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Abstract— Dynamic obstacle avoidance (DOA) is critical for
quadrupedal robots operating in environments with moving
obstacles or humans. Existing approaches typically rely on
navigation-based trajectory replanning, which assumes sufficient
reaction time and leading to fails when obstacles approach
rapidly. In such scenarios, quadrupedal robots require re-
flexive evasion capabilities to perform instantaneous, low-
latency maneuvers. This paper introduces Reflexive Evasion
Robot (REBot), a control framework that enables quadrupedal
robots to achieve real-time reflexive obstacle avoidance. REBot
integrates an avoidance policy and a recovery policy within a
finite-state machine. With carefully designed learning curricula
and by incorporating regularization and adaptive rewards,
REBot achieves robust evasion and rapid stabilization in
instantaneous DOA tasks. We validate REBot through extensive
simulations and real-world experiments, demonstrating notable
improvements in avoidance success rates, energy efficiency, and
robustness to fast-moving obstacles. Videos and appendix are
available on https://rebot-2025.github.io/.

I. INTRODUCTION

Ensuring robot safety during task execution is crucial [1].
In dynamic obstacle avoidance (DOA), when obstacles are
slow (reaction time >2s), a robot can stop and replan a
collision-free trajectory using navigation methods [2]-[4].
For legged platforms, this couples high-level planning with
low-level locomotion control [5], [6].

When obstacles approach rapidly (reaction time <1.5s),
replanning often fails due to actuation and latency limits [7],
[8]. Inspired by vertebrate spinal reflexes, we advocate
instantaneous, locality-driven evasive behaviors that bypass
slow deliberation [9].

We present the Reflexive Evasion Robot (REBot) for
quadrupeds, demonstrated on Unitree Go2 [10], [11]. REBot
uses a three-stage controller (Normal — Avoidance —
Recovery): a PPO-trained RL policy [12]-[14] executes rapid,
safe evasions, and a recovery policy quickly restabilizes the
robot and resumes normal tasks.

Trained in Isaac Gym [15] and deployed on hardware,
REBot achieves higher avoidance and recovery success than
alternatives in both static and dynamic scenarios, while reduc-
ing peak joint power and path deviation. Performance varies
with approach direction/speed; the platform is particularly
effective against frontal threats due to favorable backward
maneuvers. Ablations show the necessity of the recovery
policy, a two-stage curriculum, and adaptive rewards. Real-
world experiments validate real-time, sub-1.5 s evasion and
inform safety-system design.
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Fig. 1: DOA regimes by reaction time. Red: reflexive evasion
at short reaction time; blue: navigation-based avoidance at
long reaction time.
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Contributions.

o Formalization of reflexive evasion for DOA under con-
strained reaction time in quadrupeds.

o A three-stage REBot system integrating avoidance and
recovery policies for real-time reflexive maneuvers.

o Comprehensive simulation-to-real evaluation with analy-
ses across obstacle directions and speeds.

II. PRELIMINARY

Problem formulation. We consider dynamic obstacle
avoidance (DOA) between a dynamic obstacle O and a
quadruped robot R (Fig. [I). Obstacles are modeled as
spheres with radius 7© and state (p¢,v?) in 3D. The
robot is a 12-DoF articulated system with state s =
{pE 0F oF Wk qft g 7] fE}, and action aff € R!2
(joint targets). A trial is successful if no collision occurs
over time; we declare collision when the signed distance
from obstacle center to the robot’s oriented bounding box
BE satisfies d(p{, BF) < r©. Experiments use Unitree Go2.

Avoidance regimes. The controller observes o, =
{p?’wﬁaqg%’Q57TtR7fthptO7UtO7rO} and Outputs a‘ﬁ to
avoid O while maintaining balance. For long reaction time
(Tieact > 2), the robot can stop and replan a navigation
trajectory (navigation avoidance). For short reaction time
(Treact < 1.58), it must execute immediate evasive motions
(reflexive evasion, Fig. [I)). We target the reflexive regime with
REBot, and later analyze success, peak joint power, and path
deviation in simulation and real-world tests.

III. METHOD
We propose the REBot system for reflexive DOA (Fig. [2).
REBot is a three-stage finite-state controller with (i) Normal,
(i1) Avoidance, and (iii) Recovery stages. Below we outline

stage transitions (Sec. |lII-A)), policies (Secs. L[I-C), and
training/deployment (Sec. [[II-DJ).
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Fig. 2: (a) REBot framework. FSM over {Normal, Avoidance, Recovery} governs reflexive evasion against incoming
obstacles. (b) Policy design. Avoidance uses safety, regularization, and adaptive terms; Recovery stabilizes posture and
motion. (¢) Training & deployment. Two-stage curriculum in Isaac Gym and real-robot tests on Unitree Go2.

A. REBot Stages and Transition Criteria

Normal. The robot maintains a stable posture (standing
with a PD controller) while monitoring obstacles.

Avoidance. When an obstacle approaches (e.g., (v, pft —
p®) > 0), REBot switches to Avoidance and executes
reflexive maneuvers under tight reaction time.

Recovery. If evasive motion induces instability, REBot
switches to Recovery. Instability is detected if any holds:
0| > 01, ||dft|| > ¢lt, or h < hE. Recovery runs until
the robot re-enters the safe set and then returns to Normal.

B. Avoidance Policy

We train an RL policy (PPO) for rapid, stable, and energy-
aware evasion under constrained reaction time, with reward
T = Tavoid + Treg + Tadapt-

Avoidance encourages clearance and penalizes contact,
using ravia = —exp( — (d(p?, BE) — r9)).

Regularization keeps motions natural and efficient: 7., =
Twalk 1 Tenergy T Tcontact» Where 7yax rewards diagonal phase
consistency (trot-like contacts), Tenergy = — > _; |7 G re-
duces power, and T'conact = — Y, (f; HE_ tR_’i’z)Q suppresses
contact jitter.

Adaptive terms promote diversity, speed modulation, and
directional efficiency: ragapt = 7Tdiv + Tthreat + Tair» Where
rgiy encourages varied actions (e.g., action-variance/entropy),

Rosafe)| . R saf R,emd T
Tthreat = _||vtR — UV e eH with Uy Ssae — Uy »cm + e nTreactmn’
and rgi; = — (v, p® — pf) discourages motion to the threat.

C. Recovery Policy

The recovery policy drives the robot back to the safe set
and smooth posture, with reward r = 7o + Tsab + Tpos +
Taux> Where 7o = — ZZ(QtR’ — 9?”)2 penalizes tilt, 7y, =
S, e~ 14"l encourages low joint speeds, rpos = —||pf—pt?||2
penalizes large base deviation, and r,,x adds torque and action-
smoothness penalties to avoid abrupt motions.

D. Training in Simulation and Real-Robot Deployment

We implement REBot on Unitree Go2 and train policies
in Isaac Gym [16] with PPO [17]-[19]. The avoidance and
recovery policies are trained with the above curriculum and
randomization, then deployed to hardware. For real tests, a
motion-capture system provides real-time positions of robot
and obstacle; a lightweight ball on a rod serves as a repeatable
dynamic-obstacle proxy with reflective markers for tracking.

IV. SIMULATION EXPERIMENTS

We validate REBot in simulation and address: Q1 success
under instantaneous DOA (Sec. [[V-B); Q2 reactions under
different obstacle conditions (Sec. [[V-C); Q3 the impact of
reward design and recovery (Sec. [[V-D).

A. Experiment Settings

Tasks. We evaluate in Isaac Gym [16]. Obstacles approach
within a 180° arc in the robot body frame across XZ/ YZ/
XY planes (frontal, lateral, overhead, ground-level; Fig. @),
with reaction time Tieaer € [0.1,4.0] s to cover instantaneous
and delayed regimes.

Metrics. We report five metrics: avoidance success rate
ASR = Nayyoid/Niotar; recovery stability RSR = Niecover/Navoids
maximum joint power (MJP); avoidance moving distance
(AMD; base displacement between start and end); and gait
diversity index GDI = Er.p(sr) [VaraRN,r(,‘sR)(aR)].

Baselines. ABS [6]: high-speed navigation with static-
obstacle robustness, no active DOA; RRL [20]: reactive policy
for UAV dynamics, not tailored to legged whole-body control.

B. Main Experimental Results

REBot trained with both curricula produces appropriate
evasions under varying conditions (Fig.3)): frontal/side threats
often trigger jump-away behaviors, while overhead threats
elicit crouching.



Curriculum 1: static obstacle

Fig. 3: Simulation curricula. Curr. 1: static obstacle appears after a delay; Curr. 2: moving obstacle with randomized

speed/direction. ® Normal, @ Avoidance, @ Obstacle.

Fig. 4: REBot system real-robot demonstrations on Unitree Go2 Robot (See [video). (a) the robot is poked from different
directions using a stick; (b) a ball is launched towards the robot from different directions; (c) the robot is subjected to

intentional kicks from different directions.

TABLE I: Simulation results across reaction-time ranges.

Treact | S Metric ABS® RRL® REBot
ASRT* 0.00 0.00 0.05
01 ~ 05 RSRT™ 0.00 0.00 0.03
’ ’ MIP™* 0.51 0.52 0.50
AMD|* 0.84 0.85 0.82
ASRT 0.11 0.09 0.65
05~ 15 RSRT 0.06 0.05 0.59
’ ’ MIP| 0.52 0.51 0.49
AMDJ 0.80 0.86 0.47
ASRT 0.51 0.41 0.81
15 ~ 4.0 RSR?T 0.42 0.32 0.74
D s ey 040 045 034
AMDJ 0.60 0.70 0.26

* ASR: avoidance success rate; RSR: recovery success rate;
MJP: max joint power; AMD: avoidance moving distance.
® ABS: Agile But Safe [6]; RRL: Reactive RL [20].

We analyze three reaction-time bands (Table [l Fig. [5h,b):

for 0.1 ~0.5 s, all methods have near-zero ASR/RSR due
to insufficient time; for 0.5~ 1.5 s, REBot exhibits reflexive
evasion and clearly outperforms ABS/RRL in ASR and
RSR; for 1.5~4.0 s, all improve but REBot remains best
as baselines are not specialized for active DOA. Trends
in Fig. [Bk,d show that extremely short Tie,e yields high

(a) Avoidance success rate (ASR) (b) Recovery success rate (RSR)
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Fig. 5: Performance vs. reaction time. Red dashed region:
reflexive regime; long reaction: navigation regime.

MIJP (>500 W) and large AMD (jump-like evasions); with
moderate Ti.,, both decrease (crouch-like responses); with
long Tie,et, values converge lower as navigation behaviors
dominate.

C. Analysis of Avoidance Ability

We partition behavior into three regions by ASR/MJP
thresholds (boundary I-II: ASR > 30%; boundary II-III:
MIJP < 300W). In XZ/XY (Fig. [6h.c), frontal threats are
easier, requiring shorter Ti.o.¢ to reach navigation; rear threats
need longer time. In YZ (Fig. |§b), lateral threats are easier
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Fig. 6: Directional effects across planes (top:
III navigation avoidance.

TABLE II: Ablations (mid/long Tie,ct)-

/s Treact /'S

approach directions; bottom: behaviors). Regions: I failure, II reflexive evasion,

Treact ' S Metric wlo rev.t w/o curr.? w/o adp.3 REBot
ASR?T* 0.63 0.48 0.59 0.65

0.5~1.5 RSRT* 0.31 0.39 0.51 0.59
GDIT™ 2.46 241 143 2.51
ASR 0.80 0.71 0.78 0.81

1.5~4.0 RSR 0.63 0.60 0.69 0.74
GDI 2.06 2.24 1.36 2.13

"ASR, RSR, GDI as defined above. ' no recovery stage; >
no curriculum-1; ® no adaptive reward.

(a) w/o recovery stage (b) w/o curriculum training
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Fig. 7: Ablation success rates vs. reaction time (red dashed:

reflexive regime).

than top/bottom. The asymmetry stems from Unitree Go2
mechanics—backward motions are favored over forward
jumps.
D. Ablation Studies of REBot System
Recovery. Removing recovery reduces reflex-region suc-
cess by about 20% (Table |H|); its influence wanes as Tyeqct
grows and navigation dominates. We also observe more
low-height/fall events and stronger contact-force oscillations,
consistent with the stabilization terms in Sec. [II=Cl
Curriculum. Skipping Curr.1 (directly training on moving
obstacles) causes ~5% ASR/RSR drops (Table [Ml), indicating

the staged progression provides better, more stable starts.

Without Curr.1, policies overuse aggressive leaps, yielding
larger AMD and delayed triggers under fast threats.

Adaptive reward. Removing it reduces GDI by ~40% and
moderately lowers ASR/RSR (Table[[I), showing that diversity
boosts robustness. Failures concentrate on lateral/overhead
approaches where non-backward gaits are most beneficial.

V. REAL-ROBOT DEMONSTRATION

We deploy REBot on a Unitree Go2 and track
robot/obstacle poses with OptiTrack. We evaluate three
interaction types—stick poke (Fig. @), thrown ball (Fig. @),
and kick (Fig. EI:)—from multiple directions (front, left/right,
left-front, right-front). When an obstacle approaches, REBot
enters avoidance to execute reflexive maneuvers (jump-away,
crouch), then switches to recovery to restabilize. For slower
pokes, the robot often adopts navigation-style avoidance
due to the longer available reaction time. Under real-world
tests, REBot attains ASR 56% and RSR 53%. The gap to
simulation mainly arises from Sim2Real factors—unmodeled
actuator dynamics, control latency, and surface-friction
variability—which especially impact fast reflexes requiring
precise torque delivery.

VI. CONCLUSION

We introduce reflexive evasion for quadrupedal DOA,
where navigation-based replanning fails under tight reaction
times. We present REBot, a unified controller that couples
rapid avoidance with stability recovery via reinforcement
learning and a staged curriculum. Simulation and hardware
results show reliable, adaptive evasions and reveal how
morphology and obstacle dynamics shape reflexes, pointing
to more agile and safety-aware legged robots.

Limitations remain: (i) we assume precise obstacle pose;
integrating on-board perception is future work; (ii) hard-
ware induces a backward-jump bias; (iii) a Sim2Real gap
persists—simulation uses joint-velocity commands that miss
torque-servo dynamics and ground-friction variability during

fast maneuvers.
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