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Abstract

The ratings in recommendation systems (RS) are missing not
at random (MNAR) due to the biased selection of the items to
rate, resulting in inaccurate rating prediction for all user-item
pairs. Doubly robust (DR) learning has been studied in many
tasks in RS with a single imputation or a single propensity
model, in addition, multiple robust (MR) has been proposed
with multiple imputation models and propensity models, and
is unbiased when there exists a linear combination of these
imputation models and propensity models is correct. How-
ever, we claim that the imputed errors and propensity scores
are miscalibrated in the MR method. In this paper, we propose
a calibrated multiple robust learning method to enhance the
debiasing performance and reliability of the rating prediction
model. Specifically, we propose to use bi-level optimization
to solve the weights and model coefficients of each propen-
sity and imputation model in the MR framework. Moreover,
we adopt the differentiable expected calibration error as part
of the objective to optimize the model calibration quality sig-
nificantly. Experiments on three real-world datasets show that
our method outperforms the state-of-the-art baselines.

Introduction
Recommendation systems (RS) is an effective tool to ad-
dress the problem of information overload and has been
widely used in e-commerce, social media, and entertainment
(Ricci, Rokach, and Shapira 2010). RS aims to predict user
preferences for items based on collected historical interac-
tion data (Wang et al. 2019; Schnabel et al. 2016). How-
ever, the collected data cannot include all ratings from users
to items, resulting in inevitably missing due to users’ self-
selection behavior, i.e., users can choose the item to rate
freely, the missing is non-random, which is also known as
selection bias problem (Chen et al. 2022; Wu et al. 2022).
The selection bias indicates that the collected dataset is not
representative for the target population of interest (all user-
item pairs), and the training distribution differs from the tar-
get test distribution. Ignoring such distributional shift will
inevitably lead to sub-optimal recommendation performance
(Steck 2010; Schnabel et al. 2016; Wang et al. 2019). To ad-
dress the selection bias, one line of previous research pro-
posed to use error imputation-based (EIB) methods, which
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first impute the missing ratings and then train the prediction
model based on both observed and imputed ratings (Chang
et al. 2010; Steck 2010). Additionally, another category of
methods leverages propensity scores, which computes the
probability of an event being observed, to reweight the ob-
served ratings and align the distribution of observed data
with the target population (Saito et al. 2020; Schnabel et al.
2016). Furthermore, Doubly Robust (DR) method combines
the error imputation and the inverse propensity re-weighting
to achieve double robustness, which means the DR estima-
tor achieves unbiasedness if either the imputed errors or the
learned propensities are correct (Morgan and Winship 2015;
Saito 2020; Wang et al. 2019). Furthermore, the Multiple
Robust (MR) method is proposed to mitigate inaccuracies in
single-model propensity scores or error imputations found
in DR method (Li et al. 2023a). By considering multiple
candidate propensity and imputation models, MR estima-
tor achieves unbiasedness if any of the propensity models,
imputation models, or a linear combination of these models
accurately estimate the true propensities or prediction errors.

However, we argue that the imputed errors and esti-
mated propensity scores are miscalibrated in the existing
MR method, which cannot reflect the ground-truth likeli-
hood of the correctness of the true error or true propensity.
For instance, if we have 100 user-item pairs with estimated
propensity scores equal to 0.2, there should be exactly 20
ratings being observed and 80 ratings being unobserved. Al-
though previous study has proposed to adopt calibration ex-
perts to calibrate the single propensity model and imputation
model in DR estimator (Kweon and Yu 2024), this approach
cannot be directly extended to the MR estimator, as calibrat-
ing each model individually is expensive and unreasonable
due to the unbiasedness condition of MR in terms of lin-
ear combinations is not considered. Furthermore, the cali-
bration metric previously used in (Kweon and Yu 2024) is
non-differentiable and cannot be directly optimized.

To fill this gap, we propose the calibrated multiple robust
learning (Cali-MR) method to calibrate the linear combina-
tions of multiple imputation models and propensity models
using bi-level optimization, which aims to learn an ensemble
model that simultaneously possesses strong prediction per-
formance and calibration ability. In this bi-level optimiza-
tion, we adopt differentiable expected calibration errors to
quantify the calibration ability that allows it to be directly



optimized. The calibrated linear combination of propensity
and imputation models is then used to train the prediction
model based on a joint learning algorithm. The contributions
of this paper are summarized as follows.

• We propose a novel MR calibration method using bi-
level optimization via calibrating the ensemble imputation
and propensity models and address the non-differentiable is-
sue by adopting differentiable expected calibration errors.

•We further propose a bi-level calibrated multiple robust
learning algorithm to update the calibrated imputation mod-
els and the prediction model. To the best of our knowledge,
this is the first work to perform calibration for MR estimator.

• We conduct extensive experiments on three real-world
datasets, showing the effectiveness of our method compared
to the state-of-the-art debiasing methods.

Related Works

Debiased Recommendation

Selection bias is common in the recommender systems
(RS) (Chen et al. 2022; Wu et al. 2022; Wang et al. 2023c),
resulting in the distribution shift between the observed pop-
ulation and the target population. There are many meth-
ods proposed to address this issue (Wang et al. 2022b; Zou
et al. 2023; Wang et al. 2023a, 2024). Specifically, the er-
ror imputed based (EIB) method is proposed to mitigate
this issue (Steck 2010). However, these types of methods
require an accurate imputation, which is hard in practice.
The IPS method uses inverse propensity score to weight the
observed sample but may suffer from large variance with
small propensities (Schnabel et al. 2016; Wang et al. 2022a).
DR methods combine the advantages of both the EIB and
IPS methods, guaranteeing unbiasedness if either the error
imputation model or propensity model is correctly speci-
fied. There have been quantities of variants of DR meth-
ods to improve the debiasing performance, such as SDR (Li,
Zheng, and Wu 2023), TDR (Li et al. 2023b), CDR (Song
et al. 2023), N-DR (Li et al. 2024b), DT-DR (Zhang et al.
2024), UIDR (Li et al. 2024c), and OME-DR (Li et al.
2024d). Besides, Multiple robust (MR) (Li et al. 2023a)
combines multiple imputation models and propensity mod-
els, and is unbiased when there exists a linear combination
of them is correct. In addition, Liu et al. (2023) use an in-
formation bottleneck-based method and Yang et al. (2021)
and Wang et al. (2023b) use adversarial learning for debias-
ing. However, these methods fail to consider model calibra-
tion properties. To mitigate this issue, DCE-DR (Kweon and
Yu 2024) is proposed to calibrate the propensity and impu-
tation model in the DR method. However, calibrating each
imputation model and propensity model in MR is expensive
and unreasonable, due to the unbiasedness condition of MR
based on linear combinations is not taken into account. In
this paper, we propose the Cali-MR method to calibrate the
linear combination of multiple propensity and imputation
models using the bi-level optimization method to enhance
the debiasing performance and reliability of MR.

Calibration
Calibration means that the probability associated with the
predicted class label should reflect its ground truth correct-
ness likelihood (Guo et al. 2017; Kull, Silva Filho, and Flach
2017), which plays an important role in building reliable, ro-
bust AI systems, especially in safety-critical fields such as
medical diagnosis (Caruana et al. 2015; Huang et al. 2020)
and self-driving (Bojarski 2016). Calibration methods can
be divided into the following four categories (Wang 2023):
post-hoc calibration, regularization methods, uncertainty es-
timation, and hybrid calibration methods. Post-hoc calibra-
tion methods aim to calibrate after model training, includ-
ing non-parametric calibration (Zadrozny and Elkan 2001)
and parametric methods such as Platt scaling (Platt et al.
1999). Regularization methods adopt penalty terms such as
the entropy regularization (Pereyra et al. 2017) and cali-
bration errors (Kumar, Sarawagi, and Jain 2018) to ensure
the calibration property. Uncertainty Estimation aims to al-
leviate model miscalibration by injecting randomness us-
ing Bayesian neural networks (Blundell et al. 2015), model
and Gumbel-softmax (Jang, Gu, and Poole 2017) based
approaches. Hybrid calibration methods combine two or
more methods to achieve calibration. For example, Zhang,
Kailkhura, and Han (2020) combine ensemble and temper-
ature scaling and Laves et al. (2019) adopts monte-carlo
dropout with temperature scaling. In this paper, we adopt
a differentiable expected calibration error as part of the ob-
jective to ensure the model calibration.

Preliminary
Debiased Recommendation
Let U = {u1, · · · , um} be the users set, I = {i1, · · · , in}
be the item set, and D = U × I be the set of all user-item
pairs. The rating matrix is denoted as R ∈ Rm×n with ru,i
as element. Let ou,i ∈ {0, 1} be the observation indicator,
where ou,i = 1 indicates the rating ru,i is observed, oth-
erwise is not. Define xu,i be the observed features. We de-
note the prediction model as fθ(·) parameterized by θ and
the predicted ratings as r̂u,i = fθ(xu,i). The goal is to ac-
curately predict ru,i for all user-item pairs, which can be
achieved by minimizing the ideal loss

Lideal(θ) =
1

|D|
∑

(u,i)∈D

L(fθ(xu,i), ru,i) :=
1

|D|
∑

(u,i)∈D

eu,i,

where L(·, ·) is the training loss function such as cross-
entropy loss. However, in practice, we cannot obtain the
complete rating matrix. We denote the set of user-item pairs
with observed ratings as O = {(u, i) | ou,i = 1}. Thus, the
naive method optimizes the average loss over the observed
user-item pairs

Lnaive(θ) =
1

|O|
∑

(u,i)∈O

eu,i.

Due to the selection bias, E[Lnaive(θ)] ̸= Lideal(θ). Sev-
eral methods were proposed to unbiasedly estimate the ideal
loss, including the EIB, IPS, DR, and their variants. Because



EIB and IPS can be regarded as a special case of DR, we
only introduce the DR methods here. The loss function of
the vanilla DR method is formulated as

LDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
,

where p̂u,i ≜ π(x; α̂) is the estimation of propensity score
pu,i = Pr(ou,i = 1 | xu,i), and êu,i = L(m(xu,i;β), r̂u,i)
is the imputed error, while the imputation model is denoted
as m(xu,i; β̂). In addition, the multiple robust (MR) con-
siders J propensity models π1(x; α̂1), . . . , πJ(x; α̂J) and K

imputation models m1(x; β̂1), . . . ,mK(x; β̂K). Let p̂ju,i ≜

πj(xu,i; α̂j), m̂k
u,i ≜ mk(x; β̂k), the loss function of MR is

shown below:

LMR(θ) =
1

|D|
∑

(u,i)∈D

uT (xu,i) · η̂(θ),

where u (xu,i) =
(
1/p̂1u,i, · · · , 1/p̂Ju,i, m̂1

u,i, · · · , m̂K
u,i

)T
and η̂(θ) is the solution by minimizing

1

|D|
∑

(u,i)∈D

ou,i
{
eu,i − uT (xu,i) · η

}2
.

The MR estimator is unbiased when there exists a weight
W = (w1, w2, . . . , wJ , 0, 0, . . . , 0) satisfying Wu (xu,i) =
1/pu,i or V = (0, . . . , 0, v1, v2, . . . , vK) satisfying
V u (xu,i) = eu,i for all user-item pairs.

Calibration
A model is calibrated if its output reflects the ground-truth
likelihood of correctness (Kull, Silva Filho, and Flach 2017).
For the propensity model π(x; α̂) and the observation indi-
cator o, a formal definition is shown below:

E[o | π(x; α̂) = p̂] = p̂ ∀p̂ ∈ [0, 1].

For instance, if we have 100 samples with estimated propen-
sity scores equal to 0.2, there should be exactly 20 samples
being observed. Similarly, the formal definition for the cali-
brated imputation model m(x; β̂) is formulated below:

E[e | m(x; β̂) = ê] = ê ∀ê ∈ R.

To measure the miscalibration of the model, the Expected
Calibration Error (ECE) metric is proposed (Naeini, Cooper,
and Hauskrecht 2015). For a propensity model π(x; α̂) and
imputation model m(x; β̂), the ECE is defined as follows:

ECE(α̂) = Ep̂[|E[o | π(x; α̂) = p̂]− p̂|],
ECE(β̂) = Eê[|E[e | m(x; β̂) = ê]− ê|].

Methodology
Distinctions from Previous Work
Previous studies have proposed to calibrate the single
propensity model and imputation model in DR estimator
(Kweon and Yu 2024), and they propose to use a binning

strategy to estimate the ECE metric empirically, for exam-
ple for the propensity model:

ÊCE (p̂) =

M∑
m=1

|Bm|
N

∣∣∣∣∣
∑

(u,i)∈Bm
ou,i

|Bm|
−

∑
(u,i)∈Bm

p̂u,i

|Bm|

∣∣∣∣∣ ,
where Bm is the predefined m-th bin and N is the corre-
sponding number of samples in the bin.

However, how to properly calibrate multiple propensity
and imputation models for MR estimators remains unex-
plored. A naive approach is to calibrate each propensity and
imputation model in the MR estimator individually. How-
ever, this method is computationally expensive and over-
looks the robust property of MR estimator, that is, the MR
estimator achieves unbiased if a linear combination of mul-
tiple candidate models is accurate.

Inspired by this, we propose to calibrate the linear combi-
nation of multiple models instead of calibrating each model
individually. In addition, note that the previously used ÊCE
involves assigning each sample to a specific hard bin, mak-
ing it non-differentiable and thus unsuitable for direct incor-
poration into the training objective. To address this issue, we
employ a soft binning strategy to develop the differentiable
expected calibration error metric and leverage it to construct
a regularization term that constrains the model’s calibration
error, which can be used for model training. Next, we will
introduce the proposed Cali-MR in detail.

Differentiable Expected Calibration Error
To address the non-differentiable problem of ÊCE, we lever-
age the soft binning strategy (Bohdal, Yang, and Hospedales
2023), using the following differentiable expected calibra-
tion error (DECE) that allows directly optimize calibration
quality to mitigate the model miscalibration. For example,
the DECE for a propensity model π(x; α̂) is defined as:

DECE (α̂) =
1

|D|

M∑
m=1

∣∣∣∣∣∣
∑

(u,i)∈D

om(xu,i;ϕ)(ou,i − p̂u,i)

∣∣∣∣∣∣ ,
where om(xu,i;ϕ) = P(xu,i ∈ Bm|p̂u,i) denotes the prob-
ability that how likely it is that p̂u,i belongs to the m-th bin.
In practice, the om(xu,i;ϕ) can be logistic regression or any
other model (Bohdal, Yang, and Hospedales 2023).

In our Cali-MR, we adopt DECE as a regularization term
for model training. Specifically, to calibrate the linear com-
bination of multiple models, we formalize the propensity
DECE loss Lp

DECE as follows:

Lp
DECE(w;ϕp;α1, . . . , αJ) = (1)

1

|D|

M∑
m=1

∣∣∣∣∣∣
∑

(u,i)∈D

om(xu,i;ϕp)(ou,i −
J∑

j=1

wj p̂
j
u,i)

∣∣∣∣∣∣ ,
where w = (w1, . . . , wJ) is a given set of weight coeffi-
cients. This loss measures the calibration error of the combi-
nation model, and minimizing this loss improves the calibra-
tion ability of the current propensity model combination un-
der the current combination coefficients. We use a one-layer



neural network with softmax activation function to model
the propensity soft binning model om(xu,i;ϕp) with param-
eters ϕp, where m is a pre-defined hyper-parameter.

Similarly, the imputation DECE loss Le
DECE under

weight coefficients v = (v1, . . . , vK) is formalized below:

Le
DECE(v;ϕm;β1, . . . , βK) = (2)

1

|D|

M∑
m=1

∣∣∣∣∣∣
∑

(u,i)∈D

om(xu,i;ϕm)(
ou,ieu,i∑J
j=1 wj p̂

j
u,i

−
K∑

k=1

vkê
k
u,i)

∣∣∣∣∣∣ ,
where we similarly model the imputation soft binning model
om(xu,i;ϕm) with parameters ϕm with a one-layer neural
network with softmax activation function. Note that the eu,i
is missing for user-item pairs with ou,i = 0, we reweight the
observed eu,i using the inverse of the linear combination of
the multiple propensity models.

Based on the DECE loss Lp
DECE or Le

DECE, we can mea-
sure the calibration quality of given multiple models and
weight coefficients, and improve the calibration ability of
the current combined model by minimizing the loss.

Calibrated Multiple Robust Learning

Note that in calculating the DECE loss Lp
DECE or Le

DECE,
the coefficients w or v need to be explicitly specified. How-
ever, these coefficients are unknown during the training pro-
cess of the existing MR method. Therefore, we propose
using bi-level optimization to solve for the optimal coeffi-
cients, parameters of the soft binning model and multiple
imputation and propensity models. In addition, we alterna-
tively update the prediction model and the calibrated impu-
tation model based on a joint learning algorithm.

Multiple Propensity Calibration For propensity models,
the optimization objective can be formalized as follows:

(α∗
1, . . . , α

∗
J) = arg min

α1,...,αJ

1

J

J∑
j=1

Lpj
(αj) + λLp

DECE(w
∗)

s.t. w∗(α1, . . . , αJ) = argmin
w∗
Lp(w∗(α1, . . . , αJ)),

(3)

where Lp
DECE(w) loss is the calibration constraints defined

in Equation 1, and Lpj (αj) is the training loss for a single
propensity model πJ(x; α̂J) ensuring the accuracy of each
independent propensity model, which is shown below:

Lpj
(αj) =

1

|D|
∑

(u,i)∈D

[−ou,i · log pju,i

−(1− ou,i) · log(1− pju,i)].

Lp(w(α1, . . . , αJ)) is the loss for the combination coeffi-
cients w, aiming to learn a set of coefficients such that the
linear combination

∑J
j=1 wj p̂

j
u,i can accurately predict ob-

Algorithm 1: Bi-level Calibrated Multiple Robust Learning
Input: observed ratings Ro, calibrated propensity model∑J

j=1 wj p̂
j
u,i, and stabilization parameter λ

1 while stopping criteria is not satisfied do
2 for number of steps for training imputation model do
3 Sample a batch of user-item pairs {(ul, il)}Ll=1 from

observed population O
4 Assumed update coefficients v′(β1, . . . , βK) ←

v− αv∇vLe (v | β1, . . . , βK)
5 Update imputation models (β1, . . . , βK) ←

1
K

∑K
k=1 Lek(βk) + λLe

DECE(v′(β1, . . . , βK))
6 Update coefficients v← Le(v(β1, . . . , βK))
7 Update imputation soft binning model ϕm ←

Le
DECE(v;ϕm;β1, . . . , βK)

8 end
9 for number of steps for training the prediction model do

10 Sample a batch of user-item pairs D′ from D
11 Obtain the rated samples inD′ as {(um, im)}Mm=1 =

O′ ⊆ O
12 Update η ← [

∑
(u,i)∈O′ u(xu,i;α, β) ·

uT (xu,i;α, β) + λI]−1[
∑

(u,i)∈O′ u(xu,i;α, β) ·
eu,i]

13 Sample a batch of user-item pairs {(un, in)}Nn=1
from D \ D′

14 Update prediction model θ ← θ−∇θLMR (θ;α, β)
15 end
16 end

servation indicator ou,i, which is shown below:

Lp(w(α1, . . . , αJ)) =
1

|D|
∑

(u,i)∈D

[−ou,i · log(
J∑

j=1

wj p̂
j
u,i)

−(1− ou,i) · log(1−
J∑

j=1

wj p̂
j
u,i)].

In this bi-level optimization, we aim to train the propen-
sity models such that each model performs well and their
linear combination is well calibrated, where the coefficients
also ensure the strong prediction performance of the com-
bined model. For practical implementation, we first assumed
update coefficients w through optimizing Lp(w). Using
these coefficients, we calculate the DECE loss Lp

DECE(w)
and combine it with the base prediction loss of each propen-
sity model denoted as Lpj (αj) to form the final loss. This
final loss is then used to update the propensity models
α1, . . . , αJ . After that, the loss Lp(w) and Lp

DECE(w) are
used to update the combination coefficients w and the soft
binning model ϕp sequentially.

Multiple Imputation Calibration With the calibrated
propensity model

∑J
j=1 wj p̂

j
u,i obtained from Equation 3 by

the bi-level optimization, we can further calibrate the linear



Table 1: Performance on AUC, NDCG@K, and F1@K on Coat, Yahoo! R3 and KuaiRec. The best and the second best results
are bolded and underlined, where * means statistically significant results (p-value ≤ 0.05) using the paired-t-test.

Coat Yahoo! R3 KuaiRec
Method AUC NDCG@5 F1@5 AUC NDCG@5 F1@5 AUC NDCG@20 F1@20

Naive 0.703±0.006 0.605±0.012 0.467±0.007 0.673±0.001 0.635±0.002 0.306±0.002 0.753±0.001 0.449±0.002 0.124±0.002

IPS 0.717±0.007 0.617±0.009 0.473±0.008 0.678±0.001 0.638±0.002 0.318±0.002 0.755±0.004 0.452±0.010 0.131±0.004

SNIPS 0.714±0.012 0.614±0.012 0.474±0.009 0.683±0.002 0.639±0.002 0.316±0.002 0.754±0.003 0.453±0.004 0.126±0.003

ASIPS 0.719±0.009 0.618±0.012 0.476±0.009 0.679±0.003 0.640±0.003 0.319±0.003 0.757±0.005 0.474±0.007 0.130±0.005

IPS-V2 0.726±0.005 0.627±0.009 0.479±0.008 0.685±0.002 0.646±0.003 0.320±0.002 0.764±0.001 0.476±0.003 0.135±0.003

KBIPS 0.714±0.003 0.618±0.010 0.474±0.007 0.676±0.002 0.642±0.003 0.318±0.002 0.763±0.001 0.463±0.007 0.134±0.002

AKBIPS 0.732±0.004 0.636±0.006 0.483±0.006 0.689±0.001 0.658±0.002 0.324±0.002 0.766±0.003 0.478±0.009 0.138±0.003

DR 0.718±0.008 0.623±0.009 0.474±0.007 0.684±0.002 0.658±0.003 0.326±0.002 0.755±0.008 0.462±0.010 0.135±0.005

DR-JL 0.723±0.005 0.629±0.007 0.479±0.005 0.685±0.002 0.653±0.002 0.324±0.002 0.766±0.002 0.467±0.005 0.136±0.003

MRDR-JL 0.727±0.005 0.627±0.008 0.480±0.008 0.684±0.002 0.652±0.003 0.325±0.002 0.768±0.005 0.473±0.007 0.139±0.004

DR-BIAS 0.726±0.004 0.629±0.009 0.482±0.007 0.685±0.002 0.653±0.002 0.325±0.003 0.768±0.003 0.477±0.006 0.137±0.004

DR-MSE 0.727±0.007 0.631±0.008 0.484±0.007 0.687±0.002 0.657±0.003 0.327±0.003 0.770±0.003 0.480±0.006 0.140±0.003

MR 0.724±0.004 0.636±0.006 0.481±0.006 0.691±0.002 0.647±0.002 0.316±0.003 0.776±0.005 0.483±0.006 0.142±0.003

TDR 0.714±0.006 0.634±0.011 0.483±0.008 0.688±0.003 0.662±0.002 0.329±0.002 0.772±0.003 0.486±0.005 0.140±0.003

TDR-JL 0.731±0.005 0.639±0.007 0.484±0.007 0.689±0.002 0.656±0.004 0.327±0.003 0.772±0.003 0.489±0.005 0.142±0.003

StableDR 0.735±0.005 0.640±0.007 0.484±0.006 0.688±0.002 0.661±0.003 0.329±0.002 0.773±0.001 0.491±0.003 0.143±0.003

DR-V2 0.734±0.007 0.639±0.009 0.487±0.006 0.690±0.002 0.660±0.005 0.328±0.002 0.773±0.003 0.488±0.006 0.142±0.004

KBDR 0.730±0.003 0.631±0.005 0.482±0.006 0.682±0.002 0.648±0.003 0.323±0.002 0.765±0.004 0.460±0.006 0.138±0.003

AKBDR 0.745±0.004 0.645±0.008 0.493±0.007 0.692±0.002 0.661±0.002 0.328±0.002 0.782±0.003 0.498±0.008 0.147±0.003

DCE-DR 0.736±0.006 0.648±0.007 0.489±0.005 0.698±0.002 0.670±0.002 0.333±0.003 0.795±0.004 0.512±0.005 0.153±0.002

Cali-MR 0.741±0.002 0.658∗
±0.004 0.495±0.004 0.703∗

±0.002 0.678∗
±0.002 0.338∗

±0.004 0.798∗
±0.003 0.521∗

±0.005 0.158∗
±0.002

combination of multiple imputation models:

(β∗
1 , . . . , β

∗
K) = arg min

β1,...,βK

1

K

K∑
k=1

Lek(βk) + λLe
DECE(v

∗)

s.t. v∗(β1, . . . , βK) = argmin
v∗
Le(v

∗(β1, . . . , βK)), (4)

where Le
DECE(v) is the calibration constraints shown in

Equation 2. The naive training loss for each imputation
model mK(x; β̂K) is expressed as

Lek(βk; θ) =
1

|D|
∑

(u,i)∈D

ou,i(eu,i − êku,i)
2∑J

j=1 wj p̂
j
u,i

,

and the loss for the combination coefficients v is

Le(v(β1, . . . , βK)) =
∑

(u,i)∈D

ou,i(eu,i −
∑K

k=1 vkê
k
u,i)

2

|D|
∑J

j=1 wj p̂
j
u,i

,

which aims to learn a set of weight coefficient such that the
linear combination of the imputation models

∑K
k=1 vkê

k
u,i

can unbiasedly estimate the prediction error eu,i.
Similar to updating the propensity models, we first use

Le(v) to assumed update coefficients v′. Based on that, we
compute the DECE loss Le

DECE(v′), combine it with the
base training loss of each imputation model Lek(βk; θ), and
use the combined loss to update both the imputation model
β1, . . . , βK . Then we adopt loss Le(v) and Le

DECE(v) to
update the combination coefficients v and the soft binning
model ϕe sequentially. After obtaining the updated imputa-
tion models and coefficients, we jointly train the prediction
model using the standard multiple robust learning algorithm.
Specifically, we use ridge regression to calculate η̂ in the MR
estimator, and update the prediction model based on the MR
loss LMR using different samples. We summarize the above
learning algorithm in Algorithm 1.

Experiments
Datasets
To evaluate the debiasing performance, we conduct experi-
ments on three benchmark datasets Coat1 and Yahoo! R32,
and KuaiRec3 (Gao et al. 2022), which are widely used
in debiased RS with both biased and unbiased data. Coat
dataset consists of 6,960 biased training samples and 4,640
unbiased test samples derived from 290 users rating on 300
items. Each user self-selects 24 items to rate to consist of
the training set and randomly rates 16 items to consist of
the test set. The Yahoo! R3 dataset includes 311,704 biased
training samples and 54,000 unbiased test samples derived
from 15,400 users rating on 1,000 items. Both datasets are
five-scale, and following previous works (Chen et al. 2021;
Li et al. 2024a, 2023c), we binarize the ratings greater than
three to 1, and others to 0. The KuaiRec dataset is col-
lected from a video-sharing platform and contains 4,676,570
video watching ratios derived from 1,411 users evaluating
3,327 videos. Following previous studies (Li et al. 2023d,
2024d; Kweon and Yu 2024), we binarize the continuous ra-
tios greater than two to 1, otherwise to 0.

Baselines
We compare our method with the following baselines for
comprehensive evaluations: Naive method (Koren, Bell, and
Volinsky 2009), IPS-based methods including IPS (Schn-
abel et al. 2016), SNIPS (Swaminathan and Joachims 2015),
ASIPS (Saito 2020), IPS-V2 (Li et al. 2023d), KBIPS (Li
et al. 2024d) and AKBIPS (Li et al. 2024d), and DR-based

1https://www.cs.cornell.edu/˜schnabts/mnar/
2https://webscope.sandbox.yahoo.com
3https://github.com/chongminggao/KuaiRec



methods including DR (Saito 2020), DR-JL (Wang et al.
2019), MRDR (Guo et al. 2021), DR-BIAS (Dai et al.
2022), DR-MSE (Dai et al. 2022), MR (Li et al. 2023a),
TDR (Li et al. 2023b), TDR-JL (Li et al. 2023b), Sta-
bleDR (Li, Zheng, and Wu 2023), DR-V2 (Li et al. 2023d),
KBDR (Li et al. 2024d), AKBDR (Li et al. 2024d) and
DCE-DR (Kweon and Yu 2024).

Experiment Protocols and Details
We evaluate the prediction performance with three widely
adopted evaluation metrics: AUC, NDCG@K (N@K), and
F1@K, and we set K = 5 on Coat and Yahoo! R3 datasets,
and K = 20 on KuaiRec dataset. In addition, we tune learn-
ing rate in {0.01, 0.05} and weight decay in {1e − 6, 5e −
6, 1e − 5, . . . , 1e − 3, 5e − 3}. We implement our method
on PyTorch with Adam as the optimizer and adopt NVIDIA
A40 as computing resource. We use the same hyperparame-
ter search space and follow the results in Li et al. (2024d).

Performance Analysis
The experimental results are shown in Table 1, and we find
that all the debiasing methods including both IPS based and
DR based baselines outperform the Naive method, which
demonstrates the importance of debiasing. Besides, among
all baselines, DCE-DR achieves the most competitive per-
formance, indicating calibrating a single propensity model
and imputation model in Doubly Robust estimator improves
prediction performance. Furthermore, the Cali-MR method
exhibits superior overall performance in all three datasets. In
particular, on Yahoo! R3 and KuaiRec datasets, we conduct
statical significance tests using the paired t-test, validating
that our method significantly outperforms the existing best
baseline in all evaluation metrics. This shows that calibrat-
ing multiple propensity and imputation models in Multiple
Robust estimator with weight coefficient learned in bi-level
optimization further enhances the debiasing performance.

Conclusion
In this paper, we explore how to properly calibrate multi-
ple propensity and imputation models in Multiple Robust
(MR) estimator. First, we argue that calibrating each candi-
date model individually is too costly and unreasonable due
to the unbiasedness condition of MR in terms of linear com-
binations is not considered. Based on this, we propose using
bi-level optimization to calibrate the linear combination of
multiple candidate models. Specifically, in the bi-level op-
timization, we first assumed to update the combination co-
efficients to obtain the best-performing combination coeffi-
cients under the current candidate model parameters. Then,
based on these coefficients, we update the candidate model
parameters to ensure that each model maintains good pre-
diction performance, while also ensuring that the combina-
tion model achieves strong calibration ability, where a dif-
ferentiable expected calibration error metric that allows it
to be directly optimized is adopted. Experimental results on
three real-world datasets demonstrate that the proposed mul-
tiple propensity and imputation calibration method further
enhances the prediction performance.
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