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Abstract

Large language models (LLMs) have signifi-001
cantly advanced various natural language pro-002
cessing tasks, but deploying them remains com-003
putationally expensive. Knowledge distillation004
(KD) is a promising solution, enabling the trans-005
fer of capabilities from larger teacher LLMs006
to more compact student models. Particularly,007
sequence-level KD, which distills rationale-008
based reasoning processes instead of merely009
final outcomes, shows great potential in en-010
hancing students’ reasoning capabilities. How-011
ever, current methods struggle with sequence-012
level KD under long-tailed data distributions,013
adversely affecting generalization on sparsely014
represented domains. We introduce the Multi-015
Stage Balanced Distillation (BalDistill) frame-016
work, which iteratively balances training data017
within a fixed computational budget. By dy-018
namically selecting representative head domain019
examples and synthesizing tail domain exam-020
ples, BalDistill achieves state-of-the-art perfor-021
mance across diverse long-tailed datasets, en-022
hancing both the efficiency and efficacy of the023
distilled models.024

1 Introduction025

Large language models (LLMs) like GPT-4 and026

LLaMA have revolutionized tasks ranging from027

text generation to language translation through their028

deep understanding and generation of human-like029

text (OpenAI, 2023; Touvron et al., 2023; Chiang030

et al., 2023; Jiang et al., 2023). Despite their suc-031

cess, the deployment of these models is hindered by032

their substantial size and computational demands,033

especially in environments with limited resources.034

Knowledge distillation (KD) offers a viable so-035

lution by transferring knowledge from expensive036

teacher models to smaller, efficient student models.037

Specifically, sequence-level KD focuses on distill-038

ing rationale-based reasoning processes rather than039

final outcomes. It leverages the teacher’s reasoning040

processes, encapsulated in chain-of-thought (CoT)041

rationales, to enhance the student models’ gener- 042

ative capabilities (Kim and Rush, 2016; Ho et al., 043

2022; Shridhar et al., 2022; Hsieh et al., 2023). 044

However, there are a few challenges to fully 045

leverage the power of sequence-level KD, as fol- 046

lows. (C1) Sequence-level KD encounters signifi- 047

cant challenges when training with long-tailed data 048

distributions, which are prevalent in real-world sce- 049

narios — data often follows a power-law distribu- 050

tion with a few dominant classes (head) and many 051

rare classes (tail) (Liu et al., 2019). Such distri- 052

butions feature a few dominant classes and many 053

underrepresented ones, leading to models that gen- 054

eralize poorly on sparsely represented domains. 055

(C2) Traditional KD methods in the text area to 056

solve long-tail challenges, often reliant on direct 057

access to model weights or loss adjustment primar- 058

ily suited for straightforward classification tasks 059

(Zhou et al., 2023; Schick and Schütze, 2021; Dai 060

et al., 2023; Zhang et al., 2022; Tepper et al., 2020), 061

falter under the complexities of sequence-level KD, 062

especially when the teacher model is a black box 063

and the task is generative, which is our target. (C3) 064

Addressing this imbalance is critical, yet resource- 065

intensive, as it typically requires generating a large 066

volume of synthetic data to balance the dataset Tep- 067

per et al. (2020). Moreover, naively up-sampling 068

the long-tailed dataset may dramatically increase 069

the number of calls to the teacher models. Budget 070

constraints play a crucial role in KD for black-box 071

LLMs, as querying the teacher for rationales can 072

be costly and time-consuming (Chen et al., 2023; 073

Zhou and Ai, 2024). 074

Our proposed solution, the Multi-Stage Bal- 075

anced Distillation (BalDistill), tackles all the chal- 076

lenges above by strategically generating balanced 077

training sets within budget constraints and itera- 078

tively fine-tuning the student model with actively 079

selected and synthetic data for multiple stages. 080

BalDistill progressively refines the training data 081

by selecting key examples from well-represented 082
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Figure 1: Overview of the proposed iterative BalDistill framework. The framework is composed of multiple
stages. For each stage, we apply the balancing policy to decide the data distribution in the training batch. For head
domains with sufficient data, we actively extract the examples by IFD metrics using the student model. For the
tail domains, we call the teacher model to generate the synthetic examples and the corresponding rationales. The
teacher model finally annotates the balanced training batch and fine-tunes the student model.

domains and generating necessary synthetic data083

for underrepresented ones, ensuring comprehen-084

sive domain coverage and model robustness. By085

dynamically selecting representative head domain086

examples and synthesizing tail domain examples,087

BalDistill achieves state-of-the-art (SoTA) perfor-088

mance on various long-tailed datasets, enhancing089

both the efficiency and efficacy of the method.090

Our contributions are summarized as follows:091

• Innovative Problem Framing: We address the092

under-explored challenge of applying sequence-093

level KD to long-tailed distributions, where the094

teacher model is a black-box LLM.095

• Strategic Framework: BalDistill innovatively096

combines active example selection with synthetic097

data generation for multiple stages to maintain098

training balance within predefined budget limits.099

• SoTA Performance: Our framework demonstra-100

bly improves the student models’ effectiveness101

and robustness across diverse domains, setting102

new benchmarks in performance. We empiri-103

cally demonstrate that our distilled student mod-104

els achieve state-of-the-art performance across a105

range of benchmark datasets.106

2 Related Work107

Knowledge Distillation uses the outputs of a larger108

LLM (Teacher), such as ChatGPT (OpenAI, 2023),109

to train a smaller model (Student), such as LLaMa-110

7B (Touvron et al., 2023). For details of knowl- 111

edge distillation (KD) of large language models, 112

we refer to the survey for more details (Xu et al., 113

2024). In this work, we focus on KD with black- 114

box teacher models. There are two lines of work 115

with respect to knowledge distillation. The first 116

is to ask teacher models to generate the final an- 117

swers and to fine-tune on the final answers (Zhou 118

et al., 2023; Schick and Schütze, 2021). Another 119

line of work asks teacher models to generate ra- 120

tionales at the reasoning process and fine-tunes 121

student models on the rationales in the sequence 122

level to improve their reasoning ability (Ho et al., 123

2022; Shridhar et al., 2022; Hsieh et al., 2023), 124

which proves to be more effective. In this work, we 125

mainly discuss using a teacher model to generate 126

rationales and improve the student’s reasoning abil- 127

ity on a long-tailed dataset. Despite the progress 128

of KD in the LLM era, existing works fail to estab- 129

lish a pipeline to gain knowledge from long-tailed 130

datasets with the sequence-level KD, as few ratio- 131

nale examples are provided for tail knowledge. 132

Long-Tail Learning focuses on long-tail dis- 133

tributed data and has been an emerging topic of 134

interest in the NLP community (Liu et al., 2019; 135

Wang et al., 2017; Godbole and Jia, 2022; Dai 136

et al., 2023; Zhang et al., 2022). Approaches to 137

solving the long-tail problem include rebalancing, 138

information augmentation, and module improve- 139

ment (Zhang et al., 2021; He et al., 2021; Cui 140

et al., 2021). Despite the importance of long-tail 141
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learning, studies have shown that LLMs struggle142

to learn long-tail knowledge (Kandpal et al., 2023;143

Sun et al., 2023). In this work, we propose to im-144

prove LLMs’ ability to learn long-tail knowledge145

via multi-stage distillation over balanced datasets.146

Active Learning aims to reduce labeling effort147

by selecting only the most useful examples. Tra-148

ditional active learning can be categorized into149

uncertainty-based methods (Prabhu et al., 2019;150

Margatina et al., 2021) and diversity-based meth-151

ods (Ru et al., 2020; Ash et al., 2019). In the LLM152

era, active learning has been used to reduce hu-153

man annotation costs by (1) strategically selecting154

the most informative examples for human feed-155

back or annotation (Margatina et al., 2023; Os-156

band et al., 2022; Wang et al., 2020) and (2) inte-157

grating language models as annotators within an158

active learning framework without human supervi-159

sion (Xiao et al., 2023; Rouzegar and Makrehchi,160

2024; Zhang et al., 2023). In this work, we propose161

to solve the long-tail problem in the student LLM162

by actively distilling knowledge from a black-box163

teacher LLM to meet the budget requirement.164

3 Methodology165

3.1 Problem Statement166

We define our research problem as follows: Given167

the teacher LLM (Mt), the student LLM (Ms),168

a long-tailed dataset D (with domain number169

[d1, d2, . . . , dl] for l domains in total) and a fixed170

budget B to query the teacher, we seek to propose171

an efficient framework to fine-tune an effective and172

robust student model, Ms, over D.173

3.2 Overall Approach174

To mitigate the performance bias in KD caused175

by long-tailed datasets within budget constraints,176

we employ a strategy that combines synthetic177

data augmentation with active selection. This ap-178

proach ensures effective fine-tuning across both179

well-represented (‘head’) and underrepresented180

(‘tail’) domains. As depicted in Figure 1, we pro-181

pose a multi-stage framework to create the training182

data iteratively. We operate in a pool-based setting183

where a large dataset, denoted as D, is available184

but lacks annotations from a teacher model.185

At each stage of our BalDistill process, we first186

implement a balancing policy, which we have de-187

signed, to determine the appropriate data distribu-188

tion for each domain within the training batch. This189

policy is based on the principles of data equality190

and training effectiveness across domains, aiming 191

to optimize learning outcomes despite data scarcity 192

in certain areas. The total number of stages is pre- 193

defined based on the consideration of efficiency 194

and the optimal performance. 195

For domains well-represented in our dataset D 196

(referred to as ‘head domains’), we employ active 197

selection techniques (Touvron et al., 2023; Yuan 198

et al., 2020) using the fine-tuned student model 199

Ms to identify and extract the most informative 200

examples from the pool. Conversely, for domains 201

lacking sufficient data (‘tail domains’), we utilize 202

the teacher model Mt to generate both synthetic 203

samples and corresponding annotations, enriching 204

the training material available. 205

After selecting and/or generating these samples, 206

we query the teacher model to provide detailed 207

rationales for examples in the training batch. These 208

annotated examples are then used to fine-tune the 209

student model Ms in preparation for the next stage. 210

Detailed descriptions of these components, along 211

with the algorithms outlining this procedure, are 212

presented in Algorithm 1 in Appendix B. 213

3.3 Balancing Policy 214

Considering K total stages in our framework, we 215

first evenly divide our budget B into K parts, which 216

means that for each stage, we create a small train- 217

ing batch with B
K examples extracted from D with 218

teacher-annotated rationales. Within a small train- 219

ing batch, we propose two strategies to allocate the 220

budget over different domains. 221

Naive Balancing Since our goal is to mitigate 222

the bias towards head domains, our first balanc- 223

ing policy is to use naive balancing, which selects 224

the same number of inputs for each domain in the 225

training batch. Formally, the number of samples 226

for each domain in the small training batch is B
Kl , 227

where l is the number of domains in the dataset. 228

Adaptive Balancing One of our staged learn- 229

ing framework’s key features is utilizing the fine- 230

tuned student model to actively select representa- 231

tive inputs from well-represented domains, known 232

as head domains. However, employing a naive 233

balancing policy typically results in the dispropor- 234

tionate allocation of the training budget to data 235

from underrepresented domains, or tail domains. 236

This training batch may lead the fine-tuned student 237

model to struggle to select truly effective examples 238

from the head domains, particularly in the initial 239

stages. Such selections are crucial for the model to 240
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learn effectively from these domains. To address241

this, we implement an adaptive balancing policy.242

This policy starts by constructing the training batch243

with a distribution akin to random selection, thus244

primarily focusing on head data in the early stages245

to ‘warm up’ the model. As the process advances,246

the policy gradually shifts towards a more balanced247

distribution by the final stage, ensuring comprehen-248

sive learning across both head and tail domains.249

Formally, the number of examples for each do-250

main is the weighted average between the num-251

bers for random selection and the numbers for252

naive balancing. For stage i, domain d, we se-253

lect (nd
N · B

K ) · K−i
K + B

Kl ·
i
K examples for domain254

d to build the training batch for adaptive balanc-255

ing, where N and nd are the total number and the256

domain size in the original data D.257

Then, domains are naturally categorized based258

on whether the number of required samples per259

domain exceeds the available samples in the pool.260

Domains requiring more samples than available are261

designated as ‘head domains’ for that particular262

stage, while those with fewer required examples263

than available are categorized as ‘tail domains.’264

For tail domains, where there are insufficient265

samples in the dataset D, we rely on the teacher266

model to generate both the samples and their cor-267

responding rationales, detailed in Section 3.4. In268

contrast, for head domains, which have a sufficient269

number of samples available to meet the demands270

of the training batch, we utilize the fine-tuned stu-271

dent model to actively select the most representa-272

tive samples, as discussed in Section 3.5.273

It is important to note that the classification of274

domains as head or tail can vary across different275

stages of the training process, depending on the276

evolving needs and data availability.277

3.4 Teacher Data Augmentation278

Motivated by the effectiveness of synthetic dataset279

generated by black-box LLMs (OpenAI, 2023; Rad-280

ford et al., 2019; Zhou et al., 2024), we utilize the281

teacher LLMs to generate synthetic samples and282

corresponding annotations to upsample data for tail283

domains. To save the annotation budget, we require284

the teacher model to compose the sample and the285

corresponding rationales at the same time.286

Suppose that we need m synthetic examples for287

domain a to satisfy the training batch requirement.288

Given an instruction following prompt Pc, com-289

posed of three demonstrations from domain a, and290

teacher model Mt, we employ stochastic temper- 291

ature sampling with a fixed temperature and re- 292

peat the process m times with generated samples 293

x̂a1, · · · x̂am and rationales ŷa1, · · · ŷam: 294

x̂ai, ŷai = Mt(Pc, a) for i ∈ {1, · · · ,m} 295

Then we add the generated samples and ratio- 296

nales to the training batch and combine with the ex- 297

tracted samples from D. We present two examples 298

of synthetic inputs and rationales from the teacher 299

model in Table 9 in Appendix B. The case study 300

suggests the effectiveness of the teacher model in 301

generating tail examples. 302

3.5 Student Active Selection 303

For head domains, our strategy involves actively se- 304

lecting instances from the original dataset to meet 305

the numeric requirements of the balancing policy. 306

We aim to mitigate information loss from data 307

downsampling through this active data acquisition. 308

The objective is to identify the most challenging or 309

uncertain instances for the student model, thereby 310

optimizing its learning trajectory. 311

To quantify instance uncertainty, we adapt the 312

Instruction Following Difficulty (IFD) metric orig- 313

inally proposed by Li et al. (2024a,b). The IFD 314

scores are used to measure a training instance’s 315

uncertainty level as perceived by the student model. 316

IFD is calculated as the ratio of the perplexity of 317

generating a response y with an input x to the per- 318

plexity of generating y without x: IFD(x, y) = 319
PPL(y|x)
PPL(y) , where PPL represents perplexity, a metric 320

widely used to evaluate language model perfor- 321

mance (Jelinek et al., 1977). Studies have shown 322

that IFD scores offer greater efficiency in data se- 323

lection compared to methods like K-means diver- 324

sity or sole reliance on perplexity (Li et al., 2024a; 325

Settles, 2009; Yuan et al., 2020). 326

A higher IFD score indicates an increased dif- 327

ficulty for the model in generating the response, 328

highlighting the instance’s value for training (Li 329

et al., 2024a). Unlike the approach in Li et al. 330

(2024a), which utilizes ground-truth or advanced 331

LLM-generated responses y, our setting imposes 332

budge constraints that prevent such usage. Instead, 333

we calculate IFD using rationals ŷs generated by 334

the previously fine-tuned student model, allowing 335

us to assess the model’s self-uncertainty and con- 336

serve the annotation budget from the teacher model. 337

At last, we rank the inputs by their IFD scores, 338

selecting those with the highest values to include 339

in the bath, as specified by the balancing policy. 340
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3.6 Reasoning Generation and Fine-tuning341

Building on methodologies from prior research that342

focus on distilling reasoning abilities from black-343

box LLMs (Ho et al., 2022; Hsieh et al., 2023),344

we employ a zero-shot CoT approach, where the345

teacher model is prompted to generate a reasoning346

explanation ŷt for the samples in our constructed347

training batch. This zero-shot setting is crucial for348

demonstrating the model’s ability to reason based349

on its pre-existing knowledge alone (Brown et al.,350

2020). In our experimental setup, which utilizes351

labeled datasets lacking rationale annotations, the352

final ground truth answer is included in the prompt.353

This inclusion ensures that the generated explana-354

tions are aligned with the correct outcomes, en-355

hancing the accuracy and relevance of the CoT356

reasoning. It is important to note that for synthetic357

samples generated from tail domains in 3.4, we do358

not perform additional annotations in this part to359

maintain adherence to budget constraints.360

After gathering the required samples and their361

associated rationales in the training batch, we in-362

tegrate this batch with the annotated data accumu-363

lated from previous stages. This approach ensures364

that our student model is exposed to a diverse and365

comprehensive dataset, which helps mitigate the366

risk of overfitting — a common challenge in ma-367

chine learning models as identified in prior studies368

(Dor et al., 2020). To facilitate this, we reinitialize369

and fine-tune the student model on the compiled370

rationale sequences from scratch at each stage.371

The fine-tuning is performed using autoregres-372

sive language modeling with a cross-entropy loss,373

aligning with the original pre-training objectives of374

the student model (Touvron et al., 2023).375

4 Experiment376

Through our extensive empirical analysis, we aim377

to address the following research questions:378

• RQ1: How effective is our KD framework com-379

pared to previous KD baseline methods?380

• RQ2: How important is each component (balanc-381

ing policy and active learning) to the framework?382

• RQ3: How well does our method perform with383

different student models and budget restrictions?384

Dataset To verify the effectiveness of our frame-385

work on various reasoning tasks, we evaluate our386

method on five long-tailed datasets, following pre-387

vious work (Yu et al., 2023; Dai et al., 2023; Huang388

Dataset # Budget # Test # Domain Metric Task

R52 2,600/5,200 2,570 52 F1 TC
Reuters 4,500/9,000 3,745 90 F1 TC
Abstractive QA 5,000/10,000 10,000 5 F1 QA
Multi-choice QA 5,000/8,000 10,520 10 Accuracy QA
Math 2,100/3,500 5,000 7 Accuracy Arithmetic

Table 1: Dataset statistics. TC and QA represent the
text classification and question answering, respectively.

et al., 2021). These include text classification: 389

R52 and Reuters (Hayes and Weinstein, 1990), 390

question answering: AbstractiveQA and Multiple- 391

choiceQA (Dai et al., 2023) and arithmetic: MATH 392

(Hendrycks et al., 2021). For text classification 393

datasets, we treat the label of inputs as the do- 394

main; for other datasets, the domain information 395

of inputs is annotated as metadata from the data 396

provider. The detailed construction process and do- 397

main information for these datasets can be found in 398

Appendix A. We also show two example distribu- 399

tions of the datasets in Figure 5 in Appendix A. For 400

each dataset, we prepare two budget settings for 401

the experiment. In Table 1, we present the budget 402

number, the test number, the domain number, and 403

the evaluation metric of all five datasets. 404

Evaluation metrics Since we are dealing with 405

long-tailed imbalanced data, for each dataset, we 406

choose to use both the micro- and macro-averages 407

to evaluate the method robustness (Henning et al., 408

2022). For the classification datasets (R52 and 409

Reuters), we report micro-F1 and macro-F1, where 410

micro-F1 is a global average F1 score and macro- 411

F1 is computed by taking the unweighted mean 412

of all the per-class F1 scores (Harbecke et al., 413

2022). For other datasets, we also report the micro- 414

/macro-F1 for AbstractiveQA datasets and micro- 415

/macro-accuracy for Math and Multi-choiceQA 416

datasets. Note that the F1 score for the AbstractQA 417

is the word-level F1 score between the token list 418

of ground truth answer and the generated answer, 419

different from the F1 for the classification task. 420

Model setup For the teacher model, we use GPT- 421

4 (OpenAI, 2023) to generate the CoT rationales for 422

each dataset. We choose between Llama2-7B and 423

Llama3-8B as our student models (Touvron et al., 424

2023). We include the detailed configurations and 425

implementations of the model in Appendix B. 426

Baseline methods We experiment with two vari- 427

ants of our proposed method with different balanc- 428

ing policies, as discussed in Section 3: In our first 429

framework BalDistill (N), we use naive balanc- 430

ing policy, and for second framework BalDistill 431
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(A), we leverage adaptive balancing. We compare432

our framework with multiple baseline methods: (1)433

Zero-shot CoT. We directly prompt the student434

model to infer on the test data (Kojima et al., 2022).435

(2) Random Finetune. We randomly collect sam-436

ples from the training data until the budget con-437

straint is met and finetune student models on the438

final ground-truth labels (Radford et al., 2019). (3)439

Random Finetune-CoT. We randomly collect and440

use CoT rationales from the teacher model for stu-441

dent fine-tuning (Ho et al., 2022; Yao et al., 2022;442

He et al., 2023). (4) Duplicate Finetune-CoT. We443

construct the training data with a naive balancing444

policy, and for tail domains, we duplicate the inputs445

to satisfy the policy requirement.446

5 Results447

5.1 Comparison with Baseline Methods448

BalDistill framework outperforms Random449

Finetune and Duplicate Finetune methods.450

We use Llama3 as the student model, GPT-4 as451

the teacher model, and choose the smaller budget452

for each dataset in Table 1 as our experiment set-453

tings for this subsection. We present the overall454

macro- and micro-average results of the proposed455

frameworks and the baseline methods in Table 2.456

From Table 2, we first observe that on the long-457

tailed dataset, the methods fine-tuned on teacher-458

generated rationales (CoT) can significantly out-459

perform the ground-truth fine-tuning method (Ran-460

dom Finetune), which emphasizes the necessity of461

teacher-generated reasoning steps in the KD.462

Among all sequence-level KD methods, our pro-463

posed BalDistill (N) and BalDistill (A) achieve the464

best average performance across various datasets465

on macro-averages, which obtain an average rel-466

ative improvement of 2.24% and 6.81%, respec-467

tively, compared to the Random Finetune CoT base-468

line. The performance boost in BalDistill (N) im-469

plies the effectiveness of replacing the naive bal-470

ancing policy with adaptive balancing.471

Moreover, we note that the Duplicate Finetune472

CoT baseline fails to compete with the Random473

Finetune CoT method in most cases, which indi-474

cates that simply duplicating the input from the tail475

domains to ensure balanced data cannot address476

the underlying imbalanced data complexity.477

To perform a detailed analysis of our framework,478

we visualize the F1 or accuracy score for each do-479

main of the BalDistill (N) method and two baseline480

methods (Random Finetune CoT and Duplicate481
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Figure 2: Performance of proposed method and base-
lines on different domains. X-axis represents the pro-
portion of each domain, ranked from head to tail do-
mains. Our proposed BalDistill method can achieve
comparable results on head domains and outperform the
baseline method on the tail domains.

Finetune CoT) in Figure 2, with the x-axis repre- 482

senting the proportion of each domain in the dataset 483

in descending order. From Figure 2, our proposed 484

method can achieve comparable results in the head 485

domains (left side of the figure) but substantially 486

outperform the baseline methods in the tail domains 487

(right side of the figure). This observation verifies 488

our expectation in Section 3, where the balancing 489

policy increases performance in the tail domain, 490

and the active learning part improves the data ef- 491

ficiency to compensate for data loss in the head 492

domain. Note that for Math dataset, BalDistill can 493

only achieve comparable results with the baseline 494

methods on the last two tail domains (precalculus 495

and probability), and we conjecture that the high 496

difficulty in these two domains prevents the teacher 497

from composing high-quality synthetic data. 498

5.2 Ablation Study 499

After showing the superiority of our overall frame- 500

work, our next step is to verify the effectiveness 501

of each component in the proposed method. We 502

compare our framework with the ablated methods: 503

(1) Balance Finetune CoT. We adopt a naive bal- 504

ancing policy to construct the training set and query 505

the teacher model to compose inputs in the tail do- 506

mains. (2) Active Finetune CoT. We only keep the 507

active learning component but remove the data aug- 508

mentation part. The experiment setting is similar 509

to the setup in Section 5.1, and we present the per- 510

formance of each method with two budget settings 511
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Method
R52 Reuters AbstractiveQA Multi-choiceQA Math

macro-f1 micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-acc micro-acc macro-acc micro-acc

Zero-shot CoT 0.89 2.30 0.74 1.61 7.60 7.59 24.67 24.95 7.57 8.68
Random Finetune 45.95 91.44 28.01 74.68 37.62 37.21 61.23 55.96 10.12 9.48
Random Finetune CoT 59.70 89.46 27.35 70.53 52.57 52.88 76.09 74.12 16.62 15.20
Duplicate Finetune CoT 46.56 71.79 26.76 62.84 51.32 51.37 75.92 73.99 16.98 15.05

BalDistill (N) 59.62 82.49 28.09 62.40 52.70 52.92 76.60 73.43 17.90 16.34
BalDistill (A) 58.93 87.47 32.95 69.77 53.20 52.90 77.17 74.73 18.66 17.42

Table 2: Performance of proposed BalDistill framework and other baselines across five long-tailed datasets.
The best performance is marked in bold. The performance of fine-tuned student models with our framework can
outperform other baselines in macro-averages on multiple long-tailed datasets.

Method R52 Reuters AbsQA MCQA Math

Budget Setting 1

Random FT CoT 59.70 27.35 52.57 76.09 15.20
Balance FT CoT 51.47 27.12 52.22 75.98 16.29
Active FT CoT 59.49 29.75 53.14 76.64 15.61

BalDistill (N) 59.62 28.09 52.70 76.60 16.34
BalDistill (A) 58.93 32.95 53.20 77.17 17.42

Budget Setting 2

Random FT CoT 64.88 33.42 53.71 72.92 15.19
Balance FT CoT 60.55 32.79 50.29 76.29 15.73
Active FT CoT 64.54 31.33 53.05 76.26 15.91

BalDistill (N) 59.35 32.76 53.86 76.17 17.59
BalDistill (A) 65.84 32.77 53.49 77.11 17.59

Table 3: Effects of active learning and adaptive bal-
ancing in BalDistill framework. Results of fine-tuned
student models on five datasets outperform methods
with only balancing (Balance FT CoT), with only active
learning (Active FT CoT).

in Table 3.512

Both active selection and adaptive balancing513

bring salient performance boost From Table 3,514

we find that our BalDistill (A) method obtains the515

best performance in 7/10 comparison cases, which516

demonstrates the effectiveness of each framework517

component. We notice that by simply adding the518

active learning strategy (Random Finetune CoT vs.519

Active Finetune CoT), the fine-tuned student model520

can achieve a performance boost in most cases,521

with an average relative improvement of 1.43%.522

This observation is consistent with the findings in523

previous work for Bert models (Devlin et al., 2019)524

on the long-tailed data (Dor et al., 2020).525

However, when we add data augmentation from526

the teacher with the naive balancing policy (Bal-527

ance Finetune CoT vs. Random Finetune CoT,528

BalDistill (N) vs. Active Finetune CoT), this oper-529

ation does not substantially improve performance.530

This finding suggests the superiority of our adap-531

tive balancing policy.532

To probe the detailed reasons for the result pat-533

terns above, we visualize the macro-average perfor-534

Head Tail
0.48

0.50

0.52

0.54

0.56

0.58

F1
(a) AbstractiveQA

Head Tail

0.20

0.30

0.40

0.50

F1

(b) Reuters

Head Tail
0.65

0.70

0.75

0.80

0.85
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c

(c) MultichoiceQA

Head Tail

0.10

0.15

0.20

0.25

Ac
c

Random
Balance
Active
BalDistill (N)
BalDistill (A)

(d) Math

Figure 3: Performance of proposed method BalDis-
till and ablated methods on head and tail domains.
BalDistill (A) can achieve better results on head do-
mains and outperform the Active FT CoT method on
tail domains, which demonstrates the effectiveness of
each component in our BalDistill (A) framework.

mance of these methods on inputs from head and 535

tail domains in Figure 3. The splitting criteria for 536

each dataset can be found in Appendix A. We find 537

that for methods with naive balancing policy (Bal- 538

ance Finetune CoT and BalDistill (N)), there exists 539

a significant performance drop on head domains 540

due to filtering a large proportion of data, and our 541

method with adaptive balancing can achieve com- 542

parable performance on head domains. The obser- 543

vation suggests the effectiveness of active selection 544

for head domains and the importance of adaptive 545

balancing for the fine-tuned student to select the 546

uncertain ones precisely. 547

For performance in tail domains, our proposed 548

method with adaptive balancing and teacher aug- 549

mentation could achieve the best average results, 550

even better than the naive balancing method. We 551

conjecture that since we do not verify the correct- 552

ness of teacher-generated samples and rationales 553

in tail domains. While teacher-generated samples 554
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induce more knowledge, more synthetic data can555

lead to more inevitable noise. Adaptive balancing556

achieves the best trade-off between inducing more557

knowledge and less noise in the tail domains.558

5.3 Generalization Analysis559

The ablation study demonstrates the effectiveness560

of the active learning and adaptive balancing. Then,561

we ask whether our proposed method is robust562

enough to experiment with different hyperparame-563

ters, student models, or budget settings.564

5.3.1 Generalizations on Student models565

Method R52 Reuters AbsQA MCQA Math

Llama3 Budget Setting 1

Random FT CoT 59.70 27.35 52.57 76.09 15.20
Active FT CoT 59.49 29.75 53.14 76.64 15.61
BalDistill (A) 58.93 32.95 53.20 77.17 17.42

Llama2 Budget Setting 1

Random FT CoT 49.83 23.97 46.26 58.69 3.43
Active FT CoT 46.88 24.06 47.07 58.68 3.82
BalDistill (A) 58.33 25.51 47.55 59.14 4.21

Llama3 Budget Setting 2

Random FT CoT 64.88 33.42 53.71 72.92 15.19
Active FT CoT 64.54 31.33 53.05 76.26 15.91
BalDistill (A) 65.84 32.77 53.49 77.11 17.59

Llama2 Budget Setting 2

Random FT CoT 56.45 23.75 48.95 58.91 3.84
Active FT CoT 53.16 27.12 48.27 59.20 3.52
BalDistill (A) 58.17 27.07 49.45 58.64 4.54

Table 4: Effects of student model scales and budget
numbers. Macro-averages the proposed and baseline
method results when considering Llama2 and Llama3
as student models with varying two budget settings.

We first evaluate whether our method could be566

generalized to student models with different rea-567

soning abilities or with different budget numbers.568

In this part, we additionally evaluate our BalDistill569

(A) on Llama2-7B models, which have a smaller570

model size and fewer tokens, in two budget set-571

tings (the details of each dataset are in Table 1).572

We present the fine-tuning results of our proposed573

framework and baseline methods on the Llama2574

and Llama3 student models in Table 4.575

BalDistill exhibits robust improvement with var-576

ious budget settings or student models. From577

Table 4, we observe that fine-tuning with the578

Llama3-8B student model leads to much better per-579

formance than the Llama2-7B model, especially on580

tasks with complex reasoning (Math, Multi-choice581

QA), indicating that the student with a larger model582

size or a better reasoning ability will yield better583

4 6 8
Stage number

0.48

0.50

0.52

0.54

0.56

0.58

F1

BalDistill (A)
Random

(a) AbstractiveQA

4 6 8
Stage number

0.25

0.28

0.30

0.33

0.35

0.38

F1

BalDistill (A)
Random

(b) Reuters

Figure 4: Influence of stage number choices on BalD-
istill across two datasets. Our proposed method consis-
tently obtains better results than the random fine-tune
baseline method with varying stage numbers.

fine-tuning results. This observation is consistent 584

with previous findings in Ho et al. (2022); Hsieh 585

et al. (2023). Our BalDistill (A) consistently outper- 586

forms other baseline methods on both Llama2-7B 587

and Llama3-8B as student models in most cases 588

under two budget settings, which also verifies the 589

generalizability of our BalDistill (A) on different 590

student models or different budget numbers. 591

5.3.2 Sensitivity Analysis 592

We next investigate how the choice of stage number: 593

K will influence the performance of our frame- 594

work. We experiment with the same setup as in 595

Section 5.1 but with varying stage numbers among 596

{3, 5, 8}. We visualize the results (macro-averages) 597

of BalDistill (A) and the baseline method Random 598

Finetune CoT in Figure 4 and 6 in Appendix. 599

Figure 4 shows that the fine-tuning results of 600

BalDistill (A) could be affected by the stage num- 601

ber to some extent, but our proposed method can 602

consistently outperform the baseline method with 603

different stage numbers, demonstrating the effec- 604

tiveness and robustness of BalDistill (A). 605

6 Conclusions 606

In this paper, we propose a novel framework BalD- 607

istill to enhance performance on long-tail datasets 608

in the current teacher-student knowledge distil- 609

lation process. Our framework is a multi-stage 610

pipeline, and at each stage, we call the student mod- 611

els to actively select the representative examples 612

from head domains while prompting the teacher to 613

generate synthetic examples for tail domains. With 614

a fixed budget restriction for calling the teacher, 615

our extensive empirical evaluations show that our 616

framework can significantly increase fine-tuning re- 617

sults across multiple datasets. Furthermore, we 618

demonstrate the effectiveness of all framework 619

components through ablation studies. 620
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7 Limitations621

In our work, we use the IFD score as the metric for622

active selection for the student model. In addition623

to IFD scores, we can try other metrics, such as624

maximum entropy (Settles, 2009) or K-means di-625

versity (Yuan et al., 2020). However, previous work626

has shown that the IFD score is more effective in627

selecting data for sequence-level fine-tuning than628

other metrics (Li et al., 2024a,b).629

We have verified the effectiveness of our frame-630

work on multiple student models and various long-631

tailed datasets. Other sequence-level KD methods632

still use more complex loss functions (Hsieh et al.,633

2023) or augment the generated rationales (Shrid-634

har et al., 2023). Our data manipulation framework635

complements these KD methods, aiming to achieve636

more robust results on long-tailed datasets with a637

fixed budget. Moreover, our method focuses on638

sequence-level KD for black-box LLMs, so we639

do not incorporate the KD method for white-box640

LLMs as a baseline method (Gu et al., 2023; Dai641

et al., 2023). We will leave the exploration of com-642

bining our framework with more advanced KD643

methods for the future.644

Furthermore, our experiments only focus on the645

decoder-only student models: Llama3 and Llama2.646

Incorporating more encoder-decoder models such647

as FLAN-T5 (Chung et al., 2022) would benefit648

future studies.649
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A Dataset Construction 918

R52 & Reuters We use the original R52 and 919

Reuters dataset. In Figure 3, we treat domains 920

(labels) with more than 50 instances in the training 921

dataset as the head domains and the others as tail 922

domains. 923

Multi-choice QA For Multi-choice QA, we merge 924

10 multichoice QA datasets together, including 925

Race, OBQA, MCTest, ARC-easy, ARC-hard, 926

CQA, QASC, PIQA, SIQA, Winogrande (Dai 927

et al., 2023). For training samples, we downsample 928

the 10 datasets following a Zipf distribution with 929

power value α = 2.0 (Dai et al., 2023). Since Race 930

has 5× more training samples than other datasets, 931

we downsample its training and testing set to 1/3 of 932

the samples using random sampling. The detailed 933

statistics of each multichoice qa dataset is shown 934

in Table 5.We select Race, Winogrande, SIQA and 935

CQA as the head domains and others as tail do- 936

mains for experiments in Figure 3. 937

Abstractive QA For Abstractive QA, we merge 5 938

abstractive QA datasets together, including NarQA, 939

NQOpen, Drop, QAConv, TweetQA (Dai et al., 940

2023). Since the total train set and test set are very 941

large, for efficiency concerns, we randomly sample 942

10000 samples from them for both train and test 943

11

http://arxiv.org/abs/2406.05322
http://arxiv.org/abs/2406.05322
http://arxiv.org/abs/2406.05322
http://arxiv.org/abs/2406.05322
http://arxiv.org/abs/2406.05322
http://arxiv.org/abs/2311.08648
http://arxiv.org/abs/2311.08648
http://arxiv.org/abs/2311.08648
http://arxiv.org/abs/2311.08648
http://arxiv.org/abs/2311.08648


(a) Reuters

(b) Math

Figure 5: Example Dataset Distribution: The datasets
we use exhibit long-tail distributions.

sets. The detailed statistics of each multichoice944

qa dataset is shown in Table 5. We select NarQA,945

NQOpen, and Drop as the head domains and others946

as tail domains for experiments in Figure 3.947

Math We use the Math dataset from (Hendrycks948

et al., 2021), which consists of 7 categories: Alge-949

bra, Intermediate Algebra, Prealgebra, Geometry,950

Number Theory, Counting & Probability and Pre-951

calculus. In order to investigate GPT4’s reasoning952

ability on MATH problems and how much can its953

reasoning be taughts to the student model, we re-954

moved the reasoning procedures in Math dataset955

and only keep its final answer as the label. Since the956

original dataset distribution is as follows does not957

follow long tail distribution, we down-sample the958

training sets of all categories following a Zipf dis-959

tribution with power value α = 1.1, similar to (Dai960

et al., 2023). The final distribution of the datsaet is961

shown in Table 5. We select Algebra, Intermediate962

Algebra, and Prealgebra as the head domains and963

others as the tail domains for experiments in Figure964

3.965

B Implementation Details966

We use greedy search in decoding for all teacher an-967

notations, as in the previous work (Ho et al., 2022)968

and use stochastic temperature sampling with the969

same temperature value of 0.9 in synthetic data970

Table 5: Detailed statistics of each dataset per category.

Dataset Category Train set size Test set size

Multi-choice QA

Race 4735 1629
OBQA 580 500

MCTest 342 320
ARC-easy 395 570
ARC-hard 317 299

CQA 1034 1221
QASC 653 926
SIQA 2077 1954
PIQA 494 1838

Winogrande 2634 1267

Abstractive QA

NarQA 1999 2244
NQOpen 4441 3434

Drop 2525 2891
QAConv 751 1079

TweetQA 284 352

Math

Algebra 1744 1187
Intermediate Algebra 763 903

Prealgebra 561 871
Geometry 349 479

Number Theory 290 540
Counting & Probability 231 474

Precalculus 187 546

Algorithm 1 Multi Stage Balanced Distillations
1: Input: Long tailed dataset D, Student model

Ms, Teacher model Mt, prompt for generating
data Pc, Stage number K, Balancing policy P ,
Training bucket T , Budget number B

2: Output: The fine-tuned student model MK
s

3: for each stage k = 0, . . . , k − 1 do
4: head, tail domains = P (D, k,B)
5: for each domain tail domain j do
6: Add remaining xj from D to T
7: x̂j = Mt(Pc, j)
8: Add synthetic x̂j to T

9: for each domain head domain h do
10: Collect all xh from D
11: xh = Mk−1

s (xh, h)
12: Add selected xh to T

13: Use Mt to annotate x in T w/o rationales
14: Mk

s = Fine-tune(Ms, T )

4 6 8
Stage number

0.72

0.74

0.76

0.78

0.80

0.82

Ac
c

BalDistill (A)
Random

(a) MultiChoiceQA

4 6 8
Stage number

0.12
0.14
0.16
0.18
0.20
0.22
0.24

Ac
c

BalDistill (A)
Random

(b) Math

Figure 6: Influence of stage number choices on BalD-
istill across other two datasets.

generation in Section 3.4. 971

We use the zero-shot prompts for the teacher to 972

12



give the rationales and the few-shot ICL to generate973

the synthetic tail samples. The prompts are shown974

in Tables 6, 7 and 8. We call the gpt-4 function975

from OpenAI to obtain teacher responses.976

For the fine-tuning of the student model, we base977

our implementation on the Pytorch1, Huggingface978

transformer2, and the Lora fine-tuning codebase 3.979

We use AdamW as our optimizer with a learning980

rate of 2e−4 and a weight decay of 0.03 with lin-981

ear scheduler, batch size of 16, and trained for 8982

epochs. For other hyper-parameters, we set rank983

and dropout in Lora fine-tuning to 8 and 0.1, re-984

spectively.985

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/georgian-io/

LLM-Finetuning-Toolkit/tree/main
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You are provided with a dataset named R52, which is specifically designed for text classification
tasks. The objective is to accurately predict the topic of news stories from a predefined list of topics.
The topic of this dataset includes: copper, livestock, gold, money-fx, tea, ipi, trade, cocoa, iron-steel,
reserves, zinc, nickel, ship, cotton, platinum, alum, strategic-metal, instal-debt, lead, housing, gnp,
sugar, rubber, dlr, tin, interest, income, crude, coffee, jobs, meal-feed, lei, lumber, gas, nat-gas, veg-oil,
orange, heat, wpi, cpi, earn, jet, potato, bop, money-supply, carcass, acq, pet-chem, grain, fuel, retail,
cpu. Please write a short news story with the topic {domain} and give the step-by-step rationale. This
should be a self-contained story, mirroring the style and content of real-world news articles. Here are
some examples with the topic {domain}:
{demonstrations}
Please compose a news story with the topic {domain} with a similar format as the example. Paraphrase
your title before outputting it. Your news story should be brief and contained within one paragraph:

(a) R52

You are provided with a dataset named reuters, which is specifically designed for text classification
tasks. The objective is to accurately predict the topic of news stories from a predefined list of topics.
The topic of this dataset includes: acq, rubber, lead, money-supply, income, l-cattle, crude, cpu,
palmkernel, jobs, money-fx, instal-debt, rand, castor-oil, coffee, strategic-metal, nat-gas, oat, tea,
corn, yen, soy-oil, grain, groundnut-oil, gas, cpi, cocoa, nzdlr, soybean, rapeseed, retail, sun-meal,
coconut, jet, copper, sorghum, carcass, heat, hog, ipi, potato, lin-oil, oilseed, alum, gnp, meal-feed,
fuel, barley, ship, rape-oil, cotton-oil, sunseed, palm-oil, soy-meal, naphtha, nkr, trade, palladium,
lei, wheat, bop, interest, earn, reserves, housing, veg-oil, groundnut, tin, dlr, gold, copra-cake, wpi,
livestock, zinc, sugar, rye, pet-chem, dmk, dfl, orange, iron-steel, nickel, sun-oil, lumber, rice, propane,
platinum, silver, cotton, coconut-oil. Please write a short news story with the topic {domain} and give
the step-by-step rationale. This should be a self-contained story, mirroring the style and content of
real-world news articles. Here are some examples with the topic {domain}:
{demonstrations}
Please compose a news story with the topic {domain} with a similar format as the example and your
news story should be brief and contained within one paragraph:

(b) Reuters

Table 6: Prompts of generating synthetic data for tail domains from the teacher for R52 and reuters datasets.
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You are provided with a multiple-choice question and answering dataset composed by various QA
datasets. The objective is to accurately select one from the given choices according to the question
content. Please compose a question as well as the corresponding choices and answers as the examples
from a QA dataset: {domain}. This should be a question, mirroring the style and content of examples
with the true real-world knowledge. Here are some examples from the QA dataset: {domain}:
{demonstrations}
Please compose a question for the dataset: {domain} with a similar format as the example. It means if
the example contains the in-context "passage", you should also write an in-context "passage" with the
question information. Your question and choices should be brief and contained within one paragraph:

(a) Multi-choice QA

You are provided with an abstractive question answering dataset composed by various QA datasets.
The objective is to accurately generate an answer according to the question content. Please compose a
question and the corresponding answer as the examples from a QA dataset: {domain}. This should be
a question and answer, mirroring the style and content of examples with the true real-world knowledge.
Here are some examples from the QA dataset: {domain}:
{demonstrations}
Please compose a question and the corresponding answer for the dataset: {domain} with a similar
format as the example. It means if the example contains the in-context "passage", you should also
write an in-context "passage" with the question information. Please note that the answer should only
contain a few words. Your question and answer should be brief and contained within one paragraph:

(b) Abstractive QA

You are provided with a math problem dataset with questions from various math domains. The
objective is to accurately generate an answer according to the question content. Please compose a
question and the corresponding answer as the examples from a math domain: {domain}. This should
be a math question and answer, mirroring the style and content of examples with the true real-world
knowledge. Here are some examples from the math domain: {domain}:
{demonstrations}
Please compose a math question and the corresponding answer for the domain: {domain}, with a
similar format as the example. Please output your final digital answer (no unit) for the question with
the format: "the answer is: <answer>". Your question and answer should be brief and contained
within one paragraph:

(c) Math

Table 7: Prompts of generating synthetic data for tail domains from the teacher for Multi-choice QA, Abstractive
QA and Math datasets.
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Below is a news story from the R52 dataset. Please assign a topic to this news story. You must
select the topic from this set: copper, livestock, gold, money-fx, tea, ipi, trade, cocoa, iron-steel,
reserves, zinc, nickel, ship, cotton, platinum, alum, strategic-metal, instal-debt, lead, housing, gnp,
sugar, rubber, dlr, tin, interest, income, crude, coffee, jobs, meal-feed, lei, lumber, gas, nat-gas, veg-oil,
orange, heat, wpi, cpi, earn, jet, potato, bop, money-supply, carcass, acq, pet-chem, grain, fuel, retail,
cpu. News story: {input}.
Take a step-by-step approach in your response, cite sources and give reasoning. Your answer should
be brief and contained within one paragraph.

(a) R52

Below is a news story from the reuters dataset. Please assign a topic to this news story. You must select
the topic from this set: acq, rubber, lead, money-supply, income, l-cattle, crude, cpu, palmkernel, jobs,
money-fx, instal-debt, rand, castor-oil, coffee, strategic-metal, nat-gas, oat, tea, corn, yen, soy-oil,
grain, groundnut-oil, gas, cpi, cocoa, nzdlr, soybean, rapeseed, retail, sun-meal, coconut, jet, copper,
sorghum, carcass, heat, hog, ipi, potato, lin-oil, oilseed, alum, gnp, meal-feed, fuel, barley, ship,
rape-oil, cotton-oil, sunseed, palm-oil, soy-meal, naphtha, nkr, trade, palladium, lei, wheat, bop,
interest, earn, reserves, housing, veg-oil, groundnut, tin, dlr, gold, copra-cake, wpi, livestock, zinc,
sugar, rye, pet-chem, dmk, dfl, orange, iron-steel, nickel, sun-oil, lumber, rice, propane, platinum,
silver, cotton, coconut-oil. News story: {input}.
Take a step-by-step approach in your response, cite sources and give reasoning. Your answer should
be brief and contained within one paragraph.

(b) Reuters

Please answer this multiple-choice question by choosing one of the given choices. If you are given
a passage, please answer the question according to the passage content. If the passage is not given,
please answer the question directly from your knowledge. Question: {input}
If there is no enough information, you should choose a most possible choice. Take a step-by-step
approach in your response, cite sources and give reasoning before sharing final answer in the format:
The answer is <selected choice>.

(c) Multi-choice QA

Here are a question and the corresponding answer for an abstractive question answering task. Please
concisely clarify the rationale behind the answer for this question. If you are given a passage, please
use the passage content to clarify the answer. If the passage is not given, please use your knowledge
to tell why the answer is reasonable. Question: {input}. Answer {label}.
Take a step-by-step approach in your response and give reasoning. You output should be concise and
in one paragraph.

(d) Abstractive QA

Here are a math question and the ground truth answer for a math problem task. Please concisely
clarify the rationale behind the answer for this math question. Question: {input}. Answer: {label}
Take a step-by-step approach in your response and give reasoning. You output should be concise and
in one paragraph.

(e) Math

Table 8: Teacher annotation prompts for all datasets. Note that for Math, Abstractive QA which has complex
reasoning trajectories, we directly provide the ground-truth answer and ask the teacher model to explain the rationale
behind the answer and for other datasets, we ask the teacher model to annotate the label and provide the reasoning
steps.
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Input: ENERGY GIANT &lt;EGC> EXPANDS NATURAL GAS OPERATIONS. Energy Giant
Corp (EGC) announced plans to expand its natural gas operations in the Midwest, following approval
from the Federal Energy Regulatory Commission. The expansion will see EGC increase its natural
gas production by 15%, aiming to meet the growing demand in the region. The company stated that
the expansion will be funded by a mix of internal accruals and debt, with the project expected to be
operational by the end of the next fiscal year. EGC also highlighted that the expansion aligns with its
commitment to sustainable energy solutions, as natural gas is a cleaner-burning fuel compared to coal
and oil. The company’s shares rose 2% in early trading following the announcement.
Rationale: The news story is about Energy Giant Corp (EGC) announcing plans to expand its natural
gas operations in the Midwest. The company plans to increase its natural gas production by 15% to
meet the growing demand in the region. The expansion will be funded by a mix of internal accrivals
and debt. The company’s shares rose 2% in early trading following the announcement.The story
does not mention anything about copper, livestock, gold, money-fx, tea, ipi, trade, cocoa, iron-steel,
reserves, zinc, nickel, ship, cotton, platinum, alum, strategic-metal, instal-debt, lead, housing, gnp,
sugar, rubber, dlr, tin, interest, income, crude, coffee, jobs, meal-feed, lei, lumber, gas, veg-oil, orange,
heat, wpi, cpi, earn, jet, potato, bop, money-supply, carcass, acq, pet-chem, grain, fuel, retail, cpu.
However, the story is about the expansion of natural gas operations, which falls under the topic of
’nat-gas’. The answer is nat-gas.

(a) The example of teacher synthetic data in R52 dataset for domain: nat-gas.

Input: A rectangle has a length of 14 units and a width of 8 units. A diagonal is drawn from one
corner of the rectangle to the opposite corner. What is the length of the diagonal in units?
Rationale: The length of the diagonal of a rectangle can be found using the Pythagorean theorem,
which relates the lengths of the sides of a right triangle. The theorem states that the square of the
length of the hypotenuse (the side opposite the right angle, which is the diagonal in this case) is equal
to the sum of the squares of the lengths of the other two sides (the length and width of the rectangle).
For this rectangle, the length (l) is 14 units and the width (w) is 8 units. According to the Pythagorean
theorem, the length of the diagonal (d) can be calculated as follows: d2 = l2 + w2. Plugging in the
values gives d2 = 142 + 82 = 196 + 64 = 260. Taking the square root of both sides to solve for d
gives d =

√
260. Factoring out the square root of 4 (which is a perfect square) from under the radical

to simplify, we get d = 2
√
65. Thus, the length of the diagonal is 2

√
65 units. The answer is: 2

√
65.

(b) The example of teacher synthetic data in math dataset for domain: geometry.

Table 9: Examples of the synthetic input and rationales from the teacher model for the tail domains.
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