -0.05
1067	4.00 -0.54
1068	

```

1069 D.4 2D CASE OF TEXTUAL LLMs' TESTING WITH STRUCTURED TABULAR DATA
1070
1071 What is a possible function (e.g.  $u(x, t) = x^{**2} + 5t$ ) that could be described with this set of ←
1072 → points, that have the form of "t x u(t, x)":
```

1073	0.00 0.00 0.00
1074	0.00 0.21 1.00
1075	0.00 0.42 1.74
1076	0.00 0.63 2.00
1077	0.00 0.84 1.72
1078	0.00 1.05 0.98
1079	0.00 1.26 -0.03
	0.00 1.47 -1.03

1080 0.00 1.68 -1.75
 1081 0.00 1.89 -2.00
 1082 0.00 2.11 -1.70
 1083 0.00 2.32 -0.95
 1084 0.00 2.53 0.07
 1085 0.00 2.74 1.06
 1086 0.00 2.95 1.77
 1087 0.00 3.16 2.00
 1088 0.00 3.37 1.69
 1089 0.00 3.58 0.92
 1090 0.00 3.79 -0.10
 1091 ...
 1092

1093 D.5 2D CASE OF TEXTUAL LLMs' TESTING WITH RAW ARRAY DATA

1094
 1095 What is a possible function (e.g. $u(t, x) = x^{**}2 + 5t$) that could be described with this array, that \leftrightarrow
 1096 \rightarrow represents the function $u(t, x)$ ":

1097 [[0. 1. 1.74 2. 1.72 0.98 -0.03 -1.03 -1.75 -2. -1.7 -0.95
 1098 0.07 1.06 1.77 2. 1.69 0.92 -0.1 -1.09]
 1099 [0.02 1.02 1.76 2.02 1.74 1. -0.01 -1.01 -1.73 -1.98 -1.68 -0.93
 1100 0.08 1.08 1.79 2.02 1.71 0.94 -0.08 -1.07]
 1101 ...
 1102

1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 E EQUATION PROBLEM STATEMENTS
11351136 E.1 BURGERS A
11371138 The initial-boundary value problem for Burger's equation is represented with equation 12.
1139

1140
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

1141
$$u(0, t) = \begin{cases} 1000, & t \geq 2 \\ 0, & t < 2 \end{cases}$$

1142
$$u(x, 0) = \begin{cases} 1000, & x \leq -2000 \\ -x/2, & -2000 < x < 0 \\ 0, & \text{otherwise} \end{cases}$$

1143
$$(x, t) \in [-4000, 4000] \times [0, 4]$$
 (12)
1144
1145
1146
1147

1148 The analytical solution to the problem presented in equation 12 is given in Rudy et al. (2017). Data
1149 for the experiment were obtained with the discretization of the solution in the domain $(x, t) \in$
1150 $[-4000, 4000] \times [0, 4]$ using 101×101 points.
11511152 E.2 BURGERS B
11531154 The problem and data were provided by the authors of PySINDY¹. The problem can be formulated
1155 in equation 13, where the boundary conditions were not reported. The solution was provided for the
1156 domain $(x, t) \in [-8, 8] \times [0, 10]$ using 256×101 discretization points.
1157

1158
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - 0.1 \frac{\partial^2 u}{\partial x^2} = 0$$

1159
$$(x, t) \in [-8, 8] \times [0, 10]$$
 (13)
1160

1161 E.3 KORTEWEG-DE VRIES
11621163 As in the case of Burgers' equation, the data and the problem (equation 14) were provided by the
1164 authors of PySINDY for the domain $(x, t) \in [-30, 30] \times [0, 20]$ using 512×201 discretization
1165 points.
1166

1167
$$\frac{\partial u}{\partial t} + 6u \frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0$$

1168
$$(x, t) \in [-30, 30] \times [0, 20]$$
 (14)
1169

1170 E.4 WAVE
11711172 The initial-boundary value problem for the wave equation is given in equation 15.
1173

1174
$$\frac{\partial^2 u}{\partial t^2} - \frac{1}{25} \frac{\partial^2 u}{\partial x^2} = 0$$

1175
$$u(0, t) = u(1, t) = 0$$

1176
$$u(x, 0) = 10^4 \sin^2 \frac{1}{10} x (x - 1)$$

1177
$$u'(x, 0) = 10^3 \sin^2 \frac{1}{10} x (x - 1)$$

1178
$$(x, t) \in [0, 1] \times [0, 1]$$
 (15)
1179
1180
1181
1182
1183
1184
1185
1186
1187

¹<https://github.com/dynamicslab/pysindy>

1188 F HYPERPARAMETERS
11891190 Table 4: LLM hyperparameters
1191

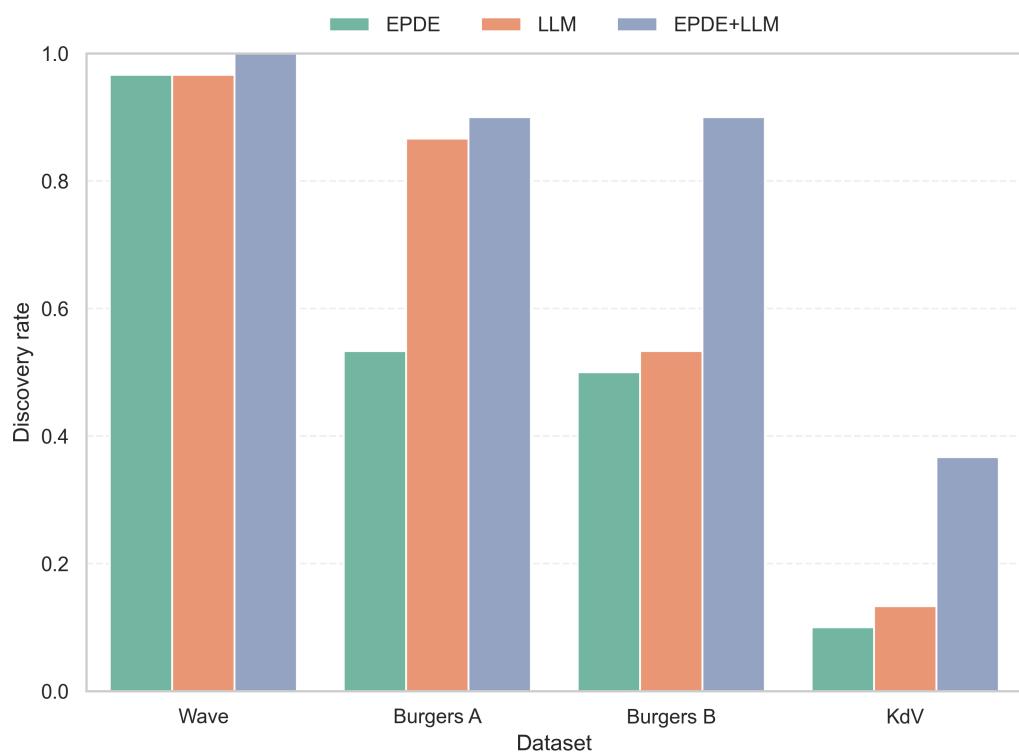
Hyperparameter	Dataset			
	Burgers A	Burgers B	KdV	Wave
Iterations	6	30	30	6
Derivative order	[2, 3]	[2, 3]	[2, 3]	[2, 3]
Best candidates	4	4	4	4

1192
1193
1194
1195
1196
1197
1198 Due to the ongoing development of the EPDE framework, the results obtained with its newer ver-
1199 sions may vary from those presented in this study. For these experiments, we use the hyperparame-
1200 ters presented in Table 5.
1201

1202 Table 5: EPDE hyperparameters
1203

Hyperparameter	Dataset			
	Burgers A	Burgers B	KdV	Wave
Epochs	5	5	5	5
Population size	8	8	8	8
Boundary	(20, 20)	(20, 50)	(40, 100)	(20, 20)
Derivative order	[2, 3]	[2, 3]	[2, 3]	[2, 3]
Term number	5	5	5	5
Function power	3	3	3	3
Sparsity interval	(1e-6, 1e-5)	(1e-6, 1e-5)	(1e-6, 1e-5)	(1e-6, 1e-5)

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243 **G DETAILED EXPERIMENT PLOTS**
1244
1245
12461270 Figure 8: Comparison of discovery rates of the frameworks with clean data
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

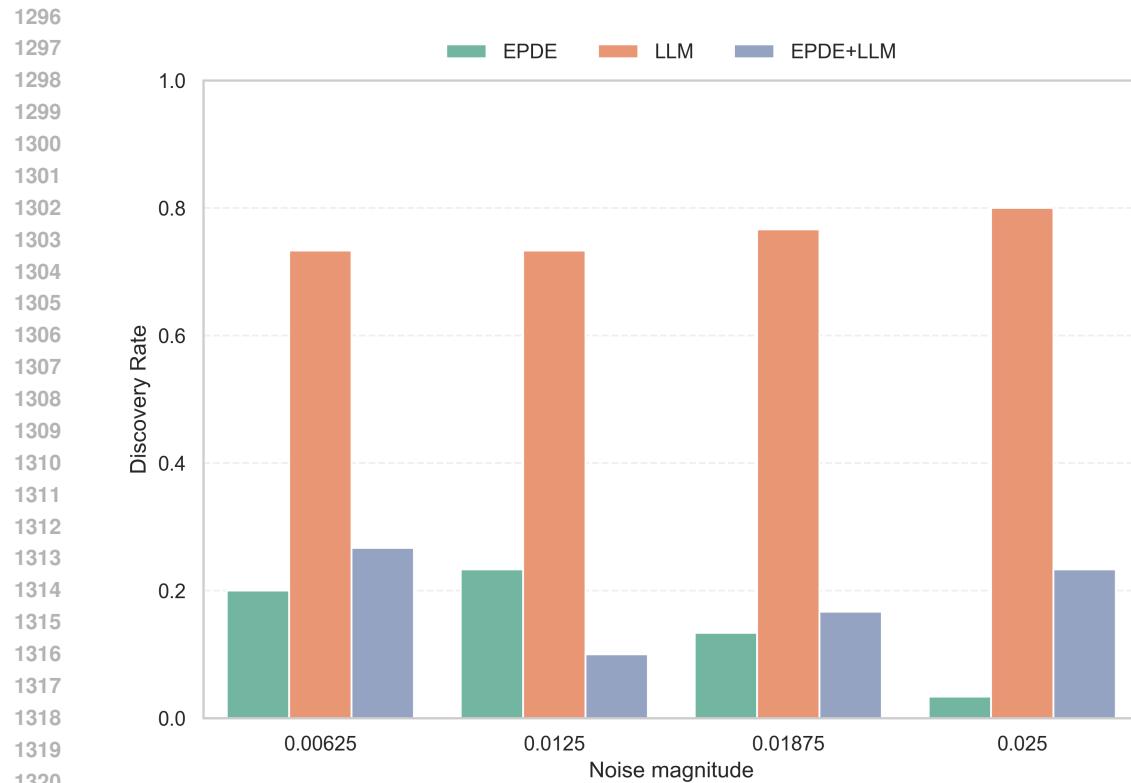


Figure 9: Comparison of discovery rates of the frameworks with noisy data – Burgers A

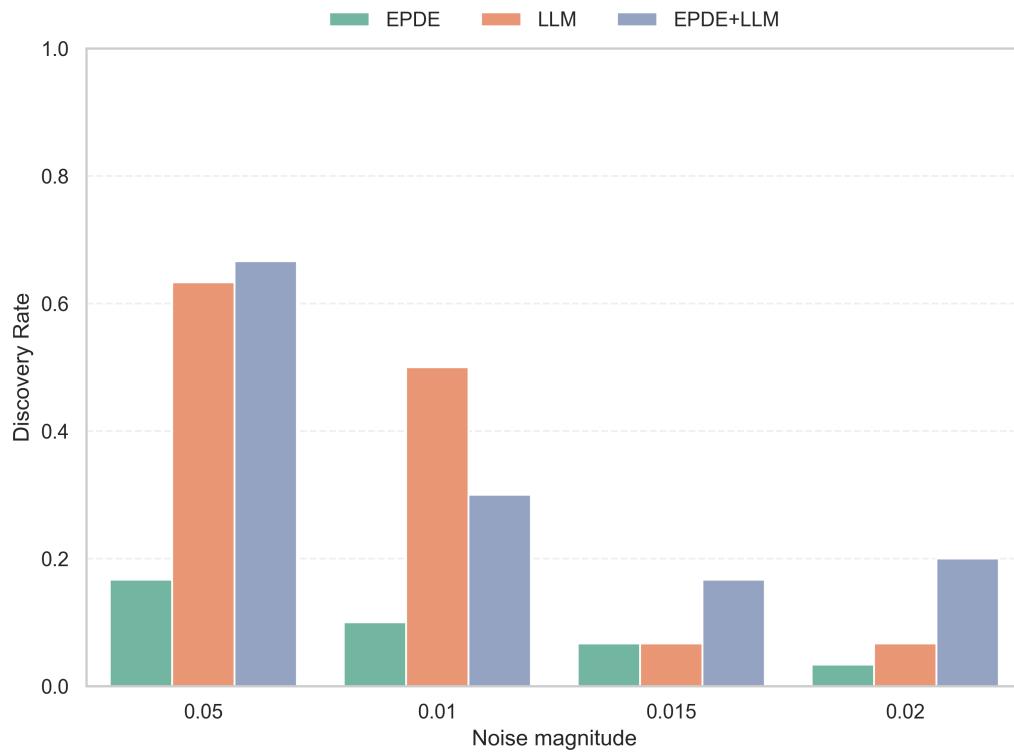


Figure 10: Comparison of discovery rates of the frameworks with noisy data – Burgers B

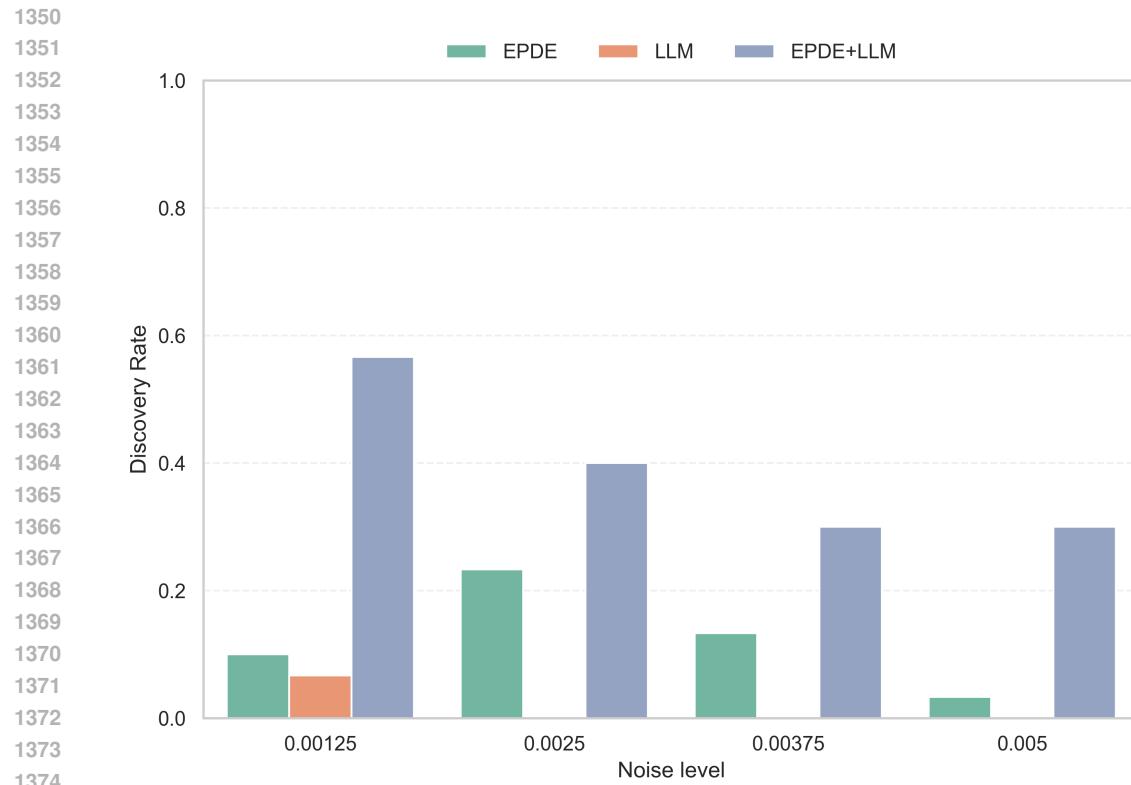


Figure 11: Comparison of discovery rates of the frameworks with noisy data – KdV equation

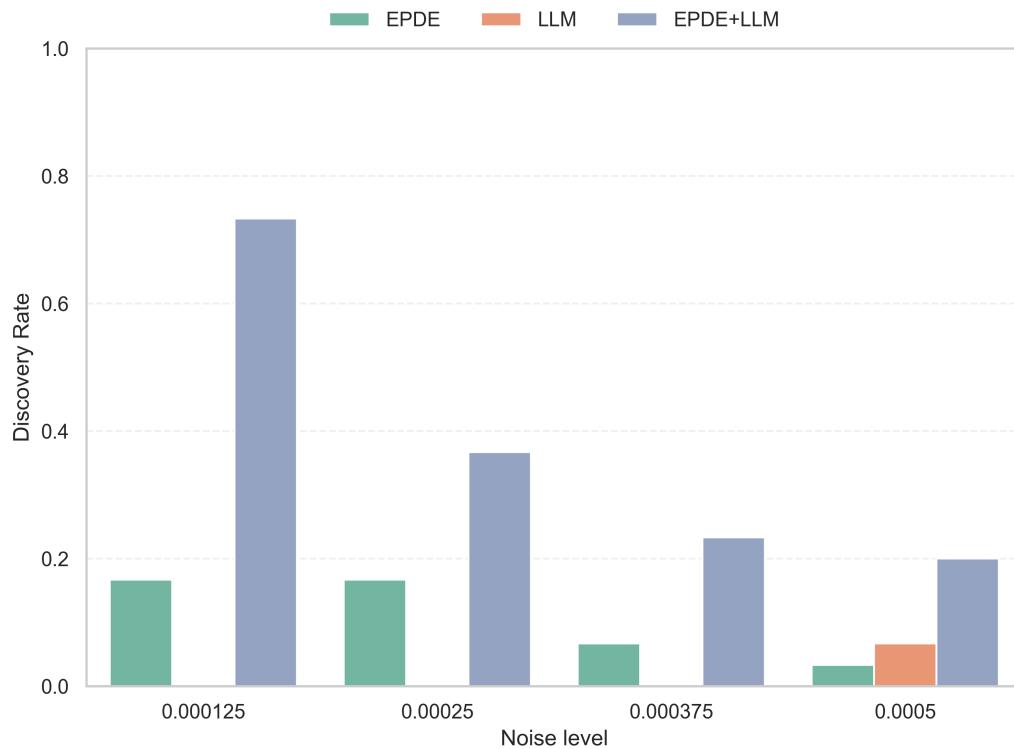


Figure 12: Comparison of discovery rates of the frameworks with noisy data – Wave equation

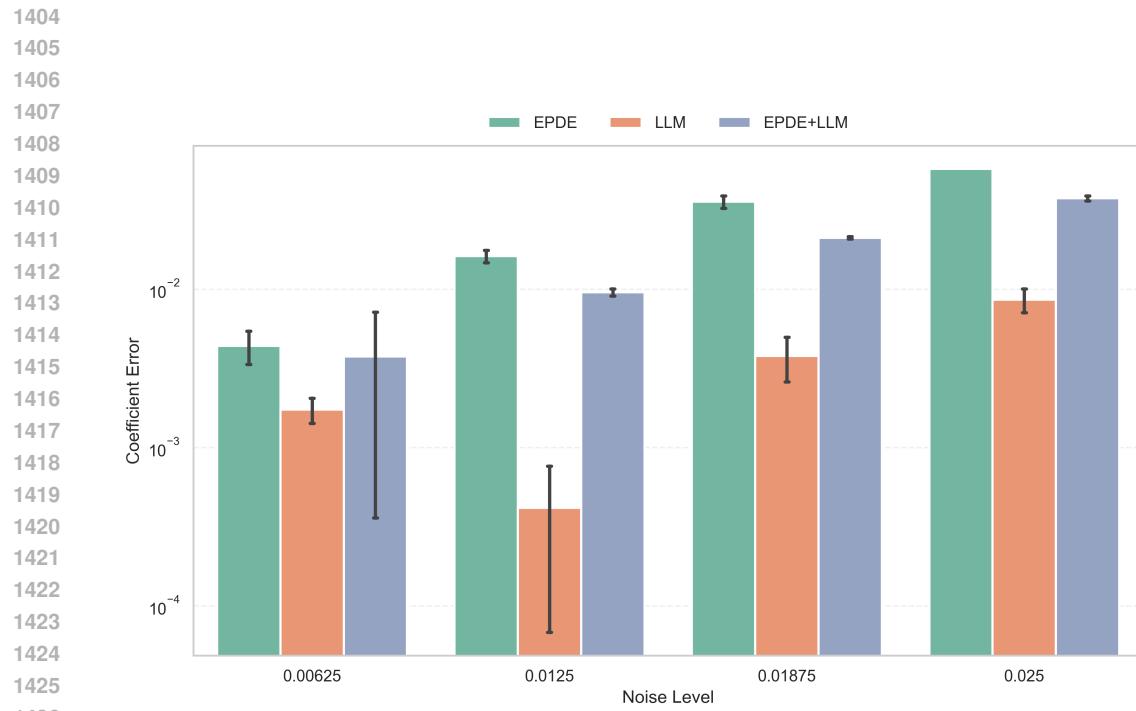


Figure 13: Comparison of coefficient errors of the frameworks with noisy data – Burgers A

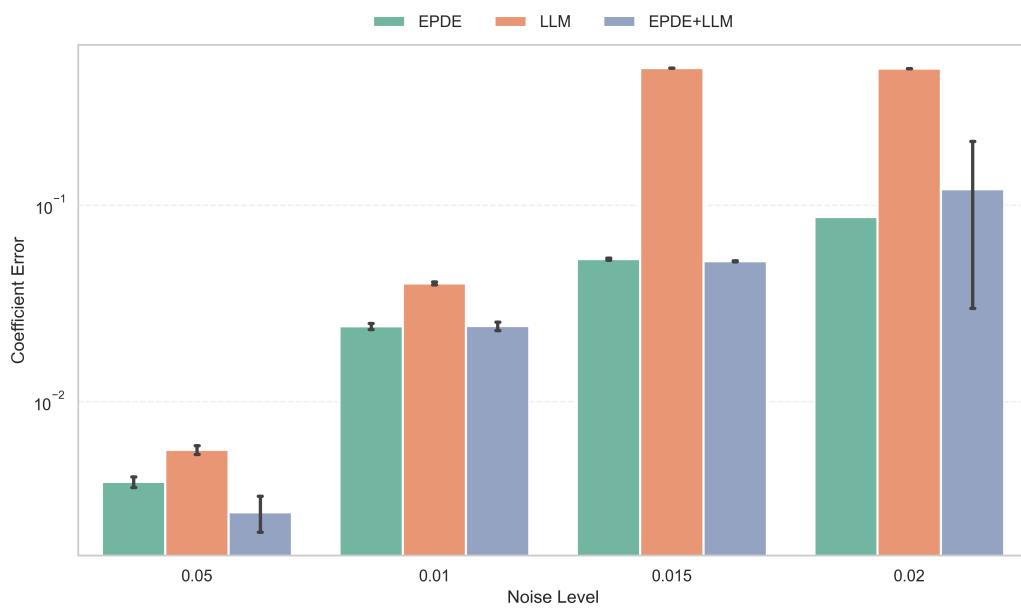


Figure 14: Comparison of coefficient errors of the frameworks with noisy data – Burgers B

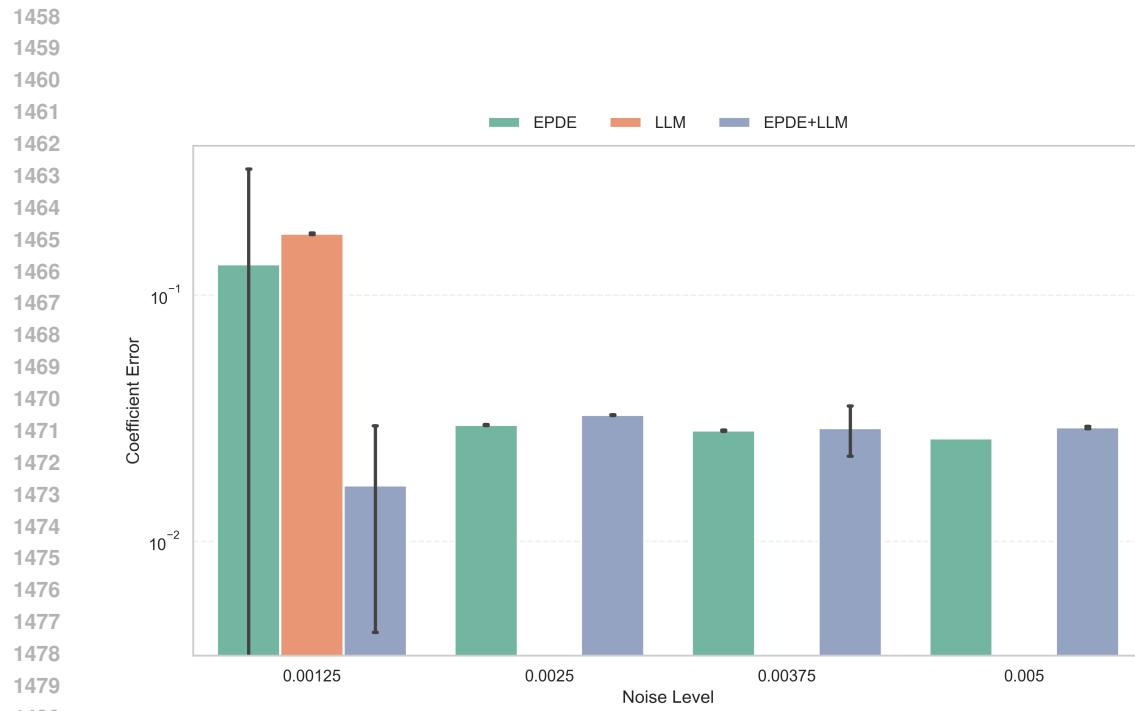


Figure 15: Comparison of coefficient errors of the frameworks with noisy data – KdV equation

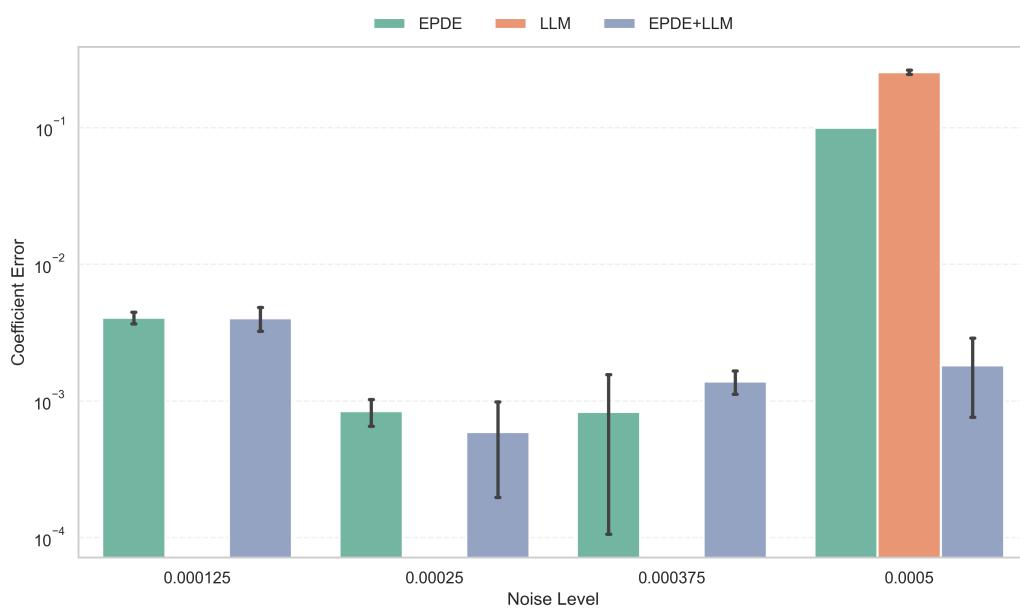


Figure 16: Comparison of coefficient errors of the frameworks with noisy data – Wave equation