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Figure 1. 4DNeX can generate dynamic point clouds from a single image. By modeling dynamic 3D point clouds as learned represen-
tations of RGB and XYZ, 4DNeX effectively leverages priors from existing video generation models to achieve high-quality results. The
resulting dynamic point clouds support downstream applications such as novel-view video synthesis.

Abstract

We present 4DNeX, the first feed-forward framework for001
generating 4D (i.e., dynamic 3D) scene representations002
from a single image. In contrast to existing methods that003
rely on computationally intensive optimization or require004
multi-frame video inputs, 4DNeX enables efficient, end-005
to-end image-to-4D generation by fine-tuning a pretrained006
video diffusion model. Specifically, 1) to alleviate the007
scarcity of 4D data, we construct 4DNeX-10M, a large-008
scale dataset with high-quality 4D annotations generated009
using advanced reconstruction approaches. 2) we introduce010
a unified 6D video representation that jointly models RGB011
and XYZ sequences, facilitating structured learning of both012
appearance and geometry. 3) we propose a set of simple013
yet effective adaptation strategies to repurpose pretrained014
video diffusion models for 4D modeling. 4DNeX produces015
high-quality dynamic point clouds that enable novel-view016
video synthesis. Extensive experiments demonstrate that017
4DNeX outperforms existing 4D generation methods in effi-018
ciency and generalizability, offering a scalable solution for019
image-to-4D modeling and laying the foundation for gener-020
ative 4D world models simulating dynamic scene evolution.021

1. Introduction 022

The images we capture are 2D projections of the 4D (i.e., 023
dynamic 3D) physical world. Creating a 4D scene from 024
such 2D observations, particularly from a single image, is 025
a highly challenging yet compelling task. As a core capa- 026
bility in generative modeling, image-to-4D generation lays 027
the foundation for building 4D world models that can pre- 028
dict and simulate dynamic scene evolution, enabling appli- 029
cations in AR/VR, film production, and content creation. 030

Existing approaches for 4D scene modeling can be 031
broadly classified into two categories. The first comprises 032
4D generation methods, which typically adopt represen- 033
tations such as Neural Radiance Fields (NeRF) [17] or 034
3D Gaussian Splatting (3DGS) [10]. These methods can 035
be further divided into feed-forward [22, 26, 35, 46] and 036
optimization-based variants [1, 16, 21, 38, 45, 48]. How- 037
ever, they either require video input or rely on object- 038
centric, computationally intensive optimization procedures. 039
The second category includes dynamic Structure-from- 040
Motion (SfM) approaches [9, 12, 31, 36, 42], which es- 041
timate dynamic 3D structures such as time-varying point 042
clouds from video sequences. However, these methods can- 043
not generate 4D representations from a single image. 044

To this end, we aim to develop a feed-forward framework 045
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for 4D scene generation from a single image. A straight-046
forward solution is to fine-tune a pretrained video diffusion047
model. However, this approach faces two core challenges:048
1) how to mitigate the scarcity of 4D data, and 2) how to049
adapt the pretrained model in a simple and efficient way.050

For the first challenge, we curate 4DNeX-10M, a large-051
scale dataset comprising both static and dynamic scenes,052
with high-quality 4D annotations generated from monocu-053
lar videos using state-of-the-art reconstruction methods [12,054
30, 32, 33, 42]. To ensure geometric accuracy and scene di-055
versity, we apply careful data selection, pseudo-annotation056
generation, and multi-stage filtering. To address the second057
challenge, we first introduce a unified 6D video representa-058
tion that models RGB and XYZ sequences jointly, enabling059
the structured modeling of both appearance and geometry.060
We then systematically investigate different fusion strate-061
gies between the two modalities and show that width-wise062
fusion achieves the most effective cross-modal alignment.063
Moreover, we incorporate a set of carefully designed tech-064
niques, including XYZ initialization, XYZ normalization,065
mask design, and modality-aware token encoding, to adapt066
pretrained video diffusion models in a simple manner while067
preserving their generative priors.068

To summarize, we present 4DNeX, the first feed-forward069
framework for image-to-4D generation (Fig. 1). We qualita-070
tively demonstrate the plausibility of the generated dynamic071
point clouds. Furthermore, to validate their utility, we lever-072
age TrajectoryCrafter [39] to transform the generated 4D073
point clouds into novel-view videos, achieving comparable074
results to existing 4D generation methods. In addition, we075
perform comprehensive ablation studies to validate the ef-076
fectiveness of our proposed fine-tuning strategies.077

Our main contributions can be summarized as follows:078

• We propose 4DNeX, the first feed-forward framework for079
image-to-4D generation, capable of producing dynamic080
point clouds from a single image.081

• We construct 4DNeX-10M, a large-scale dataset with082
high-quality 4D annotations.083

• We introduce simple yet effective strategies to adapt pre-084
trained video diffusion models for 4D generation.085

2. Related Work086

2.1. Optimization-based 4D Generation087

Recent methods leverage pre-trained diffusion models to088
optimize 3D and 4D representations [10, 17, 34] via score089
distillation sampling [19] or multi-view synthesis. A ma-090
jor challenge is maintaining spatio-temporal consistency.091
Some approaches [1, 5, 8, 13, 20, 38, 41, 45, 48] start092
from static 3D representations and incorporate motion us-093
ing video diffusion priors. Others [16, 18, 21, 23, 25, 37]094
begin with generated videos and enforce multi-view consis-095
tency to reconstruct 4D content. Beyond consistency issues,096

Static

Outdoor

High-Speed

Far Close

Indoor Human

Figure 2. Visualization of 4DNeX-10M Dataset. Our dataset
spans a wide range of dynamic scenarios, including indoor, out-
door, close-range, far-range, static, high-speed, and human-centric
scenes. The word cloud summarizes common visual concepts cap-
tured in the dataset, while the 4D point clouds and camera trajec-
tories demonstrate the spatial precision of our pseudo-annotations.

these optimization-based techniques are typically compu- 097
tationally expensive, slow, and unstable due to multi-stage 098
training. In this work, we propose a feed-forward frame- 099
work to efficiently generate 4D representations, improving 100
scalability and speed. 101

2.2. Feed-forward 4D Generation 102

Feed-forward 4D generation methods directly produce 4D 103
representations in a single pass, offering efficiency and sta- 104
bility over optimization-based approaches. Existing works 105
either generate multi-view videos with implicit geome- 106
try [2, 11, 26, 39, 40, 46] or output explicit 4D rep- 107
resentations [22, 35] that struggle to generalize beyond 108
specific data sources. Specialized methods like Tesser- 109
Act [47] target robotic applications, while dynamic SfM 110
techniques [6, 9, 12, 31, 36, 42] reconstruct geometry from 111
videos rather than generating from images. In contrast, we 112
propose a general-purpose framework that efficiently gen- 113
erates full 4D representations from a single image. 114

3. 4DNeX-10M 115

To address the data scarcity in 4D generative modeling, 116
we introduce 4DNeX-10M, a large-scale hybrid dataset tai- 117
lored for training feed-forward 4D generative models. It ag- 118
gregates videos from public sources and internal pipelines, 119
encompassing both static and dynamic scenes. All data 120
undergoes rigorous filtering, pseudo-annotation, and qual- 121
ity assessment to ensure geometric consistency, motion di- 122
versity, and visual realism. As shown in Figure 2, our 123
proposed dataset encompasses a highly diverse range of 124
scenes, including indoor and outdoor environments, dis- 125
tant landscapes, close-range settings, high-speed scenarios, 126
static scenes, and human-inclusive situations. Furthermore, 127
4DNeX-10M encompasses a wide variety of lighting con- 128
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ditions and a profusion of human activities. Meanwhile,129
we provide precise 4D pointmaps and camera trajectories of130
these corresponding scenes. In total, 4DNeX-10M contains131
over 9.2 million video frames with pseudo annotations. For132
data curation, as illustrated in Figure 3, we curate this data133
using an automated acquisition and filtering pipeline com-134
prising several stages: 1) data cleaning, 2) data captioning,135
and 3) 3D/4D annotation.136

3.1. Data Preprocessing137

Data Sources. We collect monocular videos from several138
sources. DL3DV-10K (DL3DV) [14] and RealEstate10K139
(RE10K) [49] offer static indoor and outdoor videos with140
diverse camera trajectories. The Pexels dataset provides141
a large pool of human-centric stock videos with auxiliary142
metadata such as movements, OCR, and optical flow. The143
Vimeo Dataset, selected from [4], contributes in-the-wild144
dynamic scenes. Synthetic data sourced from [7] contains145
dynamic sequences using video diffusion models (VDM).146
Initial Filtering. For large-scale sources like Pexels, we147
apply metadata filtering, including optical flow, motion,148
and OCR, to eliminate non-compliant videos, such as those149
exhibiting excessive motion blur or text-saturated videos.150
Across all data sources, brightness filtering is applied based151
on average luminance (0.299R+0.587G+0.114B) to dis-152
card videos with extreme illumination conditions.153
Video Captioning. For datasets without textual annota-154
tions (e.g., DL3DV-10K and RE-10K), we use LLaVA-155
Next-Video [44] to generate captions. We sample 32 frames156
uniformly per video (or clip) and feed them to the LLaVA-157
NeXT-Video-7B-Qwen2 model with the prompt: ”Please158
provide a concise description of the video, focusing on the159
main subjects and the background scenes.” For scenes with160
consistent content (e.g., DL3DV-10K, Dynamic Replica),161
we generate one caption per video. For RealEstate10K, we162
split each video into clips and caption them separately.163

3.2. Static Data Processing164

To learn strong geometric priors, we curate static monocu-165
lar videos from DL3DV-10K [14] and RE-10K [49]. These166
cover a wide range of environments including homes,167
streets, stores, and landmarks, with varied camera trajec-168
tories providing rich multi-view coverage.169
Pseudo 3D Annotation. As these datasets lack 3D ground-170
truth, we employ DUSt3R [32], a stereo reconstruction171
model, to generate pseudo point maps. For each video,172
DUSt3R is applied exhaustively over view pairs to form a173
view graph, followed by global fusion (per the original pa-174
per) to recover a consistent scene-level 3D structure.175
Quality Filtering. To ensure high-quality annotations,176
we define two metrics using the confidence maps from177
DUSt3R: 1) the Mean Confidence Value (MCV), averag-178
ing pixel-wise confidence scores over all frames, and 2) the179
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20%

10%

18%
49%

3%

Pexels

DL3DV

RE-10K
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VDM
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Please provide a concise description of the 
video, focusing on the main subjects and the 
background scenes.

Video Captioning

Answer:
-> A man is skydiving, circling in the sky with a 
background of blue sky and white clouds.

-> The video shows a circular shot of a small 
lawn garden, with a green plant in the middle.

LLaVA-Next Video

4D Reconstruction
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Figure 3. Data Curation Pipeline. The video data is collected
from various sources and then selected by video filtering during
Data Cleaning. The selected data is captioned via LLaVA-Next-
Video model in Video Captioning. The selected data is processed
and finally filtered out the video with high-quality annotation dur-
ing 3D/4D Annotation. Data statistics is provided in bottom right.

High-Confidence Pixel Ratio (HCPR), representing the pro- 180
portion of pixels exceeding a threshold τ . We select the 181
top-r% of clips for each metric and retain over 100K high- 182
quality 28-frame clips with reliable pseudo point map anno- 183
tations for static training. 184

3.3. Dynamic Data Processing 185

To enrich 4DNeX-10M with dynamic content, we collect 186
monocular videos from Pexels, VDM, and Vimeo. These 187
datasets contain diverse real-world scenes with motion and 188
depth variation but lack ground-truth geometry. 189
Pseudo 4D Annotation. We employ MonST3R [42] 190
and MegaSaM [12], two advanced dynamic reconstruction 191
models, to generate pseudo 4D annotations. Each model 192
recovers temporally coherent 3D point clouds and globally 193
aligned camera poses from monocular videos, enabling the 194
construction of time-varying scene representations. 195
Multi-Stage Filtering. To select high-quality clips, we 196
apply three sequential filtering strategies. First, we use 197
the final alignment loss in the global fusion stage, which 198
reflects multi-view consistency and flow agreement with 199
RAFT [28], to filter out low-quality reconstructions. Sec- 200
ond, we assess camera smoothness (CS) by computing 201
frame-wise velocity and acceleration from camera transla- 202
tions, and estimate local trajectory curvature as: 203

κi =
∥vi+1 − vi∥

∥vi+1∥2 + ∥vi∥2 + ϵ
, ϵ > 0. (1) 204

Clips with low average velocity, acceleration, and curvature 205
are retained. Third, we apply the same Mean Confidence 206
Value (MCV) and High-Confidence Pixel Ratio (HCPR) 207
used in the static pipeline. After filtering, we retain ap- 208
proximately 32K clips from the MonST3R-processed set, 209
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Figure 4. Comparison of fusion strategies for joint RGB and
XYZ modeling. We explore five fusion strategies and analyze
their impact on model compatibility and cross-modal alignment.

5K clips from VDM, and 27K from Pexels, and over 80k210
clips from MegaSaM-processed set. Together, these yield211
a total over 110K high-quality clips with pseudo 4D an-212
notations, enabling robust modeling of dynamic 3D scenes213
across a wide range of motions and appearances.214

4. 4DNeX215

4.1. Problem Formulation216

Given a single image I0 ∈ RH×W×3, we aim to construct217
a 4D (i.e., dynamic 3D) representation of the underlying218
scene geometry. This task can be formulated as learning a219
conditional distribution over dynamic point clouds:220

p
(
{Pt}T−1

t=0 | I0
)
, (2)221

where {Pt}T−1
t=0 denotes the sequence of dynamic point222

clouds. However, directly modeling point clouds is chal-223
lenging due to their highly unstructured nature. To address224
this, inspired by [43], we use a pixel-aligned point map rep-225
resentation, XYZ, where each frame XXYZ

t ∈ RH×W×3 en-226
codes the 3D coordinates of each pixel in the global coordi-227
nates. This format provides a structured and learnable struc-228
ture, making it compatible with existing generative models.229
Instead of directly modeling {Pt}, we reformulate the prob-230
lem as predicting paired RGB and XYZ image sequences:231

p
(
{XRGB

t , XXY Z
t }T−1

t=0 | I0
)
. (3)232

Accordingly, the joint distribution can be also factorized as:233

p
(
{XRGB

t }T−1
t=0 , {XXY Z

t }T−1
t=0 | I0

)
. (4)234

Therefore, a 4D scene can be effectively represented using235
a 6D video composed of paired RGB and XYZ sequences.236
This simple and unified representation offers two key ad-237
vantages: it enables explicit 3D consistency supervision238
through pixel-aligned XYZ maps, and eliminates the need239
for camera, facilitating scalable and robust 4D generation.240

To model this distribution, we adopt Wan2.1 [29], a241
video diffusion model trained under the flow matching [15]242
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Figure 5. Comparison of spatial fusion strategies. We compare
frame-, height-, and width-wise fusion in terms of the interaction
distance between RGB and XYZ tokens.

framework. We extend its image-to-video capability to gen- 243
erate 6D videos as V = {XRGB

t , XXY Z
t }T−1

t=0 . V is first 244
encoded into a latent space via a VAE encoder E : x1 = 245
E(V ), and interpolating with a noise latent x0 ∼ N (0, I): 246

xt = (1− t)x0 + tx1, t ∼ U(0, 1). (5) 247

And a velocity predictor u is trained to regress the velocity 248
between endpoints: 249

LFM = E
[
∥u(xt, cimg, ctxt, t)− (x1 − x0)∥2

]
, (6) 250

where cimg and ctxt denote image and text condition embed- 251
dings. This formulation enables efficient learning of tempo- 252
rally coherent and geometrically consistent 6D videos. 253

4.2. Fusion Strategies 254

To finetune the video diffusion model for joint RGB and 255
XYZ generation, a key challenge is designing an effec- 256
tive fusion strategy that enables the model to leverage both 257
modalities. Our goal is to exploit the strong priors of 258
pretrained models through simple yet effective fusion de- 259
signs. Latent concatenation is a widely adopted technique 260
for joint modeling. We systematically explore fusion strate- 261
gies across different dimensions, as illustrated in Fig. 4. 262
Channel-wise Fusion. A straightforward approach is to 263
concatenate RGB and XYZ along the channel dimension, 264
and insert a linear layer (a.i) or a modality switcher (a.ii) 265
to adapt the input and output formats. However, this strat- 266
egy disrupts the input and output distributions expected by 267
the pretrained model, which undermines the benefits of pre- 268
training. It requires large-scale data and substantial compu- 269
tational resources to achieve satisfactory performance. 270
Batch-wise Fusion. To maintain pretrained distributions, 271
this strategy treats RGB and XYZ as separate samples and 272
uses a switcher to control the output modality (b.i). While it 273
preserves unimodal performance, it fails to establish cross- 274
modal alignment. Even with additional cross-domain atten- 275
tion layers (b.ii), the modalities remain poorly correlated. 276
Frame-/Height-/Width-wise Fusion. These strategies 277
concatenate RGB and XYZ along the frame (c), height (d), 278
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Figure 6. Overview of 4DNeX. Given a single image and an initialized XYZ map, 4DNeX encodes both with a VAE encoder and fuses
them via width-wise concatenation. The fused latent, combined with a noise latent and a guided mask, is processed by a LoRA-tuned
Wan-DiT model to jointly generate RGB and XYZ videos. A lightweight post-optimization recovers camera and depths from the outputs.

or width (e) dimensions, preserving the distributions of the279
pretrained model while enabling cross-modal interaction280
within a single sample. We analyze them from the per-281
spective of token interaction distance. Intuitively, shorter282
interaction distance between corresponding tokens makes it283
easier for the model to learn cross-modal alignment. As284
shown in Fig. 5, width-wise fusion yields the shortest in-285
teraction distance, leading to more effective alignment and286
higher generation quality, as confirmed in Sec. 5.3.287

4.3. Network Architecture288

As illustrated in Fig. 6, our framework takes a single im-289
age I0 ∈ RH×W×3 and an initialized XYZ map Xinit ∈290
RH×W×3 as conditions. Both are encoded by a frozen VAE291
encoder and concatenated along the width dimension. This292
fused condition is then combined with a noise latent xt and293
a binary mask M along the channel dimension, and fed into294
a pretrained DiT with LoRA tuning. The output latent is de-295
coded by a VAE decoder to generate paired RGB and XYZ296
video sequences. A lightweight post-optimization step fur-297
ther recovers camera and depths from the predicted outputs.298
XYZ Initialization. We initialize the first-frame XYZ map299
Xinit using a sloped depth plane. Specifically, we define a300
normalized 2D coordinate grid over the range [−1, 1]2 and301
compute the initial XYZ values as:302

Xinit
i,j =

(
2j

W − 1
− 1,

2i

H − 1
− 1,

2i

H − 1
− 1

)
. (7)303

This results in a sloped plane where depth values gradually304
increase from the bottom to the top of the image, reflecting305
common depth priors in natural scenes (e.g., sky regions ap-306
pearing farther away). Such initialization provides a stable307
starting point for geometry learning.308

XYZ Normalization. Since the VAE is pretrained on RGB 309
images, directly encoding XYZ inputs with different distri- 310
butions can cause instability and suboptimal performance. 311
To mitigate this issue, inspired by [3] , we apply a modality- 312
aware normalization strategy to adapt the XYZ latent to 313
the pretrained VAE’s distributional priors. Specifically, we 314
compute the mean µ and standard deviation σ of XYZ la- 315
tent across the training dataset, and normalize the encoded 316
representation as: 317

x̂ =
x− µ

σ
, (8) 318

where x denotes the XYZ latent. Before passing into the 319
VAE decoder, we perform de-normalization to recover the 320
original scale: 321

x = x̂ · σ + µ. (9) 322

Mask Design. Following [29], we introduce a guided mask 323
M ∈ [0, 1]T×H×W , where Mt,i,j = 1 indicates a known 324
pixel and Mt,i,j = 0 indicates a pixel to be generated. Since 325
we use an approximate initialization for the first-frame XYZ 326
map, we assign a soft mask: 327

MXY Z
0,i,j = 0.5, ∀ i, j, (10) 328

which encourages the model to refine the initial geometry. 329
Modality-Aware Token Encoding. To preserve pixel- 330
wise alignment across modalities during joint modeling, we 331
adopt a shared rotary positional encoding (RoPE) [24] for 332
RGB and XYZ tokens. To further distinguish their seman- 333
tic differences, we introduce a learnable domain embed- 334
ding. Given RGB and XYZ token sequences xRGB, xXYZ ∈ 335
RL×D, we apply the following encoding: 336

xRGB ← RoPE(xRGB) + eRGB ,

xXY Z ← RoPE(xXY Z) + eXY Z ,
(11) 337
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Table 1. 4D Generation Results on VBench [7]. We report the
consistency, dynamics, and aesthetics of the generated videos, to-
gether with the inference time of each method.

Method Consistency Dynamic Aesthetic Time

4Real [38] 95.7% 32.3% 50.9% 90min
Free4D [16] 96.0% 47.4% 64.7% 60min

Ours 96.4% 58.0% 59.5% 15min

Animate124 [45] 90.7% 45.4% 42.3% \
Free4D [16] 96.9% 40.1% 60.5% 60min

Ours 97.2% 58.3% 53.0% 15min

GenXD [46] 89.8% 98.3% 38.0% \
Free4D [16] 96.8% 100.0% 57.9% 60min

Ours 96.8% 100.0% 52.4% 15min

where RoPE(·) denotes the shared rotary positional encod-338
ing, and eRGB , eXY Z ∈ R1×D are learnable domain em-339
beddings broadcasted across the sequence.340
Post-Optimization. Since our method produces XYZ341
videos that represent dense 3D points in global coordi-342
nates, we can recover the corresponding camera parameters343
C = (R, t,K) and depth maps d for the generated RGB344
frames via a lightweight post-optimization step. Specifi-345
cally, we minimize the reprojection error between the gen-346
erated and back-projected 3D coordinates:347

min
R,t,K,d

∑
i,j

∥∥q̃XY Z
i,j − q̂XY Z

i,j

∥∥2
2
, (12)348

where q̂XY Z
i,j denotes the generated 3D coordinate, and349

q̃XY Z
i,j is computed by back-projecting depth into 3D space:350

q̃XY Z
i,j = [R | t]−1K−1

(
di,j · [i, j, 1]⊤

)
. (13)351

This optimization is efficient and can be parallelized across352
views, producing physically plausible and geometrically353
consistent estimates of camera poses and depth maps.354

5. Experiments355

5.1. Setting356

Baselines. Following [16], we compare our method with357
existing 4D generation approaches, which can be grouped358
into two categories: text-to-4D and image-to-4D methods.359
For text-to-4D, we compare against 4Real [38], a state-of-360
the-art method in this category. For image-to-4D, we bench-361
mark against the state-of-the-art Free4D [16], the feed-362
forward method GenXD [46], and the object-levle approach363
Animate124 [45]. For text-to-4D methods, we first gener-364
ate an image from the input text prompt and then convert it365
into the image-to-4D setting. To ensure fairness, we use the366
same single-image or text prompt during evaluation.367

Table 2. User study results. Percentages indicate user preference.

Comparison Consistency Dynamic Aesthetic

Ours / Free4D [16] 56% / 44% 59% / 41% 53% / 47%
Ours / 4Real [38] 79% / 21% 85% / 15% 93% / 7%
Ours / Ani124 [45] 75% / 25% 56% / 44% 100% / 0%
Ours / GenXD [46] 90% / 10% 85% / 15% 100% / 0%

Datasets and Metrics. We conduct evaluations on a col- 368
lection of images and texts sourced from the official project 369
pages of the compared methods. To assess the quality of 370
generated novel-view videos, We report standard VBench 371
metrics [7], including Consistency (averaged over subject 372
and background), Dynamic Degree, and Aesthetic Score. 373
Given the lack of a well-established benchmark for 4D gen- 374
eration, we further conduct a user study involving 23 evalu- 375
ators to enhance the reliability of our evaluation. 376
Implementation Details. We opt for the vanilla 377
Wan2.1 [29] image-to-video model as our final base model 378
with a total of 14B parameters. For the modality-aware nor- 379
malization, we trace the statistics (mean and standard devi- 380
ation) of XYZ domain in the latent space over 5K random 381
samples from the training dataset. It results in µ = −0.13 382
and σ = 1.70, which serves as the constant normalization 383
term for XYZ latent during training and inference. To fully 384
transfer the capability of original image-to-video generation 385
from the base model to the target image-to-4D task, we train 386
a LoRA with a rank of 64 for the sake of parameter and 387
data efficiency instead of full-parameter supervised finetun- 388
ing. The Lora finetuning is run with a batch size of 32 using 389
an AdamW optimizer. The learning rate is set to 1 × 10−4 390
with a cosine learning rate warmup. The training is dis- 391
tributed on 32 NVIDIA A100 GPUs with 5k iterations at a 392
spatial resolution of 480 × 720 for each modality. To gen- 393
erate novel-view videos, we first produce a 4D point cloud 394
representation of the scene using our feed-forward model, 395
and then render the results using [39]. 396

5.2. Main Results 397

4D Geometry Generation. As illustrated in Fig. 7, we vi- 398
sualize the paired RGB and XYZ video generated from a 399
single image. The results demonstrate that our method can 400
simultaneously infer plausible scene motion and the cor- 401
responding 4D geometry from a single image. This high- 402
quality geometric representation of dynamic scenes is es- 403
sential for consistent and photorealistic novel view synthe- 404
sis in the subsequent rendering stage. 405
Novel-View Video Generation. Quantitative results on 406
VBench [7] are presented in Table 1. Our method achieves 407
performance comparable to state-of-the-art approaches, and 408
notably outperforms others in terms of Dynamic Degree. 409
Free4D [16] benefits from the proprietary Kling [27] model 410
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Figure 7. Generated RGB and XYZ sequences from single-image input. Each pair shows RGB and XYZ video sequence.

Free4D Ours4Real OursAnimate124 Ours

Figure 8. Qualitative comparison. Our method generates results with higher consistency, better aesthetics, and notably larger motion.
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(a.i)

(a.ii)

(b.i)

(b.ii) (d)

(c)

(e) Ours (e) Ours (e) Ours

Figure 9. Ablation study on fusion strategies. We compare channel-wise (a), batch-wise (b), frame-wise (c), height-wise (d), and our
width-wise fusion (e) for RGB and XYZ inputs.

for image animation, which contributes to its higher aes-411
thetic scores. Qualitative comparisons are shown in Fig. 8,412
where our results demonstrate more significant and coher-413
ent scene dynamics, especially under camera motion. Fur-414
thermore, user study results (Table 2) show that our method415
is consistently preferred over most baselines in terms of416
consistency, dynamics, and aesthetics. Although the results417
are comparable to Free4D, it is important to note that the418
evaluation was conducted on the Free4D test set, which pre-419
dominantly features object-centric scenes. In contrast, our420
method generalizes effectively to diverse, in-the-wild sce-421
narios, as shownw in the supplementary material. In addi-422
tion, our method is feed-forward and highly efficient, capa-423
ble of generating a 4D scene within 15 minutes. By compar-424
ison, Free4D relies on a time-consuming pipeline, typically425
requiring over one hour to produce results.426

5.3. Ablations and Analysis427

To validate the effectiveness of our used width-wise fusion428
strategy and support the analysis presented in Sec. 4.2, we429
conduct an ablation study comparing five different fusion430
designs, as illustrated in Fig. 9. Among these, channel-wise431
fusion introduces a severe distribution mismatch with the432
pretrained prior, often leading to noisy or failed predictions433
(a.i-a.ii). Batch-wise fusion preserves unimodal quality but434
fails to capture cross-modal alignment, yielding inconsis-435
tent RGB-XYZ correlation (b.i-b.ii). Frame-wise (c) and436
height-wise (d) strategies provide moderate improvements,437
yet still suffer from suboptimal alignment and visual qual-438
ity. In contrast, our width-wise fusion brings corresponding439
RGB and XYZ tokens closer in the sequence, shortening the440
cross-modal interaction distance. This facilitates more ef-441
fective alignment and yields sharper, more consistent geom-442
etry and appearance across frames, as shown in Fig. 9 (e).443

6. Conclusion 444

We propose 4DNeX, the first feed-forward model for 445
single-image 4D scene generation. Our approach fine- 446
tunes a pretrained video diffusion model to enable efficient 447
image-to-4D generation. To tackle data scarcity, we intro- 448
duce 4DNeX-10M, a large-scale dataset with pseudo-4D la- 449
bels. We also design a unified 6D video representation that 450
jointly encodes appearance and geometry, alongside effec- 451
tive adaptation strategies to repurpose video diffusion mod- 452
els for 4D tasks. Experiments show that 4DNeX generates 453
high-quality point clouds, serving as a strong geometric ba- 454
sis for novel-view videos synthesis. It achieves competitive 455
results with higher efficiency and better generalization, ad- 456
vancing scalable 4D world modeling from single images. 457

Limitations and Future Work While 4DNeX demon- 458
strates promising results in single-image 4D generation, 459
several limitations remain. First, our method relies on 460
pseudo-4D annotations for supervision, which may intro- 461
duce noise or inconsistencies, particularly in fine-grained 462
geometry or long-term temporal coherence. Introducing 463
high-quality real-world or synthetic dataset would be fruit- 464
ful for general 4D modeling. Second, although the image- 465
driven generated results are 4D-grounded, controllabilities 466
over lighting, fine-grained motion and physical property 467
are still lacking. Third, the unified 6D representation as- 468
sumes relatively clean input images and may degrade under 469
occlusions, extreme lighting conditions, or cluttered back- 470
grounds. Future work includes improving temporal model- 471
ing with explicit world priors, incorporating real-world 4D 472
ground-truth data when available, and extending our frame- 473
work to handle multi-object or interactive scenes. Addition- 474
ally, integrating multi-modal inputs like text or audio could 475
further enhance controllability and scene diversity. 476
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