
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DOES LLM DREAM OF DIFFERENTIAL EQUATION
DISCOVERY?

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) show promise in symbolic regression tasks.
However, applying them to partial differential equation (PDE) discovery presents
significant challenges. Unlike traditional symbolic regression, which allows for
quick feedback by directly generating data, PDE discovery involves solving im-
plicit equations and deriving data from physical fields, capabilities LLMs cur-
rently lack. Our method bridges the gap between LLMs’ theoretical understand-
ing of differential equations from textbooks and the practical needs of scientific
discovery, where textbooks are less helpful. We show that when physical field data
are appropriately formatted and coupled with code generation prompts, general-
purpose LLMs can effectively engage in the equation discovery process, even
without specific training for this task. This research lays the groundwork for
utilizing pre-trained LLMs in automated scientific discovery, while recognizing
current limitations and the necessity of hybrid human-AI validation.

1 INTRODUCTION

The field of symbolic regression for partial differential equations (PDEs), starting from PDE-FIND
Rudy et al. (2017), has experienced remarkable innovation Brunton & Kutz (2024), driven by the
convergence of Large Language Models (LLMs) Lorsung & Farimani (2024), advanced evolutionary
algorithms Ivanchik & Hvatov (2025); Chen et al. (2022), and physics-informed neural approaches
Sun et al. (2025). The most significant trend is the emergence of hybrid methodologies that combine
LLM scientific knowledge with evolutionary robustness, fundamentally changing how we approach
automated equation discovery from complex data.

In symbolic regression, we observe a paradigm shift from combinatorial search to knowledge-guided
generation. While evolutionary algorithms, such as PySR Cranmer (2023), navigate vast hypothesis
spaces, LLM-based approaches, like LLM-SR Shojaee et al. (2024), leverage pre-trained scientific
knowledge. The main differences in restoring an expression from a differential equation are that
the model generates data by itself, i.e., we have direct (and fast) feedback from the model for the
evolutionary algorithm or for LLM. For LLM, we note that significant advances have been made by
shifting the problem toward the code-generation domain Wang et al. (2025).

In differential equation discovery, we try to find an implicit expression in the form of a differential
equation. In contrast, (a) we cannot extract the data field directly from the differential equation (we
basically have to ”solve” the equation somehow, which is generally a problem by itself) and (b) we
cannot easily unpack differential symbols into the data domain. The latter means that if the equation
solver is not used, differentiation should be performed within the differential equation discovery
algorithm using numerical methods to indirectly assess the discovered equation.

Recent algorithms solve the problem basically in two directions. First, we discuss the numerical
difference and how to mitigate the errors associated with it. We use neural networks to filter the
data and also differentiate them Du et al. (2024b) as weak forms to make the error weight-averaged
Stephany & Earls (2024). For example, classically, the error at the boundaries is larger than that
within the bounded domain. The second direction is to develop a differentiation ”agnostic” algo-
rithm that can solve equations to form feedback. The solution to the differential equation, in general,
makes the process unarguably slower but more robust.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The ambiguity of equation solution necessity creates a fundamental validation crisis - without auto-
mated methods to assess physical plausibility, discovered equations require extensive human exper-
tise to verify, thereby limiting their practical deployment. For example, Shojaee et al. (2025) shows
the 31.5 % of quality at the top in the physical data for all models. However, recent advances in
neural operators show that differentiation (and sometimes the whole differential equation solution
process) could be learned Hao et al. (2024). The recent paper demonstrates that a solution can be
obtained without relying on solvers Herde et al. (2024). However, most of the success is achieved
when we make numerous preliminary assumptions and rely on them.

The LLM, as a portmanteau for any problem nowadays, theoretically contains a wealth of knowl-
edge about differential equations. It can effectively cite and apply the knowledge from the textbook
Grayeli et al. (2024). However, differential equation discovery operates on physical field data, cre-
ating significant challenges: any LLM or VLM does not often meet the physical data ”pictures”
(equation solutions) in the training dataset. It is not able to handle the differentiation of such data
out of the box. There is initial research on how LLM could be adjusted to the equation discovery
problem Du et al. (2024a).

In this paper, we aim to test these abilities of general LLM. We formulate differential equation
discovery as a code generation problem, and we develop an optimal format of data that enables
LLM to extract the connection between differentials and data. The data must not be too compressed
to retain physics, and on the other hand, must be compressed to fit the context. Ultimately, we utilize
LLM as an oracle to infer the initial possible forms of the equation, which are then passed to the
algorithm in a meta-learning loop.

Contribution: We formulate PDE discovery as a code-generation task for LLMs, introduce a com-
pact physics-preserving textual representation for field+derivatives, and integrate LLMs as oracles
inside an EPDE meta-learning loop.

Limitation: - We consider the EPDE single equation discovery framework. However, it could be
replaced if necessary. Essentially, we need to find a way to pass the string form into the algorithm,
which is a technical task.
- The models with large context, fine-tuned models, etc., may perform better. It is actually a separate
task to find a physics-aware pre-training. We use only the publicity available pre-trains.
- We consider only grid-spaced data without missing values. However, we use noise to simulate the
real-case scenario.

Code and data are available in the GitHub repository https://anonymous.4open.
science/r/EPDE_LLM-2028/

2 DIFFERENTIAL EQUATION DISCOVERY BACKGROUND

In all cases for the equation discovery problem, it is assumed that the data are placed on a discrete
grid X = {x(i) = (x

(i)
1 , ...x

(i)
dim)}i=N

i=1 , where N is the number of observations and dim is the
dimensionality of the problem. We mention a particular case of time series, for which dim = 1 and
X = {tj}i=N

i=1 .

It is also assumed that for each point on the grid, there is an associated set of observations U =

{u(i) = (u
(i)
1 , ..., u

(i)
L)}Ni=1 to define a grid map u : X ⊂ Rdim → U ⊂ RL.

There are two further ways. First is when we formally determine symbols in form:

Jr = (x1, ..., xdim;u;D1u;D2u; ...;Dru) (1)

,where Dr =
⋃

|α|=r

{ ∂ru
∂x

α1
1 ...∂xαr

r
} is the set of all partial differentials of order r and α =

{α1, ...αdim}, |α| =
i=dim∑
i=1

αi is just a differential multi-index. Simply speaking, equation 1 is a

set of symbols that represent differentials up to a given order r. Since we usually have a single
observation set u we omit it from the notation Jr(u)

2

https://anonymous.4open.science/r/EPDE_LLM-2028/
https://anonymous.4open.science/r/EPDE_LLM-2028/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

From these symbols, we get a formal symbolic expression using a possible set of actions T (mono-
mials, products, powers) acting on Jr. Then S ⊂ T represents selected terms (equation structure),
and P is the set of admissible coefficients. Coefficients by themselves could be a function of inde-
pendent coordinates or just constants. Then the equation has the following form:

M(S, P) =
∑
s∈S

ps · s(Jr) = 0 (2)

The described process has two differences from symbolic regression: we have an implicit depen-
dency in the form of the equation M(S, P) = 0, and also, this equation is differential. To assess
any quality measure, we must use a solver to extract a solution from equation 2 and then compare it
with the data U on a grid X . Using a solver is a computationally intensive approach, even for non-
differential expressions; however, for differential equations, it also requires expert solver tuning.

Second way is to use numerical differentiation Dh of data J̄r =
{(x(i), u(i), Dhu

(i), ...(Dh)
ru(i))}i=N

i=1 . In this case, we can replace symbols with their nu-
merical counterparts, which are essentially tensors of the same dimensionality as the input data.
Therefore, numerical differentiation is used to form a resulting tensor that can be used to indirectly
assess the equation, for example, by using the mean error, which in the case of the equation is
referred to as discrepancy.

For the SINDy case, we manually determine the longest sentence Σlong possible and fix it. The
optimization is performed only by P , which is essentially a vector of the numerical coefficients near
each word of Σlong. We need to make P as sparse as possible, which is done with classical LASSO
regression. In SINDy, we compute the loss function by using the discrepancy over the discrete grid.

P ∗ = argmin
P∈Π

||M(Σlong, P)||2 + α||P ||1 (3)

In equation 3 we denote by || · ||2 the mean discrepancy in the computation grid X and by || · ||1
is the l1 norm. Since SINDy usually works with constant coefficients, we could use the l1 norm to
determine the sparsity of the set of parameters P . In some sense, it is a measure of the complexity
of the surface in terms of the number of symbols needed to describe it.

Evolutionary approaches and reinforcement learning have their own rules to construct S for a model.
Every equation Si appearing within the optimization process is evaluated using the SINDy approach
equation 3 with discrepancy or, as is done in EPDE, by constructing the Pareto frontier over the dis-
crepancy and complexity criteria. Both discrepancy computation and Patero frontier formation are
performed as part of the fitness function computation or to generate a reward for the reinforcement
learning agent.

There are also more robust measures. For a given surface M(S, P), we try to restore the continuous
function u that exactly generates the surface and then compare it with observations U . It, of course,
requires the solution of the equation. We note that in this case, we do not need to consider jets Jr;
instead, we begin working with the fibers u and no longer need to consider the differentials Dr. In
that case, all surfaces are single-connected, i.e., the solution of the equation is unique, which is, of
course, a limitation, but it is more robust than a discrepancy measure.

There are also some intermediate cases, such as PIC. Here we spatially handle jets, but temporally
restore continuous paths. It could be considered as jet factorization and partial fiber projection.

3 DIFFERENTIAL EQUATION DISCOVERY PIPELINES

In this paper, we focus on the differential equation discovery part. That means we do not use a
solver to handle the equation, thereby avoiding the need for tuning. Additionally, we do not focus
solely on differentiation. All differential fields are obtained equally for both evolutionary algorithms
and LLMs. As a result, we pass only the observation data field and differentials to the algorithm to
assess its ability to form an equation with indirect equation quality.

We compare the performance of three distinct algorithms (see Fig. 1): the purely evolutionary EPDE
framework, the LLM-based discovery approach, and a novel hybrid EPDE+LLM pipeline. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

EPDE framework optimizes equation structures through evolutionary principles, treating each equa-
tion as an individual subject to mutation and crossover. In contrast, our LLM method relies on
generative symbolic reasoning. The hybrid EPDE+LLM approach is a sequential pipeline: the LLM
first generates an initial population of candidate equations, which is then refined by the EPDE al-
gorithm using its evolutionary operations. The following sections delve into the specifics of each
method.

St
ab

ilit
y

Discrepancy

du/dt = c[0] * u + c[1] * u^2

du/dt = c[0] * u * du/dx

d^2u/dt^2 = c[0] * du/dx

EPDE Evaluation

LLM EvaluationResponse Generation

LLM

EPDE

c)

631

201

964
du/dt = c[0] * u + c[1] * u^2

d^2u/dt^2 = c[0] * du/dx

du/dt = c[0] * u * du/dx

Crossover & Mutation

LLM 631

201

964
du/dt = c[0] * u + c[1] * u^2

d^2u/dt^2 = c[0] * du/dx

du/dt = c[0] * u * du/dx

LLM Evaluationa) Response Generation

Prompt Update

Crossover & Mutation

EPDE Evaluation

du/dt = c[0] * u + c[1] * u^2

d^2u/dt^2 = c[0] * du/dx

du/dt = c[0] * u * du/dx

EPDE

b) Population Generation

St
ab

ilit
y

Discrepancy

du/dt = c[0] * u + c[1] * u^2

du/dt = c[0] * u * du/dx

d^2u/dt^2 = c[0] * du/dx

Figure 1: An overview of compared algorithms: a) LLM-based approach, b) EPDE-based approach,
c) joint EPDE+LLM approach.

3.1 INPUT DATA FIELD PREPARATION

Presenting the raw, high-dimensional data fields directly to the LLM was infeasible due to con-
straints on the context window. To address this, we evaluated several strategies, including visual
language models (VLMs), alternative data transformations, and tensor decomposition techniques.
The most effective and viable solution was found to be a significant but careful dimensionality
reduction. The original data was downsampled via interpolation to a coarse spatial resolution of
approximately 20×20 to 30×30 grid points. This approach preserves the essential structural infor-
mation of the physical fields while drastically reducing token consumption, making the data tractable
for LLM processing. A preliminary analysis of how VLMs handle such physical data was also con-
ducted.

Critical to the success of PDE discovery is the accurate calculation of partial derivatives. For clean
data, derivatives were computed using a spectral method based on Chebyshev polynomials. In cases
with significant noise, this method was combined with a Butterworth low-pass filter to suppress
high-frequency artifacts before differentiation, ensuring numerical stability. The specifics of how
the prepared text and numerical data were formatted for the LLM are detailed in Appendix C.

3.2 LLM-GENERATED EQUATIONS PIPELINE OVERVIEW

The inspiration for the algorithm came from Shojaee et al. (2025), where they suggest leveraging
LLMs’ programming skills to compile the desired equation into a Python function. Similar to Sho-
jaee et al. (2025), we also utilize the equation buffer so that the LLM is aware of which attempts
improve the approximation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In every other aspect, the proposed algorithm differs from the LLM-SR approach. All in all, it
includes these stages (depicted in Fig. 2):

(1) Response generation;
(2) Equation extraction;
(3) Evaluation of the extracted equation;
(4) Recompilation of the prompt;
(5) Equation buffer pruning.

Update
equation

buffer

Prune
equation

buffer

Prompt
structure

1. Instructions

2. Output
example

4. Experience
buffer

3. Fields
matrices

Complexity
evaluation

Relative
score

evaluation

Response extraction

Example of extracted response:

LLM

LLM Pipeline

Figure 2: The pipeline of the LLM-based algorithm.

Response generation A pivotal factor in this step of the algorithm is prompt engineering. The
prompt is divided into the following sections:

1. Instructions. They include problem statement, requirements, and restrictions.
2. A code snippet that defines an evaluator for the LLM-generated solutions.
3. Input data.
4. Experience buffer. Provides the LLM with a performance history of previously proposed

equation structures. This buffer, updated iteratively, is implemented as a dictionary where
keys are string representations of equations and values are their corresponding relative per-
formance scores (discussed in detail in Evaluation of the extracted solution below).

5. An example of input data.

In reality, we use two prompts, depending on the current iteration of the LLM. The prompt for
the first iteration is much simpler than those for the subsequent ones, although it also adheres to
the structure described above. The second prompt is enhanced, with greater complexity, added
constraints, and a refined problem statement.

Equation extraction This stage of the algorithm is responsible for extracting, refining, and cor-
recting the solutions generated by the LLM. Despite explicit constraints defined in the prompt, LLM
outputs can be unstable and often require post-processing to ensure structural validity and adherence
to requirements.

This extraction pipeline significantly improves reliability but cannot guarantee a valid solution in
every instance. To ensure overall algorithmic robustness, a failure mode is implemented where
iterations containing irresolvable outputs are discarded, following the precedent set by LLM-SR
Shojaee et al. (2024).

Evaluation of the extracted solution The evaluation mechanism quantifies the quality of an ex-
tracted solution through two distinct scores: complexity (Alg. 1) and a relative score (equation 4).
The relative score may be defined as a normalized Mean Absolute Error (MAE), assessing predictive
accuracy. In contrast, the complexity score evaluates the structural intricacy of the equation based
on the number and type of terms that comprise it.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In the proposed algorithm, the left-hand side term sleft is fixed, following the methodology estab-
lished in the SINDy approach. This design choice was made to initially probe the capabilities of
the LLMs under the assumption that the algorithm has correctly identified the balancing term. Each
constructed equation is then assigned a normalized Mean Absolute Error (relative score) R, defined
using the mean l2 norm (|| · ||2) over all grid points. This score inversely represents quality, with val-
ues near 0 indicating high accuracy and a ceiling of 1000 representing the worst-case performance.

R =
||M(S, P)||2
||sleft||2

· 1000 (4)

The algorithm for complexity evaluation is formalized in App. B. It operates by parsing each equa-
tion into its tokens and then assigning a complexity weight based on the token’s class and power p.
The scoring policy is defined as follows: derivative terms are weighted according to (n+1)·βd

2 · p,
where n is the derivative order and βd is a base cost for derivatives. Elementary functions (e.g.,
sin, cos) incur a cost of β · p plus the complexity of their inner terms. Finally, basic variables and
constants contribute a cost of β · p, where β is a base cost for simple tokens.

Recompilation of the prompt The prompt provided in App. D is dynamically updated at each
iteration to incorporate the latest state of the experience buffer. This buffer serves as a cumulative
record of solution performance, implemented as a dictionary where keys are string-based equation
descriptors and values are their corresponding relative scores (i.e., normalized mean absolute error,
or MAE). The complexity metric is intentionally omitted from this feedback to present the LLM
with a single, unambiguous performance objective, as LLMs lack the inherent capability to interpret
and optimize within a multi-dimensional fitness space natively.

Equation buffer pruning Following the completion of all iterations, a final refinement stage is
applied to the accumulated solution buffer. This stage leverages the previously unused complexity
metric to address a key limitation of the relative score: its high sensitivity to noise, which can cause
equations with artifacts to outperform correct ones.

To mitigate this, we employ a two-step process. To eliminate the terms that capture noise, we
enrich the solution space through a combinatorial expansion. With this method, one of the generated
variants is bound to exclude the noisy term, making it highly probable that a correct version of the
equation will be discovered.

All equations are then evaluated to form a two-dimensional Pareto front based on complexity and
relative score. Finally, a knee detection algorithm identifies the optimal trade-off frontier. The
solution space is pruned to retain only those equations lying on or below the calculated supporting
line, and the length of the perpendicular distance from this line subsequently ranks these solutions.

3.3 EPDE-GENERATED EQUATIONS PIPELINE OVERVIEW

The EPDE (Evolutionary Partial Differential Equation) discovery framework is based on an evolu-
tionary optimization paradigm. A detailed discussion of its capabilities and limitations is available
in Maslyaev et al. (2021). Since it is a rather technical detail, we have included it in Appendix A.
Main takeaways from the equation discovery algorithm: it can take initial assumptions in the form
of an equation string and transform its output back into the string using specific code generation
adapters.

3.4 JOINT EPDE+LLM PIPELINE OVERVIEW

The joint EPDE+LLM pipeline was designed to leverage the LLM’s ability to generate an insightful
initial candidate population from the data. This pipeline provides the evolutionary EPDE framework
with a high-quality starting population, significantly boosting its capabilities.

As depicted in Fig. 3, the methodology chains together the LLM and EPDE frameworks. The process
begins with the LLM generating a broad set of candidate equations. Subsequently, a pruning step
enriches this set and then performs filtering to enhance quality. The surviving equations are then
mapped into the EPDE framework’s representation, serving as the initial population for the final

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

stage: evolutionary optimization. This stage converges to a Pareto frontier, representing the trade-
off between equation accuracy and complexity.

LLM
pipeline

Equation
buffer

pruning

Initial
population

construction

st
ep

 o
ut

pu
t

equation
buffer

pruned
equation

buffer

EPDE
framework

initial
population

pi
pe

lin
e

st
ep

s

Pareto frontier

St
ab

ili
ty

Discrepancy

du/dt = c[0] * u + c[1] * u^2

du/dt = c[0] * u * du/dx

d^2u/dt^2 = c[0] * du/dx

Figure 3: A scheme of joint EPDE+LLM pipeline.

4 EXPERIMENTS

The purpose of these experiments is to evaluate the capability of the LLM for equation discovery.
Three types of equations — Burgers’, wave, and KdV–de Vries — are tested. The datasets used
in these experiments are generated numerically. Detailed statements of the initial-boundary value
problems and descriptions of the solution methods can be found in App. E. The outcomes are bench-
marked against those obtained using the EPDE framework.

All experiments were performed using a qwen-2.5-72b-instruct LLM model and the latest
EPDE version.

4.1 EXPERIMENTAL SETUP

For each experiment, we conduct thirty independent runs of EPDE, LLM-based, and EPDE+LLM
frameworks. We evaluate their performance on datasets with and without noise. It is crucial to assess
how these frameworks handle noise, as real-world data often contains measurement noise. We use a
common approach to add a Gaussian to the data:

ũ = u+ ε · std(u) ·N(0, 1) (5)

where u represents the original clean data, ũ denotes the noisy data, N(0, 1) refers to the standard
normal distribution, and ε indicates the magnitude of the noise.

The magnitudes vary in scale according to the input data. Consequently, each type of equation has a
threshold magnitude above which the EPDE fails to identify the target equation in all runs. The noise
levels are expressed relative to this threshold and are thus set to the specified noise percentage limit.
The maximum permissible noise magnitudes are established as 5 × 10−4 for the Wave equation,
2.5×10−2 for Burgers A, 2×10−2 for Burgers B, and 5×10−3 for the Korteweg-de Vries equation. It
is worth noting that in experiments involving noisy data, each run is assigned a unique noise profile.

The performance of the algorithm is evaluated using several quality metrics: the discovery rate of
the correct equation and the relative error between the coefficients of the identified equations and
those of the theoretical model (ground truth). The run becomes successful if at least one strictly
correct equation is found.

When multiple solutions are obtained (in the Pareto frontier case), the structure of the equation is
verified first. Only if the structure matches correctly is the relative error in coefficients calculated.

We measure the relative error of coefficients using the formula:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

E(ξ̂i) =
1

N

N∑
i=1

|ξ̂i − ξ∗i |
|ξ∗i |

(6)

where N is the total number of terms in the equation, ξ̂i s the coefficient identified in the discovered
equation, and ξ∗i represents the corresponding coefficient in the true equation.

Furthermore, the hyperparameters used in all experiments are detailed in the supplementary material
in App. F. The exact prompts used are listed in App. D.

In the following, we show aggregated tables; more detailed experimental results are in App. G

4.2 CLEAN DATA PERFORMANCE COMPARISON

The performance of the EPDE, standalone LLM, and hybrid EPDE+LLM frameworks on clean data
is summarized in Table 1. The metrics of interest are the discovery rate (DR), where a higher value
is better, and the complexity error (CE), where a lower value is better. The hybrid EPDE+LLM
framework consistently achieved the highest discovery rate across all datasets. Notably, for the
challenging KdV dataset, the hybrid method’s discovery rate (0.37) was more than double that of
the standalone EPDE (0.10) and LLM (0.13) approaches. While the standalone LLM showed a
higher DR than EPDE on the Burgers A and B datasets, it did so at the cost of a significantly higher
CE.

Table 1: Comparison of performance of the frameworks with clean data

Dataset EPDE LLM EPDE+LLM
DR CE DR CE DR CE

Wave 0.97 7.54 · 10−4 0.97 6.57 · 10−2 1.00 7.54 · 10−4

Burgers A 0.53 8.57 · 10−5 0.86 3.94 · 10−4 0.90 8.57 · 10−5

Burgers B 0.50 4.55 · 10−4 0.53 9.05 · 10−3 0.90 4.55 · 10−4

KdV 0.10 1.54 · 10−2 0.13 1.92 · 10−2 0.37 1.54 · 10−2

The results demonstrate that integrating LLM-generated candidate equations into the EPDE search
process robustly enhances discovery performance. The LLM framework serves as an effective hy-
pothesis generator for equation structures, while the EPDE methodology provides refined numerical
optimization for parameter identification.

4.3 NOISY DATA PERFORMANCE COMPARISON

The performance of the frameworks under significant noise levels (25% to 100%) is presented in
Table 2. The hybrid EPDE+LLM framework demonstrates superior robustness, achieving the high-
est discovery rate in 10 out of 16 dataset-noise combinations. A key observation is that the LLM’s
contribution is not contingent on its ability to find the correct equation itself. For instance, on the
Wave and Korteweg-de Vries equations, the standalone LLM failed (DR = 0.00 across most noise
levels). Nevertheless, its equation suggestions substantially improved the performance of the hybrid
EPDE+LLM model, indicating that the LLM acts as an effective generator of meaningful candidate
equations, even when its own symbolic regression fails to do so.

An interesting anomaly is observed for the Burgers A dataset, where the LLM-based approach out-
performs both EPDE and the hybrid approach. For this specific equation, the LLM’s search strategy
is less susceptible to a local minimum that traps the EPDE algorithms—a phenomenon where an in-
correct equation form achieves a deceptively optimal objective function value given the noisy data.
Despite this, the hybrid approach maintains competitive performance across the other three datasets,
confirming its overall robustness.

While the discovery rate indicates the frequency of finding the correct equation form, the accuracy
of the identified coefficients is equally critical. Table 3 presents the mean coefficient errors (in units
of 10−4) alongside their standard deviations, providing a complementary view of performance. The
results reveal that a high discovery rate does not always guarantee precise parameter estimation.
For instance, on the Burgers B dataset at 50% noise, the standalone LLM achieves a high DR of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of discovery rates of the frameworks with noisy data

Noise level Framework Dataset
Wave Burgers A Burgers B KdV

25%
EPDE 0.17 0.20 0.17 0.10
LLM 0.00 0.73 0.63 0.06

EPDE+LLM 0.73 0.26 0.66 0.57

50%
EPDE 0.17 0.23 0.10 0.23
LLM 0.00 0.73 0.50 0.00

EPDE+LLM 0.36 0.10 0.30 0.40

75%
EPDE 0.07 0.13 0.07 0.13
LLM 0.00 0.76 0.07 0.00

EPDE+LLM 0.23 0.16 0.16 0.30

100%
EPDE 0.03 0.03 0.03 0.03
LLM 0.07 0.80 0.07 0.00

EPDE+LLM 0.20 0.23 0.20 0.30

0.50 (Table 2), but its coefficient error is significantly larger than that of the EPDE+LLM hybrid,
indicating less stable and accurate parameter fits. Conversely, the hybrid EPDE+LLM framework
demonstrates remarkable consistency; its leading or competitive discovery rates are often paired
with the lowest or most stable coefficient errors, as seen prominently in the Wave and KdV datasets.
The LLM+EPDE hybrid has dual advantage: it not only finds the correct equation structure more
reliably but also converges to more accurate and robust parameter estimates, a crucial characteristic
for practical applications with noisy data.

Table 3: Comparison of coefficient errors (10−4) of the frameworks with noisy data

Noise level Framework Dataset
Wave Burgers A Burgers B KdV

25%
EPDE 40.7±5.00 44.0±11.0 39.0±2.96 1334±4775
LLM - 17.4±1.39 56.9±1.42 1778±106

EPDE+LLM 40.4±3.51 37.7±28.5 27.3±2.66 169±65.0

50%
EPDE 8.42±2.31 162±13.7 242±22.2 298±1.39
LLM - 4.17±1.55 400±3.77 -

EPDE+LLM 5.92±2.65 95.7±12.3 242±9.33 326±0.82

75%
EPDE 8.33±65.4 358±51.8 532±63.8 282±2.71
LLM - 37.9±5.17 4997±3.94 -

EPDE+LLM 13.9±2.50 212±4.51 520±3.50 289±51.4

100%
EPDE 998 576 858 262
LLM 2546±809 86.1±6.20 4967±8.69 -

EPDE+LLM 18.2±11.2 376±12.3 1206±953 291±2.71

These complementary strengths suggest promising avenues for integrating the framework. A hybrid
methodology that leverages LLMs’ structural discovery capabilities for initial equation identifica-
tion, followed by EPDE’s precision optimization for parameter refinement, could yield superior
overall performance in noisy environments. This synergistic approach would combine the noise
resilience of linguistic processing with the precision of evolutionary computation, potentially ad-
dressing the limitations observed in both individual frameworks.

5 CONCLUSION

The trivial results are that LLM could be used to replace evolutionary optimization. It has its own
advantages and drawbacks. With proper instruction, for example, it can generate compact forms, as
is partially done in PDE-READ. However, apart from the success of structural optimization, there is
a failure in determining the numerical coefficient.

We show that EPDE+LLM form a practical, complementary pair: we pass a small field snapshot
to an LLM to generate compact structural hypotheses, then pass the full dataset and a simple initial
coefficient guess to EPDE for numerical differentiation, structure refinement, and coefficient fitting.
This two-stage workflow narrows the search space and yields cleaner, more reliable discovered PDEs
than either component alone. We did not evaluate the LLM for numerical differentiation and do not
expect it to replace dedicated numerical modules, which remain necessary for accurate residual
evaluation and coefficient estimation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Steven L Brunton and J Nathan Kutz. Promising directions of machine learning for partial differen-
tial equations. Nature Computational Science, 4(7):483–494, 2024.

Yuntian Chen, Yingtao Luo, Qiang Liu, Hao Xu, and Dongxiao Zhang. Symbolic genetic algorithm
for discovering open-form partial differential equations (sga-pde). Physical Review Research, 4
(2):023174, 2022.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Mengge Du, Yuntian Chen, Zhongzheng Wang, Longfeng Nie, and Dongxiao Zhang. Llm4ed: Large
language models for automatic equation discovery. arXiv preprint arXiv:2405.07761, 2024a.

Mengge Du, Yuntian Chen, and Dongxiao Zhang. Discover: Deep identification of symbolically
concise open-form partial differential equations via enhanced reinforcement learning. Physical
Review Research, 6(1):013182, 2024b.

Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Sym-
bolic regression with a learned concept library. Advances in Neural Information Processing Sys-
tems, 37:44678–44709, 2024.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-
scale pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. Advances
in Neural Information Processing Systems, 37:72525–72624, 2024.

Elizaveta Ivanchik and Alexander Hvatov. Knowledge-aware differential equation discovery with
automated background knowledge extraction. Information Sciences, 712:122131, 2025.

Cooper Lorsung and Amir Barati Farimani. Explain like i’m five: Using llms to improve pde surro-
gate models with text. arXiv preprint arXiv:2410.01137, 2024.

Mikhail Maslyaev, Alexander Hvatov, and Anna V Kalyuzhnaya. Partial differential equations dis-
covery with epde framework: application for real and synthetic data. Journal of Computational
Science, pp. 101345, 2021.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science advances, 3(4):e1602614, 2017.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
LLM-SR: Scientific equation discovery via programming with large language models. arXiv
preprint arXiv:2404.18400, 2024.

Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
Chandan K Reddy. LLM-SRbench: A new benchmark for scientific equation discovery with large
language models. arXiv preprint arXiv:2504.10415, 2025.

Robert Stephany and Christopher Earls. Weak-pde-learn: A weak form based approach to discover-
ing pdes from noisy, limited data. Journal of Computational Physics, 506:112950, 2024.

Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation model for
partial differential equations: Multioperator learning and extrapolation. Physical Review E, 111
(3):035304, 2025.

Runxiang Wang, Boxiao Wang, Kai Li, Yifan Zhang, and Jian Cheng. Drsr: Llm based sci-
entific equation discovery with dual reasoning from data and experience. arXiv preprint
arXiv:2506.04282, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A EPDE ALGORITHM DETAILS

This section provides a brief overview of the algorithm’s core evolutionary operators: mutation and
crossover, as well as the internal equation representation and fitness evaluation scheme.

Model definition Evolutionary algorithms construct model structures through the application of
elementary operations. To minimize the computational cost associated with structural optimization,
the EPDE framework utilizes building blocks known as tokens. These tokens represent parametrized
families of functions and operators. A token is formally defined by the equation 7.

t = t(π1, ...πn) (7)

In equation 7, the symbols π1, . . . , πn denote the parameters of the token, which will be elaborated
below.

To differentiate between an individual token and a product of tokens—referred to as a term — we
introduce the notation T = t1 · ... · tTlength

, where the term length Tlength satisfies 0 < Tlength ≤
Tmax. Here, Tmax is a hyperparameter of the algorithm. It is crucial to note that although Tmax

influences the final form of the discovered model, a reasonable value for the number of tokens
per term (typically 2 or 3) is often sufficient to represent the structure of most actual differential
equations.

Tokens ti are organized into token families Φj to facilitate finer control over the model’s form. All
tokens within a given family share a fixed set of parameters π1, . . . , πn. For instance, a family of
differential operators can be defined as Φder = { ∂πn+1u

∂π1x1...∂πnxn
} to enable the discovery of linear

or nonlinear equations with constant coefficients. Similarly, a trigonometric token family Φtrig =
{sin (π1x1 + ...+ πnxn),
cos (π1x1 + ...+ πnxn)} can be introduced to search for forcing functions or variable coefficients.

Token parameters can be either optimizable or non-optimizable. It is often advantageous to fix cer-
tain parameters, grouping tokens with identical fixed values into a single family as non-optimizable
entities. This approach allows, for example, differential tokens to appear multiple times within a
single term to represent nonlinearity. In contrast, trigonometric tokens are typically optimized and,
if required, appear only once per term. The algorithm accepts as input the unified set Φ =

⋃
j

Φj of

token families, which is specified by the user.

For simplicity, we operate under the assumption that all tokens are pre-computed on a fixed discrete
grid. The specific choice of grid does not affect the fundamental description of the algorithm. Con-
sequently, the structure of the equation and the parameters of its tokens remain the sole variables in
the differential equation model presented in equation 8.

M(S, {C,P}) =
j≤Nterms∑

j=1

CjTj (8)

In equation 8, the structure S comprises a set of terms {Tj}j=Nterms

j=1 , each constructed from a prod-
uct of distinct tokens. The model parameters are partitioned into two sets: (1) the term coefficients
C = {Cj}j=Nterms

j=1 , where each Cj is a scalar coefficient for term Tj , and (2) the optimizable pa-
rameters P = {π1, ...} of variable length. The composition and cardinality of P may differ for each
model and can be modified by the evolutionary operators during the optimization process.

The maximum number of terms, Nterms, is a hyperparameter of the algorithm. It is important to
note that Nterms serves not a directive but a restrictive function. The actual number of terms in the
final model may be less than Nterms, as it is subject to reduction through the fitness-based selection
procedure described below.

To facilitate visualization of the following evolutionary operator schemes (Fig. 4), we employ a
simplified individual representation. Each individual in this context corresponds to an instance of
the model defined in equation 8.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Figure 4: Model visualization: Ti are the token products from equation 8 and ti are the tokens from
equation 7.

The optimization process is conducted in two stages: structural and parametric. The population is
initialized following equation 8 and possessing distinct, randomly generated structures. After the
initialization step, the parametric optimization stage computes a fitness value for each individual.

Fitness evaluation Fitness evaluation fulfills two objectives: (1) determining the parameters
{C,P} for each model, and (2) providing a standard fitness metric. The evaluation procedure
involves selecting one term from the structure S as a ”target”, which requires transforming the
individual model into the form given by equation 9 prior to fitness computation.

Ttarget =

j=target+1,...,Nterms∑
j=1,...target−1

CjTj (9)

The variable target in equation 9 represents a randomly selected index. This random selection
prevents the algorithm from converging to the trivial solution where ∀j Cj = 0. For the purpose
of fitness computation, the terms Tj are held fixed. The objective is to determine the coefficients
C = C1, ...Ctarget, ...CNterms} and the optimizable parameters P = {P1, ...Ptarget,
...PNterms} (if they exist). A key constraint is that Ctarget ≡ −1, and the parameters in the set
Ptarget are always fixed.

The optimal term coefficients Copt and the optimal parameter sets Popt are computed using LASSO
regression, as formalized in equation 10.

Copt, Popt = argmin
C,P

∣∣∣∣∣∣Ttarget −
j=target+1,...,Nterms∑

j=1,...target−1

CjTj

∣∣∣∣∣∣
2
+

+ λ(||C||1 + ||P ||1)} (10)

In equation 10, || · ||p designates the lp norm. After performing LASSO regression, coefficients
are compared to a minimal coefficient value threshold. Terms with |Cj | below this threshold are
removed, thereby refining the model and preventing the excessive growth of redundant terms.

After obtaining the final set of optimal coefficients from equation 10, the fitness function F is cal-
culated as defined in equation 11.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

F =
1∣∣∣∣∣∣M(S, {Popt, Copt})

∣∣∣
X

∣∣∣∣∣∣
2

(11)

In essence, the denominator in equation 11 represents the average discrepancy over the computation
grid X .

Evolutionary operators To ensure valid equation generation in the population initialization step,
cross-over and mutation operators, expert rules are designed for each Sind. These rules prevent
ill-formed equations (e.g., 0 = 0) and redundant terms, such as those generated by commutative
multiplication, without constraining the overall solution space. Each model structure Sind has an
associated set of forbidden tokens that are excluded from crossover and mutation events.

The selection of tokens during mutation and the exchange of terms during crossover are both
equiprobable, with the only limitation presented by expert rules.

The crossover operator is defined as the exchange of terms between two individuals, as illustrated in
Fig. 5. The terms selected for this exchange are chosen from a uniform distribution, meaning every
term has an equal probability of being involved.

Figure 5: EPDE cross-over operator scheme.

The mutation operator, demonstrated in Fig. 6, has two modes: term exchange and token exchange.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 6: EPDE mutation operator scheme.

As shown in Fig. 6a), token exchange replaces one token with another from a homogeneous pool.
Term exchange (Fig. 6b) generates a new term from the same pool by first randomly selecting a term
length and then populating it with tokens chosen uniformly from the pool.

To summarize, the inputs are the observational data U on grid X and the token families Φ. The
output is a differential equation of the form Lu = f , whose type (ODE, PDE, or system) depends
on the dimensionality of U and X .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B COMPLEXITY EVALUATION

Data: List of terms - terms
Result: Complexity score
βd = 0.5;
β = 0.2;
complexity = 0;
for term in terms do

for token in term do
p = extract power(token);
if token is derivative then

n = extract derivative order(token);
complexity = complexity + (n+1)·βd

2 · p;
else

if token is function then
complexity = complexity + β · p+ eval complexity(inner terms);

else
complexity = complexity + β · p;

end
end

end
end

Algorithm 1: The pseudo-code of complexity evaluation

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C INITIAL TESTS ON LLM’S UNDERSTANDING OF THE DATA

The fundamental question of our research was whether Large Language Models (LLMs) could
discern functional dependencies within numerical data fields, presented, in our case, as two-
dimensional data, and to identify which class of LLMs is best suited for this task. Given the spatial
nature of the data, where u is a matrix defined over discrete x and t, our initial hypothesis inclined
towards visual LLMs (VLLMs), which are designed to process image data.

A series of preliminary experiments, however, demonstrated that these visual LLMs struggled sig-
nificantly with the core requirement of the task. They exhibited a notable inability to accurately
interpret the content of even basic visual representations of the data (see the subsection below). The
models failed to reliably identify data values from the heatmaps, let alone discover the underlying
mathematical relationships between variables.

In contrast, experiments with textual representations of the data revealed that even small-scale tex-
tual LLMs could often propose equation structures that approximated the underlying function. This
critical result - that textual models showed a surprising aptitude for the provided task - justified our
pivot to textual LLMs and encouraged the development of the current pipeline.

A detailed analysis of these experiments is provided in the following subsections.

C.1 SPACE PERCEPTION TESTS ON VISUAL LLMS

The tests were performed mainly on the heatmaps derived from functions cos(C · x), cho-
sen for their clear periodic structure, with the exception of the last test which was based on
a hypothesis that the problem lies in the nature of the images and not in characteristics of
VLLM. The models evaluated were: gemini-pro-vision, qwen-2-vl-72b-instruct,
llama-3.2-90b-vision-instruct.

The experimental design, illustrated in Fig. 7, systematically examined different potential failure
modes:

• Test (a) and (b) assessed basic pattern recognition ability by varying the frequency of os-
cillation (cos(2.5x) and cos(10x)).

• Test (c) hypothesized that the monochromatic color scheme of standard heatmaps might
be a limiting factor and tested the same high-frequency function (cos(10x)) with a color
mapping.

• Test (d) served as a core control. This test was used as a primal indicator of models’ ability
to understand periodic structures while accounting for their training data distribution, which
consists largely of human-recognizable scenes.

The image resolution was mostly set to 128 × 128 pixels. An exception was the control image in
case (d), which was rendered at a higher resolution of 512 × 512 to ensure clarity. Furthermore,
to systematically rule out resolution-based limitations, case (c) was tested across multiple scales:
128× 128, 256× 256, 512× 512, and 1024× 1024. This range of resolutions was selected to test
the models’ limits, with the baseline set to a low resolution of 128× 128 to reflect the typical scale
of our numerical datasets, which does not exceed 512× 512 pixels.

The experimental results revealed significant limitations in the visual LLMs’ capabilities. In case
(a), they misclassified a cosine gradient as linear and could not correctly count two minima. In
the higher-frequency case (b), all models underestimated the count of extrema (reporting 5 or less
vs. a true count of 6-7 for each type of extrema). Altering resolution and adding a color mapping
in case (c) produced no substantial improvement, with a faint positive effect only at the maximum
tested size of 1024 × 1024 pixels, where the 7th maximum was sometimes noted. Lastly, in (d)
case the models reported the existence of 20 to 30 elements on the image with the only exception of
qwen-2-vl-72b-instruct, which correctly identified 25.

These experiments led us to conclude that visual LLMs are ill-suited for this specific task. Conse-
quently, we pivoted to textual LLMs. While raw numerical data is also non-ideal for these models,
we hypothesized that a transformation of the data into a suitable textual format could leverage their
strengths in symbolic reasoning and pattern recognition.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

Figure 7: The input data for space perception tests on Visual LLMs: (a) A heatmap of cos(2.5x),
(b) A heatmap of cos(10x), (c) A heatmap of cos(10x) in colours, (d) An image containing an
unambiguous periodic pattern of floral elements. The recognizability of these elements to a human
observer establishes a baseline for expected model performance.

C.2 SPACE PERCEPTION TESTS ON TEXTUAL LLMS

To evaluate the inherent pattern recognition capabilities of textual LLMs, we conducted initial
experiments on one-dimensional data generated from the function u(x) = sin(2.5x) (see the
prompt template in Appendix D.3). The models tested were qwen2.5-72b-instruct and
mixtral-8x7b-instruct. Both models correctly identified the sinusoidal nature of the func-
tion, demonstrating their ability to recognize periodic patterns from numerical data. Although they
made errors in estimating the precise oscillation parameters, their successful relation identification
provides initial validation of our core hypothesis: that textual LLMs can serve as effective tools for
extracting functional relationships from structured numerical data.

We subsequently extended our investigation to two-dimensional functions. The test case
was designed to be partially periodic: u(t, x) = 2 sin(2.5x) + 0.07t2. The mod-
els tested were qwen2.5-72b-instruct, mixtral-8x7b-instruct, and the larger
mixtral-8x22b-instruct. The results were promising yet incomplete. The
qwen2.5-72b-instruct model, for instance, correctly identified the sinusoidal component
along the x-dimension in 9 out of 10 trials. While it never explicitly identified the quadratic term
t2, it consistently recognized the non-periodic, increasing trend along the t-dimension. This demon-
strates a capacity for discerning composite spatial structures, albeit with limited parametric preci-
sion.

The other models yielded similar results, though mixtral-8x7b-instruct performed notice-
ably worse - as a rule, the model insisted on a polynomial structure, occasionally suggesting a si-
nusoidal function along x dimention; while the mixtral-8x22b-instruct performed on par
with qwen2.5-72b-instruct, producing responses of equivalent quality and insight.

An essential aspect of our testing involved determining the optimal data representation for textual
LLMs. We evaluated two distinct formats:

(1) Structured Tabular Data: A three-column format with headers ”x, t, u”, where each subse-
quent row represented a single data point (the prompt is given in Appendix D.4).

(2) Raw array data: The direct string representation of the two-dimensional NumPy array for
u, provided in a row-major format (the prompt is showcased in Appendix D.5).

This comparison was crucial for assessing whether the models benefited from explicit feature struc-
turing or could infer relationships from raw numerical arrays. The results demonstrated a signif-
icant advantage for the structured tabular format. When presented with the ”x, t, u” table, the
top-performing models (qwen2.5-72b-instruct and mixtral-8x22b-instruct) suc-
cessfully identified the sinusoidal relation along the x-dimension in approximately 90% of cases
(9/10 trials). In contrast, the same models achieved only a 60% success rate (6/10 trials) when the
data was presented as a raw numerical array. This clear performance gap underscores the importance
of feature-label structuring for enabling textual LLMs to perform spatial reasoning tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D PROMPTS

D.1 PROMPT FOR THE ZEROTH ITERATION OF THE LLM PIPELINE

What is a possible function with the general equation form {full form} that could be described←↩
↪→ with the set of points named points set, that have the form of ’{dots order}’. Give an←↩
↪→ answer in the function equation v1 constructing it in a way described by equation v1←↩
↪→ in the end.

Note that although the general equation form is {full form}, the resulting equation may take on←↩
↪→ simpler forms, for ex., {left deriv} = F(t, du/dx) or {left deriv} = F(du/dx). Suggest←↩
↪→ some simple structure, that roughly describe the relationships in data, for example←↩
↪→ {left deriv} = c[0] * du/dx.

Requirements:
1. Only output your reasoning and the code starting from ”def equation v1...” DO NOT recite←↩

↪→ the other functions (like loss function evaluate etc.)

import numpy as np
from scipy.optimize import minimize

def loss function(params, t, x, u, derivs dict):
u pred = equation v1(t, x, u, derivs dict, params)[0]
return np.mean((u pred−derivs dict[”{left deriv}”])**2)

def evaluate(data: dict) −> float:
””” Evaluate the constructed equation”””
inputs, derivs dict = data[’inputs’], data[”derivs dict”]

Optimize equation skeleton parameters
loss partial = lambda params: loss function(params, *inputs, derivs dict)
params initial guess = np.array([1.0]*P)
result = minimize(loss partial, params initial guess, method=’BFGS’)
optimized params = result.x

Return evaluation score
score = loss function(optimized params, *inputs, derivs dict)
return score if not np.isnan(score) and not np.isinf(score) else None

#/Input data

points set =
{points set}

#/end of input data

An example of desired output:
‘‘‘python
def equation v1(t: np.ndarray, x: np.ndarray, u: np.ndarray, derivs dict: dict(), params: np.ndarray):

right side = params[0] * derivs dict[”du/dx”]
string form of the equation = ”{left deriv} = c[0] * du/dx”
len of params = 1
return right side, string form of the equation, len of params

‘‘‘

D.2 PROMPT FOR THE SUBSEQUENT ITERATIONS OF THE LLM PIPELINE

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

What is a possible function with the general equation form {full form} that could be described←↩
↪→ with the set of points named points set, that have the form of ’{dots order}’? Give an←↩
↪→ answer in the function equation v1 constructing it in a way described by the example←↩
↪→ in the end.

Your goal is to explore the equations space (in relation to their scores) and to examine any←↩
↪→ inexplicit interactions between the input variables (for ex. du/dx * uˆ2).

The dictionary exp buffer stores previous attempts to find the equation evaluated with evaluate←↩
↪→ function. Refer to it in order to understand what is yet to be explored and what might←↩
↪→ be worth more exploration. The best score is 0.

Also, keep in mind, if it seems like t or x are involved in the equation do not forget that u and←↩
↪→ its derivatives are dependent on them, and thus the involvement of t and x might be←↩
↪→ expressed through u or its derivatives. Your goal is to find any possible inexplicit←↩
↪→ interactions.

Start by exploring simpler structures and then gradually move on to more complicated ones IF←↩
↪→ you see the need to do so.

Note that although the general equation form is {full form}, the resulting equation may take on←↩
↪→ simpler forms (BUT IT DOESN’T HAVE TO!), like {left deriv} = F(t, du/dx).

Make sure the suggested equation is dependent on at least one derivative, (e.g, in case of du/dt←↩
↪→ = F(t, x, u, du/dx), du/dx must be included).

Requirements:
1. First look at the exp buffer and then suggest the equation, the string form of which is not←↩

↪→ already there!
2. Do not copy the equations from the exp buffer!
3. Only give a simplified version of the equation in string form of the equation: always open←↩

↪→ the brackets, for ex. instead of ’du/dt = c[0] * (1 + du/dx) * t’ return ’du/dt = c[0] * t +←↩
↪→ c[1] * du/dx * t’.

4. Higher order derivatives must be referenced as dˆnu/dxˆn or dˆnu/dtˆn, where n is an integer←↩
↪→ (for example, dˆ2u/dxˆ2 and NOT duˆ2/dxˆ2). Anything like duˆn/dxˆn refer to the←↩
↪→ multiplication of du/dx and should be written as (du/dx)ˆn or (du/dx)**n (same apply←↩
↪→ to du/dt).

5. Do not put {left deriv} into the right side of the equation as a standalone term, you can←↩
↪→ though use it as part of a term: ..+ {left deriv} * u +.. for example

import numpy as np
from scipy.optimize import minimize

def loss function(params, t, x, u, derivs dict):
u pred = equation v1(t, x, u, derivs dict, params)[0]
return np.mean((u pred−derivs dict[”{left deriv}”])**2)

def eval metric(params, t, x, u, derivs dict, left side):
u pred = equation v1(t, x, u, derivs dict, params)[0]
return np.mean(np.fabs(u pred − derivs dict[left side]))

def evaluate(data: dict) −> float:
””” Evaluate the constructed equation”””
inputs, derivs dict = data[’inputs’], data[”derivs dict”]
Optimize equation skeleton parameters
loss partial = lambda params: loss function(params, *inputs, derivs dict)
params initial guess = np.array([1.0]*P)
result = minimize(loss partial, params initial guess, method=’BFGS’)
optimized params = result.x
Return evaluation score
score = eval metric(optimized params, *inputs, derivs dict, left side)
return score if not np.isnan(score) and not np.isinf(score) else None

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

#/Input data

points set =
{points set}
exp buffer = {{
}}

#/end of input data

An example of desired output:
‘‘‘python
def equation v1(t: np.ndarray, x: np.ndarray, u: np.ndarray, derivs dict: dict(), params: np.ndarray):

right side = params[0] * derivs dict[”du/dx”]
string form of the equation = ”{left deriv} = c[0] * du/dx”
len of params = 1
return right side, string form of the equation, len of params

‘‘‘

D.3 1D CASE OF TEXTUAL LLMS’ TESTING

What is a possible function (e.g. u(x) = x**2 + 5) that could be described
with this set of points, that have the form of ”x u(x)”:

0.00 0.00
0.21 0.50
0.42 0.87
0.63 1.00
0.84 0.86
1.05 0.49
1.26 −0.02
1.47 −0.52
1.68 −0.88
1.89 −1.00
2.11 −0.85
2.32 −0.47
2.53 0.03
2.74 0.53
2.95 0.88
3.16 1.00
3.37 0.84
3.58 0.46
3.79 −0.05
4.00 −0.54

D.4 2D CASE OF TEXTUAL LLMS’ TESTING WITH STRUCTURED TABULAR DATA

What is a possible function (e.g. u(x, t) = x**2 + 5t) that could be described with this set of←↩
↪→ points, that have the form of ”t x u(t, x)”:

0.00 0.00 0.00
0.00 0.21 1.00
0.00 0.42 1.74
0.00 0.63 2.00
0.00 0.84 1.72
0.00 1.05 0.98
0.00 1.26 −0.03
0.00 1.47 −1.03

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.00 1.68 −1.75
0.00 1.89 −2.00
0.00 2.11 −1.70
0.00 2.32 −0.95
0.00 2.53 0.07
0.00 2.74 1.06
0.00 2.95 1.77
0.00 3.16 2.00
0.00 3.37 1.69
0.00 3.58 0.92
0.00 3.79 −0.10
...

D.5 2D CASE OF TEXTUAL LLMS’ TESTING WITH RAW ARRAY DATA

What is a possible function (e.g. u(t, x) = x**2 + 5t) that could be described with this array, that←↩
↪→ represents the function u(t, x)”:

[[0. 1. 1.74 2. 1.72 0.98 −0.03 −1.03 −1.75 −2. −1.7 −0.95
0.07 1.06 1.77 2. 1.69 0.92 −0.1 −1.09]

[0.02 1.02 1.76 2.02 1.74 1. −0.01 −1.01 −1.73 −1.98 −1.68 −0.93
0.08 1.08 1.79 2.02 1.71 0.94 −0.08 −1.07]

...

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E EQUATION PROBLEM STATEMENTS

E.1 BURGERS A

The initial-boundary value problem for Burger’s equation is represented with equation 12.

∂u
∂t + u∂u

∂x = 0

u(0, t) =

{
1000, t ≥ 2

0, t < 2

u(x, 0) =


1000, x ≤ −2000
−x/2,−2000 < x < 0

0, otherwise
(x, t) ∈ [−4000, 4000]× [0, 4]

(12)

The analytical solution to the problem presented in equation 12 is given in Rudy et al. (2017). Data
for the experiment were obtained with the discretization of the solution in the domain (x, t) ∈
[−4000, 4000]× [0, 4] using 101× 101 points.

E.2 BURGERS B

The problem and data were provided by the authors of PySINDY1. The problem can be formulated
in equation 13, where the boundary conditions were not reported. The solution was provided for the
domain (x, t) ∈ [−8, 8]× [0, 10] using 256× 101 discretization points.

∂u
∂t + u∂u

∂x − 0.1∂2u
∂x2 = 0

(x, t) ∈ [−8, 8]× [0, 10]
(13)

E.3 KORTEWEG-DE VRIES

As in the case of Burgers’ equation, the data and the problem (equation 14) were provided by the
authors of PySINDY for the domain (x, t) ∈ [−30, 30] × [0, 20] using 512 × 201 discretization
points.

∂u
∂t + 6u∂u

∂x + ∂3u
∂x3 = 0

(x, t) ∈ [−30, 30]× [0, 20]
(14)

E.4 WAVE

The initial-boundary value problem for the wave equation is given in equation 15.

∂2u
∂t2 −

1
25

∂2u
∂x2 = 0

u(0, t) = u(1, t) = 0
u(x, 0) = 104 sin2 1

10x(x− 1)
u′(x, 0) = 103 sin2 1

10x(x− 1)
(x, t) ∈ [0, 1]× [0, 1]

(15)

1https://github.com/dynamicslab/pysindy

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F HYPERPARAMETERS

Table 4: LLM hyperparameters

Hyperparameter Dataset
Burgers A Burgers B KdV Wave

Iterations 6 30 30 6
Derivative order [2, 3] [2, 3] [2, 3] [2, 3]
Best candidates 4 4 4 4

Due to the ongoing development of the EPDE framework, the results obtained with its newer ver-
sions may vary from those presented in this study. For these experiments, we use the hyperparame-
ters presented in Table 5.

Table 5: EPDE hyperparameters

Hyperparameter Dataset
Burgers A Burgers B KdV Wave

Epochs 5 5 5 5
Population size 8 8 8 8

Boundary (20, 20) (20, 50) (40, 100) (20, 20)
Derivative order [2, 3] [2, 3] [2, 3] [2, 3]

Term number 5 5 5 5
Function power 3 3 3 3
Sparsity interval (1e-6, 1e-5) (1e-6, 1e-5) (1e-6, 1e-5) (1e-6, 1e-5)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G DETAILED EXPERIMENT PLOTS

Figure 8: Comparison of discovery rates of the frameworks with clean data

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 9: Comparison of discovery rates of the frameworks with noisy data – Burgers A

Figure 10: Comparison of discovery rates of the frameworks with noisy data – Burgers B

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: Comparison of discovery rates of the frameworks with noisy data – KdV equation

Figure 12: Comparison of discovery rates of the frameworks with noisy data – Wave equation

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: Comparison of coefficient errors of the frameworks with noisy data – Burgers A

Figure 14: Comparison of coefficient errors of the frameworks with noisy data – Burgers B

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 15: Comparison of coefficient errors of the frameworks with noisy data – KdV equation

Figure 16: Comparison of coefficient errors of the frameworks with noisy data – Wave equation

28

	Introduction
	Differential equation discovery background
	Differential equation discovery pipelines
	Input data field preparation
	LLM-generated equations pipeline overview
	EPDE-generated equations pipeline overview
	Joint EPDE+LLM pipeline overview

	Experiments
	Experimental setup
	Clean data performance comparison
	Noisy data performance comparison

	Conclusion
	EPDE algorithm details
	Complexity evaluation
	Initial tests on LLM's understanding of the data
	Space perception tests on Visual LLMs
	Space perception tests on textual LLMs

	Prompts
	Prompt for the zeroth iteration of the LLM pipeline
	Prompt for the subsequent iterations of the LLM pipeline
	1D case of textual LLMs' testing
	2D case of textual LLMs' testing with structured tabular data
	2D case of textual LLMs' testing with raw array data

	Equation problem statements
	Burgers A
	Burgers B
	Korteweg-de Vries
	Wave

	Hyperparameters
	Detailed experiment plots

