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Abstract

Detecting and tracking emerging trends and001
weak signals in large, evolving text corpora is002
vital for applications such as monitoring sci-003
entific literature, managing brand reputation,004
and surveilling critical infrastructure. Existing005
solutions often fail to capture the nuanced con-006
text or dynamically track evolving patterns over007
time. BERTrend, a novel method, addresses008
these limitations using neural topic modeling009
in an online setting. It introduces a new met-010
ric to quantify topic popularity over time by011
considering both the number of documents and012
update frequency. This metric classifies top-013
ics as noise, weak, or strong signals, flagging014
emerging, rapidly growing topics for further015
investigation. Evaluations on two large real-016
world datasets demonstrate BERTrend’s ability017
to accurately detect and track meaningful weak018
signals while filtering out noise, offering a com-019
prehensive solution for monitoring emerging020
trends in large-scale, evolving text corpora.021

1 Introduction022

The concept of weak signals, introduced by An-023

soff (1975), refers to early indicators of emerging024

trends that can have significant implications across025

various domains. These include shifts in public026

opinion in social trends, early disruptive technolo-027

gies in innovation, changes in activist groups and028

public sentiment in politics, and potential disease029

outbreaks in healthcare. Monitoring and analyzing030

weak signals offers valuable insights for organiza-031

tions, researchers, and decision-makers, aiding in032

informed decision-making.033

Key data sources for identifying these trends in-034

clude large text corpora such as news, social media,035

research and technology journals or reports. De-036

tecting emerging trends involves challenges like037

distinguishing meaningful weak signals from irrel-038

evant noise, dealing with context ambiguity, and039

tracking the extended period over which weak sig-040

nals may gain significance.041

With advances in NLP and AI, researchers have 042

developed various techniques to detect weak sig- 043

nals across different fields (Rousseau et al., 2021), 044

including statistics-based methods, graph theory, 045

machine learning, semantic-based approaches, and 046

expert knowledge. However, most solutions fall 047

short in fully addressing the challenge of detect- 048

ing emerging trends, either by relying solely on 049

keyword-based analysis, which misses contextual 050

nuances, or by being static and unable to dynami- 051

cally track evolving weak signals. 052

In this work, we introduce BERTrend, a novel 053

framework for detecting and monitoring emerging 054

trends and weak signals in large, evolving text cor- 055

pora. BERTrend leverages neural topic modeling, 056

specifically BERTopic, in an online learning set- 057

ting to identify and track topic evolution over time. 058

Its key contribution lies in dynamically classify- 059

ing topics as noise, weak signals, or strong signals 060

based on their popularity trends. The proposed 061

metric quantifies topic popularity over time by con- 062

sidering both the number of documents within the 063

topic and its update frequency, incorporating an 064

exponentially growing decay if no updates occur 065

for an extended period. By combining neural topic 066

modeling with a dynamic popularity metric and 067

adaptive classification thresholds, BERTrend pro- 068

vides a comprehensive solution for detecting and 069

monitoring emerging trends in large-scale, evolv- 070

ing text corpora. 071

Section 3 details the BERTrend algorithm. In 072

section 4, we introduce the two comprehensive 073

datasets used for experiments and the hyperparam- 074

eters utilized. Section 5 presents qualitative results, 075

including the overall evolution of trends, specific 076

case studies, enhanced trend interpretability using 077

Large Language Models (LLMs) and the impact of 078

zero-shot topic modeling for targeted monitoring 079

of emerging trends. Finally, we discuss potential 080

future directions and acknowledge the limitations 081

of BERTrend. 082
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2 Background083

Weak signal detection and monitoring has been084

an active research area in recent years, with var-085

ious methods proposed to identify and analyze086

early indicators of potential future changes in large087

datasets. This section provides an overview of the088

existing approaches and their key characteristics.089

One of the most most widely adopted approaches090

are portfolio maps, pioneered by Yoon (2012), used091

to visually track several weak signals simultane-092

ously. This technique involves constructing key-093

word emergence maps (KEM) and keyword issue094

maps (KIM) based on two key metrics: degree095

of visibility (DoV) and degree of diffusion (DoD).096

DoV quantifies the frequency of a keyword within097

a document set, while DoD measures the docu-098

ment frequency of each keyword. Weak signals099

are identified as keywords with low frequency but100

high growth potential. Numerous studies, such as101

(Park and Cho, 2017), (Donnelly et al., 2019), (Lee102

and Park, 2018), (Roh and Choi, 2020), (Yoo and103

Won, 2018), (Griol-Barres et al., 2020), have ex-104

tended and refined this approach by incorporating105

aspects like multi-word analysis, signal transfor-106

mation analysis, and domain-specific applications.107

However KEMs and KIMs present two major draw-108

backs: by focusing on keywords only, they can miss109

the context surrounding a weak signal ; and the out-110

put is a single snapshot, which does not gives clear111

clues of evolution over time.112

Several machine Learning techniques have also113

found applications in weak signal detection: Thor-114

leuchter et al. (2014) developed a semantic weak115

signal tracing approach using latent semantic index-116

ing (LSI) and singular value decomposition (SVD)117

to identify signals based on evolving semantic pat-118

terns. Yoo and Won (2018) combined agent-based119

simulation with text mining to forecast innovation120

and investigate weak signals dynamically. Irimia121

et al. (2018) proposed a gradient descent-based ap-122

proach, leveraging supervised learning to identify123

signals detectable by human experts.124

Topic modeling has emerged as a promising ap-125

proach for weak signal detection, particularly in126

large textual datasets. Thus, Krigsholm and Riekki-127

nen (2019) and Kim et al. (2019) apply text mining128

and Latent Dirichlet Allocation (LDA) (Blei et al.,129

2003), to identify future signals in the domain of130

land administration and policy research databases.131

Maitre et al. (2019) integrates LDA and Word2Vec132

to detect weak signals in weakly structured data.133

El Akrouchi et al. (2021) introduce furthermore 134

two functions for deep filtering: Weakness, which 135

measures the significance, similarity, and evolu- 136

tion of topics using coherence, closeness centrality, 137

and autocorrelation metrics; and Potential Warn- 138

ing, which further filters the terms of the previously 139

filtered topics to identify potential weak signals. 140

While traditional topic modeling methods like 141

LDA have been useful for weak signal detection, 142

they have notable limitations: it heavily relies on 143

pre-set topic numbers and fails to benefit from the 144

sophisticated, contextual embeddings provided by 145

modern pre-trained models, resulting in less nu- 146

anced analysis. Additionally, it operates on a static 147

basis, overlooking the crucial temporal dynamics 148

of weak signals. In contrast, our approach lever- 149

ages dynamic, high-quality contextual embeddings 150

from pre-trained models. Unlike keyword-based 151

methods, which can miss the subtleties of context 152

and evolution in signal detection due to their re- 153

liance on mere term frequency, our embedding- 154

based technique provides a richer, more adaptive 155

analysis that does not require preset topic counts. 156

This shift from static, keyword-based methods to 157

dynamic, embedding-based analysis allows for a 158

more granular and accurate tracking of the evolu- 159

tion and significance of weak signals over time. 160

3 BERTrend 161

In this section, we describe BERTrend (Figure 1), a 162

method for identifying and tracking weak signals in 163

large, evolving text corpora. It leverages the power 164

of BERTopic (Grootendorst, 2022), a state-of-the- 165

art topic model, and wraps it in an online learning 166

framework. In this setting, new data arrives on a 167

regular basis, allowing BERTrend to capture the 168

dynamic evolution of topics over time. The method 169

employs a set of metrics to characterize these topics 170

as noise, weak signals, or strong signals based on 171

their popularity trends. By combining the strengths 172

of neural topic modeling with a dynamic, incremen- 173

tal learning approach, BERTrend enables the real- 174

time monitoring and analysis of emerging trends 175

and weak signals in vast, continuously growing text 176

datasets. 177

BERTopic leverages pre-trained large embed- 178

ding models to generate high-quality contextual 179

embeddings of documents, enabling the discov- 180

ery of meaningful and coherent topics. It utilizes 181

HDBSCAN (McInnes et al., 2017), a hierarchical 182

density-based clustering algorithm, which is robust 183
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Figure 1: The BERTrend Framework processes data in time-sliced batches, undergoing preprocessing that includes
unicode normalization and paragraph segmentation for very long documents. It applies a BERTopic model to extract
topics for each batch, which are merged with prior batches using a similarity threshold to form a cumulative topic
set. This data helps track topic popularity over time, identifying strong and weak signals based on dynamically
chosen thresholds. Additionally, the framework includes a zero-shot detection feature for targeted topic monitoring,
providing more fine-grained results due to document-level matching with topics defined by the expert.

to outliers and does not require the number of top-184

ics to be specified in advance, allowing the model185

to automatically determine the optimal number of186

topics based on the inherent structure of the data.187

One of the key advantages of BERTopic is its188

ability to simulate online learning through model189

merging. Different BERTopic models can be fitted190

on documents from non-overlapping time periods191

and then merged together based on the pairwise co-192

sine similarity between topics of consecutive mod-193

els, enabling a form of dynamic topic modeling194

in an online learning setting, where the model can195

continuously adapt and incorporate new data as it196

becomes available.197

3.1 Data Preprocessing and Time-based198

Document Slicing199

BERTrend preprocesses the input text data by nor-200

malizing the text using the NFKC method from the201

unicodedata Python package to handle Unicode202

characters, special characters, and inconsistencies.203

Stop word removal and lemmatization are avoided,204

as BERTopic’s underlying framework effectively205

handles these aspects, and retaining these elements206

is useful for calculating contextual embeddings us-207

ing pretrained models.208

To accommodate the maximum token lengths 209

recommended by pretrained embedding models 210

and avoid input truncation, lengthy documents are 211

segmented into paragraphs. Each paragraph is 212

treated as an individual document, with a system 213

in place to maintain traceability to its original long 214

document source. This ensures accurate calcula- 215

tion of a topic’s popularity over time by considering 216

the original number of documents rather than the 217

inflated number of paragraphs. Abnormally short 218

paragraphs, which often lack sufficient context, are 219

filtered out. 220

After preprocessing, the entire text corpus D, 221

consisting of N documents, is divided into docu- 222

ment slices based on a selected time granularity 223

(e.g., daily, weekly, monthly). A document slice 224

Dt is defined as a subset of documents from D 225

that fall within a specific time interval [t, t+∆t), 226

where t ∈ {t1, t2, . . . , tM}, ∆t is the chosen time 227

granularity, and M is the total number of docu- 228

ment slices. This slicing is crucial for analyzing 229

the temporal dynamics of topics within the corpus. 230

3.2 Topic Extraction using BERTopic 231

For each document slice Dt, BERTopic extracts a 232

set of topics Tt = {τ1t , τ2t , . . . , τ
Kt
t }, where Kt is 233
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the number of topics in Dt. The process involves:234

1. Document Embedding: Each document d ∈235

Dt is transformed into a dense vector ed ∈ Rh236

using a pre-trained sentence transformer model237

(Reimers and Gurevych, 2019), where h is the em-238

bedding dimension. A topic τ jt is described as a set239

of words W
τ jt

= {wj,1
t , wj,2

t , . . . , w
j,Mj

t }, where240

Mj is the number of words representing the topic.241

2. Dimensionality Reduction: The embeddings242

are reduced to a lower-dimensional space using243

UMAP (McInnes et al., 2018), resulting in reduced244

embeddings e′d ∈ Rr, where r < h.245

3. Document Clustering: The reduced embed-246

dings are clustered using HDBSCAN (McInnes247

et al., 2017), to group semantically similar docu-248

ments into clusters. Each cluster Cj
t ∈ Ct is asso-249

ciated with a centroid embedding cjt ∈ Rr. These250

clusters represent preliminary groupings of docu-251

ments that will later be labeled as topics.252

4. Cluster Labeling: BERTopic assigns labels to253

clusters to form topics using class-based TF-IDF (c-254

TF-IDF), considering the frequency and specificity255

of words within each cluster. Various methods, in-256

cluding LLMs, KeyBERT, and Maximal Marginal257

Relevance (MMR), can be used to refine the repre-258

sentation of topics. After labeling, each cluster Cj
t259

becomes a topic τ jt .260

3.3 Topic Merging261

BERTrend merges topics across document slices262

to capture their evolution. For each time-based263

document slice Dt+1, the extracted topics Tt+1 are264

compared with the topics from the previous slice265

Tt as follows:266

1. Similarity Calculation: Compute the cosine sim-267

ilarity between each topic embedding cj(t+1) ∈268

Tt+1 and all topic embeddings ckt ∈ Tt.269

2. Topic Matching: If the maximum similarity be-270

tween cj(t+1) and any ckt exceeds a threshold α271

(e.g., α = 0.7), merge the topics and add the272

documents associated with τ j(t+1) to τkt .273

3. New Topic Creation: If the maximum similarity274

is below α, consider τ j(t+1) as a new topic and275

add it to Tt.276

To maintain topic embedding stability, the em-277

bedding of the first occurrence of a topic is retained,278

preventing drift and over-generalization.279

3.4 Popularity Estimation280

BERTrend estimates topic popularity over time and281

classifies them into signal categories based on pop-282

ularity dynamics. The popularity of topic τkt for 283

document slice Dt is denoted as pkt and calculated 284

as follows: 285

1. Initial Popularity: For a new topic τkt of docu- 286

ment slice Dt, its initial popularity is set to the 287

number of associated documents: pkt = |Dk
t |, 288

where Dk
t is the set of documents associated 289

with τkt at time t. 290

2. Popularity Update: For subsequent document 291

slices Dt′ (t′ > t): 292

• If τkt is merged with a topic in Tt′ , its popu- 293

larity is incremented by the number of new 294

documents: pkt′ = pkt′−1 + |Dk
t′ |. 295

• If τkt is not merged with any topic in Tt′ , its 296

popularity decays exponentially: pkt′ = pkt′−1 · 297

e−λ∆t2 , where λ is a constant decay factor 298

(e.g., λ = 0.01) and ∆t is the number of days 299

since τk last received an update. 300

3.5 Trend Classification 301

To classify topics into signal categories, BERTrend 302

calculates percentiles of popularity values over a 303

rolling window of size W . For each document slice 304

Dt, two empirical thresholds - the 10th percentile 305

(P10) and the 50th percentile (P50) of popularity 306

values within the window [t − W, t] - are com- 307

puted. Trend classification is performed based on 308

the topic’s popularity pkt and its recent popularity 309

trend: 310

• If pkt < P10, τkt is classified as a "noise" signal. 311

• If P10 ≤ pkt ≤ P50: 312

– If the topic’s popularity has been increasing 313

over the past few days, as determined by a pos- 314

itive slope of the linear regression line fitted 315

to the topic’s popularity values within the win- 316

dow [t − W, t], τkt is classified as a "weak" 317

signal. 318

– If the topic’s popularity has been decreasing, 319

as determined by a negative slope of the linear 320

regression line, τkt is classified as a "noise" sig- 321

nal, as it likely represents a previously popular 322

topic that is losing relevance. 323

• If pkt > P50, τkt is classified as a "strong" signal. 324

By considering the recent popularity trend in ad- 325

dition to the popularity thresholds, BERTrend en- 326

sures that weak signals represent emerging trends 327

with increasing popularity rather than previously 328

popular topics that are losing relevance. This ap- 329

proach helps anticipate and filter out fast the sig- 330

nals that would be considered weak but are instead 331

strong signals that are fading away. 332
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Algorithm 1: BERTrend Algorithm
Input: Text corpus D, retrospective window size W ,

time granularity G, similarity threshold τ ,
decay factor λ

Output: Topics T , popularity p, signal classifications
S

Initialize T = ∅, p = ∅, S = ∅;
tnow = current time;
tstart = tnow −W ;
time slices = slice data(D, tstart, tnow, G);
for Dt ∈ time slices do

Tt = BERTopic(Dt);
for τ j

t ∈ Tt do
simmax = maxτk

t ∈T Similaritycos(c
j
t , c

k
t );

if simmax ≥ τ then
k∗ = argmaxk Similaritycos(c

j
t , c

k
t );

Dk∗
t = Dk∗

t ∪Dj
t ;

pk
∗

t = pk
∗

t−1 + |Dj
t |;

else
T = T ∪ {τ j

t };
pjt = |Dj

t |;
for τk

t ∈ T do
if τk

t /∈ Tt then
pkt = pkt−1 · e−λ∆t2 ;

Pall =
⋃

τk∈T {pkj | j ∈ [t−W + 1, t]};
Pall = sort(Pall);
P10 = Pall[⌊0.1 · |Pall|⌋];
P50 = Pall[⌊0.5 · |Pall|⌋];
for τk

t ∈ T do
if pkt < P10 then

Sk
t = "noise";

else
if P10 ≤ pkt ≤ P50 then

if slope({pkj | j ∈
[t−W + 1, t]}) > 0 then

Sk
t = "weak";

else
Sk
t = "noise";

else
Sk
t = "strong";

333

Using percentiles calculated dynamically over a334

sliding window offers several advantages:335

1. Adaptability to datasets: The retrospective pa-336

rameter allows the method to adapt to the input337

data’s velocity and production frequency.338

2. Forget gate mechanism: The sliding window339

avoids the influence of outdated signals on cur-340

rent threshold calculations.341

3. Robustness to outliers: Calculating thresholds342

based on the popularity distribution reduces343

sensitivity to outlier popularities and prevents344

thresholds from approaching zero when many345

signals have faded away.346

3.6 Targeted Zero-shot Topic Monitoring347

BERTrend includes an optional zero-shot detection348

feature that allows domain experts to define a set349

of topics Z = {z1, z2, . . . , zL}, each represented350

by a textual description. The embeddings of these 351

topics and the documents in each slice Dt are cal- 352

culated using the same embedding model. For each 353

document d ∈ Dt, the cosine similarity between its 354

embedding ed and the embedding of each defined 355

topic zl is computed. Documents with a similarity 356

score above a predefined low threshold β (typically 357

0.4-0.6) for any of the defined topics are consid- 358

ered relevant and included in the corresponding 359

topic’s document set Dzl
t . The low threshold ac- 360

counts for the presumed vagueness and generality 361

of the expert-defined topics, as they have incom- 362

plete knowledge that would be supplemented by 363

new emerging information. Finally, the popularity 364

and trend classification for the zero-shot topics are 365

performed in the same manner as for the automati- 366

cally extracted topics, using the document sets Dzl
t 367

instead of Dk
t . 368

4 Experimental Setup 369

4.1 Datasets 370

We evaluated our approach on two datasets: the 371

arXiv dataset, containing scientific paper abstracts 372

in the computer science category (cs.*) (Cornell- 373

University, 2023), and the New York Times (NYT) 374

news dataset (Tumanov, 2023). The arXiv dataset 375

spans from January 2017 to December 2023 and 376

includes 367,248 abstracts, while the NYT dataset 377

covers the period from January 2019 to January 378

2023 and includes 184,811 articles. These datasets 379

were chosen for their diverse content and potential 380

to contain topics that could be considered weak 381

signals, such as early warnings about the COVID- 382

19 pandemic. Additionally, they have been used in 383

prior works, providing a basis for comparison and 384

validation of our approach. 385

4.2 Algorithm parameters 386

In our experiments, we used the BERTopic frame- 387

work with carefully selected hyperparameters to 388

optimize weak signal detection performance. We 389

chose the "all-mpnet-base-v2" 1 sentence trans- 390

former for document embedding because of its 391

strong performance on various natural language un- 392

derstanding tasks (Reimers and Gurevych, 2019). 393

In the UMAP dimensionality reduction step, the 394

number of components is set to 5 (default value), 395

and the number of neighbors to 15, which allows 396

UMAP to balance local and global structure in the 397

1https://huggingface.co/sentence-transformers/
all-mpnet-base-v2
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data, as lower values focus more on local structure398

while higher values emphasize broader patterns399

(McInnes et al., 2018). In the HDBSCAN cluster-400

ing step, we set the minimum cluster size to 2, the401

smallest possible value, to detect fine-grained clus-402

ters. This choice, combined with the "leaf" clus-403

ter selection method instead of "excess of mass,"404

generates precise clusters suitable for weak signal405

detection. The minimum sample size was set to406

1, the smallest possible value, to reduce the likeli-407

hood of points being declared as noise, as the high408

number of clusters obtained reduces the need for409

conservative clustering (McInnes et al., 2017).410

Topics were represented by top unigrams and411

bigrams based on their c-TF-IDF scores, and a412

minimum similarity threshold of 0.7 (empirically413

chosen) was used for merging topics across time414

slices. This threshold ensures the coherence and415

consistency of the detected topics while allowing416

room for topics to semantically fluctuate and not be417

too rigid in the merging process. For the granularity418

of the time slices, we chose 2 and 7 days for the419

NYT News the arXiv datasets respectively (values420

selected empirically to accommodate the rapidly421

evolving nature of world news compared to the422

slower pace of research papers).423

In the zero-shot example (subsection 5.4), we424

used a lower similarity threshold of 0.45 for merg-425

ing topics to accommodate the vague and incom-426

plete nature of the user-defined topics, allowing for427

a more flexible merging process. This approach428

maximizes the recall in detecting potentially rele-429

vant documents of weak signals.430

5 Results431

This section provides a qualitative analysis of our432

method’s results, focusing on key aspects to high-433

light its effectiveness and potential applications.434

5.1 Overall results435

Figure 2 illustrates the evolution of signal type436

counts and topic counts in the NYT News dataset437

and the arXiv cs.* papers dataset We observe strik-438

ing differences in the signal type distributions be-439

tween these datasets, which can be attributed to the440

very nature of their respective domains.441

In the NYT News dataset, the number of weak442

signals remains relatively stable over time, with443

a manageable quantity of 10 to 20 signals every444

2 days. This is well-suited for real-time monitor-445

ing and trend detection in fast-paced news cycles,446
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Figure 2: Evolution of Signal Types and Topic Counts
in the NYT News and arXiv cs.* Datasets

where emerging signals quickly evolve into hot top- 447

ics of discussion. The occasional spikes in strong 448

signals likely correspond to major events or trend- 449

ing news stories that capture significant attention. 450

Conversely, the arXiv cs.* papers dataset ex- 451

hibits a consistently higher number of weak signals, 452

reflecting the diverse range of emerging research 453

topics in the computer science domain. The num- 454

ber of strong signals is comparatively lower, as 455

only a subset of novel ideas and approaches even- 456

tually gain traction and become widely adopted. 457

This aligns with the nature of scientific research, 458

where numerous proposals emerge, but only a few 459

ultimately make a significant impact. 460

Interestingly, while the number of topics per time 461

slice in the NYT News dataset fluctuates but re- 462

mains overall stable, the arXiv cs.* papers dataset 463

shows an increasing trend in the number of topics 464

detected per 7-day interval. This can be attributed 465

to the exponential growth of research papers in re- 466

cent years, leading to a more diverse and rapidly 467

evolving research landscape. The total number of 468

topics after merging (blue line) steadily increases 469

over time in both datasets, reflecting the accumula- 470

tion of new topics as the datasets grow. 471

5.2 Case study 472

In this section, we conduct a qualitative analysis 473

of the results, We focus on a subset of illustrative 474
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topics and zoom into key periods to observe their475

behavior more closely. The examples are selected476

for their ease for interpretation.477

2020-01-17 2020-01-21 2020-01-25 2020-01-292020-02-01 2020-02-05 2020-02-09 2020-02-13
Timestamp

10 4

10 3

10 2

10 1

100

101

102

103

Po
pu

la
ri

ty
 (

Lo
g 

Sc
al

e)

3.00

18.74
7.82

0.05

Lower threshold: 0.09
Upper threshold: 3.96

NYT News (2020) | 01-15 to 02-15 | Arrow Timestamp: 2020-01-18

Topics

virus china - coronavirus - virus - state infected
testify senate - impeachment proceedings - impeachment trial - impeachment
taal volcano - volcano - mammoth eruption - earthquakes
released coach - philadelphia eagles - pat shurmur - giants

Signal Strength

Strong Signals
Weak Signals
Noise

2017-07 2017-10 2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10
Timestamp

10 2

10 1

100

101

102

103

Po
pu

la
ri

ty
 (

Lo
g 

Sc
al

e)

18.79

130.88

3.76

Lower threshold: 3.00
Upper threshold: 19.80

ArXiv cs.* | 2017-06 to 2019-10 | Arrow Timestamp: 2017-06-10

Topics

attention models - attention network - neural transformer - attention based
deep neural - imagenet datasets - 10 imagenet - imagenet
lstm - rnns - rnn - rnn architectures

Topics

attention models - attention network - neural transformer - attention based
deep neural - imagenet datasets - 10 imagenet - imagenet
lstm - rnns - rnn - rnn architectures

Figure 3: Log-scaled popularity of selected topics from
(a) the NYT News dataset and (b) arXiv cs.* papers.

Figure 3a focuses on the period from 01/2020 to478

02/2020, when news media began reporting on the479

COVID-19 outbreak. We observe the appearance480

of a new topic (blue signal), due to its dissimilarity481

with pre-existing topics. Initially, the blue signal482

is classified as weak because of the low number of483

articles discussing it. Shortly after, it gains trac-484

tion, transitioning from a weak to a strong signal485

within a matter of days, as evidenced by its expo-486

nential rise in popularity on the log-scaled y-axis.487

Concurrently, other strong signals during this pe-488

riod include topics related to the impeachment trial489

of President Trump (orange signal) and the Taal490

Volcano eruption (Philippines) in Jan 2020 (green491

signal), while a topic discussing American football492

teams (red signal) is classified as noise.493

In Figure 3b, we showcase the evolution of three494

selected topics from the arXiv cs.* papers dataset495

from 06/2017 to 10/2019. The blue signal, rep-496

resenting attention models, was initially a weak497

signal before June 2017, as attention methods were498

being used in conjunction with recurrent networks.499

However, the introduction of the transformer archi-500

tecture (Vaswani et al., 2017) in June 2017 marked501

a turning point, after which the topic quickly gained502

traction, transitioning into a strong signal and even-503

tually becoming a mega-trend. This rise of trans-504

formers largely replaced RNNs (Rumelhart et al.,505

1986) and LSTMs (Hochreiter and Schmidhuber, 506

1997) (green signal) in NLP tasks, leading to a de- 507

cline in the popularity of the green signal. In con- 508

trast, papers related to computer vision, especially 509

those mentioning ImageNet (Deng et al., 2009), a 510

widely-used dataset in computer vision, were clas- 511

sified as strong signals in June 2017 and continued 512

to exhibit growth. This analysis demonstrates our 513

method’s ability to identify potentially impactful 514

research topics early on, track their evolution, and 515

capture the dynamics between related topics. 516

5.3 Interpretation of signals with LLMs 517

Topic modeling methods often output topics as sets 518

of keywords, which can be difficult to interpret and 519

may not fully capture the semantic meaning of the 520

topic (Rijcken et al., 2023; Rüdiger et al., 2022). 521

Coronavirus signal: from first emergence (weak signal),
information cut-off at January 22, 2020 (strong signal).

Title: Concerns Rise Over Spread of Mysterious Illness Beyond Chinese Borders Date | 2020-01-18
Summary: Thailand and Japan reported new cases of a pneumonia-like illness from China. Diplomatic tensions escalated on
social media. No evidence of human-to-human transmission.

Title: Heightened Concerns as Novel Coronavirus Spreads Person-to-Person | 2020-01-20
Summary: Chinese expert confirmed human-to-human transmission. Cases reported in the US, Taiwan, Thailand, Japan, and
South Korea. North Korea halted foreign tourism.
What's New? Confirmation of person-to-person transmission. Cases reported in additional countries.

Title: China Implements Drastic Measures to Contain Wuhan Coronavirus | 2020-01-22
Summary: China sealed off Wuhan to halt the outbreak. WHO refrained from declaring a global emergency. Texas A&M
student isolated as potential second US case.
What's New? China's drastic measure of sealing off Wuhan. Virus spread to more countries, prompting global health concerns.

Please provide a summary for the evolution of the following topic based on the information provided:

Representation at timestamp 2020-01-18: virus china, coronavirus, virus, state
infected, infection, nine infected, mysterious respiratory, china, north korea, korea 
Context: [Document 1], [Document 2], ... 

// Repeat for 2020-01-20 and 2020-01-22

For each timestamp:

Generate a title based on the topic representation and documents

Provide a summary of the documents

For each timestamp except the first, include a "What's New?" section highlighting changes and
new information compared to the previous timestamp

Format the output as follows:

Title: [Generated title] | [Timestamp]
Summary: [Paragraph summarizing documents]
What's New? (except for the first timestamp): [Highlight changes and new information]

Figure 4: Enhancing Signal Interpretation using LLMs

Figure 4 demonstrates how LLMs can be lever- 522

aged to enhance the interpretation of signals de- 523

tected by BERTrend and of their evolution over 524

time. In this example, we use the GPT-3.5 Turbo 525

model to generate insightful summaries and high- 526

light new information at each timestamp for the 527

COVID-19 signal. To engineer the prompt for 528

the LLM, we pass the topic representation at each 529

timestamp, along with the associated documents 530

for added context. This approach provides the LLM 531

with a rich understanding of the topic’s evolution 532

and enables it to generate more accurate and infor- 533

mative summaries. 534

However, the maximum token length limita- 535

tion of 16,385 tokens imposed by GPT-3.5 Turbo 536
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presents a challenge when dealing with long-537

running topics. To mitigate this issue, we delib-538

erately select a date close to the signal’s emer-539

gence for the example, ensuring that the context fits540

within the token limit. The generated summaries541

offer a concise yet comprehensive overview of the542

topic’s evolution over time, effectively capturing543

the dynamic nature of the signal. By highlighting544

the new information at each timestamp, the LLM545

helps identify the key developments and changes546

in the topic, providing valuable insights for trend547

analysis and decision-making.548

5.4 Impact of zero-shot Topic Modeling549

2019-11-15 2019-12-01 2019-12-15 2020-01-01 2020-01-15 2020-02-01 2020-02-15 2020-03-01
Timestamp

10 2

10 1

100

101

102

103

Po
pu

la
rit

y 
(L

og
 S

ca
le

)

Lower threshold: 0.08
Upper threshold: 3.80
Current timestamp: 2020-01-18

1.98 | 58 Days Before
3.74 | 36 Days Before 3.22 | 12 Days Before

NYT News - Coronavirus Signal | 2019-11-14 to 2020-03-01

Topics
BERTrend
BERTrend w/ 0-shot

Signal Strength
Strong Signals
Weak Signals
Noise

Jan 18, 2020

mysterious virus
travel beijing

pneumonialike
china

Jan 06, 2020

new illness
high fever

sickened 59
beijing

Dec 13, 2019

vaccine research
tuberculosis

neglected disease
diseases

Nov 11, 2019

school closed
colorado

virus appeared
outbreak days

virus china
coronavirus

virus
state infected

0-shot topic:

Diseases, 
Outbreaks, 

Illnesses, Viruses

Figure 5: Comparison of COVID-19 Signal Detection
with and without zero-shot Topic Modeling

Figure 5 illustrates the impact of incorporating550

zero-shot topic modeling in the BERTrend algo-551

rithm. In this approach, an expert defines a general552

topic of interest, and each document from a slice553

is compared against this topic using embedding554

similarity. Documents that surpass a certain simi-555

larity threshold are captured, allowing for targeted556

weak signal detection. This method enables experts557

to focus on specific topics of interest while offer-558

ing higher precision and sensitivity in weak signal559

detection. By performing document-level compar-560

isons using embeddings, the zero-shot approach561

minimizes the risk of missing relevant documents562

during the topic modeling pipeline.563

In the provided example, we chose the564

generic zero-shot topic "Diseases, Outbreaks,565

Illnesses, Viruses," to detect the COVID-19566

signal, simulating a scenario where an expert has567

a general idea of what to monitor but lacks pre- 568

cise knowledge of an impending outbreak. Re- 569

markably, the zero-shot method identified the ear- 570

liest article in the dataset mentioning the coron- 571

avirus pandemic on January 6th, 2020, referring 572

to it as a "pneumonia-like mysterious virus" along- 573

side "coronavirus". This detection occurred 12 574

days before the automatic BERTrend usage with- 575

out zero-shot. Furthermore, the zero-shot approach 576

captured potential weak signals even earlier, such 577

as a November 2019 article reporting school clo- 578

sures in Colorado due to a virus outbreak. While 579

these signals may or may not be directly related to 580

the pandemic, they demonstrate the method’s abil- 581

ity to identify potentially relevant events. The con- 582

sistency of the signal’s growth is also notable. The 583

automatically detected signal (blue) by BERTrend 584

starts to decrease and becomes less stable around 585

March 2020, not due to a loss in popularity, but 586

because other signals discussing slightly different 587

aspects of the pandemic begin to emerge. 588

6 Conclusion 589

In this paper, we introduced BERTrend, a novel 590

framework for detecting and monitoring weak sig- 591

nals in large, evolving text corpora. BERTrend 592

models the trends of topics over time and classi- 593

fies them as weak signals, strong signals, or noise 594

based on their popularity, which is quantified using 595

a metric proportional to the number of documents 596

within the topic and its update frequency, with ex- 597

ponential decay for long periods without updates. 598

The classification is performed using empirically 599

chosen thresholds based on the distribution of topic 600

popularities over a sliding window. 601

The other contributions of this work include: (1) 602

an extensive evaluation on two real-world datasets 603

(NYT news articles and the arXiv cs.* papers) that 604

demonstrate the effectiveness of our approach ; (2) 605

some proposals to leverage LLMs to enhance the 606

interpretation of topic evolution; and (3) the impact 607

of incorporating zero-shot topic modeling into the 608

BERTrend framework. 609

By the EMNLP 24 conference, we will open- 610

source BERTrend to foster collaboration and ad- 611

vancement in weak signal detection. Future work 612

includes exploring the usage of named entity recog- 613

nition and knowledge graphs for further filtering 614

and distinguishing of weak signals from noise, in- 615

vestigating different datasets, and developing met- 616

rics for comparing weak signal detection methods. 617
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7 Limitations618

7.1 Hyperparameter Sensitivity619

BERTrend’s performance is sensitive to various620

hyperparameters, including BERTopic parameters,621

merge threshold, granularity, and retrospective pe-622

riod. We chose BERTopic hyperparameters to pro-623

duce the most fine-grained topics since larger topics624

will hinder the early detection process, and weak625

signals will get lost as the documents that should626

form them are assigned either to noise topics or627

other large, more generalized topics. To mitigate628

the variability of topic embeddings due to the small629

number of documents per topic, we selected a low630

merge threshold (0.6-0.7). Granularity depends on631

the amount of data available per time unit and the632

frequency of new documents. The retrospective633

period affects the influence of past signals on cur-634

rent thresholds; we found that a period of a week635

to a month doesn’t change thresholds significantly,636

but bigger changes can affect classification results.637

Empirically fixed thresholds (10th percentile and638

median) balance precision and recall.639

7.2 Topic Modeling Limitations640

We observed that BERTopic occasionally assigns641

documents to existing clusters when they would be642

better suited as standalone topics. This can result in643

important documents being lost in the closest clus-644

ter, hindering early detection. A more robust ap-645

proach worth investigating is training a BERTopic646

model on historical data to form numerous top-647

ics, then comparing each new document individ-648

ually with pre-existing topics. If the similarity is649

high enough, the document is merged; otherwise,650

it forms a new cluster. This document-level opera-651

tion would provide more control and bypass topic652

modeling mishaps at the cost of performance.653

7.3 Distinguishing Between Weak Signals and654

Noise655

There remains the challenge of distinguishing be-656

tween what’s considered a weak signal and what’s657

considered noise. Relying on temporal popular-658

ity fluctuations alone isn’t ideal, as both weak and659

noise signals behave very similarly. There’s also660

the issue of characterizing what would be a "weak661

signal," since that changes from one person to an-662

other, one domain to another, etc. This is why663

we added the zero-shot detection to help an expert664

guide the detection process. We envision explor-665

ing the effect of using named entity recognition for666

better filtering in future work. 667

7.4 Limits of zero-shot method 668

One disadvantage of the zero-shot method is that 669

the low similarity threshold chosen to maximize 670

recall, combined with the incomplete description 671

of the zero-shot topic, may capture false alarms 672

such as articles discussing other diseases. However, 673

this approach still serves as a powerful tool to sig- 674

nificantly narrow down the number of documents 675

to review based on embeddings, facilitating more 676

targeted analysis by domain experts. 677

7.5 Evaluation Challenges 678

Evaluating the effectiveness of our weak signal de- 679

tection method is challenging due to many factors: 680

• the subjective nature of what constitutes a weak 681

signal, since it depends on the context, the do- 682

main, and the specific goals of the analysis, mak- 683

ing it difficult to raise a consensus even among 684

domain experts. 685

• the lack of ground truth data: unlike many other 686

natural language processing tasks, there are no 687

widely accepted benchmark datasets or ground 688

truth annotations specifically designed for eval- 689

uating weak signal detection. This lack of stan- 690

dardized benchmarks hinders the ability to objec- 691

tively compare different approaches and quantify 692

their performance. 693

• dynamics over time: weak signals are often tran- 694

sient and can grow or dissipate over time. This 695

dynamic nature complicates the evaluation pro- 696

cess, as the ground truth itself may change, re- 697

quiring continuous monitoring and updating of 698

the evaluation data. 699

Whereas this work has focused on qualitative 700

evaluation of trends and weak signals, future work 701

should explore methods for quantitative evalua- 702

tion, development of methodologies to keep the 703

human in the loop, and comparison of different 704

approaches. 705

References 706

H Igor Ansoff. 1975. Managing strategic surprise by 707
response to weak signals. California management 708
review, 18(2):21–33. 709

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 710
2003. Latent dirichlet allocation. Journal of Machine 711
Learning Research, 3:993–1022. 712

Cornell-University. 2023. arxiv dataset. Accessed: 713
2024-06-14. 714

9

https://www.kaggle.com/datasets/Cornell-University/arxiv


Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,715
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-716
archical image database. In 2009 IEEE conference717
on computer vision and pattern recognition, pages718
248–255. Ieee.719

Hayoung Kim Donnelly, Yoonsun Han, Juyoung Song,720
and Tae Min Song. 2019. Application of social big721
data to identify trends of school bullying forms in722
south korea. International journal of environmental723
research and public health, 16(14):2596.724

Manal El Akrouchi, Houda Benbrahim, and Ismail Kas-725
sou. 2021. End-to-end lda-based automatic weak726
signal detection in web news. Knowledge-Based Sys-727
tems, 212:106650.728

Israel Griol-Barres, Sergio Milla, Antonio Cebrián,729
Huaan Fan, and Jose Millet. 2020. Detecting weak730
signals of the future: A system implementation based731
on text mining and natural language processing. Sus-732
tainability, 12(19):7848.733

Maarten Grootendorst. 2022. Bertopic: Neural topic734
modeling with a class-based tf-idf procedure. arXiv735
preprint arXiv:2203.05794.736

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long737
short-term memory. Neural computation, 9(8):1735–738
1780.739

Alina Irimia, P Paul, and Radu Gheorghiu. 2018. Tacit740
knowledge-weak signal detection. Natural Language741
Processing meets Journalism III, page 31.742

Hyunuk Kim, Sang-Jin Ahn, and Woo-Sung Jung. 2019.743
Horizon scanning in policy research database with a744
probabilistic topic model. Technological Forecasting745
and Social Change, 146:588–594.746

Pauliina Krigsholm and Kirsikka Riekkinen. 2019. Ap-747
plying text mining for identifying future signals of748
land administration.749

Young-Joo Lee and Ji-Young Park. 2018. Identifica-750
tion of future signal based on the quantitative and751
qualitative text mining: a case study on ethical is-752
sues in artificial intelligence. Quality & Quantity,753
52(2):653–667.754

Julien Maitre, Michel Menard, Guillaume Chiron, and755
Alain Bouju. 2019. Détection de signaux faibles756
dans des masses de données faiblement structurées.757
Recherche d’Information, Document et Web Séman-758
tique, 3(1).759

Leland McInnes, John Healy, Steve Astels, et al. 2017.760
hdbscan: Hierarchical density based clustering. J.761
Open Source Softw., 2(11):205.762

Leland McInnes, John Healy, and James Melville. 2018.763
Umap: Uniform manifold approximation and pro-764
jection for dimension reduction. arXiv preprint765
arXiv:1802.03426.766

Chankook Park and Seunghyun Cho. 2017. Future sign 767
detection in smart grids through text mining. Energy 768
Procedia, 128:79–85. 769

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 770
Sentence embeddings using siamese bert-networks. 771
arXiv preprint arXiv:1908.10084. 772

Emil Rijcken, Floortje Scheepers, Kalliopi Zervanou, 773
Marco Spruit, Pablo Mosteiro, and Uzay Kaymak. 774
2023. Towards interpreting topic models with chat- 775
gpt. In The 20th World Congress of the International 776
Fuzzy Systems Association. 777

Seungkook Roh and Jae Young Choi. 2020. Explor- 778
ing signals for a nuclear future using social big data. 779
Sustainability, 12(14):5563. 780

Pauline Rousseau, Daniel Camara, and Dimitris Kotzi- 781
nos. 2021. Weak signal detection and identification 782
in large data sets: a review of methods and applica- 783
tions. 784

Matthias Rüdiger, David Antons, Amol M Joshi, and 785
Torsten-Oliver Salge. 2022. Topic modeling revis- 786
ited: New evidence on algorithm performance and 787
quality metrics. Plos one, 17(4):e0266325. 788

David E Rumelhart, Geoffrey E Hinton, and Ronald J 789
Williams. 1986. Learning internal representations 790
by error propagation, parallel distributed processing, 791
explorations in the microstructure of cognition, ed. de 792
rumelhart and j. mcclelland. vol. 1. 1986. Biometrika, 793
71:599–607. 794

Dirk Thorleuchter, Tobias Scheja, and Dirk Van den 795
Poel. 2014. Semantic weak signal tracing. Expert 796
systems with applications, 41(11):5009–5016. 797

Alexander Tumanov. 2023. New york times articles 798
dataset. Accessed: 2024-06-14. 799

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 800
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 801
Kaiser, and Illia Polosukhin. 2017. Attention is all 802
you need. Advances in neural information processing 803
systems, 30. 804

Sun Hi Yoo and DongKyu Won. 2018. Simulation of 805
weak signals of nanotechnology innovation in com- 806
plex system. Sustainability, 10(2):486. 807

Janghyeok Yoon. 2012. Detecting weak signals for 808
long-term business opportunities using text mining 809
of web news. Expert Systems with Applications, 810
39(16):12543–12550. 811

10

https://api.semanticscholar.org/CorpusID:208779099
https://api.semanticscholar.org/CorpusID:208779099
https://api.semanticscholar.org/CorpusID:208779099
https://api.semanticscholar.org/CorpusID:208779099
https://api.semanticscholar.org/CorpusID:208779099
https://doi.org/10.13140/RG.2.2.20808.24327/1
https://doi.org/10.13140/RG.2.2.20808.24327/1
https://doi.org/10.13140/RG.2.2.20808.24327/1
https://doi.org/10.13140/RG.2.2.20808.24327/1
https://doi.org/10.13140/RG.2.2.20808.24327/1
https://www.kaggle.com/datasets/tumanovalexander/nyt-articles-data
https://www.kaggle.com/datasets/tumanovalexander/nyt-articles-data
https://www.kaggle.com/datasets/tumanovalexander/nyt-articles-data

