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Abstract

Generating accurate and concise textual summaries from multimodal documents is1

challenging, especially when dealing with visually complex content like scientific2

posters. We introduce POSTERSUM1, a novel benchmark to advance the devel-3

opment of vision-language models that can understand and summarize scientific4

posters into research paper abstracts. Our dataset contains 16,305 conference5

posters paired with their corresponding abstracts as summaries. Each poster is6

provided in image format and presents diverse visual understanding challenges,7

such as complex layouts, dense text regions, tables, and figures. We benchmark8

Multimodal Large Language Models (MLLMs) on POSTERSUM and demonstrate9

that they struggle to accurately interpret and summarize scientific posters. We10

propose SEGMENT & SUMMARIZE, a hierarchical method that outperforms current11

MLLMs on automated metrics, achieving a 3.14% gain in ROUGE-L.12

1 Introduction13

Scientific posters play a critical role in academic communication, offering a visually rich medium that14

combines text, images, charts, and other graphical elements to present research findings. Summarizing15

these visually complex posters into concise and accurate textual abstracts presents a unique challenge,16

requiring models to integrate multimodal information effectively.17

Multimodal Large Language Models [MLLMs; OpenAI et al., 2024, Grattafiori et al., 2024] demon-18

strated remarkable capabilities in vision-and-language tasks, including image captioning [Fu et al.,19

2024, Koh et al., 2023, Yu et al., 2024, Garg et al., 2024] and visual question answering [Liu et al.,20

2024a, Yue et al., 2024]. While these models exhibit strong generalization across various domains,21

their performance often declines when applied to scientific text [Li et al., 2024, Lu et al., 2024,22

Pramanick et al., 2024]. Additionally, the complexity of poster layouts and the intricate interplay23

between text, tables, and figures make summarizing scientific posters a challenging task, which has24

remained under-explored due to the lack of specialized datasets.25

To address this gap, we introduce POSTERSUM, a novel multimodal benchmark for summarizing26

scientific posters into research paper abstracts. Our dataset consists of 16,305 scientific posters27

and corresponding abstracts as summaries collected from the main Machine Learning conferences,28

namely ICLR, ICML, and NeurIPS. These posters cover a broad range of scientific disciplines and29

present unique challenges, including complex layouts and intricate combinations of text, tables, and30

figures as shown in Figure 1a.31

We benchmark state-of-the-art MLLMs on POSTERSUM and demonstrate that, despite their impres-32

sive performance on a range of other multimodal tasks, these models face significant limitations when33

tasked with summarizing scientific posters. For instance, the best-performing closed-source model in34

1The dataset is available at this link.
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(b) Distribution of POSTERSUM.

Figure 1: (a) A sample scientific poster demonstrating the multimodal complexity of text, tables, charts, and
figures. (b) Distribution of posters across conferences (ICLR, ICML, NeurIPS) and years (2022–2024).

our experiments, GPT-4o [OpenAI et al., 2024], achieves a ROUGE-L score of 22.30 (examples of35

gold and model-generated abstracts are available in Tables 8 and 9), underscoring the difficulty of36

this task specifically with the posters with figures and tables.37

To address this challenge, we propose SEGMENT & SUMMARIZE, a hierarchical approach inspired38

by the divide-and-conquer principle [Chen and Zhao, 2023]. The method involves three key steps:39

(1) Segmentation: we segment each poster into coherent regions; (2) Localized Summarization: a40

multimodal large language model generates localized summaries for each region; and (3) Global41

Summarization: these localized summaries are combined using a text-based large language model42

to produce a cohesive abstract. Notably, this approach does not require additional training or fine-43

tuning. This approach achieves a ROUGE-L score of 24.18, outperforming both closed-source and44

open-source models, setting a new benchmark for scientific poster summarization.45

2 The POSTERSUM Dataset46

We introduce POSTERSUM, a novel dataset and benchmark for multimodal abstractive summarization47

of scientific posters. POSTERSUM consists of 16,305 pairs of academic posters as images (PNG48

format) and their corresponding research paper abstracts. These posters were collected from major49

machine learning and artificial intelligence conferences, which accept papers from various subfields50

of machine learning, including computer vision, natural language processing, optimization, and51

computational biology.52

POSTERSUM captures the diverse and heterogeneous nature of academic posters — they vary in53

layout, content, and visual complexity. Some are text-heavy, while others emphasize visual elements54

such as charts, graphs, and figures, as shown in Figure 1a. This variability presents a significant55

challenge for MLLMs. Each poster in the dataset is paired with its corresponding abstract, which56

serves as the ground-truth summary. The abstract highlights the key contributions and findings of the57

research, making it an ideal summary for the poster.58

2.1 Dataset Creation59

The POSTERSUM dataset was collected from the websites of top-tier machine learning and artificial60

intelligence conferences: ICLR, ICML, and NeurIPS. We selected these conferences based on the61

availability of research posters. We first collected research paper links and paper identifiers from the62

conference websites. We filtered out any entries where the poster of the paper was not available. We63

exclusively collected posters from the years 2022 to 2024, as shown in Figure 1b. Additionally, we64

manually reviewed the dataset to remove any posters with placeholder images.65
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To build a robust summarization dataset, it was essential to pair each poster with a human-written66

summary. We collected the research paper abstracts from the corresponding paper pages using the67

paper identifiers. These abstracts serve as the summaries for the posters, as they highlight the core68

findings and contributions of the research. More dataset statistics and analysis are in Appendix A.69

3 Multimodal Poster Summarization70

3.1 Task Formulation71

Given a scientific poster I in image format as input, the objective is to generate a textual summary72

Ŷ = {ŷ1, ŷ2, . . . , ŷm} that encapsulates the key points and essential content of the poster. Formally,73

a model Mθ, parameterized by θ, takes the poster I as input, optionally accompanied by a prompt P ,74

and generates a summary Ŷ .75

3.2 Baselines76

Optical Character Recognition (OCR): For OCR-based baselines, we used MMOCR [Kuang et al.,77

2021] and Pytesseract to extract text from the poster images and concatenated the results to generate78

a summary. Additionally, we combined the best OCR output with a text-based large language model79

Llama-3.1-8B-Instruct [Grattafiori et al., 2024].80

Closed-source MLLMs: We evaluated GPT-4o [OpenAI et al., 2024], Claude 3.5 Sonnet [Anthropic,81

2024], and Gemini 2.0 [Anil et al., 2024] as closed-source MLLMs.82

Open-source MLLMs. As open-source, we evaluated Llama-3.2-11B-Vision-Instruct [Meta,83

2024], Qwen2-VL-7B-Instruct [Yang et al., 2024], LLaVA-NeXT [Liu et al., 2024b,c], mPLUG-84

DocOwl2 [Hu et al., 2024], and MiniCPM-Llama3-V-2.5 [Yao et al., 2024]. Each model was85

evaluated in both zero-shot and CoT settings.86

Evaluation Metrics. We use ROUGE F1 (R-1/2/L/LSum) scores [Lin, 2004], SacreBLEU [SBLEU;87

Post, 2018], METEOR [MET; Banerjee and Lavie, 2005], CLIPScore [CLIPS; Hessel et al., 2021],88

and BERTScore [Zhang et al., 2020] to evaluate the accuracy of all models. Full experiment details89

are reported in Appendix B. We report the full prompt template in Appendix E.90

3.3 SEGMENT & SUMMARIZE91

We now introduce SEGMENT & SUMMARIZE, a hierarchical approach inspired by the divide-and-92

conquer principle. SEGMENT & SUMMARIZE decomposes the task into three key steps: (1) Segmen-93

tation and Clustering, (2) Localized Summarization, and (3) Global Summarization.94

1. Segmentation and Clustering. Given the image of a poster I , the first step is to segment it into95

n coherent regions M = {M1,M2, . . . ,Mn} using a segmentation model Sϕ, parameterized by ϕ.96

Since the number of regions n can be large, the regions are further clustered into groups R with the97

number of clusters as k using a clustering algorithm C such that k ≪ n.98

2. Localized Summarization. For each clustered region Ri, a localized summary Ŷi =99

{ŷi1, ŷi2, . . . , ŷik} is generated using an MLLM Vϕ.100

3. Global Summarization. The localized summaries Ŷ1, Ŷ2, . . . , Ŷk are combined into a cohesive101

global summary Ŷ using a text-based large language model Lω, parameterized by ω. This step102

ensures that the final abstract is comprehensive, maintains logical flow, and is coherent. Formally,103

Ŷ = Lω(Ŷ1, Ŷ2, . . . , Ŷk). This approach does not require additional training or fine-tuning, and both104

the models (Vϕ, Lω) are frozen.105

4 Results106

Table 1 presents the poster summarization performance of all baselines alongside our proposed107

SEGMENT & SUMMARIZE method, evaluated on the POSTERSUM test set. Our method outperforms108

both open-source and closed-source models, achieving the best results across all metrics.109
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R-1 R-2 R-L RLSum SBLEU Met BSp BSr BSf1 CLIPS
Closed-Source Models
Gemini 39.89 12.38 20.89 36.21 6.57 22.34 59.46 59.6 59.53 24.41
Claude-3.5 Sonnet 43.45 11.42 19.51 39.08 7.72 28.43 59.3 60.3 59.8 25.02
GPT-4o 44.98 13.12 22.30 40.55 10.05 30.29 60.31 60.22 60.77 25.06

OCR
Pytesseract 26.27 1.03 9.26 17.07 0.06 21.18 34.89 41.15 37.71 18.21
MMOCR 24.35 8.96 12.73 23.4 4.03 27.62 34.32 49.39 40.40 18.49
MMOCR + Llama 28.37 5.37 15.49 24.94 2.42 25.0 52.51 56.88 54.58 19.78

Zero-Shot
Llama-3.2-11B-V 20.7 4.29 11.01 18.88 1.75 18.07 43.51 44.46 43.75 18.91
Qwen2-VL-7B 20.63 1.93 12.08 18.97 0.63 16.13 46.81 48.35 47.53 17.34
LLaVA-NeXT 29.89 6.61 16.0 27.02 3.41 19.57 53.02 51.10 51.89 21.67
mPLUG-DocOwl2 35.62 8.79 19.06 32.07 3.36 18.35 58.35 55.69 56.99 23.65
MiniCPM 39.88 11.11 20.14 35.45 7.18 23.76 59.54 58.91 59.22 25.50

Chain of Thought
Llama 3.2-11B-V 20.05 3.4 10.77 18.14 1.7 8.57 42.43 45.89 43.86 19.57
Qwen2-VL-7B 25.58 2.92 13.75 23.24 1.52 15.65 54.48 51.97 53.16 19.68
LLaVA-NeXT 30.25 6.16 16.25 27.48 2.95 24.53 48.79 50.89 49.78 21.56
mPLUG-DocOwl2 37.04 9.15 19.71 33.45 3.98 19.6 58.59 56.26 57.40 23.78
MiniCPM 41.50 11.68 21.04 37.08 8.60 26.34 59.32 58.29 58.80 25.76

SEGMENT & SUMMARIZE

Ours 46.68 15.73 24.18 42.5 12.63 30.87 61.21 61.62 61.37 27.63

Table 1: Summarization results on the POSTERSUM dataset showing ROUGE scores (R-1, R-2, R-L, R-LSum),
BERTScores (BSp, BSr, BSf1), SacreBLEU, CLIPScore, and METEOR scores. All the scores are percentages.

Closed-source Models: GPT-4o achieves relatively high performance among the closed-source110

models across all metrics, with ROUGE-1/2/L scores of 44.98, 13.12, and 22.30, respectively.111

Combining OCR with the text-only Llama-3.1 model results in a substantial improvement, with112

ROUGE-L increasing from 12.73 to 15.49.113

Open-source Models: Among the open-source MLLMs evaluated in zero-shot settings, MiniCPM-114

Llama3-V-2.5 obtains the highest ROUGE-1/L score (39.88/20.14) and a strong BERTScore-F1 of115

59.22. Meanwhile, mPLUG-DocOwl2 achieves a competitive ROUGE-L of 19.06 and a BERTScore-116

F1 of 56.99.117

Chain of Thought (CoT): CoT prompt improves the performance of most models. For118

instance, MiniCPM-Llama3-V-2.5 improves its ROUGE-1/L/METEOR/CLIPScore scores to119

41.50/21.04/26.34/25.76, while mPLUG-DocOwl2’s performance also increases (ROUGE-1/L of120

37.04/19.71).121

SEGMENT & SUMMARIZE: Our proposed method outperforms all other models, including closed-122

source models, on all metrics, achieving ROUGE-1/2/L scores of 46.68, 15.73, and 24.18, respectively,123

with a 3.14% gain on ROUGE-L compared to open-source models. It also attains a substantially124

higher ScareBLEU score (12.63), BERTScore-F1 of 61.37, and a CLIPScore of 27.63. These results125

indicate that local-region summaries effectively preserve small details and handle posters of varying126

complexity by processing each region independently.127

5 Conclusions128

We presented POSTERSUM, a multimodal benchmark for scientific poster summarization comprising129

16,305 poster-abstract pairs. Our experiments show that even state-of-the-art MLLMs struggle with130

key aspects of scientific poster summarization. Furthermore, we propose SEGMENT & SUMMARIZE, a131

hierarchical approach that outperforms existing models. We find that our method outperforms MLLMs132

in both zero-shot and fine-tuned settings and that there remains significant room for improvement in133

multimodal understanding of complex scientific documents such as posters. We believe POSTERSUM134

will be a valuable resource for developing and evaluating MLLMs capable of processing information-135

dense scientific content.136
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POSTERSUM Statistics
Total number of posters-summary 16,305
Total number of unique categories 137
Mean token length of the summary 224
Mean summary sentences 7.21
Train/Val/Test size 10305/3000/3000
Mean CLIP score 29.08
Year range 2022–2024

Table 2: Statistics of the POSTERSUM dataset.

% Novel n-grams in Summary
1-grams 2-grams 3-grams 4-grams

54.54 81.13 88.67 91.41
Table 3: Statistics for percentage of novel n-grams in the POSTERSUM summaries.

A Dataset Statistics and Analysis596

This process resulted in the 16,305 poster-summary pairs, providing a comprehensive multimodal597

resource for evaluating abstractive summarization of academic research posters.598

Table 2 provides an overview of key statistics for the dataset. The average length of the poster599

summaries is 224 word-piece tokens, with an average of seven sentences per summary. The poster600

images are of high-resolution, with a mean size of 3547× 2454. We randomly split the dataset into601

training, validation, and test sets using a 10305/3000/3000 split, which can be utilized for training602

and fine-tuning models.603

To better understand the diversity within the dataset, we categorized posters into topics. Since topics604

were not available on the conference websites, we employed the GPT-4o vision model to generate605

topic labels by prompting the model in a zero-shot setting using the images of the posters. As a606

result, we identified 137 distinct topics within machine learning and artificial intelligence, spanning607

areas such as reinforcement learning, natural language processing (NLP), computational biology, and608

healthcare applications. 2 illustrates the distribution of the most frequent 25 topics.609

To assess the abstractiveness of the poster summaries, we report the percentage of novel n-grams in610

the summaries compared to the Optical Character Recognition (OCR) extracted text from the posters.611

We used MMOCR [Kuang et al., 2021] to extract the text. While most posters do not explicitly612

include abstracts, we found that approximately 8% of the total posters may contain an abstract in613

poster, based on the occurrence of the word "abstract" in the OCR text. As shown in 3, a significant614

portion of the summaries contains novel content, particularly in the 3-gram and 4-gram categories.615

This demonstrates that the summaries are not simple restatements of poster text but instead provide a616

more comprehensive abstraction.617

We also find a mean CLIPScore Hessel et al. [2021] of 29.08 when we evaluate the alignment between618

the images of the posters and their summaries. This score was computed at the sentence level and619

averaged across the dataset. The relatively low CLIPScore highlights the challenge that POSTERSUM620

poses for existing MLLMs. Unlike image-captioning tasks, where captions directly describe visual621

features, academic posters are composed of diverse and complex visual elements, such as charts,622

graphs, equations, and dense textual explanations. This complexity makes it more difficult for623

models to capture the semantic relationships between these elements and the corresponding abstract624

summaries.625

B Experimental Details626

All models in each category were evaluated using the same hyperparameter settings for a fair627

evaluation. We generate at most 768 new tokens for all the experiments. For closed-source models,628

we used the default platform settings. Open-source models were evaluated with a beam size of 4629

with greedy decoding to ensure reproducibility. The fine-tuning experiments were conducted for 10630
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Figure 2: Distribution of the most frequent 25 topics for the posters in POSTERSUM.

epochs with a batch size of 4. More details on the hyperparameters and prompt templates can be631

found in Appendices E and H.632

For SEGMENT & SUMMARIZE, we used the Segment Anything Model [Kirillov et al., 2023] for633

segmentation with k-Means for clustering. The number of clusters (k) was set to 8 based on the634

analysis in Appendix G. We used MiniCPM-Llama3-V-2.5 as the local summarizer (Vϕ) and Llama635

3.1-8B-Instruct as the global summarizer (Lω). We used the training set for fine-tuning and the636

validation set for hyperparameter tuning. All the final results are evaluated on the test set.637

C Related Work638

Multimodal Large Language Models. After the emergence of LLMs, recent work [Liu et al.,639

2023, Wang et al., 2024a, Alayrac et al., 2022] investigated their use in processing multimodal640

inputs, giving rise to Multimodal Large Language Models (MLLMs). The core idea in this line641

of research is to align visual and textual features by using shared representations. This framework642

typically involves using a pre-trained visual encoder to extract visual features, a projection layer to643

map visual representations into corresponding text representations, and a pre-trained LLM to generate644

textual responses, allowing the model to condition the output on visual and textual inputs. MLLM645

architectures such as LLaVA Liu et al. [2023] and MiniCPM Yao et al. [2024] demonstrated impressive646

zero-shot generalization across diverse visual and language tasks. However, most existing MLLMs647

focus on general domain tasks and relatively simple visual inputs; the challenge of understanding648

complex and information-dense visual documents like scientific posters remains under-explored.649

Summarization in Scientific Domains. Scientific summarization consists of generating concise650

summaries for scientific content [Yasunaga et al., 2019, Cachola et al., 2020, Ju et al., 2021, Sotudeh651

and Goharian, 2022]. Several scientific summarization benchmarks have been proposed, designed to652

process modalities such as videos Lev et al. [2019], Chen et al. [2024], slides Tanaka et al. [2023],653

surveys Liu et al. [2024d], and research papers Takeshita et al. [2024], Liu et al. [2024e]. While654

scientific posters are widespread in scientific communication, no poster summarization benchmark655

has been proposed in the literature. Our proposed POSTERSUM aims to address this gap.656
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Methods R1 R-2 R-L Met
Without clustering 42.25 14.30 22.76 23.97
With clustering 46.68 15.73 24.18 30.87

Table 4: Comparison of SEGMENT & SUMMARIZE with and without clustering — clustering the
segments yields more accurate results.

Methods R1 R-2 R-L Met
mPLUG-DocOwl2 37.04 9.15 19.71 19.6
Ours with DocOwl2 42.48 11.18 20.61 26.72
Ours with MiniCPM 46.68 15.73 24.18 30.87

Table 5: Comparison of using mPLUG-DocOwl2 as local summarize. Applying SEGMENT &
SUMMARIZE shows improvement compared to using the model itself.

Document Layout Analysis and Segmentation. Understanding document layouts plays a signifi-657

cant role in processing complex visual documents like scientific posters. Recent work in document658

layout analysis Peng et al. [2022], Wang et al. [2024b], Luo et al. [2024], Appalaraju et al. [2024] aims659

at identifying and classifying different regions within a document considering spatial relationships660

and content type. Previous work has also focused on understanding individual elements in documents,661

such as charts [Masry et al., 2022] and tables [Zheng et al., 2024]. However, most existing approaches662

are designed for either standard documents or individual elements like charts and tables and do not663

capture the complex layouts and the rich multimodal structure of scientific posters, which typically664

consist of text, charts, equations, and tables.665

D Ablation Studies and Analysis666

Effect of Clustering on Summarization. To quantify the impact of clustering in our SEGMENT &667

SUMMARIZE approach, we conduct an ablation study that removes the clustering step. Specifically,668

we select the top-k segments (with k = 8) based on their region size to generate local and global669

summaries. Table 4 shows that clustering improves the ROUGE-1 score by +4.43, ROUGE-2 by670

+1.43, and ROUGE-L by +1.42 over the non-clustered baseline. We hypothesize that clustering helps671

reduce redundant segments and improves context aggregation.672

Effect of Local Vision Summarization. To assess the role of the local summarization model in673

SEGMENT & SUMMARIZE, we replaced MiniCPM-Llama3-V-2.5 with mPLUG-DocOwl2, which674

previously ranked second among open-source models under the CoT setting. Table 5 shows that using675

mPLUG-DocOwl2 with our hierarchical approach boosts ROUGE-1 to 42.48 and METEOR to 26.72676

compared to using the model in the CoT setting. However, it does not outperform our method using677

MiniCPM. These findings highlight that the segmentation and summarization approach substantially678

improves performance compared to using the poster as a single input.679

Human Evaluation We conducted a human evaluation to compare the quality of summaries680

generated by our method against the best models in each category (MiniCPM CoT, Llama-3.2-11B-681

V LoRA, GPT-4o ZS). Forty crowdworkers were recruited via Prolific (all L1 English speakers,682

master’s/doctoral degree holders, and at least 100 previously approved submissions) and compensated683

at $17/hr. We randomly sampled 40 posters, and participants viewed the poster image, the reference684

abstract, and one candidate summary, resulting in 160 (4x40) poster–summary evaluations. They685

rated each summary on 5-point Likert scales for each of four dimensions: Fluency, Coherence,686

Faithfulness, and Relevance. Across all dimensions, SEGMENT & SUMMARIZE received the687

highest mean ratings (see Figure 3). A one-way ANOVA followed by Tukey’s HSD confirmed that688

SEGMENT & SUMMARIZE significantly outperformed MiniCPM and Llama-3.2-11B-V on every689

dimension (p < .01 for all) and surpassed GPT-4o on Faithfulness and Relevance (p < .05). However,690

differences with GPT-4o in Fluency and Coherence did not reach significance. More statistical details691

and instructions are available in Appendices K and L.692
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Figure 3: Mean 5-point Likert ratings for Fluency, Coherence, Faithfulness, and Relevance across four
methods. SEGMENT & SUMMARIZE (ours) achieves the highest scores across all the dimensions.

E Prompt Templates693

Prompt Template for Zero-Shot

Write an abstract for an AI conference paper for the given research poster image.

Prompt Template for CoT

Analyze the research poster image step by step.
First, identify the title and main research problem.
Then, briefly describe the methodology used.
Next, summarize the key findings or results.
Finally, note the conclusion or implications.
Using this information, write an abstract for the given research poster image.

F Effect of Poster Text Content on Summarization Performance694

To investigate whether posters with a high amount of text result in better summarization performance,695

we analyze the relationship between OCR-extracted text length and ROUGE-L scores using our696

SEGMENT & SUMMARIZE method. Specifically, we use MMOCR to extract text from each poster697

and compute its total length in characters (not in tokens).698

4 presents the mean ROUGE-L scores across different OCR text-length bins. The dotted line699

represents the number of posters in each text-length bin. We observe that summarization performance700

tends to improve as the amount of text in the poster increases. However, the correlation remains weak701

(Pearson r = 0.213, Spearman r = 0.210), suggesting that text in the poster alone is not a strong702

predictor of summarization quality. Low performance in posters with minimal text also highlights the703

need for more robust multimodal understanding of figures, charts, equations, and tables.704
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Prompt Template for Local Summary

Describe all the text, tables, figures, and equations in the image.
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Figure 4: Effect of text present in the poster on summarization. We report mean ROUGE-L scores for
different OCR-extracted character-length bins. The red dashed line represents the number of posters
in each bin.

G Selecting the Number of Clusters705

To select the number of clusters (k) for our SEGMENT & SUMMARIZE, we conducted an empirical706

analysis on a subset of 100 posters from the validation set, varying the number of clusters from 2 to707

10. 5 presents the mean ROUGE-L score for each cluster configuration. In these experiments, the708

local and global summarization components remained fixed.709

We observe that the best performance is achieved at k = 8 which was used in our final experiments.710

Additionally, we limit the maximum number of clusters to 10 in the analysis to keep the inference711

time of our local summarization manageable.712

H Additional Experiment Details713

Table 6 summarizes the versions of the closed-source models used in our experiments. For fine-tuning,714

we use a learning rate of 1× 10−4 with the Adam optimizer (β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8)715

and a cosine learning rate schedule. We employ LoRA with rank r = 8, α = 8, and a dropout rate of716

0.1.717

All images are processed and scaled by the respective model’s image processor for model specific718

sizes. In the case of closed-source models, we scale each image to a maximum width of 2048 while719

preserving the original aspect ratio due to size limitations. All the models were trained using 2 A100720

GPUs with 80GB of memory. We used the Huggingface evaluate library for the implementation of721

the metrics. Our method’s additional wall-clock time per batch is approximately 1.75 seconds for the722

segmentation and clustering stage and 6.02 seconds for the two stages.723
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Figure 5: Effect of varying the number of clusters on ROUGE-L performance on SEGMENT &
SUMMARIZE

Model Version

GPT-4o gpt-4o-2024-08-06
Gemini 2.0 gemini-2.0-flash-exp
Claude 3.5 Sonnet claude-3-5-sonnet-20241022
Table 6: Details of the closed-sourced models.

I Limitations724

While our work advances scientific poster summarization, we should highlight a few limitations.725

First, our dataset is restricted to machine learning conference posters from 2022 to 2024, which may726

limit the generalization to other scientific domains. Second, while practical, automated topic labeling727

using GPT-4o may introduce biases or inaccuracies in the topic distribution. The proposed SEGMENT728

& SUMMARIZE method relies heavily on the quality of the initial segmentation: a suboptimal729

segmentation can lead to fragmented or redundant local summaries. Our method also assumes that730

the content can be meaningfully decomposed into spatial regions, which may not hold for posters731

with complex cross-referencing or interdependent visual elements. We considered the abstract as a732

ground-truth summary of the poster, but the poster may sometimes differ from the paper.733

J Ethics Statement734

Dataset. All the scientific posters and abstracts in our dataset are sourced from publicly accessible735

conference resources. Additionally, we sought permission from the conference website contacts to736

use the publicly available data for research purposes.737

Multimodal Large Language Models. This paper utilizes pre-trained multimodal large language738

models, which have been shown to exhibit various biases, occasionally hallucinate, and generate739

non-faithful text. Therefore, summaries generated using our dataset should not be released without740

automatic filtering or manual verification to ensure accuracy and reliability.741
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Bias. Despite efforts to include a wide range of posters, the dataset may not fully represent the742

diversity of research poster styles, languages, or scientific disciplines. As a result, models trained on743

POSTERSUM may exhibit biases towards the types of posters included in the dataset. Future work744

should consider expanding the dataset to encompass a broader spectrum of academic fields and visual745

formats to mitigate potential biases.746

K Human Evaluation Statistical Analysis747

Model Fl C Fa R

MiniCPM (CoT) 3.80 3.72 3.12 3.33
Llama-3.2-11B-V (LoRA) 3.55 3.17 2.98 3.13
GPT-4o (ZS) 3.98 4.00 3.13 3.37
SEGMENT & SUMMARIZE 4.38 4.37 3.70 3.93

Table 7: Mean Likert ratings (1–5) for each model across the four dimensions. Fl: Fluency, C:
Coherence, Fa: Faithfulness, R: Relevance

Mean Likert ratings for each model are provided in Table 7. We conducted one-way ANOVAs748

to assess whether there were statistically significant differences among the models across the four749

dimensions. The results showed a significant difference across all models:750

• Fluency: F = 9.20, p < 0.001751

• Coherence: F = 20.33, p < 0.001752

• Faithfulness: F = 6.27, p = 0.0004753

• Relevance: F = 6.64, p = 0.0003754

To identify the specific differences among the models, Tukey’s HSD post-hoc tests were performed755

for all the dimensions. SEGMENT & SUMMARIZE method significantly outperformed all the models756

on Faithfulness and Relevance.757

• Faithfulness: +0.58 vs. MiniCPM (p = 0.007), +0.72 vs. Llama (p=0.0005), +0.57 vs.758

GPT-4o (p = 0.0098)759

• Relevance: +0.60 vs. MiniCPM (p=0.009), +0.80 vs. Llama (p=0.0002), +0.57 vs. GPT-4o760

(p=0.0155)761

Against GPT-4o, SEGMENT & SUMMARIZE ’s advantages in Fluency (+0.40, p=0.0717) and Co-762

herence (+0.37, p=0.0987) did not reach significance, although it remained significantly higher than763

MiniCPM and Llama on those dimensions:764

• Fluency: +0.58 vs. MiniCPM (p=0.0025), +0.83 vs. Llama (p<0.001)765

• Coherence: +0.65 vs. MiniCPM (p=0.0003), +1.20 vs. Llama (p<0.001)766

L Instructions for Human Evaluation767

In this task, you will assess the quality of computer-generated summaries of scientific posters by768

comparing each against the poster and its reference summary. For each trial, you will be shown:769

1. Poster Image.770

2. Reference Summary.771

3. Generated Summary.772

Your task is to rate the Generated Summary on four dimensions using a 5-point Likert scale (1 = Poor,773

5 = Excellent).774
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Dimensions of Evaluation775

Fluency This dimension evaluates whether the generated summary is grammatically correct, easy776

to read, and well-structured.777

Coherence This dimension assesses whether the sentences in the generated summary flow logically778

and maintain a consistent narrative.779

Faithfulness This dimension checks if all the facts presented in the generated summary are accurate780

and can be directly inferred from the poster image and reference summary.781

Relevance This dimension evaluates whether the generated summary includes the key findings and782

contributions shown in the poster and reference summary, without omitting important information.783

Rating Procedure784

For each poster–summary pair:785

1. View the poster image and reference summary carefully.786

2. Read the generated summary in its entirety.787

3. Assign a score (1–5) for each of the four dimensions, based only on the definitions above.788

4. Minor typos or formatting issues should not lower your score unless they impede under-789

standing.790

M Dataset Examples with Model Summaries791
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Model Output
Reference Domain generalization (DG) enables generalizing a learning machine from multiple seen source domains

to an unseen target one. The general objective of DG methods is to learn semantic representations that
are independent of domain labels, which is theoretically sound but empirically challenged due to the
complex mixture of common and domain-specific factors. Although disentangling the representations
into two disjoint parts has been gaining momentum in DG, the strong presumption over the data
limits its efficacy in many real-world scenarios. In this paper, we propose Mix and Reason (MiRe),
a new DG framework that learns semantic representations via enforcing the structural invariance of
semantic topology. MiRe consists of two key components, namely, Category-aware Data Mixing
(CDM) and Adaptive Semantic Topology Refinement (ASTR). CDM mixes two images from different
domains in virtue of activation maps generated by two complementary classification losses, making
the classifier focus on the representations of semantic objects. ASTR introduces relation graphs to
represent semantic topology, which is progressively refined via the interactions between local feature
aggregation and global cross-domain relational reasoning. Experiments on multiple DG benchmarks
validate the effectiveness and robustness of the proposed MiRe.

MiniCPM CoT The paper is about Mix and Reason, a methodology for domain generalization that reasons over semantic
topology to mix data from different domains and construct new target domains. It addresses the problem
of limited training data by leveraging the IID assumption and the representations learned from the
source domain to perform well in the target domain. The proposed methodology involves a pipeline
of the proposed Mix and Reason (MiRe) component, which takes the adaptive semantic topology
refinement (ASTR) component as its backbone. The key results show that the proposed methodology
outperforms state-of-the-art methods on four benchmark datasets, including CelebA, CUB, Stanford
2007, and COCO.

Llama-3.2-11B-V FT Deep neural networks (DNNs) are expected to be deployed across novel domains. However, out-of-
distribution (OOD) data does not satisfy the assumption and hinders DNNs from generalizing well
to target domains. In this paper, we propose Mix and Reason (MIRa) for domain generalization
(DG) via perceiving and reasoning over semantic topology. Specifically, MIRa divides input common
and domain-specific components and captures their potential spurious correlations. Reasoning over
semantic topology enables MIRa to disentangle attribute and domain-specific representations and learn
domain-invariant representations. Extensive experiments on four standard DG benchmarks show that
MIRa achieves state-of-the-art performance. Besides, MIRa can be applied to many DG methods and
significantly improve their performance.

GPT-4o Domain Generalization (DG) for deep neural networks poses a significant challenge in adapting models
to varied out-of-distribution data. This paper introduces "Mix and Reason" (MiRe), a novel framework
leveraging semantic topology reasoning and data mixing to enhance domain generalization. MiRe
employs a two-part approach, utilizing Anchored Semantic Topology Reasoning (ASTR) to retain
relational features across domains and Contrastive Data Mixing (CDM) to generate robust feature
representations. Experiments were conducted on four standard DG benchmarks, demonstrating substan-
tial improvements in model adaptability and performance. Additionally, results on medical datasets
underscore the frameworkś efficacy in maintaining domain-invariant characteristics across diverse
conditions. This research highlights the strength of integrating semantic relationships with innovative
data augmentation techniques, offering a scalable solution for realistic multi-domain scenarios.

SEGMENT & SUMMARIZE Domain Generalization (DG) is a critical challenge in machine learning, where models are expected to
generalize well across novel domains with different data distributions. Existing DG methods often rely
on strong assumptions about the data or ignore potential spurious correlations. In this work, we propose
a novel DG framework, Mix and Reason (MiRe), which learns semantic representations by enforcing
the structural invariance of semantic topology. MiRe consists of two key components: Category-Aware
Data Mixing (CDM) and Adaptive Logic Semantic Topology Refinement (ASTR). CDM mixes two
images from different domains using activation maps generated by complementary classification losses,
focusing the classifier on semantic object representations. ASTR introduces relation graphs to represent
semantic topology, which is progressively refined via interactions between local feature aggregation
and global cross-domain relational reasoning. We evaluate MiRe on four standard DG benchmarks and
medical data, achieving state-of-the-art performance and outperforming existing methods. Our results
demonstrate the effectiveness of MiRe in handling domain shifts and provide insights into how to better
perceive and maintain structural semantic relations in machine learning.

Table 8: Sample of poster image from Chen et al. [2022] with gold reference and model generated
summaries
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Model Output
Reference Robustness in deep neural networks and machine learning algorithms in general is an open research challenge.

In particular, it is difficult to ensure algorithmic performance is maintained on out-of-distribution inputs or
anomalous instances that cannot be anticipated at training time. Embodied agents will be deployed in these
conditions, and are likely to make incorrect predictions. An agent will be viewed as untrustworthy unless it
can maintain its performance in dynamic environments. Most robust training techniques aim to improve model
accuracy on perturbed inputs; as an alternate form of robustness, we aim to reduce the severity of mistakes made
by neural networks in challenging conditions. We leverage current adversarial training methods to generate
targeted adversarial attacks during the training process in order to increase the semantic similarity between a
model’s predictions and true labels of misclassified instances. Results demonstrate that our approach performs
better with respect to mistake severity compared to standard and adversarially trained models. We also find an
intriguing role that non-robust features play with regards to semantic similarity.

MiniCPM CoT The paper is about the problem of mistake severity in neural networks and the use of semantic knowledge to
address it. The research problem is the inability of neural networks to accurately predict the severity of mistakes,
leading to poor model accuracy. The methodology involves incorporating semantic knowledge into the training
process to generate targeted adversarial attacks. The key results show that using semantic knowledge to guide the
attacks leads to better model accuracy and improved performance on benchmarks. The conclusion suggests that
the use of semantic knowledge is a promising approach to addressing the problem of mistake severity in neural
networks.

Llama-3.2-11B-V FT It is difficult to ensure algorithmic performance is maintained at out-of-distribution (OOD) training time for neural
networks due to the presence of perturbed inputs. An alternate form of robustness, we aim to reduce the conditions
in which mistakes are made by neural networks. We leverage semantic similarity between a model’s predictions
and labels of OOD data as a measure of mistake severity. We propose a two-stage training method that generates
targeted perturbations of semantic similarity between a model’s predictions and true labels of OOD data. Our
experiments show that our method improves upon state-of-the-art methods in aligning class similarity between a
model’s predictions and true labels of OOD data. Our code is available at https://github.com/natale-abreu/semi-
targeted-adversarial-training.git.

GPT-4o This paper addresses the challenge of reducing mistake severity in neural networks under adversarial and
anomalous conditions by incorporating semantic knowledge into the training process. Traditional robust training
techniques typically focus on improving model accuracy on perturbed inputs, but often overlook the semantic
alignment between model predictions and true labels. We propose a novel method utilizing semantically targeted
adversarial attacks to train neural networks, aiming to enhance semantic similarity and reduce the impact of severe
errors.Our approach encompasses a two-stage training process: firstly integrating semantic knowledge through
targeted adversarial perturbations, followed by standard training protocols. The methodology was tested using
metrics such as super class accuracy on mistakes and average path similarity of mistakes, which measure semantic
closeness between mistaken and true labels. This research highlights the value of non-robust features in capturing
semantic alignments and suggests future exploration into balancing visual and semantic similarities for enhanced
model reliability.

SEGMENT & SUMMARIZE Ensuring algorithmic performance on out-of-distribution inputs or anomalous instances is a significant challenge
in neural networks. Traditional robust training techniques focus on improving model accuracy on perturbed inputs,
whereas we propose an alternate form of robustness by reducing the severity of mistakes made by neural networks
in challenging conditions. We leverage current adversarial training methods to generate targeted adversarial
attacks during the training process, increasing the semantic similarity between a model’s predictions and true
labels of misclassified instances. Our approach involves two stages of training: Semantic Targeting and Prior
Semantic Knowledge. We demonstrate that by incorporating semantic knowledge in the training process, we can
reduce the severity of mistakes in challenging conditions, thereby improving user trust in the system. Our results
show that the proposed method outperforms traditional robust training techniques in terms of reducing mistake
severity, making it a promising approach for addressing mistake severity in neural networks.

Table 9: Sample of poster image from the work Abreu et al. [2022] with gold reference and model
generated summaries
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