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Figure 1. 4DNeX can generate dynamic point clouds from a single image. By modeling dynamic 3D point clouds as learned represen-
tations of RGB and XYZ, 4DNeX effectively leverages priors from existing video generation models to achieve high-quality results. The
resulting dynamic point clouds support downstream applications such as novel-view video synthesis.

Abstract

We present 4DNeX, the first feed-forward framework for
generating 4D (i.e., dynamic 3D) scene representations
from a single image. In contrast to existing methods that
rely on computationally intensive optimization or require
multi-frame video inputs, 4DNeX enables efficient, end-
to-end image-to-4D generation by fine-tuning a pretrained
video diffusion model. Specifically, 1) to alleviate the
scarcity of 4D data, we construct 4DNeX-10M, a large-
scale dataset with high-quality 4D annotations generated
using advanced reconstruction approaches. 2) we introduce
a unified 6D video representation that jointly models RGB
and XYZ sequences, facilitating structured learning of both
appearance and geometry. 3) we propose a set of simple
yet effective adaptation strategies to repurpose pretrained
video diffusion models for 4D modeling. 4DNeX produces
high-quality dynamic point clouds that enable novel-view
video synthesis. Extensive experiments demonstrate that
4DNeX outperforms existing 4D generation methods in effi-
ciency and generalizability, offering a scalable solution for
image-to-4D modeling and laying the foundation for gener-
ative 4D world models simulating dynamic scene evolution.

1. Introduction

The images we capture are 2D projections of the 4D (i.e.,
dynamic 3D) physical world. Creating a 4D scene from
such 2D observations, particularly from a single image, is
a highly challenging yet compelling task. As a core capa-
bility in generative modeling, image-to-4D generation lays
the foundation for building 4D world models that can pre-
dict and simulate dynamic scene evolution, enabling appli-
cations in AR/VR, film production, and content creation.

Existing approaches for 4D scene modeling can be
broadly classified into two categories. The first comprises
4D generation methods, which typically adopt represen-
tations such as Neural Radiance Fields (NeRF) [17] or
3D Gaussian Splatting (3DGS) [10]. These methods can
be further divided into feed-forward [22, 26, 35, 46] and
optimization-based variants [1, 16, 21, 38, 45, 48]. How-
ever, they either require video input or rely on object-
centric, computationally intensive optimization procedures.
The second category includes dynamic Structure-from-
Motion (SfM) approaches [9, 12, 31, 36, 42], which es-
timate dynamic 3D structures such as time-varying point
clouds from video sequences. However, these methods can-
not generate 4D representations from a single image.

To this end, we aim to develop a feed-forward framework
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for 4D scene generation from a single image. A straight-

forward solution is to fine-tune a pretrained video diffusion

model. However, this approach faces two core challenges:

1) how to mitigate the scarcity of 4D data, and 2) how to

adapt the pretrained model in a simple and efficient way.

For the first challenge, we curate 4DNeX-10M, a large-
scale dataset comprising both static and dynamic scenes,
with high-quality 4D annotations generated from monocu-
lar videos using state-of-the-art reconstruction methods [12,
30, 32, 33, 42]. To ensure geometric accuracy and scene di-
versity, we apply careful data selection, pseudo-annotation
generation, and multi-stage filtering. To address the second
challenge, we first introduce a unified 6D video representa-
tion that models RGB and XYZ sequences jointly, enabling
the structured modeling of both appearance and geometry.
We then systematically investigate different fusion strate-
gies between the two modalities and show that width-wise
fusion achieves the most effective cross-modal alignment.
Moreover, we incorporate a set of carefully designed tech-
niques, including XYZ initialization, XYZ normalization,
mask design, and modality-aware token encoding, to adapt
pretrained video diffusion models in a simple manner while
preserving their generative priors.

To summarize, we present 4DNeX, the first feed-forward
framework for image-to-4D generation (Fig. 1). We qualita-
tively demonstrate the plausibility of the generated dynamic
point clouds. Furthermore, to validate their utility, we lever-
age TrajectoryCrafter [39] to transform the generated 4D
point clouds into novel-view videos, achieving comparable
results to existing 4D generation methods. In addition, we
perform comprehensive ablation studies to validate the ef-
fectiveness of our proposed fine-tuning strategies.

Our main contributions can be summarized as follows:

* We propose 4DNeX, the first feed-forward framework for
image-to-4D generation, capable of producing dynamic
point clouds from a single image.

* We construct 4DNeX-10M, a large-scale dataset with
high-quality 4D annotations.

* We introduce simple yet effective strategies to adapt pre-
trained video diffusion models for 4D generation.

2. Related Work
2.1. Optimization-based 4D Generation

Recent methods leverage pre-trained diffusion models to
optimize 3D and 4D representations [10, 17, 34] via score
distillation sampling [19] or multi-view synthesis. A ma-
jor challenge is maintaining spatio-temporal consistency.
Some approaches [1, 5, 8, 13, 20, 38, 41, 45, 48] start
from static 3D representations and incorporate motion us-
ing video diffusion priors. Others [16, 18, 21, 23, 25, 37]
begin with generated videos and enforce multi-view consis-
tency to reconstruct 4D content. Beyond consistency issues,
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Figure 2. Visualization of 4DNeX-10M Dataset. Our dataset
spans a wide range of dynamic scenarios, including indoor, out-
door, close-range, far-range, static, high-speed, and human-centric
scenes. The word cloud summarizes common visual concepts cap-
tured in the dataset, while the 4D point clouds and camera trajec-
tories demonstrate the spatial precision of our pseudo-annotations.

these optimization-based techniques are typically compu-
tationally expensive, slow, and unstable due to multi-stage
training. In this work, we propose a feed-forward frame-
work to efficiently generate 4D representations, improving
scalability and speed.

2.2. Feed-forward 4D Generation

Feed-forward 4D generation methods directly produce 4D
representations in a single pass, offering efficiency and sta-
bility over optimization-based approaches. Existing works
either generate multi-view videos with implicit geome-
try [2, 11, 26, 39, 40, 46] or output explicit 4D rep-
resentations [22, 35] that struggle to generalize beyond
specific data sources. Specialized methods like Tesser-
Act [47] target robotic applications, while dynamic SfM
techniques [6, 9, 12, 31, 36, 42] reconstruct geometry from
videos rather than generating from images. In contrast, we
propose a general-purpose framework that efficiently gen-
erates full 4D representations from a single image.

3. 4DNeX-10M

To address the data scarcity in 4D generative modeling,
we introduce 4DNeX-10M, a large-scale hybrid dataset tai-
lored for training feed-forward 4D generative models. It ag-
gregates videos from public sources and internal pipelines,
encompassing both static and dynamic scenes. All data
undergoes rigorous filtering, pseudo-annotation, and qual-
ity assessment to ensure geometric consistency, motion di-
versity, and visual realism. As shown in Figure 2, our
proposed dataset encompasses a highly diverse range of
scenes, including indoor and outdoor environments, dis-
tant landscapes, close-range settings, high-speed scenarios,
static scenes, and human-inclusive situations. Furthermore,
4DNeX-10M encompasses a wide variety of lighting con-
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ditions and a profusion of human activities. Meanwhile,
we provide precise 4D pointmaps and camera trajectories of
these corresponding scenes. In total, 4DNeX-10M contains
over 9.2 million video frames with pseudo annotations. For
data curation, as illustrated in Figure 3, we curate this data
using an automated acquisition and filtering pipeline com-
prising several stages: 1) data cleaning, 2) data captioning,
and 3) 3D/4D annotation.

3.1. Data Preprocessing

Data Sources. We collect monocular videos from several
sources. DL3DV-10K (DL3DV) [14] and RealEstate10K
(RE10K) [49] offer static indoor and outdoor videos with
diverse camera trajectories. The Pexels dataset provides
a large pool of human-centric stock videos with auxiliary
metadata such as movements, OCR, and optical flow. The
Vimeo Dataset, selected from [4], contributes in-the-wild
dynamic scenes. Synthetic data sourced from [7] contains
dynamic sequences using video diffusion models (VDM).
Initial Filtering. For large-scale sources like Pexels, we
apply metadata filtering, including optical flow, motion,
and OCR, to eliminate non-compliant videos, such as those
exhibiting excessive motion blur or text-saturated videos.
Across all data sources, brightness filtering is applied based
on average luminance (0.299R + 0.587G + 0.114B) to dis-
card videos with extreme illumination conditions.

Video Captioning. For datasets without textual annota-
tions (e.g., DL3DV-10K and RE-10K), we use LLaVA-
Next-Video [44] to generate captions. We sample 32 frames
uniformly per video (or clip) and feed them to the LLaVA-
NeXT-Video-7B-Qwen2 model with the prompt: ”Please
provide a concise description of the video, focusing on the
main subjects and the background scenes.” For scenes with
consistent content (e.g., DL3DV-10K, Dynamic Replica),
we generate one caption per video. For RealEstate10K, we
split each video into clips and caption them separately.

3.2. Static Data Processing

To learn strong geometric priors, we curate static monocu-
lar videos from DL3DV-10K [14] and RE-10K [49]. These
cover a wide range of environments including homes,
streets, stores, and landmarks, with varied camera trajec-
tories providing rich multi-view coverage.

Pseudo 3D Annotation. As these datasets lack 3D ground-
truth, we employ DUSt3R [32], a stereo reconstruction
model, to generate pseudo point maps. For each video,
DUSt3R is applied exhaustively over view pairs to form a
view graph, followed by global fusion (per the original pa-
per) to recover a consistent scene-level 3D structure.
Quality Filtering. To ensure high-quality annotations,
we define two metrics using the confidence maps from
DUSt3R: 1) the Mean Confidence Value (MCV), averag-
ing pixel-wise confidence scores over all frames, and 2) the
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Figure 3. Data Curation Pipeline. The video data is collected
from various sources and then selected by video filtering during
Data Cleaning. The selected data is captioned via LLaVA-Next-
Video model in Video Captioning. The selected data is processed
and finally filtered out the video with high-quality annotation dur-
ing 3D/4D Annotation. Data statistics is provided in bottom right.

High-Confidence Pixel Ratio (HCPR), representing the pro-
portion of pixels exceeding a threshold 7. We select the
top-r% of clips for each metric and retain over 100K high-
quality 28-frame clips with reliable pseudo point map anno-
tations for static training.

3.3. Dynamic Data Processing

To enrich 4DNeX-10M with dynamic content, we collect
monocular videos from Pexels, VDM, and Vimeo. These
datasets contain diverse real-world scenes with motion and
depth variation but lack ground-truth geometry.

Pseudo 4D Annotation. We employ MonST3R [42]
and MegaSaM [12], two advanced dynamic reconstruction
models, to generate pseudo 4D annotations. Each model
recovers temporally coherent 3D point clouds and globally
aligned camera poses from monocular videos, enabling the
construction of time-varying scene representations.
Multi-Stage Filtering. To select high-quality clips, we
apply three sequential filtering strategies. First, we use
the final alignment loss in the global fusion stage, which
reflects multi-view consistency and flow agreement with
RAFT [28], to filter out low-quality reconstructions. Sec-
ond, we assess camera smoothness (CS) by computing
frame-wise velocity and acceleration from camera transla-
tions, and estimate local trajectory curvature as:

_ vig =il
[visal? + [[vill* + €

Kq e> 0. 1)
Clips with low average velocity, acceleration, and curvature
are retained. Third, we apply the same Mean Confidence
Value (MCV) and High-Confidence Pixel Ratio (HCPR)
used in the static pipeline. After filtering, we retain ap-
proximately 32K clips from the MonST3R-processed set,
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Figure 4. Comparison of fusion strategies for joint RGB and
XYZ modeling. We explore five fusion strategies and analyze
their impact on model compatibility and cross-modal alignment.

5K clips from VDM, and 27K from Pexels, and over 80k
clips from MegaSaM-processed set. Together, these yield
a total over 110K high-quality clips with pseudo 4D an-
notations, enabling robust modeling of dynamic 3D scenes
across a wide range of motions and appearances.

4. 4DNeX

4.1. Problem Formulation

Given a single image Iy € R7*W*3 we aim to construct

a 4D (i.e., dynamic 3D) representation of the underlying
scene geometry. This task can be formulated as learning a
conditional distribution over dynamic point clouds:

p (P} | Do) )

where {P; tT:Ol denotes the sequence of dynamic point
clouds. However, directly modeling point clouds is chal-
lenging due to their highly unstructured nature. To address
this, inspired by [43], we use a pixel-aligned point map rep-
resentation, XYZ, where each frame XXY% ¢ R#XWx3 ep

codes the 3D coordinates of each pixel in the global coordi-
nates. This format provides a structured and learnable struc-
ture, making it compatible with existing generative models.
Instead of directly modeling { P; }, we reformulate the prob-
lem as predicting paired RGB and XYZ image sequences:

p ({XfP, XXV 1) @)
Accordingly, the joint distribution can be also factorized as:
p ((XOPY S AT A S | o) )

Therefore, a 4D scene can be effectively represented using
a 6D video composed of paired RGB and XYZ sequences.
This simple and unified representation offers two key ad-
vantages: it enables explicit 3D consistency supervision
through pixel-aligned XYZ maps, and eliminates the need
for camera, facilitating scalable and robust 4D generation.
To model this distribution, we adopt Wan2.1 [29], a
video diffusion model trained under the flow matching [15]
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Figure 5. Comparison of spatial fusion strategies. We compare
frame-, height-, and width-wise fusion in terms of the interaction
distance between RGB and XYZ tokens.

framework. We extend its image-to-video capability to gen-
erate 6D videos as V = {X[IGB X V21T v s first
encoded into a latent space via a VAE encoder &: z; =
E(V), and interpolating with a noise latent xy ~ N (0, I):

= (1 —t)xo +tay, t~U(0,1). )
And a velocity predictor w is trained to regress the velocity
between endpoints:

Ly =E |:||u(xtacimg,ctxt7t) — (21 — mo)llz} , (6)

where cjmg and ci; denote image and text condition embed-
dings. This formulation enables efficient learning of tempo-
rally coherent and geometrically consistent 6D videos.

4.2. Fusion Strategies

To finetune the video diffusion model for joint RGB and
XYZ generation, a key challenge is designing an effec-
tive fusion strategy that enables the model to leverage both
modalities. Our goal is to exploit the strong priors of
pretrained models through simple yet effective fusion de-
signs. Latent concatenation is a widely adopted technique
for joint modeling. We systematically explore fusion strate-
gies across different dimensions, as illustrated in Fig. 4.
Channel-wise Fusion. A straightforward approach is to
concatenate RGB and XYZ along the channel dimension,
and insert a linear layer (a.i) or a modality switcher (a.ii)
to adapt the input and output formats. However, this strat-
egy disrupts the input and output distributions expected by
the pretrained model, which undermines the benefits of pre-
training. It requires large-scale data and substantial compu-
tational resources to achieve satisfactory performance.
Batch-wise Fusion. To maintain pretrained distributions,
this strategy treats RGB and XYZ as separate samples and
uses a switcher to control the output modality (b.7). While it
preserves unimodal performance, it fails to establish cross-
modal alignment. Even with additional cross-domain atten-
tion layers (b.ii), the modalities remain poorly correlated.
Frame-/Height-/Width-wise Fusion. These strategies
concatenate RGB and XYZ along the frame (c), height (d),
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Figure 6. Overview of 4DNeX. Given a single image and an initialized XYZ map, 4DNeX encodes both with a VAE encoder and fuses
them via width-wise concatenation. The fused latent, combined with a noise latent and a guided mask, is processed by a LoRA-tuned
Wan-DiT model to jointly generate RGB and XYZ videos. A lightweight post-optimization recovers camera and depths from the outputs.

or width (e) dimensions, preserving the distributions of the
pretrained model while enabling cross-modal interaction
within a single sample. We analyze them from the per-
spective of token interaction distance. Intuitively, shorter
interaction distance between corresponding tokens makes it
easier for the model to learn cross-modal alignment. As
shown in Fig. 5, width-wise fusion yields the shortest in-
teraction distance, leading to more effective alignment and
higher generation quality, as confirmed in Sec. 5.3.

4.3. Network Architecture

As illustrated in Fig. 6, our framework takes a single im-
age Iy € R¥*Wx3 and an initialized XYZ map X" ¢
RIXWX3 a5 conditions. Both are encoded by a frozen VAE
encoder and concatenated along the width dimension. This
fused condition is then combined with a noise latent x; and
a binary mask M along the channel dimension, and fed into
a pretrained DiT with LoRA tuning. The output latent is de-
coded by a VAE decoder to generate paired RGB and XYZ
video sequences. A lightweight post-optimization step fur-
ther recovers camera and depths from the predicted outputs.
XYZ Initialization. We initialize the first-frame XYZ map
Xt ysing a sloped depth plane. Specifically, we define a
normalized 2D coordinate grid over the range [—1,1]? and
compute the initial XYZ values as:

y 2 2 2i
X;j;”:(Wil—l, 77 b ——1>. )

H-1
This results in a sloped plane where depth values gradually
increase from the bottom to the top of the image, reflecting
common depth priors in natural scenes (e.g., sky regions ap-
pearing farther away). Such initialization provides a stable
starting point for geometry learning.

XYZ Normalization. Since the VAE is pretrained on RGB
images, directly encoding XYZ inputs with different distri-
butions can cause instability and suboptimal performance.
To mitigate this issue, inspired by [3], we apply a modality-
aware normalization strategy to adapt the XYZ latent to
the pretrained VAE’s distributional priors. Specifically, we
compute the mean p and standard deviation o of XYZ la-
tent across the training dataset, and normalize the encoded
representation as:

="t (8)

o

where = denotes the XYZ latent. Before passing into the
VAE decoder, we perform de-normalization to recover the
original scale:

rT=2T -0+ U.

9
Mask Design. Following [29], we introduce a guided mask
M € [0,1]T*H*W where M;;; = 1 indicates a known
pixel and M; ; ; = O indicates a pixel to be generated. Since
we use an approximate initialization for the first-frame XYZ
map, we assign a soft mask:

XYZ __
M2 = 0.5,

vi, ], (10)
which encourages the model to refine the initial geometry.

Modality-Aware Token Encoding. To preserve pixel-
wise alignment across modalities during joint modeling, we
adopt a shared rotary positional encoding (RoPE) [24] for
RGB and XYZ tokens. To further distinguish their seman-
tic differences, we introduce a learnable domain embed-
ding. Given RGB and XYZ token sequences #RB 2XYZ ¢

REXD we apply the following encoding:

2B9B  RoPE(z"“P) + erap,

X% ROPE(JUXYZ) +exyz,

an
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Table 1. 4D Generation Results on VBench [7]. We report the
consistency, dynamics, and aesthetics of the generated videos, to-
gether with the inference time of each method.

Method ‘Consistency Dynamic Aesthetic Time
4Real [38] 95.7% 323% 50.9% 90min
Freed4D [16] 96.0% 474%  64.7% 60min
Ours 96.4% 58.0% 59.5% 15min

Animate124 [45]]  90.7% 454%  42.3% \
FreedD [16] 96.9% 40.1%  60.5% 60min
Ours 97.2% 583%  53.0% 15min

GenXD [46] 89.8% 98.3%  38.0% \
Freed4D [16] 96.8% 100.0% 57.9% 60min
Ours 96.8% 100.0% 52.4% 15min

where RoPE(-) denotes the shared rotary positional encod-
ing, and ergp,exyz € R!*P are learnable domain em-
beddings broadcasted across the sequence.

Post-Optimization. Since our method produces XYZ
videos that represent dense 3D points in global coordi-
nates, we can recover the corresponding camera parameters
C = (R,t,K) and depth maps d for the generated RGB
frames via a lightweight post-optimization step. Specifi-
cally, we minimize the reprojection error between the gen-
erated and back-projected 3D coordinates:

; ~XYZ _ ~XYZ|?
RIyItl’lI(n’dZqu»] i ||27 (12)
ij
where quyZ denotes the generated 3D coordinate, and

Y # is computed by back-projecting depth into 3D space:

G5 =R (A ,507) . (3)
This optimization is efficient and can be parallelized across
views, producing physically plausible and geometrically
consistent estimates of camera poses and depth maps.

5. Experiments
5.1. Setting

Baselines. Following [16], we compare our method with
existing 4D generation approaches, which can be grouped
into two categories: text-to-4D and image-to-4D methods.
For text-to-4D, we compare against 4Real [38], a state-of-
the-art method in this category. For image-to-4D, we bench-
mark against the state-of-the-art Free4D [16], the feed-
forward method GenXD [46], and the object-levle approach
Animate124 [45]. For text-to-4D methods, we first gener-
ate an image from the input text prompt and then convert it
into the image-to-4D setting. To ensure fairness, we use the
same single-image or text prompt during evaluation.

Table 2. User study results. Percentages indicate user preference.

Comparison ‘ Consistency Dynamic  Aesthetic

Ours / FreedD [16][56% [ 44% 59% | 41% 53% | 47%
Ours / 4Real [38] [79% / 21% 85% / 15% 93% [ 7%
Ours / Anil24 [45]|75% | 25% 56% | 44% 100% / 0%
Ours / GenXD [46]{90% / 10% 85% [/ 15% 100% / 0%

Datasets and Metrics. We conduct evaluations on a col-
lection of images and texts sourced from the official project
pages of the compared methods. To assess the quality of
generated novel-view videos, We report standard VBench
metrics [7], including Consistency (averaged over subject
and background), Dynamic Degree, and Aesthetic Score.
Given the lack of a well-established benchmark for 4D gen-
eration, we further conduct a user study involving 23 evalu-
ators to enhance the reliability of our evaluation.
Implementation Details. We opt for the wvanilla
Wan2.1 [29] image-to-video model as our final base model
with a total of 14B parameters. For the modality-aware nor-
malization, we trace the statistics (mean and standard devi-
ation) of XYZ domain in the latent space over 5K random
samples from the training dataset. It results in 4 = —0.13
and o = 1.70, which serves as the constant normalization
term for XYZ latent during training and inference. To fully
transfer the capability of original image-to-video generation
from the base model to the target image-to-4D task, we train
a LoRA with a rank of 64 for the sake of parameter and
data efficiency instead of full-parameter supervised finetun-
ing. The Lora finetuning is run with a batch size of 32 using
an AdamW optimizer. The learning rate is set to 1 x 10~*
with a cosine learning rate warmup. The training is dis-
tributed on 32 NVIDIA A100 GPUs with 5k iterations at a
spatial resolution of 480 x 720 for each modality. To gen-
erate novel-view videos, we first produce a 4D point cloud
representation of the scene using our feed-forward model,
and then render the results using [39].

5.2. Main Results

4D Geometry Generation. As illustrated in Fig. 7, we vi-
sualize the paired RGB and XYZ video generated from a
single image. The results demonstrate that our method can
simultaneously infer plausible scene motion and the cor-
responding 4D geometry from a single image. This high-
quality geometric representation of dynamic scenes is es-
sential for consistent and photorealistic novel view synthe-
sis in the subsequent rendering stage.

Novel-View Video Generation. Quantitative results on
VBench [7] are presented in Table 1. Our method achieves
performance comparable to state-of-the-art approaches, and
notably outperforms others in terms of Dynamic Degree.
Free4D [16] benefits from the proprietary Kling [27] model
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Figure 7. Generated RGB and XYZ sequences from single-image input. Each pair shows RGB and XYZ video sequence.

Animate124 Ours 4Real Ours 7 Free4D Ours

Figure 8. Qualitative comparison. Our method generates results with higher consistency, better aesthetics, and notably larger motion.
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Figure 9. Ablation study on fusion strategies. We compare channel-wise (a), batch-wise (b), frame-wise (c), height-wise (d), and our

width-wise fusion (e) for RGB and XYZ inputs.

for image animation, which contributes to its higher aes-
thetic scores. Qualitative comparisons are shown in Fig. 8,
where our results demonstrate more significant and coher-
ent scene dynamics, especially under camera motion. Fur-
thermore, user study results (Table 2) show that our method
is consistently preferred over most baselines in terms of
consistency, dynamics, and aesthetics. Although the results
are comparable to Free4D, it is important to note that the
evaluation was conducted on the Free4D test set, which pre-
dominantly features object-centric scenes. In contrast, our
method generalizes effectively to diverse, in-the-wild sce-
narios, as shownw in the supplementary material. In addi-
tion, our method is feed-forward and highly efficient, capa-
ble of generating a 4D scene within 15 minutes. By compar-
ison, Free4D relies on a time-consuming pipeline, typically
requiring over one hour to produce results.

5.3. Ablations and Analysis

To validate the effectiveness of our used width-wise fusion
strategy and support the analysis presented in Sec. 4.2, we
conduct an ablation study comparing five different fusion
designs, as illustrated in Fig. 9. Among these, channel-wise
fusion introduces a severe distribution mismatch with the
pretrained prior, often leading to noisy or failed predictions
(a.i-a.ii). Batch-wise fusion preserves unimodal quality but
fails to capture cross-modal alignment, yielding inconsis-
tent RGB-XYZ correlation (b.i-b.ii). Frame-wise (¢) and
height-wise (d) strategies provide moderate improvements,
yet still suffer from suboptimal alignment and visual qual-
ity. In contrast, our width-wise fusion brings corresponding
RGB and XYZ tokens closer in the sequence, shortening the
cross-modal interaction distance. This facilitates more ef-
fective alignment and yields sharper, more consistent geom-
etry and appearance across frames, as shown in Fig. 9 (e).

6. Conclusion

We propose 4DNeX, the first feed-forward model for
single-image 4D scene generation. Our approach fine-
tunes a pretrained video diffusion model to enable efficient
image-to-4D generation. To tackle data scarcity, we intro-
duce 4DNeX-10M, a large-scale dataset with pseudo-4D la-
bels. We also design a unified 6D video representation that
jointly encodes appearance and geometry, alongside effec-
tive adaptation strategies to repurpose video diffusion mod-
els for 4D tasks. Experiments show that 4DNeX generates
high-quality point clouds, serving as a strong geometric ba-
sis for novel-view videos synthesis. It achieves competitive
results with higher efficiency and better generalization, ad-
vancing scalable 4D world modeling from single images.

Limitations and Future Work While 4DNeX demon-
strates promising results in single-image 4D generation,
several limitations remain. First, our method relies on
pseudo-4D annotations for supervision, which may intro-
duce noise or inconsistencies, particularly in fine-grained
geometry or long-term temporal coherence. Introducing
high-quality real-world or synthetic dataset would be fruit-
ful for general 4D modeling. Second, although the image-
driven generated results are 4D-grounded, controllabilities
over lighting, fine-grained motion and physical property
are still lacking. Third, the unified 6D representation as-
sumes relatively clean input images and may degrade under
occlusions, extreme lighting conditions, or cluttered back-
grounds. Future work includes improving temporal model-
ing with explicit world priors, incorporating real-world 4D
ground-truth data when available, and extending our frame-
work to handle multi-object or interactive scenes. Addition-
ally, integrating multi-modal inputs like text or audio could
further enhance controllability and scene diversity.
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