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Abstract

Generating accurate and concise textual summaries from multimodal documents is
challenging, especially when dealing with visually complex content like scientific
posters. We introduce POSTERS UMEL a novel benchmark to advance the devel-
opment of vision-language models that can understand and summarize scientific
posters into research paper abstracts. Our dataset contains 16,305 conference
posters paired with their corresponding abstracts as summaries. Each poster is
provided in image format and presents diverse visual understanding challenges,
such as complex layouts, dense text regions, tables, and figures. We benchmark
Multimodal Large Language Models (MLLMs) on POSTERSUM and demonstrate
that they struggle to accurately interpret and summarize scientific posters. We
propose SEGMENT & SUMMARIZE, a hierarchical method that outperforms current
MLLMs on automated metrics, achieving a 3.14% gain in ROUGE-L.

1 Introduction

Scientific posters play a critical role in academic communication, offering a visually rich medium that
combines text, images, charts, and other graphical elements to present research findings. Summarizing
these visually complex posters into concise and accurate textual abstracts presents a unique challenge,
requiring models to integrate multimodal information effectively.

Multimodal Large Language Models [MLLMs; |OpenAl et al., 2024} Grattafiori et al.,|2024] demon-
strated remarkable capabilities in vision-and-language tasks, including image captioning [[Fu et al.,
2024, |[Koh et al., [2023) [Yu et al.| 2024} |Garg et al., 2024 and visual question answering [Liu et al.|
20244l |Yue et al.,|2024]]. While these models exhibit strong generalization across various domains,
their performance often declines when applied to scientific text [Li et al., |2024] [Lu et al., 2024,
Pramanick et al.| 2024]. Additionally, the complexity of poster layouts and the intricate interplay
between text, tables, and figures make summarizing scientific posters a challenging task, which has
remained under-explored due to the lack of specialized datasets.

To address this gap, we introduce POSTERSUM, a novel multimodal benchmark for summarizing
scientific posters into research paper abstracts. Our dataset consists of 16,305 scientific posters
and corresponding abstracts as summaries collected from the main Machine Learning conferences,
namely ICLR, ICML, and NeurIPS. These posters cover a broad range of scientific disciplines and
present unique challenges, including complex layouts and intricate combinations of text, tables, and
figures as shown in Figure [Ta]

'The dataset is available at rohitsaxena/PosterSum.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Evaluating the Evolving
LLM Lifecycle.
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(a) Example poster from POSTERSUM. (b) Distribution of POSTERSUM.

Figure 1: (a) A sample scientific poster demonstrating the multimodal complexity of text, tables, charts, and
figures. (b) Distribution of posters across conferences (ICLR, ICML, NeurIPS) and years (2022-2024).

We benchmark state-of-the-art MLLMs on POSTERSUM and demonstrate that, despite their impres-
sive performance on a range of other multimodal tasks, these models face significant limitations when
tasked with summarizing scientific posters. For instance, the best-performing closed-source model in
our experiments, GPT-40 [OpenAlI et al |, [2024]], achieves a ROUGE-L score of 22.30 (examples of
gold and model-generated abstracts are available in Tables[]and [0, underscoring the difficulty of
this task specifically with the posters with figures and tables.

To address this challenge, we propose SEGMENT & SUMMARIZE, a hierarchical approach inspired
by the divide-and-conquer principle [Chen and Zhao|, [2023]]. The method involves three key steps:
(1) Segmentation: we segment each poster into coherent regions; (2) Localized Summarization: a
multimodal large language model generates localized summaries for each region; and (3) Global
Summarization: these localized summaries are combined using a text-based large language model
to produce a cohesive abstract. Notably, this approach does not require additional training or fine-
tuning. This approach achieves a ROUGE-L score of 24.18, outperforming both closed-source and
open-source models, setting a new benchmark for scientific poster summarization.

2 The POSTERSUM Dataset

We introduce POSTERS UM, a novel dataset and benchmark for multimodal abstractive summarization
of scientific posters. POSTERSUM consists of 16,305 pairs of academic posters as images (PNG
format) and their corresponding research paper abstracts. These posters were collected from major
machine learning and artificial intelligence conferences, which accept papers from various subfields
of machine learning, including computer vision, natural language processing, optimization, and
computational biology.

POSTERSUM captures the diverse and heterogeneous nature of academic posters — they vary in
layout, content, and visual complexity. Some are text-heavy, while others emphasize visual elements
such as charts, graphs, and figures, as shown in Figure[Ta] This variability presents a significant
challenge for MLLMs. Each poster in the dataset is paired with its corresponding abstract, which
serves as the ground-truth summary. The abstract highlights the key contributions and findings of the
research, making it an ideal summary for the poster.

2.1 Dataset Creation

The POSTERSUM dataset was collected from the websites of top-tier machine learning and artificial
intelligence conferences: ICLR, ICML, and NeurIPS. We selected these conferences based on the
availability of research posters. We first collected research paper links and paper identifiers from the
conference websites. We filtered out any entries where the poster of the paper was not available. We
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exclusively collected posters from the years 2022 to 2024, as shown in Figure[Tb] Additionally, we
manually reviewed the dataset to remove any posters with placeholder images.

To build a robust summarization dataset, it was essential to pair each poster with a human-written
summary. We collected the research paper abstracts from the corresponding paper pages using the
paper identifiers. These abstracts serve as the summaries for the posters, as they highlight the core
findings and contributions of the research. More dataset statistics and analysis are in Appendix [A]

3 Multimodal Poster Summarization

3.1 Task Formulation

Given a scientific poster I in image format as input, the objective is to generate a textual summary
Y = {41, Y2, - - -, Um } that encapsulates the key points and essential content of the poster. Formally,
a model My, parameterized by 6, takes the poster I as input, optionally accompanied by a prompt P,
and generates a summary Y.

3.2 Baselines

Optical Character Recognition (OCR): For OCR-based baselines, we used MMOCR [Kuang et al.|
2021]] and Pytesseract/ to extract text from the poster images and concatenated the results to generate
a summary. Additionally, we combined the best OCR output with a text-based large language model
Llama-3.1-8B-Instruct [|Grattafiori et al., 2024]].

Closed-source MLLMs: We evaluated GPT-40 [OpenAl et al., 2024], Claude 3.5 Sonnet [Anthropic,
2024], and Gemini 2.0 [Anil et al., [2024]] as closed-source MLLMs.

Open-source MLLMs. As open-source, we evaluated Llama-3.2-11B-Vision-Instruct [Metal
2024, Qwen2-VL-7B-Instruct [Yang et al., [2024]], LLaVA-NeXT [Liu et al., [2024b/c], mPLUG-
DocOwI2 [Hu et al. [2024]], and MiniCPM-Llama3-V-2.5 [[Yao et al.| [2024]. Each model was
evaluated in both zero-shot and CoT settings.

Evaluation Metrics. We use ROUGE F1 (R-1/2/L/LSum) scores [Lin, [2004]], SacreBLEU [SBLEU;
Post, 2018, METEOR [MET; Banerjee and Laviel [2005]], CLIPScore [CLIPS; Hessel et al., 2021],
and BERTScore [Zhang et al., [2020] to evaluate the accuracy of all models. Full experiment details
are reported in Appendix |B| We report the full prompt template in Appendix

3.3 SEGMENT & SUMMARIZE

We now introduce SEGMENT & SUMMARIZE, a hierarchical approach inspired by the divide-and-
conquer principle. SEGMENT & SUMMARIZE decomposes the task into three key steps: (1) Segmen-
tation and Clustering, (2) Localized Summarization, and (3) Global Summarization.

1. Segmentation and Clustering. Given the image of a poster I, the first step is to segment it into
n coherent regions M = {My, Mo, ..., M, } using a segmentation model Sy, parameterized by ¢.
Since the number of regions n can be large, the regions are further clustered into groups R with the
number of clusters as k using a clustering algorithm C such that k < n.

2. Localized Summarization. For each clustered region R;, a localized summary Y, =
{Ui1, iz, - - -, Yir } is generated using an MLLM V.

3. Global Summarization. The localized summaries Y7, Ya, . . ., Y}, are combined into a cohesive
global summary Y using a text-based large language model L, parameterized by w. This step
ensures that the final abstract is comprehensive, maintains logical flow, and is coherent. Formally,

Y = Lw(fﬁ, Ya, ..., Yk). This approach does not require additional training or fine-tuning, and both
the models (Vy, L) are frozen.
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R-1 R-2 R-L RLSum SBLEU Met BS, BS, BSuy CLIPS

Closed-Source Models

Gemini 39.89 12.38 20.89 36.21 6.57 2234 5946 59.6 59.53 24.41
Claude-3.5 Sonnet 4345 1142 19.51 39.08 772 2843 593 60.3  59.8 25.02
GPT-40 4498 13.12 2230 40.55 10.05 30.29 6031 6022 60.77 25.06
OCR

Pytesseract 26.27 1.03 9.26 17.07 0.06 21.18 34.89 41.15 37.71 18.21
MMOCR 24.35 896 12.73 23.4 4.03 27.62 3432 4939 4040 18.49
MMOCR + Llama 28.37 537 1549 24.94 242 250 5251 56.88 54.58 19.78
Zero-Shot

Llama-3.2-11B-V 20.7 429 11.01 18.88 1.75 18.07 4351 4446 43.75 18.91
Qwen2-VL-7B 20.63 1.93  12.08 18.97 0.63 16.13 46.81 4835 4753 17.34
LLaVA-NeXT 29.89  6.61 16.0 27.02 341 19.57 53.02 51.10 51.89 21.67
mPLUG-DocOwI2 35.62 879 19.06 32.07 336 18.35 58.35 55.69 56.99 23.65
MiniCPM 3988 11.11 20.14 35.45 7.18 2376 59.54 5891 59.22 25.50
Chain of Thought

Llama 3.2-11B-V 20.05 34 10.77 18.14 1.7 8.57 4243 4589 43.86 19.57
Qwen2-VL-7B 25,58 292 13.75 23.24 1.52 15.65 5448 5197 53.16 19.68
LLaVA-NeXT 30.25 6.16 16.25 27.48 295 2453 4879 50.89 49.78 21.56
mPLUG-DocOwlI2 37.04  9.15 19.71 33.45 3.98 19.6 5859 5626 57.40 23.78
MiniCPM 41.50 11.68 21.04 37.08 8.60 2634 59.32 58.29 58.80 25.76
SEGMENT & SUMMARIZE

Ours 46.68 15.73 24.18 42.5 12.63 30.87 61.21 61.62 61.37 27.63

Table 1: Summarization results on the POSTERSUM dataset showing ROUGE scores (R-1, R-2, R-L, R-LSum),
BERTScores (BSp, BS;, BS1), SacreBLEU, CLIPScore, and METEOR scores. All the scores are percentages.

4 Results

Table (1| presents the poster summarization performance of all baselines alongside our proposed
SEGMENT & SUMMARIZE method, evaluated on the POSTERSUM test set. Our method outperforms
both open-source and closed-source models, achieving the best results across all metrics.

Closed-source Models: GPT-40 achieves relatively high performance among the closed-source
models across all metrics, with ROUGE-1/2/L scores of 44.98, 13.12, and 22.30, respectively.

Combining OCR with the text-only Llama-3.1 model results in a substantial improvement, with
ROUGE-L increasing from 12.73 to 15.49.

Open-source Models: Among the open-source MLLMs evaluated in zero-shot settings, MiniCPM-
Llama3-V-2.5 obtains the highest ROUGE-1/L score (39.88/20.14) and a strong BERTScore-F1 of
59.22. Meanwhile, mPLUG-DocOwI2 achieves a competitive ROUGE-L of 19.06 and a BERTScore-
F1 of 56.99.

Chain of Thought (CoT): CoT prompt improves the performance of most models. For
instance, MiniCPM-Llama3-V-2.5 improves its ROUGE-1/L/METEOR/CLIPScore scores to
41.50/21.04/26.34/25.76, while mPLUG-DocOwI2’s performance also increases (ROUGE-1/L of
37.04/19.71).

SEGMENT & SUMMARIZE: Our proposed method outperforms all other models, including closed-
source models, on all metrics, achieving ROUGE-1/2/L scores of 46.68, 15.73, and 24.18, respectively,
with a 3.14% gain on ROUGE-L compared to open-source models. It also attains a substantially
higher ScareBLEU score (12.63), BERTScore-F1 of 61.37, and a CLIPScore of 27.63. These results
indicate that local-region summaries effectively preserve small details and handle posters of varying
complexity by processing each region independently.

5 Conclusions

We presented POSTERSUM, a multimodal benchmark for scientific poster summarization comprising
16,305 poster-abstract pairs. Our experiments show that even state-of-the-art MLLMs struggle with



key aspects of scientific poster summarization. Furthermore, we propose SEGMENT & SUMMARIZE, a
hierarchical approach that outperforms existing models. We find that our method outperforms MLLMs
in both zero-shot and fine-tuned settings and that there remains significant room for improvement in
multimodal understanding of complex scientific documents such as posters. We believe POSTERSUM
will be a valuable resource for developing and evaluating MLLMs capable of processing information-
dense scientific content.
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POSTERSUM Statistics

Total number of posters-summary 16,305
Total number of unique categories 137
Mean token length of the summary 224
Mean summary sentences 7.21
Train/Val/Test size 10305/3000/3000
Mean CLIP score 29.08
Year range 2022-2024

Table 2: Statistics of the POSTERSUM dataset.

% Novel n-grams in Summary
1-grams 2-grams 3-grams 4-grams

54.54 81.13 88.67 91.41
Table 3: Statistics for percentage of novel n-grams in the POSTERSUM summaries.

A Dataset Statistics and Analysis

This process resulted in the 16,305 poster-summary pairs, providing a comprehensive multimodal
resource for evaluating abstractive summarization of academic research posters.

Table [2] provides an overview of key statistics for the dataset. The average length of the poster
summaries is 224 word-piece tokens, with an average of seven sentences per summary. The poster
images are of high-resolution, with a mean size of 3547 x 2454. We randomly split the dataset into
training, validation, and test sets using a 10305/3000/3000 split, which can be utilized for training
and fine-tuning models.

To better understand the diversity within the dataset, we categorized posters into topics. Since topics
were not available on the conference websites, we employed the GPT-40 vision model to generate
topic labels by prompting the model in a zero-shot setting using the images of the posters. As a
result, we identified 137 distinct topics within machine learning and artificial intelligence, spanning
areas such as reinforcement learning, natural language processing (NLP), computational biology, and
healthcare applications. [2]illustrates the distribution of the most frequent 25 topics.

To assess the abstractiveness of the poster summaries, we report the percentage of novel n-grams in
the summaries compared to the Optical Character Recognition (OCR) extracted text from the posters.
We used MMOCR [Kuang et al., 2021] to extract the text. While most posters do not explicitly
include abstracts, we found that approximately 8% of the total posters may contain an abstract in
poster, based on the occurrence of the word "abstract” in the OCR text. As shown in[3] a significant
portion of the summaries contains novel content, particularly in the 3-gram and 4-gram categories.
This demonstrates that the summaries are not simple restatements of poster text but instead provide a
more comprehensive abstraction.

We also find a mean CLIPScore Hessel et al.| [2021]] of 29.08 when we evaluate the alignment between
the images of the posters and their summaries. This score was computed at the sentence level and
averaged across the dataset. The relatively low CLIPScore highlights the challenge that POSTERSUM
poses for existing MLLMs. Unlike image-captioning tasks, where captions directly describe visual
features, academic posters are composed of diverse and complex visual elements, such as charts,
graphs, equations, and dense textual explanations. This complexity makes it more difficult for
models to capture the semantic relationships between these elements and the corresponding abstract
summaries.

B Experimental Details

All models in each category were evaluated using the same hyperparameter settings for a fair
evaluation. We generate at most 768 new tokens for all the experiments. For closed-source models,
we used the default platform settings. Open-source models were evaluated with a beam size of 4
with greedy decoding to ensure reproducibility. The fine-tuning experiments were conducted for 10
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Figure 2: Distribution of the most frequent 25 topics for the posters in POSTERSUM.

epochs with a batch size of 4. More details on the hyperparameters and prompt templates can be
found in Appendices [E]and [H]

For SEGMENT & SUMMARIZE, we used the Segment Anything Model [Kirillov et al., [2023] for
segmentation with k-Means for clustering. The number of clusters (k) was set to 8 based on the
analysis in Appendix We used MiniCPM-Llama3-V-2.5 as the local summarizer (V) and Llama
3.1-8B-Instruct as the global summarizer (L,,). We used the training set for fine-tuning and the
validation set for hyperparameter tuning. All the final results are evaluated on the test set.

C Related Work

Multimodal Large Language Models. After the emergence of LLMs, recent work
2023], [Wang et all, 20244} [Alayrac et all, [2022] investigated their use in processing multimodal
inputs, giving rise to Multimodal Large Language Models (MLLMs). The core idea in this line
of research is to align visual and textual features by using shared representations. This framework
typically involves using a pre-trained visual encoder to extract visual features, a projection layer to
map visual representations into corresponding text representations, and a pre-trained LLM to generate
textual responses, allowing the model to condition the output on visual and textual inputs. MLLM
architectures such as LLaVA|Liu et al| and MiniCPM|Yao et al | demonstrated impressive
zero-shot generalization across diverse visual and language tasks. However, most existing MLLMs
focus on general domain tasks and relatively simple visual inputs; the challenge of understanding
complex and information-dense visual documents like scientific posters remains under-explored.

Summarization in Scientific Domains. Scientific summarization consists of generating concise
summaries for scientific content [[Yasunaga et al., 2019] [Cachola et al.| 2020} Ju et al., 2021} [Sotudeh|
and Goharian|, [2022]. Several scientific summarization benchmarks have been proposed, designed to
process modalities such as videos|Lev et al|[2019], (Chen et al.|[2024], slides Tanaka et al| [2023],
surveys [2024d]), and research papers Takeshita et al.| [2024], [Liu et al.| [2024¢]. While

scientific posters are widespread in scientific communication, no poster summarization benchmark
has been proposed in the literature. Our proposed POSTERSUM aims to address this gap.
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Methods R1 R-2 R-L Met

Without clustering  42.25 1430 22.76 23.97
With clustering 46.68 15.73 24.18 30.87

Table 4: Comparison of SEGMENT & SUMMARIZE with and without clustering — clustering the
segments yields more accurate results.

Methods R1 R-2 R-L Met

mPLUG-DocOwI2 37.04  9.15 1971 19.6

Ours with DocOwl2 4248 11.18 20.61 26.72

Ours with MiniCPM  46.68 15.73 24.18 30.87
Table 5: Comparison of using mPLUG-DocOwI2 as local summarize. Applying SEGMENT &
SUMMARIZE shows improvement compared to using the model itself.

Document Layout Analysis and Segmentation. Understanding document layouts plays a signifi-
cant role in processing complex visual documents like scientific posters. Recent work in document
layout analysis|Peng et al.|[2022]], Wang et al.|[2024b], Luo et al.[[2024]], Appalaraju et al.|[2024] aims
at identifying and classifying different regions within a document considering spatial relationships
and content type. Previous work has also focused on understanding individual elements in documents,
such as charts [Masry et al.|[2022] and tables [Zheng et al.,2024]]. However, most existing approaches
are designed for either standard documents or individual elements like charts and tables and do not
capture the complex layouts and the rich multimodal structure of scientific posters, which typically
consist of text, charts, equations, and tables.

D Ablation Studies and Analysis

Effect of Clustering on Summarization. To quantify the impact of clustering in our SEGMENT &
SUMMARIZE approach, we conduct an ablation study that removes the clustering step. Specifically,
we select the top-k segments (with £ = 8) based on their region size to generate local and global
summaries. Table [4|shows that clustering improves the ROUGE-1 score by +4.43, ROUGE-2 by
+1.43, and ROUGE-L by +1.42 over the non-clustered baseline. We hypothesize that clustering helps
reduce redundant segments and improves context aggregation.

Effect of Local Vision Summarization. To assess the role of the local summarization model in
SEGMENT & SUMMARIZE, we replaced MiniCPM-Llama3-V-2.5 with mPLUG-DocOwI2, which
previously ranked second among open-source models under the CoT setting. Table [5]shows that using
mPLUG-DocOwI2 with our hierarchical approach boosts ROUGE-1 to 42.48 and METEOR to 26.72
compared to using the model in the CoT setting. However, it does not outperform our method using
MiniCPM. These findings highlight that the segmentation and summarization approach substantially
improves performance compared to using the poster as a single input.

Human Evaluation We conducted a human evaluation to compare the quality of summaries
generated by our method against the best models in each category (MiniCPM CoT, Llama-3.2-11B-
V LoRA, GPT-40 ZS). Forty crowdworkers were recruited via Prolific (all L1 English speakers,
master’s/doctoral degree holders, and at least 100 previously approved submissions) and compensated
at $17/hr. We randomly sampled 40 posters, and participants viewed the poster image, the reference
abstract, and one candidate summary, resulting in 160 (4x40) poster—summary evaluations. They
rated each summary on 5-point Likert scales for each of four dimensions: Fluency, Coherence,
Faithfulness, and Relevance. Across all dimensions, SEGMENT & SUMMARIZE received the
highest mean ratings (see Figure[3). A one-way ANOVA followed by Tukey’s HSD confirmed that
SEGMENT & SUMMARIZE significantly outperformed MiniCPM and Llama-3.2-11B-V on every
dimension (p < .01 for all) and surpassed GPT-40 on Faithfulness and Relevance (p < .05). However,
differences with GPT-40 in Fluency and Coherence did not reach significance. More statistical details
and instructions are available in Appendices[K]and
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Figure 3: Mean 5-point Likert ratings for Fluency, Coherence, Faithfulness, and Relevance across four
methods. SEGMENT & SUMMARIZE (ours) achieves the highest scores across all the dimensions.

E Prompt Templates

[ Prompt Template for Zero-Shot ]

l Write an abstract for an Al conference paper for the given research poster image. J

Prompt Template for CoT

Analyze the research poster image step by step.

First, identify the title and main research problem.

Then, briefly describe the methodology used.

Next, summarize the key findings or results.

Finally, note the conclusion or implications.

Using this information, write an abstract for the given research poster image.

F Effect of Poster Text Content on Summarization Performance

To investigate whether posters with a high amount of text result in better summarization performance,
we analyze the relationship between OCR-extracted text length and ROUGE-L scores using our
SEGMENT & SUMMARIZE method. Specifically, we use MMOCR to extract text from each poster
and compute its total length in characters (not in tokens).

[ presents the mean ROUGE-L scores across different OCR text-length bins. The dotted line
represents the number of posters in each text-length bin. We observe that summarization performance
tends to improve as the amount of text in the poster increases. However, the correlation remains weak
(Pearson r = 0.213, Spearman r = 0.210), suggesting that text in the poster alone is not a strong
predictor of summarization quality. Low performance in posters with minimal text also highlights the
need for more robust multimodal understanding of figures, charts, equations, and tables.
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Prompt Template for Local Summary ]

[ Describe all the text, tables, figures, and equations in the image. J
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Figure 4: Effect of text present in the poster on summarization. We report mean ROUGE-L scores for
different OCR-extracted character-length bins. The red dashed line represents the number of posters
in each bin.

G Selecting the Number of Clusters

To select the number of clusters (k) for our SEGMENT & SUMMARIZE, we conducted an empirical
analysis on a subset of 100 posters from the validation set, varying the number of clusters from 2 to
10. 3] presents the mean ROUGE-L score for each cluster configuration. In these experiments, the
local and global summarization components remained fixed.

We observe that the best performance is achieved at k¥ = 8 which was used in our final experiments.
Additionally, we limit the maximum number of clusters to 10 in the analysis to keep the inference
time of our local summarization manageable.

H Additional Experiment Details

Table[6] summarizes the versions of the closed-source models used in our experiments. For fine-tuning,
we use a learning rate of 1 x 10~* with the Adam optimizer (8; = 0.9, 2 = 0.999,¢ = 1 x 107%)
and a cosine learning rate schedule. We employ LoRA with rank » = 8, & = 8, and a dropout rate of
0.1.

All images are processed and scaled by the respective model’s image processor for model specific
sizes. In the case of closed-source models, we scale each image to a maximum width of 2048 while
preserving the original aspect ratio due to size limitations. All the models were trained using 2 A100
GPUs with 80GB of memory. We used the Huggingface evaluate library for the implementation of
the metrics. Our method’s additional wall-clock time per batch is approximately 1.75 seconds for the
segmentation and clustering stage and 6.02 seconds for the two stages.
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Figure 5: Effect of varying the number of clusters on ROUGE-L performance on SEGMENT &
SUMMARIZE

Model Version
GPT-40 gpt-40-2024-08-06
Gemini 2.0 gemini-2.0-flash-exp

Claude 3.5 Sonnet  claude-3-5-sonnet-20241022
Table 6: Details of the closed-sourced models.

I Limitations

While our work advances scientific poster summarization, we should highlight a few limitations.
First, our dataset is restricted to machine learning conference posters from 2022 to 2024, which may
limit the generalization to other scientific domains. Second, while practical, automated topic labeling
using GPT-40 may introduce biases or inaccuracies in the topic distribution. The proposed SEGMENT
& SUMMARIZE method relies heavily on the quality of the initial segmentation: a suboptimal
segmentation can lead to fragmented or redundant local summaries. Our method also assumes that
the content can be meaningfully decomposed into spatial regions, which may not hold for posters
with complex cross-referencing or interdependent visual elements. We considered the abstract as a
ground-truth summary of the poster, but the poster may sometimes differ from the paper.

J Ethics Statement

Dataset. All the scientific posters and abstracts in our dataset are sourced from publicly accessible
conference resources. Additionally, we sought permission from the conference website contacts to
use the publicly available data for research purposes.

Multimodal Large Language Models. This paper utilizes pre-trained multimodal large language
models, which have been shown to exhibit various biases, occasionally hallucinate, and generate
non-faithful text. Therefore, summaries generated using our dataset should not be released without
automatic filtering or manual verification to ensure accuracy and reliability.
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Bias. Despite efforts to include a wide range of posters, the dataset may not fully represent the
diversity of research poster styles, languages, or scientific disciplines. As a result, models trained on
POSTERSUM may exhibit biases towards the types of posters included in the dataset. Future work
should consider expanding the dataset to encompass a broader spectrum of academic fields and visual
formats to mitigate potential biases.

K Human Evaluation Statistical Analysis

Model Fl C Fa R

MiniCPM (CoT) 380 372 312 333
Llama-3.2-11B-V (LoRA) 3.55 3.17 298 3.13
GPT-40 (ZS) 398 4.00 3.13 3.37

SEGMENT & SUMMARIZE 4.38 437 370 3.93

Table 7: Mean Likert ratings (1-5) for each model across the four dimensions. Fl: Fluency, C:
Coherence, Fa: Faithfulness, R: Relevance

Mean Likert ratings for each model are provided in Table|/| We conducted one-way ANOVAs
to assess whether there were statistically significant differences among the models across the four
dimensions. The results showed a significant difference across all models:

* Fluency: F' = 9.20, p < 0.001
¢ Coherence: F' = 20.33, p < 0.001
 Faithfulness: F' = 6.27, p = 0.0004
¢ Relevance: F' = 6.64, p = 0.0003
To identify the specific differences among the models, Tukey’s HSD post-hoc tests were performed

for all the dimensions. SEGMENT & SUMMARIZE method significantly outperformed all the models
on Faithfulness and Relevance.

¢ Faithfulness: +0.58 vs. MiniCPM (p = 0.007), +0.72 vs. Llama (p=0.0005), +0.57 vs.
GPT-40 (p = 0.0098)

¢ Relevance: +0.60 vs. MiniCPM (p=0.009), +0.80 vs. Llama (p=0.0002), +0.57 vs. GPT-40
(»=0.0155)

Against GPT-40, SEGMENT & SUMMARIZE ’s advantages in Fluency (+0.40, p=0.0717) and Co-
herence (+0.37, p=0.0987) did not reach significance, although it remained significantly higher than
MiniCPM and Llama on those dimensions:

* Fluency: +0.58 vs. MiniCPM (p=0.0025), +0.83 vs. Llama (p<0.001)
¢ Coherence: +0.65 vs. MiniCPM (p=0.0003), +1.20 vs. Llama (p<0.001)

L Instructions for Human Evaluation

In this task, you will assess the quality of computer-generated summaries of scientific posters by
comparing each against the poster and its reference summary. For each trial, you will be shown:

1. Poster Image.
2. Reference Summary.

3. Generated Summary.

Your task is to rate the Generated Summary on four dimensions using a 5-point Likert scale (1 = Poor,
5 = Excellent).
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Dimensions of Evaluation

Fluency This dimension evaluates whether the generated summary is grammatically correct, easy
to read, and well-structured.

Coherence This dimension assesses whether the sentences in the generated summary flow logically
and maintain a consistent narrative.

Faithfulness This dimension checks if all the facts presented in the generated summary are accurate
and can be directly inferred from the poster image and reference summary.

Relevance This dimension evaluates whether the generated summary includes the key findings and
contributions shown in the poster and reference summary, without omitting important information.

Rating Procedure
For each poster—summary pair:

. View the poster image and reference summary carefully.
. Read the generated summary in its entirety.
. Assign a score (1-5) for each of the four dimensions, based only on the definitions above.

AW N =

. Minor typos or formatting issues should not lower your score unless they impede under-
standing.

M Dataset Examples with Model Summaries
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Model Output

Reference Domain generalization (DG) enables generalizing a learning machine from multiple seen source domains
to an unseen target one. The general objective of DG methods is to learn semantic representations that
are independent of domain labels, which is theoretically sound but empirically challenged due to the
complex mixture of common and domain-specific factors. Although disentangling the representations
into two disjoint parts has been gaining momentum in DG, the strong presumption over the data
limits its efficacy in many real-world scenarios. In this paper, we propose Mix and Reason (MiRe),
anew DG framework that learns semantic representations via enforcing the structural invariance of
semantic topology. MiRe consists of two key components, namely, Category-aware Data Mixing
(CDM) and Adaptive Semantic Topology Refinement (ASTR). CDM mixes two images from different
domains in virtue of activation maps generated by two complementary classification losses, making
the classifier focus on the representations of semantic objects. ASTR introduces relation graphs to
represent semantic topology, which is progressively refined via the interactions between local feature
aggregation and global cross-domain relational reasoning. Experiments on multiple DG benchmarks
validate the effectiveness and robustness of the proposed MiRe.

MiniCPM CoT The paper is about Mix and Reason, a methodology for domain generalization that reasons over semantic
topology to mix data from different domains and construct new target domains. It addresses the problem
of limited training data by leveraging the IID assumption and the representations learned from the
source domain to perform well in the target domain. The proposed methodology involves a pipeline
of the proposed Mix and Reason (MiRe) component, which takes the adaptive semantic topology
refinement (ASTR) component as its backbone. The key results show that the proposed methodology
outperforms state-of-the-art methods on four benchmark datasets, including CelebA, CUB, Stanford
2007, and COCO.

Llama-3.2-11B-V FT Deep neural networks (DNNs) are expected to be deployed across novel domains. However, out-of-
distribution (OOD) data does not satisfy the assumption and hinders DNNs from generalizing well
to target domains. In this paper, we propose Mix and Reason (MIRa) for domain generalization
(DG) via perceiving and reasoning over semantic topology. Specifically, MIRa divides input common
and domain-specific components and captures their potential spurious correlations. Reasoning over
semantic topology enables MIRa to disentangle attribute and domain-specific representations and learn
domain-invariant representations. Extensive experiments on four standard DG benchmarks show that
MIRa achieves state-of-the-art performance. Besides, MIRa can be applied to many DG methods and
significantly improve their performance.

GPT-40 Domain Generalization (DG) for deep neural networks poses a significant challenge in adapting models
to varied out-of-distribution data. This paper introduces "Mix and Reason" (MiRe), a novel framework
leveraging semantic topology reasoning and data mixing to enhance domain generalization. MiRe
employs a two-part approach, utilizing Anchored Semantic Topology Reasoning (ASTR) to retain
relational features across domains and Contrastive Data Mixing (CDM) to generate robust feature
representations. Experiments were conducted on four standard DG benchmarks, demonstrating substan-
tial improvements in model adaptability and performance. Additionally, results on medical datasets
underscore the frameworks efficacy in maintaining domain-invariant characteristics across diverse
conditions. This research highlights the strength of integrating semantic relationships with innovative
data augmentation techniques, offering a scalable solution for realistic multi-domain scenarios.

SEGMENT & SUMMARIZE Domain Generalization (DG) is a critical challenge in machine learning, where models are expected to
generalize well across novel domains with different data distributions. Existing DG methods often rely
on strong assumptions about the data or ignore potential spurious correlations. In this work, we propose
anovel DG framework, Mix and Reason (MiRe), which learns semantic representations by enforcing
the structural invariance of semantic topology. MiRe consists of two key components: Category-Aware
Data Mixing (CDM) and Adaptive Logic Semantic Topology Refinement (ASTR). CDM mixes two
images from different domains using activation maps generated by complementary classification losses,
focusing the classifier on semantic object representations. ASTR introduces relation graphs to represent
semantic topology, which is progressively refined via interactions between local feature aggregation
and global cross-domain relational reasoning. We evaluate MiRe on four standard DG benchmarks and
medical data, achieving state-of-the-art performance and outperforming existing methods. Our results
demonstrate the effectiveness of MiRe in handling domain shifts and provide insights into how to better
perceive and maintain structural semantic relations in machine learning.

Table 8: Sample of poster image from (Chen et al.| [2022]] with gold reference and model generated
summaries
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Addressing Mistake Severity in Neural Networks with Semantic Knowledge

Natalie Abreu, Nathan Vaska, Victoria Helus
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Model Output

Reference Robustness in deep neural networks and machine learning algorithms in general is an open research challenge.
In particular, it is difficult to ensure algorithmic performance is maintained on out-of-distribution inputs or
anomalous instances that cannot be anticipated at training time. Embodied agents will be deployed in these
conditions, and are likely to make incorrect predictions. An agent will be viewed as untrustworthy unless it
can maintain its performance in dynamic environments. Most robust training techniques aim to improve model
accuracy on perturbed inputs; as an alternate form of robustness, we aim to reduce the severity of mistakes made
by neural networks in challenging conditions. We leverage current adversarial training methods to generate
targeted adversarial attacks during the training process in order to increase the semantic similarity between a
model’s predictions and true labels of misclassified instances. Results demonstrate that our approach performs
better with respect to mistake severity compared to standard and adversarially trained models. We also find an
intriguing role that non-robust features play with regards to semantic similarity.

MiniCPM CoT The paper is about the problem of mistake severity in neural networks and the use of semantic knowledge to
address it. The research problem is the inability of neural networks to accurately predict the severity of mistakes,
leading to poor model accuracy. The methodology involves incorporating semantic knowledge into the training
process to generate targeted adversarial attacks. The key results show that using semantic knowledge to guide the
attacks leads to better model accuracy and improved performance on benchmarks. The conclusion suggests that
the use of semantic knowledge is a promising approach to addressing the problem of mistake severity in neural
networks.

Llama-3.2-11B-V FT It is difficult to ensure algorithmic performance is maintained at out-of-distribution (OOD) training time for neural
networks due to the presence of perturbed inputs. An alternate form of robustness, we aim to reduce the conditions
in which mistakes are made by neural networks. We leverage semantic similarity between a model’s predictions
and labels of OOD data as a measure of mistake severity. We propose a two-stage training method that generates
targeted perturbations of semantic similarity between a model’s predictions and true labels of OOD data. Our
experiments show that our method improves upon state-of-the-art methods in aligning class similarity between a
model’s predictions and true labels of OOD data. Our code is available at https://github.com/natale-abreu/semi-
targeted-adversarial-training.git.

GPT-40 This paper addresses the challenge of reducing mistake severity in neural networks under adversarial and
anomalous conditions by incorporating semantic knowledge into the training process. Traditional robust training
techniques typically focus on improving model accuracy on perturbed inputs, but often overlook the semantic
alignment between model predictions and true labels. We propose a novel method utilizing semantically targeted
adversarial attacks to train neural networks, aiming to enhance semantic similarity and reduce the impact of severe
errors.Our approach encompasses a two-stage training process: firstly integrating semantic knowledge through
targeted adversarial perturbations, followed by standard training protocols. The methodology was tested using
metrics such as super class accuracy on mistakes and average path similarity of mistakes, which measure semantic
closeness between mistaken and true labels. This research highlights the value of non-robust features in capturing
semantic alignments and suggests future exploration into balancing visual and semantic similarities for enhanced
model reliability.

SEGMENT & SUMMARIZE Ensuring algorithmic performance on out-of-distribution inputs or anomalous instances is a significant challenge
in neural networks. Traditional robust training techniques focus on improving model accuracy on perturbed inputs,
whereas we propose an alternate form of robustness by reducing the severity of mistakes made by neural networks
in challenging conditions. We leverage current adversarial training methods to generate targeted adversarial
attacks during the training process, increasing the semantic similarity between a model’s predictions and true
labels of misclassified instances. Our approach involves two stages of training: Semantic Targeting and Prior
Semantic Knowledge. We demonstrate that by incorporating semantic knowledge in the training process, we can
reduce the severity of mistakes in challenging conditions, thereby improving user trust in the system. Our results
show that the proposed method outperforms traditional robust training techniques in terms of reducing mistake
severity, making it a promising approach for addressing mistake severity in neural networks.

Table 9: Sample of poster image from the work |Abreu et al.|[2022]] with gold reference and model
generated summaries
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