
Tools for Verifying Neural Models’ Training Data

Dami Choi∗

U. Toronto & Vector Institute

choidami@cs.toronto.edu

Yonadav Shavit∗

Harvard University

yonadav@g.harvard.edu

David Duvenaud

U. Toronto & Vector Institute

duvenaud@cs.toronto.edu

Abstract

It is important that consumers and regulators can verify the provenance of large
neural models to evaluate their capabilities and risks. We introduce the concept of
a “Proof-of-Training-Data”: any protocol that allows a model trainer to convince a
Verifier of the training data that produced a set of model weights. Such protocols
could verify the amount and kind of data and compute used to train the model,
including whether it was trained on specific harmful or beneficial data sources.
We explore efficient verification strategies for Proof-of-Training-Data that are
compatible with most current large-model training procedures. These include a
method for the model-trainer to verifiably pre-commit to a random seed used in
training, and a method that exploits models’ tendency to temporarily overfit to
training data in order to detect whether a given data-point was included in training.
We show experimentally that our verification procedures can catch a wide variety
of attacks, including all known attacks from the Proof-of-Learning literature.

1 Introduction

How can we verify the capabilities of large machine learning models? Today, such claims are based
on trust and reputation: customers and regulators believe that well-known companies building AI
models wouldn’t lie about the training data used in their models. However, as the ability to build
new AI models proliferates, users need to trust an ever-larger array of model providers at their word,
and regulators may increasingly face malicious AI developers who may lie to appear compliant with
standards and regulations. Worse, countries developing militarily-significant AI systems may not
trust each others’ claims about these systems’ capabilities, making it hard to coordinate on limits.

AI developers can enable greater trust by having a third party verify the developer’s claims about their
system, much as the iOS App Store checks apps for malicious code. Current black-box approaches to
model auditing allow some probing of capabilities [Cen23], but these audits’ utility is limited and a
model’s capabilities can be hidden [GTB22, GKVZ22]. An auditor can more effectively target their
examination if they also know the model’s training data, including the total quantity, inclusion of
data likely to enable specific harmful capabilities (such as texts on cyber-exploit generation), and
inclusion of safety-enhancing data (such as instruction-tuning [OWJ+22]). However, if auditors rely
on AI developers to self-report the data, developers could falsify their reports. This uncertainty limits
the trust such audits can create.

In this work, we define the problem of Proof-of-Training-Data (PoTD): a protocol by which a third-
party auditor (the “Verifier”) can verify which data was used by the developer (the “Prover”) to
train a model. Our verification procedures assume that the Verifier can be given access to sensitive
information and IP (e.g., training data, model weights) and is trusted to keep it secure; we leave the
additional challenge of simultaneously preserving the confidentiality of the training data and model
weights to future work. In principle, one could solve PoTD by cryptographically attesting to the

∗Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

results of training on a dataset using delegated computation [CKV10]. However, in practice such
delegation methods are impractically slow, forcing us to turn to heuristic verification approaches.

Inspired by the related literature on “Proof-of-Learning” (PoL)[JYCC+21], we propose that model-
trainers disclose a training transcript to the Verifier, including training data, training code, and
intermediate checkpoints. In Section 4, we provide several verification strategies for a Verifier to
confirm a training transcript’s authenticity, including new methods that address all published attacks
in the Proof-of-Learning literature. We demonstrate the practical effectiveness of our defenses via
experiments on two language models (Section 6). Our methods can be run cheaply, adding as little as
1.3% of the original training run’s compute. Further, we require no change to the training pipeline
other than fixing the data ordering and initialization seeds, and storing the training process seeds for
reproducibility. Still, like PoL, they sometimes require re-running a small fraction of training steps to
produce strong guarantees.

The verification strategies we describe are not provably robust, but are intended as an opening proposal
which we hope motivates further work in the ML security community to investigate new attacks and
defenses that eventually build public confidence in the training data used to build advanced machine
learning models.

2 Related Work

We build on [Sha23], which sketches a larger framework for verifying rules on large-scale ML
training. It defines, but does not solve, the “Proof-of-Training-Transcript” problem, a similar problem
to Proof-of-Training-Data that additionally requires verifying hyperparameters.

Proof-of-Learning. [JYCC+21] introduce the problem of Proof-of-Learning (PoL), in which a
Verifier checks a Prover’s ownership/copyright claim over a set of model weights by requiring the
Prover to prove that they did at least as much computational work as was required to have trained
the original model. The Prover’s proof consists of reporting a sequence of valid weight checkpoints
that led to the final weights. The Verifier then re-executes training between a few checkpoints and
checks that the results are similar to confirm (or reject) the report’s correctness. Unlike PoL, Proof-of-
Training-Data requires proving what exact data was used to produce a model. This is strictly harder:
any valid PoTD protocol can serve as a solution to PoL, as compute cost can be derived from the size
of the dataset. Furthermore, PoL only requires robustness to adversaries that use less computation
than the original training run, whereas PoTD targets all computationally-feasible adversaries.

Several works have successfuly attacked the original PoL scheme; our proposed defenses defeat all
published attacks. [ZLD+22] and [KRCC22] provide methods for forging fake data that will (during
retraining) interpolate between chosen checkpoints, thus allowing the production of fake transcripts.
(See Section 4.3 for our mitigation.) [FJT+22] exploit the fact that, due to the prohibitive cost of
retraining, the Verifier can only retrain a tiny fraction of checkpoints. By falsifying only a modest
fraction of checkpoints, a Prover can prevent their fake transcript being caught with high probability.
(See Section 4.2 for our mitigation, which introduces a method for verifying checkpoints that is much
cheaper than retraining, and can thus be applied to all checkpoints.)

Memorization during training. [ZIL+21] introduce the notion of counterfactual memorization (the
average difference in model performance with and without including a specific point in training) that
is most similar to our own, and use it to investigate different training points’ effects on final model
performance. [FZ20] examine which datapoints are most strongly memorized during training by
using influence functions, but they focus on the degree of memorization only at the end of training.
[BPS+23] show that per-datapoint memorization of text (as measured by top-1 recall) can be some-
what reliably predicted based on the degree of memorization earlier in training. [KGG+22] analyze
pointwise loss trajectories throughout training, but do not focus specifically on the phenomenon of
overfitting to points in the training set.

3 Formal Problem Definition

In the Proof-of-Training-Data problem, a Prover trains an ML model and wants to prove to a Verifier
that the resulting target model weights W ∗ are the result of training on data D∗. If a malicious Prover
used training data that is against the Verifier’s rules (e.g., terms of service, regulatory rules) then that

2

Prover would prefer to hide D∗ from the Verifier. To appear compliant, the Prover will instead lie
and claim to the Verifier that they have used some alternative dataset D ̸= D∗. However, the Prover
will only risk this lie if they believe that with high probability they will not get caught (making them
a “covert adversary” [AL07]). The goal of a Proof-of-Training-Data protocol is to provide a series of
Verifier tests that the Prover would pass with high probability if and only if they truthfully reported
the true dataset that was used to yield the model W ∗.

Let D ∈ Xn be an ordered training dataset. Let M contain all the hyperparameters needed to
reproduce the training process, including the choice of model, optimizer, loss function, random seeds,
and possibly details of the software/hardware configuration to maximize reproducibility.

Definition 1. A valid Proof-of-Training-Data protocol consists of a Prover protocol P , Verifier
protocol V , and witnessing template J that achieves the following. Given a dataset D∗ and hyperpa-
rameters M∗, an honest Prover uses P to execute a training run and get (W ∗, J∗) = P(D∗,M∗, c1),
where W ∗ ∈ Rd is a final weight vector, J∗ ∈ J is a witness to the computation, and c1 ∼ C1

is an irreducible source of noise. The Verifier must accept this true witness and resulting set of
model weights with high probability: Prc1∼C1,c2∼C2

[V(D∗,M∗, J∗,W ∗, c2) = 1] ≥ 1− δ1 , where
δ1 ≪ 1/2 and c2 is the randomness used by the Verifier.

Conversely, ∀ computationally-feasible probabilistic adversaries A which produce spoofs
(D,M, J) = A(D∗,M∗, J∗,W ∗, c3) where D ̸= D∗ and c3 ∼ C3 is the random-
ness used by the adversary, the Verifier must reject all such spoofs with high probability:
Prc1∼C1,c2∼C2,c3∼C3

[V(D,M, J,W ∗, c2) = 0] ≥ 1− δ2 where δ2 ≪ 1/2.

Following the literature on the related Proof-of-Learning problem [JYCC+21], we use as a witness
the series of m model weight checkpoints J∗ = W = (W0,W1, . . . ,Wm−1,W

∗). Model weight
checkpoints are already routinely saved throughout large training runs; we assume a checkpoint is
saved after training on each k = n/m-datapoint segment. During verification, the Prover provides
the Verifier with the training transcript T = {D,M,W}, which the Verifier will then test to check
its truthfulness.

In practice, we cannot yet pursue provable robustness to all probabilistic adversaries A, due to the
nascent state of the theoretical foundations of deep learning [FJT+22]. Instead, as is done in the PoL
literature, we approximate robustness to A by proposing a range of adversaries and then showing
a protocol that defeats them. In particular, we will consider two major types of attacks (and their
combinations):

• Non-Uniqueness Attack: The Prover forges a different D ̸= D∗ and M (and corresponding
checkpoints W) that would, if training was reexecuted, also lead to W ∗. In general, it is
easy to produce such transcripts (e.g., initialize training at W0 = W ∗ and take no steps). In
Section 4.3 we propose constraints on P that block such attacks.

• Data Subtraction Attack: The Prover reports training on D, but secretly only trains on a
subset D∗ ⊊ D.

• Data Addition Attack: The Prover reports training on D, but secretly trains on an additional
set of data D∗ ⊋ D.

• Checkpoint Glue-ing Attack: The Prover reports a pair of successive checkpoints
(Wi,Wi+1) ⊂ W , but Wi+1 was not produced from Wi by a training procedure at all.

We address the latter three attacks in Section 6.

As a brute-force solution to Proof-of-Training-Data, the Verifier could simply re-execute the complete
training process defined by T , and check that the result matches W ∗. However, beyond technical
complications2, doing so is far too computationally expensive to be done often; a government Verifier
would need to be spending as much on compute for audits as every AI developer combined. Therefore
any verification protocol V must also be efficient, costing much less than the original training run.
Inevitably, such efficiency makes it near certain that the Verifier will fail to catch spoofs D ̸= D∗

if D only differs in a few data points; in practice, we prioritize catching spoofs which deviate on a

2This would also fail in practice because of irreducible hardware-level noise which means that no two training
runs return exactly the same final weight vector [JYCC+21]. a transcript could still be examined piecewise, as
done in [JYCC+21]; for more, see Section 4.1.

3

substantial fraction of points in D∗. Though we do not restrict to a particular definition of dataset
deviations, we list several possibilities relevant for different Verifier objectives in Appendix D.

4 Verification Strategies

We provide several complementary tools for detecting whether a transcript T is spoofed. Combined,
these methods address many different types of attacks, including all current attacks from the PoL
literature [ZLD+22, FJT+22].

4.1 Existing Tools from Proof-of-Learning

Our protocol will include several existing spoof-detection tools from the Proof-of-Learning literature
[JYCC+21], such as looking for outliers in the trajectory of validation loss throughout training,
and plotting the segment-wise weight-change ∥Wi − Wi−1∥2 between the checkpoints W . The
most important of these existing tools is the segment-wise retraining protocol of [FJT+22]. Let
R(Wi−1,Πi, c;M) be the model training operator that takes in a weight checkpoint Wi−1, updates
it with a series of gradient steps based on training data sequence Πi (describing the order in which
the Prover claims data points were used in training between checkpoints Wi−1 and Wi, which
may be different from the order of the dataset D∗), hyperparameters M , and hardware-noise-
randomness c ∼ C, and then outputs the resulting weight checkpoint Wi. Transcript segment i is
(ϵ, δ)-reproducible if for the pair of checkpoints (Wi−1,Wi) in W , the reproduction error (normalized
by the overall segment displacement) is small:

Pr
c∼C

(
∥Ŵi −Wi∥2

∥Ŵi−Wi−1∥2+∥Wi−Wi−1∥2

2

< ϵ

)
> 1− δ where Ŵi = R(Wi−1,Πi, c;M). (1)

The values ϵ and δ trade off false-positive vs. false-negative rates; see [JYCC+21, FJT+22] for dis-
cussion. The Verifier can use this retraining procedure as a ground-truth for verifying the faithfulness
of a suspicious training segment. However, this test is computationally-intensive, and can thus only
be done for a small subset of training segments. Our other verification strategies described in Sections
4.2 and 4.3 will be efficient enough to be executable on every training segment.

4.2 Memorization-Based Tests

The simplest way for a Prover to construct a spoofed transcript ending in W ∗ is to simply make
up checkpoints rather than training on D∗, and hope that the Verifier lacks the budget to retrain a
sufficient number of checkpoints to catch these spoofed checkpoints. To address this, we demonstrate
a heuristic for catching spoofed checkpoints using a small amount of data, based on what is to the best
of our knowledge a previously-undocumented phenomenon about local training data memorization.

Machine learning methods notoriously overfit to their training data D, relative to their validation
data Dv. We can quantify the degree of overfitting to a single data point d on a loss metric L :
X× R|W | → R relative to a validation set Dv via a simple memorization heuristic M:

M(d,W) = Ed′∈Dv [L(d′,W)]− L(d,W). (2)

Recall that Πi is the sequence of data points corresponding to the ith segment of the training run.
One would expect that in checkpoints before data segment i, for data points d ∈ Πi, memorization
M(d,Wj<i) would in expectation be similar to the validation-set memorization; after data-segment
i, one would expect to see higher degrees of overfitting and therefore M(d,Wj≥i) would be substan-
tially higher. We find evidence for this effect in experiments on GPT-2-Small [RWC+19] and the
Pythia suite [BSA+23]). As shown in Figures 1 and 2, when a Prover reports the true training data,
on average the greatest memorization occurs where Πi and Wj=i match. We corroborate this finding
with additional experiments on a range of models in Appendix G. The finding is even clearer if we
look at jumps in memorization level, which we call the Memorization Delta ∆M:

∆M(d, i;W, Dv,L) = M(d,Wi)−M(d,Wi−1). (3)

To test whether each reported checkpoint Wi resulted from training on at least some of the segment
training data Πi, a Verifier can compute a memorization plot like the one shown in Figure 1. Such

4

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Loss

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Memorization

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Memorization Delta

10 0 10
Checkpoint Num. - Data Segment

0

1

2

3

4

5

6

M
em

or
iza

tio
n

×10 2

4

5

6

7

8

9

10

0

1

2

3

4

5

6

×10 2

4

2

0

2

4

6
×10 2

2

4

6

8

10

12

14

16

Da
ta

 S
eg

m
en

t

Figure 1: Plots from a GPT-2 experiment, demonstrating the local memorization effect. The maximum
score for each data segment (row) is marked with a red box. The largest average memorization for
data sequence Πi occurs at the immediately-subsequent checkpoint Wi. From left to right: plots
of the average loss L; memorization M; and memorization-delta ∆M; along with the average
memorization over time for each segment Πi, recentered such that Wi is at x = 0.

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Pythia (70M)

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Pythia (1B)

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

GPT-2 2 Epochs

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

GPT-2 Different Order

0.5

0.0

0.5

1.0

1.5
×10 2

2

1

0

1

2

3

4

5
×10 2

1

0

1

2

3

4

5

6
×10 2

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50
×10 3

Figure 2: Plots of the memorization M on other types of training runs, similar to Figure 1. For
efficiency, plots of the Pythia models use only 10% of training data, and look only at a window of
checkpoints around Wi. From left to right: M for checkpoints near the middle of the Pythia (70M)
training run shows the same pattern as GPT-2; checkpoints near the middle of the Pythia (1B) training
run show that the phenomenon gets clearer as the model size increases; M for a GPT-2 run with two
epochs over the same data (with random data order each epoch; the first epoch ends at checkpoint 9)
to demonstrate that the effect is present over multiple epochs; M for a GPT-2 run using a random
data order other than Π shows that the effect is tied to the training data sequence itself.

plots can be computed more efficiently by sampling only a small fraction α of the training data Π,
and by plotting only a few checkpoints Wi−β , . . . ,Wi+β for each segment Πi.

We can further harness this memorization phenomenon to test whether on segment i, rather than
training on the full claimed data sequence Πi and yielding Wi, the Prover secretly skipped training
on at least a κ-fraction of the points in Πi and yielded W ′

i . Consider the odds that, for d ∼ Πi,
∆M(d,Wi) happens to fall in the bottom p-probability quantile of the validation set Dv’s ∆M values
on Wi:

PBQ(d, p,Wi) = I (Ed′∼Dv
I(∆M(d′,Wi) > ∆M(d,Wi)) ≤ p) (4)

FBQ(Π, p,Wi) = Ed∼Π [PBQ(d, p,Wi)] , (5)

where I is the indicator function, PBQ stands for “Point is Below Quantile”, and FBQ stands for
“Fraction Below Quantile”. We can see in Figure 3 that, as expected, when the points in Πi are
all included in training, FBQ(Πi, p,Wi) is small compared to FBQ(Πj ̸=i, p,Wi)). If many points
were secretly excluded, as in W ′

i , we should expect that FBQ(Πi, p,W
′
i) should be higher and closer

to FBQ(Dv, p,W
′
i), where Dv is the validation set. If the Prover secretly excluded a greater than

κ-fraction of data points in Πi thus yielding W ′
i , then we should expect that:

FBQ(Πi, p,W
′
i) = (1− κ)FBQ(Πi, p,Wi) + κFBQ(Dv, p,W

′
i) ≥ κ · FBQ(Dv, p,W

′
i) (6)

(see derivation in Appendix B). Rearranging terms, we get

λ(Πi, p,W
′
i) :=

FBQ(Πi, p,W
′
i)

FBQ(Dv, p,W ′
i)

≥ κ. (7)

λ(Πi, p,W
′
i) can be estimated using a small fraction of training and validation datapoints, and can

serve as an upper-bound estimate on κ, the fraction of Πi secretly excluded from training W ′
i .3 In

3The percentile-threshold p is left unspecified, but should be kept ≪ 0.5. The test can be strengthened by
varying the chosen fraction p and rerunning the analysis to confirm its insensitivity.

5

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Frac. of points above 50th percentile

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Frac. of points below 10th percentile

2 1 0 1 2
Memorization Delta

0.00

0.25

0.50

0.75

1.00

1.25

De
ns

ity

Checkpoint #1
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

De
ns

ity

Checkpoint #9
train set
valid. set

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 3

10 2

10 1

Figure 3: Exploring the pointwise memorization effect on GPT-2. From left to right: For each Wi

and Πi, we plot the fraction of points with ∆M above the median 1−FBQ(Πi, 0.5,Wi), and see that
in the diagonal segments, most individual points are above the median. This shows that memorization
occurs pointwise, suggesting that it can be detected via sparse random sampling. The highest segment
in each row is surrounded by a red box; Plotting the fraction of samples below the 10%ile, we see
the fraction is uniquely low on diagonal tiles (Πi,Wj=i), as predicted; two histograms comparing
∆M for diagonal vs. nondiagonal weight checkpoints across all data segments, shows how the
distributions may or may not overlap. Even at Checkpoint 1, the leftmost plot shows that Π1 has a
(marginally) larger fraction of points above the median than any other data segment.

Section 6 we show that this heuristic can detect even small data subtractions in practice, and in
Appendix H.2 we show the test’s effectiveness across a range of percentiles p and segment-lengths k.

We also observe that M gradually decreases over time from an initial peak immediately after the
point’s training segment. This echoes the many findings on “forgetting” in deep learning [TSC+18].
We show in Section 6 how this can be used to catch gluing attacks.

4.3 Fixing the Initialization and Data Order

As mentioned in Section 3, a Proof-of-Training-Data protocol needs to defend against non-uniquness
attacks, by making it difficult for a malicious Prover to produce a second transcript with D ̸= D∗

that, if training was legitimately executed, would also end in W ∗. There are two well-known types of
attacks the Prover might use to efficiently produce such spoofs:

• Initialization attacks: An attacker can choose a “random” initialization that places W0 in
a convenient position, such as close to the target W ∗. Even if the Verifier uses statistical
checks to confirm that the initialization appears random, these are sufficiently loose that an
adversary can still exploit the choice of initialization [ZLD+22].

• Synthetic data/data reordering attacks: Given the current weight vector Wi, an attacker can
synthesize a batch of training datapoints such that the resulting gradient update moves in a
direction of the attacker’s choosing, such as towards W ∗. This could be done through the
addition of adversarial noise to existing data points [ZLD+22], generating a new dataset
[TJSP22], or by carefully reordering existing data points in a “reordering attack” [SSK+21].

We propose methods for preventing both of these attacks by forcing the Prover to use a certified-
random weight initialization, and a certified-random data ordering. The randomized data ordering
guarantees that the adversarial Prover cannot construct synthetic datapoints that induce a particular
gradient, because it does not know the corresponding weights W at the time of choosing the datapoints
D. Given a fixed data ordering, we discuss in Appendix E why it may be super-polynomially hard to
find a certified-random weight initialization that, when fully trained, results in a particular W ∗.

The Verifier can produce this guaranteed-random initialization and data order by requiring the Prover
to use a particular random seed s, constructed as a function of the dataset D itself. This produces the
initialization W0 = Gr(s) ∈ Xn and data ordering S = Gp(s) using a publicly known pseudorandom
generators Gr and Gp.4 5 The Prover can also construct a verifiable validation subset Dv by holding

4Gr is a cryptographically-secure pseudorandom d-length vector generator, with postprocessing defined in
the hyperparameters M , and Gp is a publicly-agreed pseudorandom n-length permutation generator. Gp can be
modified to repeat data multiple times to train for multiple epochs, or according to a randomized curriculum.

5In practice, the statistical test to verify that the certified ordering was used will only be able to distinguish
whether each data point di ∼ D was trained in the assigned segment Si or not. Therefore, for this protocol to
apply a checkpoint must be saved at least twice per epoch, k ≤ n/2.

6

out the last nv data-points in the permutation S from training. The Prover constructs s as follows.
Assume that the dataset D has some initial ordering. Let H be a publicly-known cryptographic hash
function. We model H as a random oracle, so that when composed with Gr or Gp, the result is
polynomial-time indistinguishable from a random oracle.6 This means that if a Prover wants to find
two different seeds s1, s2 that result in similar initializations W0;1,W0;2 or two similar permutations
S1, S2, they can find these by no more efficient method than guessing-and-checking. For large d
and n, finding two nontrivially-related random generations takes exponential time. We construct the
dataset-dependent random seed s as

s(D, srand) = H (H(d1) ◦H(d2) ◦ · · · ◦H(da) ◦ srand) , (8)

where {d1, . . . , da} = D, ◦ is the concatenation operator, and srand is a Prover-chosen 32-bit
random number to allow the Prover to run multiple experiments with different seeds.7 A Verifier
given access to D (or only even just the hashes of D) can later rederive the above seed and, using the
pseudorandom generators, check that it produces the reported W0 and S.

The important element of this scheme is that given an initial dataset D∗ and resulting data order S,
modifying even a single bit of a single data point in D∗ to yield a second D will result in a completely
different data order S′ that appears random relative to S. Thus, if we can statistically check that a
sequence of checkpoints W matches a data order S∗ and dataset D∗ better than a random ordering,
this implies that D∗ is the only efficiently-discoverable dataset that, when truthfully trained8, would
result in the checkpoints W and final weights W ∗. We provide this statistical test in Appendix C.

This same approach can be extended to the batch-online setting, where a Prover gets a sequence of
datasets D∗

1 , D
∗
2 , . . . and trains on each before seeing the next. The Prover simply constructs a new

seed s(D∗
i , srand) for each dataset D∗

i , and continues training using the resulting data ordering. This
works so long as each D∗

i is large enough for a particular data-ordering to not be brute-forceable.

4.4 Putting It All Together

In Appendix A we sketch a complete protocol for combining these defenses complementarily to
detect all of the attacks discussed in Section 6. The overall computational cost for the Verifier is O(n)
training data-point hashes, O(αn) model inferences for computing losses, and O(|Q|n) gradient
computations for retraining transcript segments (where |Q| depends on hyperparameters that can be
adjusted according on the Verifier’s compute budget). Importantly, the Verifier’s cost grows no worse
than linearly with the cost of the original training run. If we run our tests using an α = 0.01 fraction
of the points in each segment as done in our experiments below, the verification cost of computing our
new tests in Sections 4.2 and 4.3 totals just 1.3% of the original cost of training, assuming inference
is 3× cheaper than training.

5 Experimental Setup

Our main experiments are run on GPT-2 [RWC+19] with 124M parameters and trained on the
OpenWebText dataset [GCPT19]. We use a batch size of 491,520 tokens and train for 18,000 steps
(∼8.8B tokens), which is just under 1 epoch of training, saving a checkpoint every 1000 steps. See
Appendix F for additional details. The data addition attack experiments in Section 6 further use the
Github component of the Pile dataset [GBB+20] as a proxy for a Prover including additional data
that is different from reported data. In addition to training our own models, we also evaluate Pythia
checkpoints [BSA+23] published by EleutherAI, as they publish the exact data order used to train
their models. We chose the 70M, 410M, and 1B-sized Pythia models trained on the Pile dataset with
deduplication applied. All experiments were done using 4 NVIDIA A40 GPUs.

6Since the random oracle model is known to be unachievable in practice, we leave the task of finding a more
appropriate cryptographic primitive as an interesting direction for future work.

7To enable a Prover to only reveal the required subset of data to the Verifier, it may be best to construct s
using a Merkle hash tree.

8It is still possible to construct multiple data sets D1, D2, and train on both, interleaving batches. This is not
a uniqueness attack, but a data addition attack, and will be addressed in Section 6.

7

6 Empirical Attacks and Defenses

Below, we show that our methods address the last three attacks (Checkpoint Glue-ing, Data Sub-
traction, and Data Addition). We omit the synthetic initialization and synthetic data attacks of
[FJT+22, ZLD+22] as we addressed those in Section 4.3. All plots are from experiments using
GPT-2; we include additional experiments in Appendix H. We do not claim that the attacks studied
here are exhaustive, but provide them as a starting point to motivate future work.

Checkpoint Glue-ing Attack A known attack against Proof-of-Learning, which also applies
to PoTD, is to “glue” two training runs WA and WB together and report a combined sequence
of checkpoints W = (WA

0 , . . . ,WA
i ,WB

j≫0, . . . ,W
B
final). The resulting model WB

final can be
trained on undisclosed data prior to segment j, with the Prover never reporting this data to the
Verifier. As highlighted by [JYCC+21], the size of the glued segment ∥WB

j −WA
i ∥2 will generally

appear as an outlier in weight-space. We demonstrate this phenomenon in Figure 4. Following
[JYCC+21], a Verifier could then check such suspicious segments via retraining. We demonstrate
a second verification option using inference instead of training: the Verifier can check whether
the checkpoint WB

j has memorized not only the most recent data Πi, but also the preceding data
segments Πi−1,Πi−2, . . . The absence of long-term memorization is visible in the memorization
heatmap in Figure 4.

1 3 5 7 9 11 13 15 17
Checkpoint Num. (i)

0

50

100

150

200

250

300

350

400

||W
i

W
i

1||

0 2 4 6 8 10 12 14 16 18
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Memorization

0 5 10 15
Checkpoint Num.

0

1

2

3

4

5

6

M
em

or
iza

tio
n

×10 2

0

1

2

3

4

5

6

×10 2

1

2

3

4

5

6

7

8

9

Da
ta

 S
eg

m
en

t

Figure 4: Exploring how the defenses handle a simulated gluing attack, where the transcript switches
from one GPT-2 training run to a second run after the 9th checkpoint. (We assume the Prover uses a
certified data order (Section 4.3) on the sections before and after gluing.) From left to right: The norm
of the weight-changes jumps abruptly during the gluing, causing the Verifier to flag that checkpoint
as suspicious.; the Verifier creates a memorization plot (shown here with 100% sampling rate for
clarity), and discovers the gluing by spotting that memorization of past checkpoints cuts off abruptly
at the suspicious segment.; The same long-term memorization cutoff effect is visible plotting average
M for each data segment across time.

To avoid the spike in weight-space shown in Figure 5 when jumping from WA
i to WB

j , the attacker
can break up the large weight-space jump into smaller jumps by artificially constructing intermediate
checkpoints aWB

j + (1− a)WA
i for several values of a. However, these interpolated checkpoints

fail our memorization tests, as they are artificial and not the result of actual training (Figure 5).

Data Subtraction Attack In a data subtraction attack, a Prover claims the model has been trained
on more points than it truly has. Detecting data subtraction attacks could enable a Verifier to detect
overclaiming by model providers, including claiming to have included safety-related data when
they secretly did not. Subtraction can also be used to hide data addition attacks, as combining the
two attacks would mean the segment was still trained on the correct number of datapoints, thus
suppressing the weight-change-plot signature used to catch data addition (as in Figure 7). We
demonstrate the effectiveness of an efficient memorization-based approach for detecting subtraction,
described in Section 4.2. Leveraging the subtraction-upper-bound test from Equation 7, we see in
Figure 6 that the upper-bound heuristic λ(Π, p,Wi) is surprisingly tight, consistently differentiating
between no-subtraction segments and even small subtraction attacks. Still, even if λ(Πi, p,W) > z
for some large z ≫ 0, this is only an upper bound on the quantity of data subtraction, and does not
prove that a z-fraction of points were subtracted. The Verifier can instead use this test as an indicator
to flag segments for retraining, which would confirm a subtraction attack. (That retraining would

8

0 5 10 15
Checkpoint Num.

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

Original Run
Interpolated Run

0 2 4 6 8 10 12 14 16 18
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Memorization

6

5

4

3

2

1

0

1

2

×10 2

Figure 5: Simulating an interpolation attack by training a GPT-2 model until the 5th checkpoint, and
then linearly-interpolating to a final checkpoint. On the left, we show that an attacker can carefully
choose interpolation points to mask any irregularities in validation loss. (The green line perfectly
overlaps with the blue line.) Nonetheless, on the right, we see a clear signature in the memorization
plot, computed using only 1% of data: the typical memorization pattern along the diagonal does not
exist for the interpolated checkpoints. For each row corresponding to a data segment Πi, a box marks
the maximal-M checkpoint. The box is red if the checkpoint is a match Wi, and magenta if there is
no match and the test fails Wj ̸=i.

5 10 15
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
bt

ra
ct

io
n

Up
pe

r-B
ou

nd

Subtraction Test with p = 0.1
Full Data
5% subtraction
50% subtraction
95% subtraction

5 10 15
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

1.0

Su
bt

ra
ct

io
n

Up
pe

r-B
ou

nd

Subtraction Test with p = 0.2
Full Data
5% subtraction
50% subtraction
95% subtraction

2 1 0 1 2
Memorization Delta

0.0

0.5

1.0

1.5

2.0
De

ns
ity

Checkpoint #1
train set
valid. set

0.2 0.1 0.0 0.1 0.2
Memorization Delta

0

5

10

15

20

De
ns

ity

Checkpoint #9
train set
valid. set

Figure 6: On the left, we simulate a data subtraction attack with different levels of subtraction (0%,
5%, 50%, or 95%) in a GPT-2 training run. The plots show the results of computing the subtraction-
upper-bound heuristic λ(Πi, p,Wi) for each checkpoint, using just 1% of training data, across 20
random seeds, with dashed lines showing the true subtraction rate. λ estimates the maximum level of
data subtraction in each segment. We see that λ provides a surprisingly tight upper bound for the
honestly-trained segment, while providing no such upper bound for the larger subtraction attacks. To
illustrate the logic behind this test, on the right, we show how a 50% subtraction attack can create a
bimodal distribution of ∆M values. λ captures the relative weight of the left mode.

result in a different weight vector can be inferred from the plot of the 50%-addition attack in Figure 7).
Appendix H.2 explores the test’s performance on the suite of Pythia models.

Data Addition Attack Addition attacks occur when a Prover in addition to training on the declared
dataset D and data sequence Π, trains on additional data D′ without reporting it to the Verifier. This
can be used to secretly enhance a model’s capabilities, install backdoors, or train on restricted data.
This attack cannot be detected using memorization analysis (Figure 7), because the Verifier does not
know and cannot test points d′ ∈ D′. However, Figure 7 also shows that significant amount of data
addition, or data addition from a different distribution ,causes a larger weight-displacement in that
segment, which can be detected by looking at the segment’s magnitude. If a Prover tries to hide this
by deleting an equally-sized subset of points from D, that can be detected as a subtraction attack. We
leave exploration of other attacks and defenses, like changing learning rates, to future work.

This raises the problem of how to estimate the “expected” segment length, which may require
retraining on a chosen subset of segments, and interpolating to estimate other segments’ lengths.
If, to hide the non-smoothness of adding extra data to a single segment, the Prover adds data
uniformly throughout a large fraction of the training run, then choosing even a small number of
segments randomly should be sufficient to catch at least one offending segment with high probability.
Unfortunately, these defenses would not detect an attacker that adds a modest amount of data within
a small number of segments, that cannot be detected by the segment-magnitude or data subtraction
defenses.

9

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Memorization

1 3 5 7 9 11 13 15 17
Checkpoint Num. (i)

20

40

60

80

100

120

140

||W
i

W
i

1||

Add 50% (OWT)
Add 5% (Github)
Baseline (OWT)

0 9 17
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

Re
pr

od
uc

tio
n

Er
ro

r

Add 50% (OWT)
Add 5% (Github)
Baseline (OWT)

0

1

2

3

4

5

×10 2

Figure 7: Simulating a data addition attack by picking a single segment (1st, 10th, or 18th), and
adding 50% more data from the same distribution (OpenWebText), or 5% more data from a different
distribution (Github), or no data addition (truthful reporting). Results are shown with error bars across
4 random seeds. From left to right: the memorization test with 1% of samples does not spot any
differences even with 50% data addition; Plotting weight-changes between checkpoints, a Verifier
can see a suspicious spike at the attacked segments; The Verifier retrains the suspicious segments and
checks the distance between the reported and re-executed checkpoint weights.

7 Discussion and Limitations

This work contributes to an emerging societal effort to develop practical and robust tools for account-
ability in the large-scale development of AI models. The statistical tests we introduce are best taken
as an opening proposal. Future work could propose clever new attacks that break this protocol, or
better yet, create new defenses that efficiently detect more, and subtler, attacks and enable trustworthy
verification of ML models’ training data.

Experimental Limitations This work provides suggestive evidence for the local-memorization
phenomenon, but further study is needed across additional modalities, architectures, and training
recipes in order to determine its broad applicability. Encouragingly, we find in Appendix G that
local-memorization gets even stronger as models get larger, though memorization appears weaker
near the end of training as the learning rate shrinks. The paper’s experiments only include language
models, in part because they are a current priority for audits. The memorization tests used may need
to be adjusted for models trained with less data on many epochs, such as image models [YZS+22].

Attacks Our Protocol Does Not Catch There are several remaining directions for attacks. The
attacks explored above can be composed in new ways, and it may be possible for compositions of
attacks to undermine the defenses that would otherwise detect each attack individually. The method
also does not address small-scale data additions, and thus cannot yet detect copyright violations or
spot inserted backdoors [XWL+21]. It also cannot detect attacks based on small-norm modifications
to the weights, which could be used to insert backdoors [BISZ+22]. Finally, attacks could be masked
with cleverly chosen hyperparameters, such as by using a temporary lower-than-reported learning
rate to shrink large changes in W . Exploring whether such attacks are feasible without degrading
learning performance – and identifying defenses – is an interesting direction for future work.

Applicability to Different Training Procedures We attempted to make our procedure as agnostic
as possible to the details of the training procedure, and believe it will be compatible with most
training procedures for large models in use today. However, our protocol does not apply to online or
reinforcement learning, or to schemes that require multiple models to be co-trained [GPAM+20], as
the data is unknown in advance. This means the uniqueness defense cannot be applied (Section 4.3).
Finding methods for defending against non-uniqueness attacks even in the online setting is a valuable
direction for future work.

Maintaining Privacy and Confidentiality One significant challenge to using this protocol in
practice is that, just like with PoL [JYCC+21], it requires that the Prover disclose confidential
information to the Verifier, including training data, model weights, and code. In principle, the Prover
may only need to disclose hashes of the data and weights to the Verifier, with the matching full data
and weights only ever supplied on the secure cluster during verification.

10

Acknowledgements

We thank Nicolas Papernot, Anvith Thudi, Jacob Austin, Cynthia Dwork, Suhas Vijaykumar, Rachel
Cummings Shavit, Shafi Goldwasser, Hailey Schoelkopf, Keiran Paster, Ariel Procaccia, and Edouard
Harris for helpful discussions. DC was supported by NSERC CGS-D, and DC and YS are supported
by Open Philanthropy AI Fellowships.

References
[AHS22] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merg-

ing models modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.
[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient

protocols for realistic adversaries. In Theory of Cryptography: 4th Theory of Cryptog-
raphy Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007.
Proceedings 4, pages 137–156. Springer, 2007.

[BISZ+22] Mikel Bober-Irizar, Ilia Shumailov, Yiren Zhao, Robert Mullins, and Nicolas Papernot.
Architectural backdoors in neural networks. arXiv preprint arXiv:2206.07840, 2022.

[BPS+23] Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin
Anthony, Shivanshu Purohit, and Edward Raf. Emergent and predictable memorization
in large language models. arXiv preprint arXiv:2304.11158, 2023.

[BSA+23] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth,
Edward Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A
suite for analyzing large language models across training and scaling, 2023.

[Cen23] Alignment Research Center. Update on ARC’s recent eval efforts, March 2023.
[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation

using fully homomorphic encryption. In Advances in Cryptology–CRYPTO 2010:
30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings 30, pages 483–501. Springer, 2010.

[FDRC20] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear
mode connectivity and the lottery ticket hypothesis. In International Conference on
Machine Learning, pages 3259–3269. PMLR, 2020.

[FJT+22] Congyu Fang, Hengrui Jia, Anvith Thudi, Mohammad Yaghini, Christopher A
Choquette-Choo, Natalie Dullerud, Varun Chandrasekaran, and Nicolas Papernot.
On the fundamental limits of formally (dis) proving robustness in proof-of-learning.
arXiv preprint arXiv:2208.03567, 2022.

[FZ20] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discov-
ering the long tail via influence estimation. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 2881–2891. Curran Associates, Inc., 2020.

[GBB+20] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor
Leahy. The Pile: An 800gb dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[GCPT19] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus,
2019.

[GKVZ22] Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Zamir. Planting
undetectable backdoors in machine learning models. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 931–942. IEEE, 2022.

[GPAM+20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[GTB22] Wei Guo, Benedetta Tondi, and Mauro Barni. An overview of backdoor attacks against
deep neural networks and possible defences. IEEE Open Journal of Signal Processing,
2022.

11

[JYCC+21] Hengrui Jia, Mohammad Yaghini, Christopher A Choquette-Choo, Natalie Dullerud,
Anvith Thudi, Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning: Defi-
nitions and practice. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1039–1056. IEEE, 2021.

[KGG+22] Gal Kaplun, Nikhil Ghosh, Saurabh Garg, Boaz Barak, and Preetum Nakkiran.
Deconstructing distributions: A pointwise framework of learning. arXiv preprint
arXiv:2202.09931, 2022.

[KRCC22] Zhifeng Kong, Amrita Roy Chowdhury, and Kamalika Chaudhuri. Forgeability and
membership inference attacks. In Proceedings of the 15th ACM Workshop on Artificial
Intelligence and Security, pages 25–31, 2022.

[OWJ+22] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744, 2022.

[RWC+19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. arXiv preprint
arXiv:1901.11196, 2019.

[Sha23] Yonadav Shavit. What does it take to catch a Chinchilla? Verifying rules on large-scale
neural network training via compute monitoring. arXiv preprint arXiv:2303.11341,
2023.

[SSK+21] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas Papernot,
Murat A Erdogdu, and Ross J Anderson. Manipulating sgd with data ordering attacks.
Advances in Neural Information Processing Systems, 34:18021–18032, 2021.

[TJSP22] Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of
auditable algorithmic definitions for machine unlearning. In 31st USENIX Security
Symposium (USENIX Security 22), pages 4007–4022, 2022.

[TSC+18] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua
Bengio, and Geoffrey J Gordon. An empirical study of example forgetting during deep
neural network learning. arXiv preprint arXiv:1812.05159, 2018.

[XWL+21] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting
ai trojans using meta neural analysis. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 103–120. IEEE, 2021.

[YZS+22] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Yingxia Shao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A
comprehensive survey of methods and applications. arXiv preprint arXiv:2209.00796,
2022.

[ZIL+21] Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr,
and Nicholas Carlini. Counterfactual memorization in neural language models. arXiv
preprint arXiv:2112.12938, 2021.

[ZLD+22] Rui Zhang, Jian Liu, Yuan Ding, Zhibo Wang, Qingbiao Wu, and Kui Ren. “adversarial
examples” for proof-of-learning. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1408–1422, 2022.

12

A Combined Verification Protocol

We can unify the defenses of Section 4 into a combined defense protocol, which catches a wide swath
of attacks, including all current attacks on from the Proof-of-Learning literature [FJT+22, ZLD+22].

A Prover gives the Verifier a transcript T = {D,M,W} and a final weight vector W ∗. The verifier
proceeds to verify whether T is a valid training transcript through the following checks:

1. Check that W ends in the claimed final weights W ∗.
2. Given the dataset D, hash it to yield the seed s as in Section 4.3, and use that seed compute

the resulting data order Π and validation subset Dv. (Alternatively, these hashes can be
provided by the Prover, and only verified when each point is needed for the protocol.)

3. Check that W0 matches Gr(s). If this fails, reject the transcript.
4. Create an empty list Q to store all suspicious-looking segments to retrain. For each segment

Wi,Πi, include it in the list Q to retrain if it fails any of the following checks:
(a) Randomly select an α fraction (e.g., 1% of k) of points Πi,α from Πi. For each

such point d ∼ Πi,α, compute the losses on Wi and Wi−1, shorthanded as sets LΠi,i

and LΠi,i−1. Similarly, pick an α fraction 9 of points from the validation set Dv

and compute these points’ losses on Wi, shorthanded as LDv,i. (The validation loss
on Wi−1, LDv,i−1, should’ve already been computed when looping on the previous
segment.) Also, randomly select an αk subset of data points Dt from across all training
segments Π, and compute these points’ losses on Wi, LDt,i.

• If the Verifier wants to plot complete memorization plots, for example as a sanity
check or to use in checking for a Glue-ing attack as described in Section 6, they
can also compute the losses on 2β nearby weight checkpoints Wi−β , . . . ,Wi+β−1.
However, this is not part of the core protocol, and will not be counted in its sample
complexity.

(b) Compare the values in LΠi,i and LDt,i using the one-sided binomial hypothesis test
described in Appendix C, to check that the model used the correct data ordering. If the
test cannot reject the null hypothesis that Πi does not match Wi better than randomly-
selected training points Dt, then run the test on an even larger fraction of data points
from Πi and D to double-check the statistical significance of the null. If this still fails,
it suggests that the transcript may have been spoofed. Investigate further (such as by
reexecuting training on this segment) and/or reject the transcript.

(c) Using LΠi,i,LΠi,i−1,LDv,i, and LDv,i−1, calculate a data subtraction upper bound
heuristic as in Section 4.2. If this heuristic fails to bound the data subtraction to below
an acceptable small limit (which depends on how strongly the Verifier wants to catch
even small subtraction attacks, and on the Verifier’s retraining budget), add this segment
to Q.

(d) Using {LDv,j | j ∈ 0, . . . ,m}, compute the mean validation set loss across time, and
check that it is smooth at Wi and doesn’t increase or decrease discontinuously. If it
does, add this segment to Q. (The tolerance should depend on the retraining budget.)

(e) Compute the distance ∥Wi −Wi−1∥ from the previous checkpoint. Check that this
delta is similar to nearby segments’ weight-space deltas. If it is not, add this segment
to Q. (The tolerance should depend on the retraining budget. We leave the question
of how best to set this threshold, and of σ below, to minimize false negatives while
avoiding reducing false positives that increase retraining costs, to future work.)

5. Randomly sample σ additional data segments from throughout training, and add them to
Q. These additional segments are important to establish baseline estimates of segments’
weight-space deltas across training, to ensure that there were no systematic data addition
attacks at every segment. (Illegal data additions in every segment would shift the entire
weight-change delta magnitude plot, thus suppressing anomalies in any one segment).

6. For each segment in the list Q, execute retraining and verify that the resulting weights Ŵi

are within an ϵ-ball of the original reported weights Wi reported in the transcript.

9To reduce noise when comparing validation performance across checkpoints, this α subset of Dv should be
the same across all evaluated checkpoints.

13

If any values in the re-trained weights fail to come within the tolerance ϵ, that is significant evidence
that the transcript has been spoofed, and warrants further investigation. For example, the segment
can be retrained more times, to confirm that the weight-space variance across retraining results
Ŵ (1), Ŵ (2), . . . is sufficiently smaller than ϵ such that the reported Wi is a clear outlier.

If all these tests pass, accept the transcript.

A.1 Complexity

The time costs of training, borne by the the Prover are:

1. h× |D|, where h is the cost of a hash, for generating the initial random seed.
2. s× n, where s is the cost of a single gradient computation, and n is the number of training

data points.

In comparison, the time costs to the Verifier (assuming the transcript is accepted) are:

1. h× |D| hashes for verifying the initial weights.
2. (2 + 1 + 1)× α× s

3 × n operations for computing the loss of an α fraction of datapoints
in Πi on Wi and Wi−1, and another 2α fraction of points in Dt and Dv. We also assume
that computing the loss requires 1

3 the number of operations as computing a gradient update,
which is the standard ratio of inference vs. training when using backpropagation.

3. s× n× |Q|/m operations for retraining, where m is the total number of checkpoints in the
training run.

B Subtraction Upper-Bound Heuristic Derivation

Let Wi be the checkpoint obtained by training on the full claimed data sequence Πi, and let W ′
i

be the checkpoint obtained by excluding κ-fraction of the points in Πi. Our goal is to estimate
FBQ(Πi, p,W

′
i), the fraction of points in Πi that fall in the bottom p-probability quantile of Dv’s

∆M values on W ′
i .

Let’s start with the distribution of ∆M(d,Wi), where d ∼ Πi. We make the following two assump-
tions:

1. The subtracted κ-fraction of points are sampled randomly from Πi.
2. The p-th percentile of the ∆M values of Dv’s ∆M values on Wi is the same as on W ′

i .

Firstly, since κ-fraction of points were subtracted, we know that those subtracted points are distributed
like the validation set (assumption 1). Therefore, the fraction of points in Πi that lie in our quantile
of interest that were subtracted is κFBQ(Dv, p,W

′
i).

Next, we must consider the points that were not subtracted but lie in the quantile. Using assumption
2, we know that (1 − κ) fraction of points that were below the quantile remain in the quantile.
Therefore, the fraction of points in Πi that lie in our quantile of interest that were not subtracted is
(1− κ)FBQ(Πi, p,Wi).

Putting it all together, we have

FBQ(Πi, p,W
′
i) = κFBQ(Dv, p,W

′
i) + (1− κ)FBQ(Πi, p,Wi) (9)

There are several things to note about this derivation. First of all, regardless of whether assumption
2 is correct, the second term of Equation 9 is ≥ 0 and therefore, λ is still an upper-bound. In
practice, the actual fraction of subtracted points that lie in the quantile might not be exactly equal
to FBQ(Dv, p,W

′
i) = p. Therefore, if (1− κ)FBQ(Πi, p,Wi) is very small and close to zero, the

resulting upper-bound can be smaller than κ, which is the case in Figure 6.

Lastly, when computing FBQ values, we can use the unnormalized M values to compute ∆M as
such:

∆M(d, i;W,L) = L(d,Wi)− L(d,Wi−1). (10)

14

This does not affect the FBQ values, since the normalization term Ed′∈Dv [L(d′,W)] does not depend
on d and therefore and has no effect when evaluating ∆M(d′,Wi) > ∆M(d,Wi). Removing the
normalization term could represent a 2x efficiency gain. We kept the normalization term in the main
paper because it may still be important in other cases for preserving the meaning of the Memorization
Delta ∆M, which is used to produce memorization-charts. Without the normalization term, it
becomes hard to compare ∆M across segments, especially in the earlier stages of training when the
changes in loss between checkpoints vary quite a bit across segments.

C Data Order Statistical Test

We want a statistical test that will tell the Verifier whether, for a given training dataset D and data
ordering S, which together yield a data sequence Π, and for a given weight checkpoint Wi, the data
segment sequence Πi ∈ X k explains the memorization pattern of Wi better than a random data
order/sequence Π′

i (which we assume is drawn randomly from D). In particular, based on results
from Section 4.2, we know that datapoints from the most recent training segment d ∈ Πi tend to
have higher memorization delta values ∆M than the average point d′ ∈ D from the overall training
distribution D. Conversely, points from Π′

i would have no reliably greater ∆M than the rest of D.

We will use the following test, where Π? = Π′
i is the null hypothesis and the alternative hypothesis is

Π? = Πi. Let z = mediand∈D(∆M(d,Wi)), estimated via a small number of samples from D. For
Pick nt datapoints from data sequence Π?, and for each data point d ∈ Π?, check if it’s > z. Under
the null hypothesis, the probability that each point passes this check is 0.5. Let the test statistic be t:

t(Π?) =
∑

dj∼Π?,j=1,...,nt

I(∆M(dj ,Wi) > z) (11)

where I is the indicator function. The value of t(Π′
i), the statistic under the null hypothesis, is

distributed as a binomial with biased coin probability c = 1/2 and nt samples. However, we
expect that t(Πi) is a binomial with a larger c. To compute our confidence that Wi was trained
using the data order Πi, we can use a one-sided binomial hypothesis test, computing a p-value
as 1 − CDFbinomial(c = 1/2, nt, k < t) where k is the value up to which to calculate the CDF.
This statistic can be computed jointly across all checkpoints (requiring relatively few samples per
checkpoint) to prove that the overall data ordering matches the one defined in Section 4.3.

Note that this test is similar to the “subtraction upper bound” heuristic from Section 4.2, with the
key difference being that in this test we compare against the distribution of all training points D
(since the counterfactual is a randomly selected subset of training data), whereas the subtraction test
compares against points from the validation set Dv (since the counterfactual is that the points are
never included in training). As an additional note, this same test can be generalized by replacing the
median with a quantile, which may improve sample efficiency depending on the shape of the ∆M
distribution on Πi vs. Π′

i.

15

D Verifier Objectives Table

Transcript Use-Case Attacker Motivation Definition of Defender Suc-
cess

Check whether a model W
was trained on data from a dis-
allowed distribution (e.g., re-
lating to backdoors, cyberex-
ploit generation, or enabling
an undisclosed modality such
as images).

A Prover wants to claim that
W lacks a certain ability in or-
der to avoid scrutiny, and does
so by claiming W has only
been trained on data from dis-
tribution D and not on distri-
bution D′.

A test such that, given tar-
get weight checkpoint W , con-
firms that its training data did
not include, in addition to a
known number of data points
n from a known distribution
D, an additional kn training
points from a different distri-
bution D′.

Check whether a model W ∗

was trained on greater than a
certain number of data points,
in case policy oversight targets
the total training compute of a
model (e.g. as part of compute
usage reporting).

Underreport total training time
to avoid triggering oversight.

A test such that, given a tar-
get weight checkpoint W ∗ and
claimed sequence of n data
points Π, detects whether the
model was in fact trained on
> kn data points, for some
k > 1.

Check whether a model W
was initialized without us-
ing weights obtained from
previously-trained models.

A Prover might wish to start
training using weights ob-
tained from a previous train-
ing run, hiding the fact that
more data or compute was
used than reported, in order
to avoid scrutiny, or to save
compute by copying another’s
work.

A test such that, given a
desired initialization W0 (up
to hidden unit permutations),
makes it cryptographically
hard to construct a transcript
that results in W0 being an ini-
tialization compatible with the
resulting transcript.

Check whether a model has a
backdoor, i.e. an improbable
input that yields a disallowed
behavior.

An attacker might wish to
hide capabilities, or give them-
selves unauthorized access to
systems that will be gatekept
by deployed versions of their
models.

A test such that, given a
transcript, allows reliable de-
tection of backdoors through
code or data audits.

Check whether a model was
trained using at least a certain
quantity of data, e.g., as part
of a Proof-of-Learning meant
to verify the original owner of
a model, or to verify that cer-
tain safety-best-practice train-
ing was done.

A Prover may wish to save on
compute costs by doing less
training, or to prevent their
model from being trained on
required data.

A test such that, given a tar-
get weight checkpoint W ∗ and
a claimed sequence of n data
points Π, detects whether the
model was in fact trained on
< cn data points, for some
c < 1.

Check whether a model was
trained using a particular data-
point.

A Prover may wish to train
on copyrighted content, or un-
curated datasets, or obfuscate
which training data were used.

A test such that, given a tran-
script and a target datapoint x,
detects whether the model was
in fact trained on x.

E Hardness of Spoofing a Weight Initialization

To recap, by requiring that the Prover initialize a model’s weights at a specific value in high-
dimensional space W0 ∈ Rd drawn from a pseudorandom vector generator Gr, we seek to disallow
a class of spoofing attacks based on the Prover hand-picking an initial weight vector Ŵ0 that will

16

after training end up close to Wf , for example by picking an initialization that is already close to Wf

(Attack 2 in [ZLD+22]).

The simplest setting in which defense is impossible, and the Prover can reliably find a random
initialization that will converge to a given Wf , is in realizable linear models (models with only a
single linear layer). Since their loss function is strongly convex, any initialization will converge to a
neighborhood of the same final value Wf , making it straightforward to construct tweaked datasets
with certified-random initializations that result in approximately the same final model. Another
counterexample occurs when datasets have a single degenerate solution: it is possible to construct
a 2-layer neural network with training data covering the input space and where all the labels are 0,
such that the model always converges to a weight vector of all 0s, independent of initialization. We
will focus our discussion on the usual case of multi-layer NNs with non-degenerate solutions, as
described below.

Below, we will sketch an informal argument that for some radius r, for a fixed training data sequence
Π, the probability that a training run initialized at a pseudorandomly-generated 10 weight vector
W0 = Gr(s) ends in a final weight vector Wf that is within distance r of a particular target vector
A, is less than some small value δ < õ(1/poly(d)), where d is the dimension of the neural network.
This means that a Prover would need to sample a super-polynomial (in d) number of random seeds to
find one that would, via training on Π, result in a fully-valid training transcript that ends close to the
weight vector Wf from a previous training run with a different initialization, and therefore that it is
exponentially hard to violate the “uniqueness” property from Section 3 if the Prover uses a certified
random initialization.

To understand whether this is the case, we can examine the counterfactual claim: that independent
of weight initialization, all NNs tend to converge to a small (polynomial) number of modes in
weight space. This is indeed the case with linear regression: regardless of the initialization, given
sufficient full-rank data all linear model training runs will converge to a neighborhood of the same
loss minimum in weight-space. If this were also true for neural networks, then even a small number
of randomly-sampled weight initializations would likely yield at least one weight initialization that,
after training, converged to a mode close to the target A (assuming A is close to at least one mode,
which is the case when A is the outcome of a previous training run W f). Yet, empirically, many
works have found that large NNs converge to many different modes [AHS22, FDRC20].

The many modes of the NN loss landscape can be understood through permutation symmetries
[AHS22]. Neural networks are equivariant (“equivariant” means that a function changes symmet-
rically under a group action) under specific permutations of their matrices’ columns and rows.
Nearly all neural networks have the following permutation symmetries: given a single hidden layer
M1σ(M2(x)) where M1 ∈ Ra×b,M2 ∈ Rb×c and σ : Rb → Rb is a nonlinearity, and given any
permutation matrix F ∈ Rb×b (such that FZ permutes the rows of Z), then by simple algebra
M1F

Tσ(FM2x) = M1σ(M2x) for all x. This means that for any set of successive NN matrices
M1,M2, there are at least b! possible permutations with identical input output behavior. For a neural
network W with k nonlinear layers and hidden dimension of each layer b, there could be k − 1
different permutation matrices F1, F2, . . . , and we denote to the operation of permuting the flattened
weight vector W using a particular value of these F s as P : Rd → Rd. Each P is drawn from
the overall set of valid permutations for a particular architecture P ∈ P(M), and we know that
∥P(M)∥ = Ω

(
2kb log b

)
.

A second important property is that gradient descent is itself equivariant under the described per-
mutations. Let R be the training operator, such that Wf = R(W0,Π) is the result of training initial
weights W0 on a data sequence Π. 11 Then it is true that ∀P ∈ P(M),

P (Wf) = P (R(W0,Π)) = R(P (W0),Π) = W p
f

where W p
f is the result of training on the permuted initialization. This is simply a consequence of the

fact that the gradient operator commutes with any constant matrix (including the permutation matrix),
and that the training process R is comprised of repeated calls to the gradient operator, additions, and
scalar multiplications (both of which also commute with the permutation matrix). 12

10Assuming that s is chosen randomly, based on assumptions described in Section 4.3.
11We omit the inherent noise and hyperparameters inherent in R for brevity.
12It is in principle possible to construct optimizers for which this is not the case, but this should hold for all

common gradient-based NN training optimizers.

17

Now, assume that the initialization function Gr is radially symmetric (as is the case with all com-
mon initialization schemes, e.g., those based on Gaussians), and therefore the probability that
the initialization will start at W0 and P (W0) is the same for all P ∈ P. Then the probabil-
ity that the post-training final weights reach Wf or P (Wf) is also the same. If we knew that
PrW0∼Gr(s)(∥Wf − P (Wf)∥ > 2r) > 1 − δ for some r and small δ, then this derivation would
tell us that there are many different weight-space modes into which training could converge, each
of which is far apart from the others. (For convenience, let’s refer to the number of such far-apart
permuted modes as k.)

Again, our goal is to show that a random initialization is unlikely to converge after training to within
a neighborhood around some vector A. Assume that B is one of these modes, and ∥A−B∥ < r.13

According to the assumption from the previous paragraph on the distance between post-training
modes, for any second mode C, we know that ∥C −B∥ > 2r with high probability. By the triangle
inequality, we know that:

∥A− C∥ ≥ ∥C −B∥ − ∥A−B∥
> 2r − r = r

Therefore there is some minimum distance ∥A−C∥ > r between the target A and all other k disjoint
modes (each associated with a permutation) of the post-training weight distribution. If the number of
such far-apart permutations k is superpolynomial, then no polynomial number of weight initialization
samples will result in a final model close to A.

However, this argument is predicated on a sometimes-invalid assumption: that there are
superpolynomially-many permutations k = ω(poly(d)) of Wf , each at least a distance 2r from
each other. In the case of the counterexample from the beginning, where all initializations converge
after training to the weight vector of all 0s, all such permutations are in fact equal, and therefore there
is no such distance r. Instead, one may need to make an assumption about the non-degeneracy of the
distribution of final weight vectors Wf , such that permutations of these weight vectors are far apart
from each other. We leave analysis of which assumptions fulfill this property as future work. Note
that for any specific training transcript which includes a specific Wf , the distribution of distances of
permutations of Wf can be estimated empirically by manually permuting Wf ’s matrices.

F Experiment Details

For the GPT-2 Experiments we use a cosine learning rate schedule that decays by a factor of 10x
by the end of training, with a linear warmup of 2000 steps to a peak learning rate of 0.0006. For
the Pythia evaluation experiments, we choose checkpoints from 3 contiguous blocks out of 144
checkpoints: early (first 19 checkpoints), mid (checkpoints at step 62000 to 80000), and late (last 19
checkpoints).

G More memorization plots

In the following subsections, we plot memorization M, fraction of points with ∆M above the median,
and fraction of points with ∆M below the 10th percentile. For GPT-2, we use 100% of the data to
generate Figures 1, 2, and 3, while for Pythia, we use 10% of the data to generate Figure 2. In this
section, we show results for smaller sampling rates to highlight that with 1%, or sometimes even
0.1% of the original data, we can still observe the memorization effect.

From Pythia 70M results (Subsections G.1, G.2, and G.3) we can see that as training progresses,
the memorization effect becomes less pronounced, such that with a smaller data sampling rate, less
of the diagonal get highlighted (Figures 11, 18, 25), and the histograms are closely overlapping
(Figure 32) for the last 18 checkpoints. At the same time, we observe that as the model size increases
the memorization effect becomes clearer, even with 0.1% data sampling rate. In fact, for the 1B-
parameter Pythia model, the memorization effect is still clear for the last few checkpoints (Figures 14,
21, 28, and 35) unlike the 70M-parameter case.

13If this is untrue for all modes B, then by definition there is no initialization that leads close to A, which
satisfies our original objective of bounding the probability of the final weights converging to a neighborhood of
A.

18

G.1 Memorization

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 1.0

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

0 2 4 6 8 10 12 14 16
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0

1

2

3

4

5

6

M
em

or
iza

tio
n

×10 2

0

2

4

6

M
em

or
iza

tio
n

×10 2

0

2

4

6

8

M
em

or
iza

tio
n

×10 2

0.025

0.000

0.025

0.050

0.075

0.100

0.125

M
em

or
iza

tio
n

GPT-2 120M

Figure 8: Memorization plots for GPT-2 with different sampling rates.

0 2 4 6 8 10 12 14 16 18
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

0 2 4 6 8 10 12 14 16 18
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

0 2 4 6 8 10 12 14 16 18
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
iza

tio
n

×10 2

2

1

0

1

2

M
em

or
iza

tio
n

×10 2

8

6

4

2

0

2

4

M
em

or
iza

tio
n

×10 2

Pythia 70M Early

Figure 9: Memorization plots for the first 18 checkpoints of Pythia (70M) with different sampling
rates.

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.0

0.5

1.0

1.5

2.0

M
em

or
iza

tio
n

×10 2

3

2

1

0

1

2

M
em

or
iza

tio
n

×10 2

6

4

2

0

2

M
em

or
iza

tio
n

×10 2

Pythia 70M Mid

Figure 10: Memorization plots for checkpoints near the middle of Pythia (70M) with different
sampling rates.

125 128 131 134 137 140 143
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.1

125 128 131 134 137 140 143
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.01

125 128 131 134 137 140 143
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
em

or
iza

tio
n

×10 2

1.5

1.0

0.5

0.0

0.5

M
em

or
iza

tio
n

×10 2

6

5

4

3

2

1

0

1

2

M
em

or
iza

tio
n

×10 2

Pythia 70M Late

Figure 11: Memorization plots for the last 18 checkpoints of Pythia (70M) with different sampling
rates.

19

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0

1

2

3

4

M
em

or
iza

tio
n

×10 2

2

1

0

1

2

3

4

M
em

or
iza

tio
n

×10 2

4

2

0

2

4

M
em

or
iza

tio
n

×10 2

Pythia 410M Mid

Figure 12: Memorization plots for checkpoints near the middle of Pythia (410M) with different
sampling rates.

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

62 64 66 68 70 72 74 76 78 80
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0

1

2

3

4

5

6

7

M
em

or
iza

tio
n

×10 2

2

0

2

4

6

M
em

or
iza

tio
n

×10 2

4

2

0

2

4

6

M
em

or
iza

tio
n

×10 2

Pythia 1B Mid

Figure 13: Memorization plots for checkpoints near the middle of Pythia (1B) with different sampling
rates.

125 128 131 134 137 140 143
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.1

125 128 131 134 137 140 143
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.01

125 128 131 134 137 140 143
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.5

0.0

0.5

1.0

1.5

2.0

2.5

M
em

or
iza

tio
n

×10 2

2

1

0

1

2

M
em

or
iza

tio
n

×10 2

6

4

2

0

2

M
em

or
iza

tio
n

×10 2

Pythia 1B Late

Figure 14: Memorization plots for checkpoints near the end of Pythia (1B) training with different
sampling rates.

20

G.2 Fraction of Samples Above 50th Percentile

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 1.0

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.4

0.6

0.8

1.0

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

GPT-2 120M

Figure 15: Fraction of samples above the 50th percentile for GPT-2 with different sampling rates.

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

Pythia 70M Early

Figure 16: Fraction of samples above the 50th percentile for the first 18 checkpoints of Pythia (70M)
with different sampling rates.

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.40

0.45

0.50

0.55

0.60

0.65

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.40

0.45

0.50

0.55

0.60

0.65

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.40

0.45

0.50

0.55

0.60

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

Pythia 70M Mid

Figure 17: Fraction of samples above the 50th percentile for Pythia (70M) with different sampling
rates.

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.1

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.01

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.495

0.500

0.505

0.510

0.515

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.48

0.49

0.50

0.51

0.52

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.44

0.46

0.48

0.50

0.52

0.54

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

Pythia 70M Late

Figure 18: Fraction of samples above the 50th percentile for the last 18 checkpoints of Pythia (70M)
with different sampling rates.

21

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

Pythia 410M Mid

Figure 19: Fraction of samples above the 50th percentile for Pythia (410M) with different sampling
rates.

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.4

0.6

0.8

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.4

0.6

0.8

1.0

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

Pythia 1B Mid

Figure 20: Fraction of samples above the 50th percentile for Pythia (1B) with different sampling
rates.

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.1

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.01

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.001

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

. a
bo

ve
 5

0t
h

pe
rc

en
til

e

Pythia 1B Late

Figure 21: Fraction of samples above the 50th percentile for checkpoints near the end of Pythia (1B)
training with different sampling rates.

22

G.3 Fraction of Samples Below 10th Percentile

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 1.0

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e
10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

GPT-2 120M

Figure 22: Fraction of samples below 10th percentile for GPT-2 with different sampling rates. White
boxes occur whenever the number of samples falling below the 10th percentile is 0.

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

1 3 5 7 9 11 13 15 17
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 1
Fr

ac
. b

el
ow

 1
0t

h
pe

rc
en

til
e

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

Pythia 70M Early

Figure 23: Fraction of samples below 10th percentile for the first 18 checkpoints of Pythia (70M)
with different sampling rates. White boxes occur whenever the number of samples falling below the
10th percentile is 0.

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

10 1

6 × 10 2 Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 1

6 × 10 2 Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 1

6 × 10 2

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

Pythia 70M Mid

Figure 24: Fraction of samples below 10th percentile for Pythia (70M) with different sampling rates.
White boxes occur whenever the number of samples falling below the 10th percentile is 0.

23

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.1

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.01

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.001

10 1

9.4 × 10 2

9.6 × 10 2

9.8 × 10 2

1.02 × 10 1

1.04 × 10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 1

8.5 × 10 2

9 × 10 2

9.5 × 10 2

1.05 × 10 1

1.1 × 10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 1

7 × 10 2

8 × 10 2

9 × 10 2

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

Pythia 70M Late

Figure 25: Fraction of samples below 10th percentile for the last 18 checkpoints of Pythia (70M)
with different sampling rates.

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

Pythia 410M Mid

Figure 26: Fraction of samples below 10th percentile for Pythia (410M) with different sampling rates.
White boxes occur whenever the number of samples falling below the 10th percentile is 0.

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.1

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.01

63 65 67 69 71 73 75 77 79
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Sampling Rate 0.001

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

Pythia 1B Mid

Figure 27: Fraction of samples below 10th percentile for Pythia (1B) with different sampling rates.
White boxes occur whenever the number of samples falling below the 10th percentile is 0.

24

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.1

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.01

126 129 132 135 138 141
Checkpoint Num.

1

4

7

10

13

16

Da
ta

 se
gm

en
t

Sampling Rate 0.001

10 4

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 4

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

10 3

10 2

10 1

Fr
ac

. b
el

ow
 1

0t
h

pe
rc

en
til

e

Pythia 1B Late

Figure 28: Fraction of samples below 10th percentile for checkpoints near the end of Pythia (1B)
training with different sampling rates. White boxes occur whenever the number of samples falling
below the 10th percentile is 0.

25

G.4 Memorization Delta Histograms

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
De

ns
ity

Checkpoint #1
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

Checkpoint #2
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

De
ns

ity

Checkpoint #3
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

10

12

De
ns

ity

Checkpoint #4
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
2
4
6
8

10
12
14

De
ns

ity

Checkpoint #5
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0

2.5

5.0

7.5

10.0

12.5

15.0

De
ns

ity
Checkpoint #6

train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

Checkpoint #7
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

De
ns

ity

Checkpoint #8
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

De
ns

ity

Checkpoint #9
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

De
ns

ity

Checkpoint #10
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20
De

ns
ity

Checkpoint #11
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

De
ns

ity

Checkpoint #12
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #13
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

De
ns

ity

Checkpoint #14
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

De
ns

ity

Checkpoint #15
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #16
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #17
train set
valid. set

GPT-2 120M

Figure 29: Each subplot compares two histograms of ∆M, one for ∆M resulting from the checkpoint
evaluated on its most recent data segment (diagonal), and one for the checkpoint evaluated on the
validation set. All checkpoints are from GPT-2 training.

26

3 2 1 0 1 2 3
Memorization Delta

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

De
ns

ity

Checkpoint #1
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #2
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

10

12

De
ns

ity

Checkpoint #3
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

Checkpoint #4
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

De
ns

ity

Checkpoint #5
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

De
ns

ity

Checkpoint #6
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #7
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #8
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #9
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #10
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #11
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #12
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #13
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #14
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #15
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #16
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #17
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

De
ns

ity

Checkpoint #18
train set
valid. set

Pythia 70M Early

Figure 30: Each subplot compares two histograms of ∆M, one for ∆M resulting from the checkpoint
evaluated on its most recent data segment (diagonal), and one for the checkpoint evaluated on the
validation set. All checkpoints are the first 18 from Pythia (70M) training.

27

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

6

De
ns

ity

Checkpoint #63
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

10

De
ns

ity

Checkpoint #64
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

10

De
ns

ity

Checkpoint #65
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

De
ns

ity

Checkpoint #66
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
1
2
3
4
5
6
7

De
ns

ity

Checkpoint #67
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

10

De
ns

ity

Checkpoint #68
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

De
ns

ity

Checkpoint #69
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #70
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

6

De
ns

ity

Checkpoint #71
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

6

De
ns

ity

Checkpoint #72
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
1
2
3
4
5
6
7

De
ns

ity

Checkpoint #73
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #74
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

De
ns

ity

Checkpoint #75
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

De
ns

ity

Checkpoint #76
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

6

De
ns

ity

Checkpoint #77
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

De
ns

ity

Checkpoint #78
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

2

4

6

8

De
ns

ity

Checkpoint #79
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #80
train set
valid. set

Pythia 70M Mid

Figure 31: Each subplot compares two histograms of ∆M, one for ∆M resulting from the checkpoint
evaluated on its most recent data segment (diagonal), and one for the checkpoint evaluated on the
validation set. All checkpoints are from near the middle of Pythia (70M) training.

28

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Checkpoint #126
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

De
ns

ity

Checkpoint #127
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

6

De
ns

ity

Checkpoint #128
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Checkpoint #129
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

De
ns

ity

Checkpoint #130
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

6

De
ns

ity

Checkpoint #131
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #132
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

6

De
ns

ity

Checkpoint #133
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

De
ns

ity

Checkpoint #134
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

De
ns

ity

Checkpoint #135
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #136
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #137
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #138
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

De
ns

ity

Checkpoint #139
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #140
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

De
ns

ity

Checkpoint #141
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

1

2

3

4

5

De
ns

ity

Checkpoint #142
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

De
ns

ity

Checkpoint #143
train set
valid. set

Pythia 70M Late

Figure 32: Each subplot compares two histograms of ∆M, one for ∆M resulting from the checkpoint
evaluated on its most recent data segment (diagonal), and one for the checkpoint evaluated on the
validation set. All checkpoints are the last 18 from Pythia (70M) training.

29

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #63
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #64
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #65
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #66
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #67
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #68
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #69
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #70
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #71
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #72
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #73
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #74
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #75
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #76
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #77
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #78
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #79
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #80
train set
valid. set

Pythia 410M Mid

Figure 33: Each subplot compares two histograms of ∆M, one for ∆M resulting from the checkpoint
evaluated on its most recent data segment (diagonal), and one for the checkpoint evaluated on the
validation set. All checkpoints are from near the middle of Pythia (410M) training.

30

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #63
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

5

10

15

20

25

30

35

De
ns

ity

Checkpoint #64
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #65
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #66
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #67
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #68
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #69
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0
5

10
15
20
25
30
35

De
ns

ity

Checkpoint #70
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #71
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #72
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #73
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #74
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #75
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #76
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #77
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #78
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #79
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

De
ns

ity

Checkpoint #80
train set
valid. set

Pythia 1B Mid

Figure 34: Each subplot compares two histograms of ∆M, one for ∆M resulting from the checkpoint
evaluated on its most recent data segment (diagonal), and one for the checkpoint evaluated on the
validation set. All checkpoints are from near the middle of Pythia (1B) training.

31

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #126
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #127
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #128
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #129
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #130
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #131
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #132
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #133
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #134
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #135
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #136
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #137
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #138
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #139
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

De
ns

ity

Checkpoint #140
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

De
ns

ity

Checkpoint #141
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

70

De
ns

ity

Checkpoint #142
train set
valid. set

0.4 0.2 0.0 0.2 0.4
Memorization Delta

0

10

20

30

40

50

60

De
ns

ity

Checkpoint #143
train set
valid. set

Pythia 1B Late

Figure 35: Each subplot compares two histograms of ∆M, one for ∆M resulting from the checkpoint
evaluated on its most recent data segment (diagonal), and one for the checkpoint evaluated on the
validation set. All checkpoints are from near the end of Pythia (1B) training.

32

H More attack plots

H.1 Interpolation Attack

We repeat the interpolation attack experiment in the main body of the paper, with the 1B-parameter
Pythia model and observe from Figure 36 that indeed the interpolated checkpoints fail our memoriza-
tion tests.

65 70 75 80
Checkpoint Num.

2.165

2.170

2.175

2.180

2.185

2.190

Va
lid

at
io

n
Lo

ss
Original Run
Interpolated Run

0 2 4 6 8 10 12 14 16 18
Checkpoint Num.

1
3
5
7
9

11
13
15
17

Da
ta

 se
gm

en
t

Memorization

2

0

2

4

6

×10 2

Figure 36: Simulating an interpolation attack by training a Pythia (1B) model until the 67th checkpoint,
and then linearly-interpolating to the 80th checkpoint. On the left, we show that an attacker can
carefully choose interpolation points to mask any irregularities in validation loss. (The green line
perfectly overlaps with the blue line.) Nonetheless, on the right, we see a clear signature in the
memorization plot, computed using only 1% of data: the typical memorization pattern along the
diagonal does not exist for the interpolated checkpoints. For each row corresponding to a data
segment Πi, a box marks the maximal-M checkpoint. The box is red if the checkpoint is a match
Wi, and magenta if there is no match and the test fails Wj ̸=i.

H.2 Data Subtraction Attack Tests

In the following subsections, we plot the subtraction-upper-bound heuristic λ(Πi, p,Wi) with varying
values of p, for different subtraction rates. We observe that for big enough models λ is a tight
upper-bound when no subtraction has happened. For Pythia with 70M parameters, our smallest
model, λ does not provide a tight upper-bound. However, for GPT-2 with 124M parameters, Pythia
with 410M parameters, and Pythia with 1B parameters, λ provides a tight upper-bound.

For the 1B-parameter Pythia model, we further plot the upper-bound heuristic for varying values of
the checkpoint interval (number of training steps between each checkpoint). From Figure 41, we
observe that even though λ increases as the interval increases, it is still a good upper-bound (∼0.05
for a checkpoint interval of 5000 steps) for p = 0.1 and p = 0.2. This means that we can save
checkpoints less frequently and still use the heuristic to detect data subtraction.

H.2.1 GPT-2

5 10 15
Checkpoint Num.

0.00

0.25

0.50

0.75

1.00

1.25

Su
bt

ra
ct

io
n

Lo
we

r-B
ou

nd

Full Data

5 10 15
Checkpoint Num.

0.00

0.25

0.50

0.75

1.00

1.25

5% Subtraction

5 10 15
Checkpoint Num.

0.00

0.25

0.50

0.75

1.00

1.25

50% Subtraction

5 10 15
Checkpoint Num.

0.00

0.25

0.50

0.75

1.00

1.25

95% Subtraction

p = 0.01
p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

Figure 37: The subtraction-upper-bound heuristic λ(Πi, p,Wi) is robust to different values of p,
especially for the full data case. The heuristic was computed using just 1% of training data, across 20
random seeds, with dashed lines showing the true subtraction rate.

33

H.2.2 Pythia (70M)

65 70 75 80
Checkpoint Num.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Su
bt

ra
ct

io
n

Lo
we

r-B
ou

nd

Full Data

65 70 75 80
Checkpoint Num.

0.00

0.25

0.50

0.75

1.00

1.25

1.50
5% Subtraction

65 70 75 80
Checkpoint Num.

0.00

0.25

0.50

0.75

1.00

1.25

1.50
50% Subtraction

p = 0.01
p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

Figure 38: The subtraction-upper-bound heuristic λ(Πi, p,Wi) does not provide a good upper bound
for a smaller model (Pythia with 70M parameters). The heuristic was computed using 1% of training
data, across 20 random seeds, with dashed lines showing the true subtraction rate.

H.2.3 Pythia (410M)

65 70 75 80
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

Su
bt

ra
ct

io
n

Lo
we

r-B
ou

nd

Full Data

65 70 75 80
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

5% Subtraction

65 70 75 80
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

50% Subtraction

p = 0.01
p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

Figure 39: The subtraction-upper-bound heuristic λ(Πi, p,Wi) is a good upper bound for a big
enough model (Pythia with 410M parameters). The heuristic was computed using 1% of training
data, across 20 random seeds, with dashed lines showing the true subtraction rate.

H.2.4 Pythia (1B)

65 70 75 80
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

1.0

Su
bt

ra
ct

io
n

Lo
we

r-B
ou

nd

Full Data

65 70 75 80
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

1.0
5% Subtraction

65 70 75 80
Checkpoint Num.

0.0

0.2

0.4

0.6

0.8

1.0
50% Subtraction

p = 0.01
p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

Figure 40: The subtraction-upper-bound heuristic λ(Πi, p,Wi) is a good upper bound for a bigger
model (Pythia with 1B parameters). The heuristic was computed using 1% of training data, across 20
random seeds, with dashed lines showing the true subtraction rate.

34

65 70 75 80
Checkpoint Num.

0.00

0.05

0.10

0.15

0.20

0.25

Su
bt

ra
ct

io
n

Lo
we

r-B
ou

nd

Checkpoint Interval = 1000

64 66 68 70
Checkpoint Num.

0.00

0.05

0.10

0.15

0.20

0.25
Checkpoint Interval = 2000

63 64 65 66 67
Checkpoint Num.

0.00

0.05

0.10

0.15

0.20

0.25
Checkpoint Interval = 3000

63.0 63.5 64.0 64.5 65.0 65.5 66.0
Checkpoint Num.

0.00

0.05

0.10

0.15

0.20

0.25
Checkpoint Interval = 4000

63.0 63.5 64.0 64.5 65.0
Checkpoint Num.

0.00

0.05

0.10

0.15

0.20

0.25
Checkpoint Interval = 5000

p = 0.01
p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

Figure 41: Even though the subtraction-upper-bound heuristic λ(Πi, p,Wi) increases as number of
steps between checkpoints increases, it still provides a good upper bound for p = 0.1 and p = 0.2.
The heuristic was computed using 1% of training data, across 20 random seeds, with dashed lines
showing the true subtraction rate.

I Broader Impacts

We intend this work to be a step towards meaningful and transparent public oversight of large AI
systems, especially those with capabilities whose irresponsible use could significantly harm the
public. Our protocol is a sketch of a technical framework for a system by which AI developers can
prove properties of their training data, and may thereby enable the effective enforcement of a broader
set of policies than those solely relying on querying models “black-box”. While enabling many
possible positive rules, this could also be misused by coercive states to detect and enforce harmful
restrictions on beneficial AI development. However, in most cases, such authoritarian states would
already have a means for policing domestic AI developers’ behavior, and verification tools demanding
so much cooperation from the Prover are unlikely to meaningfully increase existing surveillance
powers. Another issue is that requirements for complying with monitoring and enforcement tend
to favor large companies, for whom the cost of compliance can more easily be amortized. This
motivates efforts to keep verification schemes simple, flexible and cheap.

We hope that this protocol can also be useful for verifying agreements between untrusting countries.
The protocol itself does not provide a means for identifying that an AI model was developed in the
first place unless it is disclosed. In this sense, it more closely parallels a process for an AI-developing
country to allow its counterpart to retroactively inspecting a developed system (paralleling the New
START treaties’ inspections of nuclear launchers), rather than to proactively detect when a new
system is deveoped (paralleling the IAEA’s monitoring of the process of uranium enrichment).

Because our protocol supports multiple independent auditors reviewing the same transcripts, we hope
that these tools will support the development of trust between competing companies and countries.
Ultimately we hope such protocols will support the development of a larger governance ecosystem
representing many parties.

35

	Introduction
	Related Work
	Formal Problem Definition
	Verification Strategies
	Existing Tools from Proof-of-Learning
	Memorization-Based Tests
	Fixing the Initialization and Data Order
	Putting It All Together

	Experimental Setup
	Empirical Attacks and Defenses
	Discussion and Limitations
	Combined Verification Protocol
	Complexity

	Subtraction Upper-Bound Heuristic Derivation
	Data Order Statistical Test
	Verifier Objectives Table
	Hardness of Spoofing a Weight Initialization
	Experiment Details
	More memorization plots
	Memorization
	Fraction of Samples Above 50th Percentile
	Fraction of Samples Below 10th Percentile
	Memorization Delta Histograms

	More attack plots
	Interpolation Attack
	Data Subtraction Attack Tests
	GPT-2
	Pythia (70M)
	Pythia (410M)
	Pythia (1B)

	Broader Impacts

