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Abstract

Latent generative models (e.g., Stable Diffusion)
have become more and more popular, but con-
cerns have arisen regarding potential misuse re-
lated to images generated by these models. It
is, therefore, necessary to analyze the origin of
images by inferring if a particular image was gen-
erated by a specific latent generative model. Most
existing methods (e.g., image watermark and
model fingerprinting) require extra steps during
training or generation. These requirements restrict
their usage on the generated images without such
extra operations, and the extra required operations
might compromise the quality of the generated
images. In this work, we ask whether it is possible
to effectively and efficiently trace the images gen-
erated by a specific latent generative model with-
out the aforementioned requirements. To study
this problem, we design a latent inversion based
method called LATENTTRACER to trace the gen-
erated images of the inspected model by checking
if the examined images can be well-reconstructed
with an inverted latent input. We leverage gradi-
ent based latent inversion and identify a encoder-
based initialization critical to the success of our
approach. Our experiments on the state-of-the-art
latent generative models, such as Stable Diffusion,
show that our method can distinguish the images
generated by the inspected model and other im-
ages with a high accuracy and efficiency. Our
findings suggest the intriguing possibility that
today’s latent generative generated images are
naturally watermarked by the decoder used in
the source models. Code: https://github.
com/ZhentingWang/LatentTracer.
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1. Introduction
Recently, latent generative models (Rombach et al., 2022)
have attracted significant attention and showcased outstand-
ing capabilities in generating a wide range of high-resolution
images with surprising quality. Many state-of-the-art image
generation models belong to latent generative models, such
as DALL-E 3 (Betker et al., 2023) from OpenAI, Parti (Yu
et al., 2022a) from Google, and Stable Diffusion (Rom-
bach et al., 2022) from Stability AI. These models allow for
achieving a near-optimal point between reducing computing
complexity and preserving visual details, greatly boosting
the efficiency in both training and generation phase. Among
them, Stable Diffusion is the most widely-used, which has
already gained more than 10 million users 1.

As latent generative models become more prevalent, the
issues surrounding their potential for misuse are becoming
increasingly important (Schramowski et al., 2023; Wang
et al., 2023c; Pan et al., 2024; Liu et al., 2024; Wen et al.,
2023b; Chen et al., 2023). For example, malicious users may
use the latent generative models to generate and distribute
images containing inappropriate concepts such as “sexual”,
“drug use”, “weapons”, and “child abuse” (Schramowski
et al., 2023). AI-powered plagiarism (Francke & Bennett,
2019) and IP (intellectual property) infringement problem
surrounding the latent generative models are also impor-
tant issues. For instance, users may synthesize high-quality
images using one company’s or open-sourced latent gen-
erative models and then dishonestly present them as their
own original artwork (e.g., photographs and paintings) to
gain recognition and reputation, which is harmful to society
and may cause a series of IP problems. Consequently, it’s
crucial to be able to trace the source of images generated by
latent generative models, i.e., determining if a certain image
was produced by a specific model.

There are several existing methods for tracing the source
of the images. Watermarking-based methods (Luo et al.,
2009; Pereira & Pun, 2000; Tancik et al., 2020) typically
add watermark into the images and the images from specific
origins can be identified via analyzing if the particular water-
mark is inserted in the images or not. Classification-based

1https://journal.everypixel.com/ai-image-statistics
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approaches (Sha et al., 2022) train multi-classes classifiers
where each class corresponds to a specific origin (source
model). Another set of methods inject fingerprints into the
model during training (Yu et al., 2019; 2021b) or by modify-
ing the architectures of the models (Yu et al., 2022b), so that
the images generated by the injected models will contain the
fingerprinting and they can be detected by the fingerprinting
decoders held by the model owner. All the above-listed
methods share the limitation that requires extra steps dur-
ing the training or generation phase, restricting their usage
on the generated images without such operations. Also,
many of the extra required operations might compromise
the quality of the generated images. In addition, there is an
increasing number of proposed attacks specifically targeting
artificial watermarks, such as watermark stealing attacks (Jo-
vanović et al., 2024) and watermark forgery (Wang et al.,
2021). The usages of the artificial watermarks itself may
also include the vulnerabilities.

In this paper, we investigate whether it is possible to trace
the images generated by a specific latent generative model
without the aforementioned requirements such as adding
artificial watermarks during the generation (Tancik et al.,
2020; Wen et al., 2023a) and injecting fingerprintings during
training (Yu et al., 2021b; 2022b; Fernandez et al., 2023).
Inspired by Wang et al. (2023d), we find that the input
reverse-engineering based method is a promising way to
achieve alteration-free origin attribution. Thus, we develop
a latent inversion based method to trace the generated im-
ages of the inspected model by checking if the examined
images can be well-reconstructed with an inverted latent
input. In detail, it works by reverse-engineering the latent
input of the decoder in the inspected model for each ex-
amined image, and the examined image is considered as
the generated image of the inspected model if the distance
between the reconstructed image and the examined image
is smaller than a pre-computed threshold.

We observe that directly using the gradient-based optimiza-
tion approach to invert the latent input suffers from sub-
optimal effectiveness and low efficiency on the state-of-the-
art text-to-image latent generative models. We then find
that the main reason for this phenomenon is the sub-optimal
initialization (i.e., the randomly sampled starting point in
the optimization process typically has a large distance to the
ground-truth input). To solve this problem, we propose a
strategy for finding a better starting point in optimization
by exploiting the invertibility of the autoencoder, which is
a main component in latent generative models. In partic-
ular, we leverage the latent projection of the given image
by the encoder as an initialization. Our experiments on the
state-of-the-art latent generative models (e.g., Stable Dif-
fusion (Rombach et al., 2022) and Kandinsky (Razzhigaev
et al., 2023)) show that our method is highly effective and
more efficient than existing methods for tracing the images

generated by the inspected model in the alteration-free man-
ner. (Figure 5 shows some examples). Our results also
reflect that the generated images of a specific model are
naturally watermarked by the decoder module, which is
essentially exploited by our method to enable alteration-
free origin attribution. Our contributions are summarized
as follows: ① We propose a new alteration-free inversion-
based origin attribution method (called LATENTTRACER)
designed for latent generative models which does not re-
quire additional operations on the model’s training and
generation phase. ② We evaluate our method on the state-
of-the-art latent generative models, such as Stable Diffu-
sion (Rombach et al., 2022) and Kandinsky (Razzhigaev
et al., 2023). The results show that our method is more
effective and efficient than existing alteration-free methods.
As a result, our approach can even correctly identify the
source from different versions of the Stable Diffusion mod-
els. ③ We demonstrate the generalizibilty of our approach
to both diffusion and autoregressive models, and show ef-
fectiveness of our approach against both discrete and con-
tinuous autoencoders. Our code can be found at https:
//github.com/ZhentingWang/LatentTracer.

2. Related Work
Latent Generative Models. Significant progress in the im-
age synthesis task has been made with the advent of latent
generative models (Rombach et al., 2022; Gu et al., 2022;
Luo et al., 2023). The latent generative models leverage
the features and visual patterns learned by the autoencoder,
which can reduce the dimensionality of the samples in the
generation process and help the models generate highly de-
tailed images. Such latent-based architecture enable reach-
ing a near-optimal balance between enhancing efficiency
and preserving effectiveness. A prime example of these
models is the Stable Diffusion, which utilizes a diffusion
process within a latent space derived from an autoencoder.

Detection of AI-generated Images. Detecting images gen-
erated by generative models (e.g., deepfake images (Mirsky
& Lee, 2021; Wu et al., 2024)) has become more and more
important due to the increasing concern about the potential
misuse of these generated images (Kietzmann et al., 2020;
Flynn et al., 2021; 2022; Whittaker et al., 2020; Partadiredja
et al., 2020). Many of the existing approaches (Frank et al.,
2020; Dolhansky et al., 2020; Wang et al., 2020; Zhao et al.,
2021; Corvi et al., 2023) frame this problem as a binary
classification task, which aims at distinguishing between
synthetic and authentic images. These methods leverage
the artifacts such as frequency signals (Frank et al., 2020;
Durall et al., 2019; 2020; Jeong et al., 2022) and texture pat-
terns (Liu et al., 2020) as the key features to solve this binary
classification problem. There are also existing works, such
as DIRE (Wang et al., 2023b) which focus on differentiating
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between real images and diffusion-generated images (i.e.,
images generated by all diffusion models). Although these
techniques have shown promise in identifying AI-generated
images, they lack the ability to determine whether a specific
image was created by a particular image generation model.

Origin Attribution of Generated Images. Many tech-
niques have been developed to trace the origins of images,
including watermark-based methods (Swanson et al., 1996;
Luo et al., 2009; Pereira & Pun, 2000; Tancik et al., 2020;
Wen et al., 2023a), classification-based approaches (Sha
et al., 2022), and model fingerprinting methods (Yu et al.,
2019; 2021b; 2022b; Fernandez et al., 2023; Nie et al., 2023).
However, these methods are limited by the need for addi-
tional steps either in the training or image generation stages,
which are not feasible for images produced without these
processes. In contrast, our method does not have such
limitations. Recent research Wang et al. (2023d) shows
that the origin attribution without the requirements on ad-
ditional steps can be achieved by reverse-engineering the
input for the model. However, it suffers from sub-optimal
effectiveness and low efficiency on the state-of-the-art latent
generative models, especially in the cases for distinguishing
the generated images of the inspected large latent genera-
tive model and that of other models having similar archi-
tectures. Another set of attribution methods (Albright &
McCloskey, 2019; Zhang et al., 2020) focus on finding the
source model of a specific image given a set of suspicious
candidate models. These methods rely on the assumptions
that the inspector has the white-box access to every model
in the candidate set, and the inspected image must originate
from one of these models. By contrast, our method does not
have such assumptions.

Input Inversion for Generative Models. Previous works
on generative model inversion techniques mainly focus on
image editing applications (Karras et al., 2020; Jahanian
et al., 2019; Zhu et al., 2016). However, our focus is on
a substantially different task - tracing the origins of gener-
ated images. Additionally, previous studies only include the
studies on relatively outdated and small-scale GANs (Good-
fellow et al., 2014). In contrast, we shift our attention to
state-of-the-art large-scale latent generative models such as
Stable Diffusion (Rombach et al., 2022), which have more
advanced architectures with significantly greater numbers of
parameters, different training data distributions, and much
larger training data diversity.

3. Preliminary
Inversion-based method is a promising way to achieve
alteration-free origin attribution method (Wang et al.,
2023d). In this section, we provide more background about
it. To facilitate discussion, we first introduce the definition
of the belonging of image generation model.

Definition 1. (Belonging of Image Generation Model) Given
an image generation modelM : I 7→ XM, where I denote
the input space. XM is the output space of the model. A
sample x is a belonging of modelM if and only if x ∈ XM.
It is a non-belonging if x /∈ XM.

Intuitively, the belongings of a latent generative model are
the images generated by this model, and the non-belongings
include the images generated by other models and the real
images. Then, we have the definition of the input inversion:
Definition 2. (Input Inversion) Given an image generation
modelM : I 7→ X , where I and X are input space and
pixel space of the image generation model, respectively, the
latent inversion task for an image x is finding the input i⋆

that makes the generated imageM(i⋆) as close as possi-
ble to the image x. The reconstruction loss is defined as
L(M(i⋆),x), where L is a distance measurement.

Based on the definition of the input inversion, we have the
definition of the inversion-based origin attribution:
Definition 3. (Inversion Based Origin Attribution) Given
an inversion method R : X 7→ I, the inversion-based
origin attribution method determines a given sample x is a
belonging of a given modelM if the reconstruction loss of
the reverse-engineered sample is smaller than a threshold
value t, i.e., L(M(i⋆),x) < t.

The inversion-based origin attribution method will be highly
effective if the reconstruction losses of the belonging images
and that of the non-belonging images are well-separated by
the threshold value. The most straightforward way to con-
duct the inversion is using the gradient-based method (Wang
et al., 2023d), which is formally defined as follows:
Definition 4. (Gradient-based Inversion) Given a model
M and an image x, the gradient-based inversion searches
the inverted input i′ by repeatedly updating the input via
the gradient on the reconstruction loss until converge. For
each step, the searched input i′ is updated via the following
equation: i′ = i′− lr · ∂L(x,M(i′))

∂i′ , where lr is the learning
rate and L is the measurement of the distance.

4. Method
In this section, we first provide the formulation of the
investigated problem and then introduce our method
LATENTTRACER designed for tracing the generated images
of the inspected models.

4.1. Problem Formulation

Inspector’s Goal. The goal of the inspector is tracing the
belongings of the inspected modelM in an alteration-free
manner (i.e., without any extra requirement during the devel-
oping or generation phase of the model). It can be viewed
as designing a tracing algorithm B whose inputs are the
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examined image x and the inspected modelM, it then re-
turns a flag representing whether the examined image is the
belonging of the inspected model or not. Formally, it can
be written as B : (M,x) 7→ {0, 1}, where 0 denotes image
belonging to the model, and 1 denotes non-belonging.

Inspector’s Capability. The inspector has white-box ac-
cess to the inspected modelM, allowing for the access of
intermediate outputs and the computation of the model’s
gradients. This assumption is practical, especially in the
scenario where the inspector is the owner of the inspected
model. However, the inspector cannot necessarily control
the development and the generation process of the inspected
model. Since our approach exploits the implicit watermarks
in autoencoders module of latent generative models, we fo-
cus on traceability in latent generative models with unique
and distinct auto-encoders. Distinguishing the belonging
images of the inspected model and the images generated
by other models sharing the same auto-encoder with the
inspected model will be our future work.

4.2. Latent Inversion

For the latent generative modelM, the process for synthesiz-
ing images can be written as x =M(p,n) = D(C(p,n)),
where p and n are the conditional input and the uncondi-
tional noise for the latent generation process, respectively.
D is the decoder to transform the latent to the pixel space.
C here is the latent generation process in the latent space. x
is the image synthesized by the modelM.

Asymmetric challenge of data generation and origin at-
tribution. A straightforward way to conduct the inversion-
based origin attribution is by searching the input space of
the whole model, including the conditional prompts and
the unconditional noise, to identify whether an input would
have led to generation of the given space. However, during
the data generation phase, the users of the model have full
control of selecting the hyper-parameters in the latent gen-
eration process (e.g., diffusion process and autoregressive
process), such as the selection of different diffusion sam-
plers in latent diffusion models (e.g., DDIM (Song et al.,
2020) and DPM-Solver (Lu et al., 2022)). Therefore, in-
verting the input for the whole model is challenging as the
inspector does not know the exact hyper-parameters used in
the latent generation phase.

Leveraging deterministic decoders for origin attribution.
In latent generative models, the first step is sampling a new
latent vector from a latent generation process (e.g., diffusion
process and autoregressive process), which is then upsam-
pled to pixel space using a deterministic decoder. While
the stochastic and asymmetric generation process in latent
space creates an asymmetric challenge in traceability, as
discussed above, we bypass it by solely focusing on trace-
ability using the deterministic decoder. As we discussed

Encoder

DecoderInverted 
Latent 

Reconstruction Loss

Searching the inverted latent by 
minimizing the reconstruction loss

Examined
Image

Reconstructed 
Image

Examined
Image

Starting 
Point

 Initialization

Figure 1. Pipeline of our latent inversion method. First, our method
uses the corresponding encoder to get the starting point for the
inversion. Then, it uses the gradient-based optimization to search
the inverted latent by minimizing the reconstruction loss. The
examined image is flagged as a belonging image of the inspected
model if the final reconstruction loss is smaller than a threshold.

in § 4.1, we focus on the scenario where the latent genera-
tive models have unique autoencoders. In this case, if the
examined image x is generated by the decoder D, then it
must be the belonging of the latent generative modelM.
To design an origin attribution method that is orthogonal to
the selection of the samplers and hyper-parameters during
generation, we convert the problem of origin attribution into
detecting whether the images are generated by the decoder
of the inspected model.

Therefore, we focus on the latent inversion introduced as
follows: Given the decoder D : A 7→ X in the latent
generative model and the examined image x, whereA is the
latent space and X is the pixel space, we aim at finding the
latent a⋆ that makes the generated image D(a⋆) as close as
possible to the examined image x We then perform origin
attribution based on the reconstruction loss of the latent
inversion. In detail, we consider the examined image x as a
belonging if L(D(a⋆),x) < t, where t is a threshold value.
The pipeline of our method is demonstrated in Figure 1.
Different from the inversion method in Wang et al. (2023d)
that uses the random starting point for optimization, our
method first uses the corresponding encoder to obtain the
starting point for the inversion. Following this, it works by
checking if the examined images can be well-reconstructed
on the inspected model with an inverted latent searched by
the gradient optimization. Our method is generalizable to
the models equipped with different types of auto-encoders,
e.g., Continuous Auto-encoder (Kingma & Welling, 2013)
in Stable Diffusion (Rombach et al., 2022), Quantized Auto-
encoder (Van Den Oord et al., 2017). Our method also
works on Autoregressive Model (Yu et al., 2021a) used in
Parti (Yu et al., 2022a) (See § 5.4). The design details of
our method can be found in the following sections.

4



How to Trace Latent Generative Model Generated Images without Artificial Watermark?

0.0200 0.0400
Reconstructed MSE Loss

0.00

0.10

0.20

0.30

Pe
rc

en
ta

ge
Belonging (Generated by SD-v2-base)
Generated by SD-v1-5

(a) Random Initialization + Gradient-based
Inversion (Wang et al., 2023d)

0.0000 0.0050 0.0100 0.0150
Reconstructed MSE Loss

0.00

0.20

0.40

Pe
rc

en
ta

ge

Belonging (Generated by SD-v2-base)
Generated by SD-v1-5

(b) Encoder-based Inversion

0.0000 0.0025 0.0050 0.0075
Reconstructed MSE Loss

0.00

0.20

0.40

0.60

0.80

Pe
rc

en
ta

ge

Belonging (Generated by SD-v2-base)
Generated by SD-v1-5

(c) Encoder-based Initialization + Gradient-
based Inversion (Ours)

Figure 2. Comparison on the reconstruction loss distributions for different inversion methods. The scenario is distinguishing the 500
images generated by the inspected model (i.e., Stable Diffusion v2-base) and the 500 images generated by other model (i.e., Stable
Diffusion v1-5 here). 50 prompts sampled from PromptHero (Inc.) are used to generate these belonging images and non-belonging
images (More details about the used prompts can be found in § 6.10). Our method is highly effective since the reconstruction losses for
the belongings and that for non-belongings are nearly completely separated in our method.

4.3. Limitation of Canonical Gradient-based Inversion

A straightforward way for conducting latent inversion is
directly using the gradient-based method to search the in-
verted latent (similar to Definition 4). However, we find that
directly using the gradient-based inversion has sub-optimal
effectiveness and low efficiency on the state-of-the-art latent
generative models, especially in the case of distinguishing
the belonging images and the images generated by other
models having similar architectures. Figure 2a provides the
empirical results indicating the sub-optimal effectiveness of
the gradient-based latent inversion method since it demon-
strates that the reconstruction losses of the belonging images
and non-belonging images are not well-separated. The ex-
perimental settings can be found in the caption of Figure 2.
We also find that it requires large number of optimization
steps to convergence.

Upon investigation we find that a key factor for the effi-
ciency and the effectiveness of the gradient-based latent
inversion is the selection of the starting point of the opti-
mization (Bertsekas, 2009). More specifically, a starting
point closer to the ground-truth latent (i.e., the latent used
when generating the belonging image) will lead to better
efficiency and effectiveness for the origin attribution. To
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Figure 3. Effects of the initial distance to the ground-truth latent.
The starting point closer to the ground-truth latent will lead to
better efficiency and effectiveness for the inversion.

confirm this, we create different starting points that have dif-
ferent initial distances to the ground-truth latent and collect
their reconstruction losses during the optimization process.
Figure 3 demonstrates that a closer starting point will lead
to a faster convergence speed and lower reconstruction loss
after the convergence, and it confirms our analysis. Techni-
cally, our contribution can be summarized as follows: We
observed the ineffectiveness and inefficiency for the existing
inversion based origin attribution methods on the state-of-
the-art large latent generative models, and identify the key
reason for this phenomenon. We propose a simple yet effec-
tive approach to solve this problem, and demonstrate that
images produced by the state-of-the-art latent generative
models may naturally carry an implicit watermark added by
the decoder when decoding the latent samples as they can be
detected by our method without any artificial watermarks.

4.4. Our Approach: Exploiting the Invertibility of the
Auto-encoder

In this section, we introduce our method LATENTTRACER
that combines the gradient-based method and the invertibil-
ity of the auto-encoder. For the auto-encoder used in the
latent generative models, the main training objective is to
make the decoder have the ability to reconstruct the input of
the encoder (Kingma & Welling, 2013), i.e., x ≈ D(E(x)),
where E is the encoder and D is the decoder, x denotes the
image input. Existing image editing methods for the latent
generative models (Mokady et al., 2023; Parmar et al., 2023)
demonstrate that the encoder (i.e., E) of the auto-encoder
used in the latent generative models can also approximate
the latent input of the decoder D, i.e., a ≈ E(D(a)), where
a is the input in the latent space. Intuitively, we can directly
use the encoder to invert the latent input of the decoder, and
we define this inversion method as encoder-based inversion.

Definition 5. (Encoder-based Latent Inversion) Given a de-
coder D and its corresponding encoder E , for an image x,
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Table 1. Comparison for the initial distances from the ground-truth
latent to the starting points generated by different initialization
methods. The reported number is the mean and standard deviation
values of 100 different belonging samples.

Model
Initial Distance

Random
Initialization

Encoder-based
Initialization

Stable Diffusion v1-5 1.930±0.021 0.019±0.007
Stable Diffusion v2-base 1.844±0.017 0.014±0.004

the encoder-based latent inversion finds the inverted latent
a′ by directly exploiting the encoder, i.e., a′ = E(x).

The encoder-based latent inversion is highly efficient since it
only requires one forward process of the encoder and the run-
time for it is nearly negligible. The research question that we
want to explore is: Is the encoder-based inversion effective
for the origin attribution problem of the latent generative
models? We show results of a preliminary evaluation in
Figure 2b, where the reconstruction loss of the belonging
images (i.e., the images generated by the inspected model
Stable Diffusion v2-base) is represented by red color, and
the reconstruction losses of the images generated by other
models are shown in the blue color. As can be seen, the
reconstruction losses of the belonging samples and those
of the non-belonging samples are not well-separated. Thus,
we have the following observation:
Observation 1. Encoder-based latent inversion method has
low effectiveness for the origin attribution problem.

This observation is expected since the auto-encoder only
provides an approximation of the inversion. Although di-
rectly using the encoder to invert the input in the latent space
leads to low effectiveness, we still can exploit the invertibil-
ity of the auto-encoder. Note that in § 4.3, we discussed that
the effectiveness and the efficiency of the gradient-based
inversion are highly sensitive to the starting point before the
optimization. Since the auto-encoder used in the latent gen-
erative models has potential invertibility, another question
we want to explore is: Before the optimization process of the
gradient-based latent inversion, is it possible to use the en-
coder to get the starting point that is better than the random
starting point? To investigate this question, we compare
the distance from the randomly generated starting point to
the ground-truth latent and that from the encoder-generated
starting point. The results are shown in Table 1. The models
used here are the Stable Diffusion v1-5 and the Stable Diffu-
sion v2-base. The results indicate that the encoder-generated
starting point’s distance to the ground-truth latent is much
smaller than that of the random-generated starting point. To
further explore the effectiveness and the efficiency of the
encoder-based latent initialization with the gradient-based
inversion method, we record the reconstruction loss curve
for both the random latent initialization with the gradient-

0 200 400
Step

0.00

0.05

0.10

0.15

0.20

0.25

Re
co

ns
tru

ct
ed

 M
SE

Belonging (SD V1 Generated)
SD V2 Generated

(a) Random-based

0 200 400
Step

0.0000

0.0005

0.0010

0.0015

0.0020

Re
co

ns
tru

ct
ed

 M
SE

Belonging (SD V1 Generated)
SD V2 Generated

(b) Encoder-based

Figure 4. Comparison on the reconstruction loss curve for the ran-
dom starting point and the encoder-generated starting point. The
encoder-based starting point lead to a faster convergence speed
and a better separation of the reconstruction losses.

based inversion and the encoder-based latent initialization
with the gradient-based inversion. The inspected model here
is the Stable Diffusion v1-5. The belonging image and the
non-belonging image here are generated by using the same
prompt. As shown in Figure 4, the convergence speed of
using the encoder-generated starting point is much faster
than that of using the random starting point. At the same
time, the encoder-based initialization leads to an obvious
separation of the reconstructed losses on belonging samples
and the non-belonging samples, while the random initial-
ization does not have such an effect. The results for the
reconstruction losses of 500 belonging images and 500 non-
belonging images in Figure 2a and Figure 2c also show that
the gradient-based inversion with encoder-based initializa-
tion is much more effective than the inversion with random
initialization since the former leads to a much higher separa-
bility for the reconstruction losses of the belonging samples
and the non-belonging samples. Based on these results, we
have the following observation:
Observation 2. For gradient-based latent inversion and ori-
gin attribution, the encoder-based initialization leads to bet-
ter effectiveness and efficiency compared to the random
initialization.

Algorithm. We design our algorithm based on our analysis
and observations. Our algorithm, detailed in Algorithm 1,
takes as input the image under examination, denoted as x,
alongside the inspected modelM. Its output manifests as
the inference outcomes, determining whether the examined
image either is the belonging of the inspected model or not.
At the first step of the process, the algorithm determines the
threshold for the detection. In detail, it utilizes the model
M to generate N (defaulting to 100 in this paper) images
from randomly selected prompts. It then proceeds to cal-
culate the mean value (µ) and standard deviation (σ) of the
reconstruction loss on the belonging samples of the model.
Following Wang et al. (2023d), we use Grubbs’ Hypothesis
Testing (Grubbs, 1950) to determine the threshold:

t =
(N − 1)σ√

N

√√√√ (
tα/N,N−2

)2
N − 2 +

(
tα/N,N−2

)2 + µ (1)
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Algorithm 1 Origin Attribution by Gradient-based Inversion
with Encoder-based Initialization
Input: Model:M, Examined Data: x
Output: Inference Results: Belonging or Non-belonging

1: function INFERENCE(M,x)
2: E =M.Encoder
3: D =M.Decoder
4: ▷ Obtaining Threshold (Offline)
5: t← Calculating Threshold [Equation 1]
6: ▷ Reverse-engineering
7: a = E(x)
8: for e ≤ max epoch do
9: cost = L (D(a),x)

10: ∆a = ∂cost
∂a

11: a = a− lr ·∆a

12: ▷ Determining Belonging
13: if cost ≤ t then
14: return Belonging
15: else
16: return NonBelonging

Here tα/N,N−2 is the critical value of the t distribution
with N − 2 degrees of freedom and a significance level of
α/N , where α is the significance level of the hypothesis
testing (i.e., 0.05 by default in this paper). More details of
the critical value can be found in § 6.2. This calculation,
being an offline process, necessitates execution only once
per model. In Line 7, we calculate the starting point of
the optimization by exploiting the forward process of the
encoder. Moving on to Line 8-11, the reconstruction loss is
calculated and the inverted latent is optimized by gradient
descent optimizer. Note that the starting point is obtained
by using the encoder E to encode the inspected image x.
Lastly, Line 13-16 involves determining the affiliation of
the examined data x with the modelM.

5. Experiments and Results
We first introduce the experiment setup (§ 5.1). We then
evaluate the effectiveness (§ 5.2) and the efficiency (§ 5.3)
of our method LATENTTRACER. We also study the results
on different types of auto-encoders in § 5.4 and compare
our method to existing methods requiring extra operations
during training phase or generation phase in § 5.5.

5.1. Experiment Setup

Our method is implemented with Python 3.10 and PyTorch
2.0. We conducted all experiments on a Ubuntu 20.04 server
equipped with 8 A100 GPUs (one experiment/GPU).

Models. There are six state-of-the-art latent generative mod-
els involved in the experiments: Stable Diffusion v1-4 (SD

v1-4), Stable Diffusion v1-5 (SD v1-5), Stable Diffusion v2-
base (SD v2-base), Stable Diffusion v2-1 (SD v2-1), Stable
Diffusion XL-1.0-base (SD XL-1.0-base) and Kandinsky
2.1. Details of the models are in § 6.1.

Evaluation Metrics. The effectiveness of the origin attri-
bution methods is measured by calculating the accuracy of
detection (Acc). For an inspected model, when dealing with
a mix of images that are either belonging or non-belonging
of it, Acc represents the proportion of accurately identified
images to the total number of images. Additionally, we
present a comprehensive count of True Positives (TP, or cor-
rectly identified belonging images), False Positives (FP, or
non-belongings identified as belongings), False Negatives
(FN, or belongings identified as non-belongings), and True
Negatives (TN, or non-belongings correctly identified).

5.2. Effectiveness

In this section, we study the effectiveness of our method
on the origin attribution task. We first investigate the ef-
fectiveness on distinguishing belonging images and images
generated by other models, following with the study for the
effectiveness on distinguishing belongings and real images.

Distinguishing Belonging Images and Images Generated
by Other Models. In this section, we study our method’s ef-
fectiveness on distinguishing between belonging images of a
particular model and the images generated by other models.
To measure the effectiveness of our method, we first ran-
domly collect 50 prompts designed for the state-of-the-art
text-to-image generative models on the PromptHero (Inc.)
(a main-stream website for prompt engineering of the gen-
erative models). For each prompt, we generate 10 samples
on each model by using different random seeds. Thus, we
have 500 generated samples for each model. For differ-
ent inspected models, we use our method to distinguish
the belonging images and the images generated by other
models. We compare our method to the existing reverse-
engineering based origin attribution method RONAN (Wang
et al., 2023d). While most of the existing methods (such as
image watermarking (Wen et al., 2023a) and model finger-
printing (Yu et al., 2022b)) require extra operations during
the training or generation phase, RONAN is the only method
that can achieve alteration-free origin attribution and has
the same threat model with our method. The results are
shown in Table 2, where ModelM1 denotes the inspected
model, and Model M2 represents the other model. For
our method, the average detection accuracy (Acc) of our
method is 93.4%, confirming its good performance for dis-
tinguishing between the belongings of the inspected model
and the images generated by other models. As can be seen,
the detection accuracy of RONAN is only around 50% in
our setting. The results indicate our method outperforms
the existing alteration-free origin attribution method by a
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Table 2. Results for distinguishing belonging images and images generated by other models. Here, Model M1 is the inspected model,
Model M2 is the other model. As we discussed in § 4.1, we focus on the traceability in latent generative models with unique and distinct
auto-encoders. Thus, we do not include the setting where M1 and M2 share the same autoencoder, e.g., M1=SD v1-4 and M2=SD
v1-5. To our understanding, RONAN (Wang et al., 2023d) is the only method that shares the same problem formulation as our method.

Model M1 Model M2
RONAN LATENTTRACER (Ours)

TP FP FN TN Acc TP FP FN TN Acc

SD v1-4

SD v2-base 477 485 23 15 49.2% 480 53 20 447 92.7%
SD v2-1 480 485 20 15 49.5% 482 55 18 445 92.7%

SD XL-1.0-base 475 470 25 30 50.5% 476 81 24 419 89.5%
Kandinsky 484 470 16 30 51.4% 475 65 25 435 91.0%

SD v1-5

SD v2-base 477 484 23 16 49.3% 481 55 19 445 92.6%
SD v2-1 478 482 22 18 49.6% 479 54 21 444 92.5%

SD XL-1.0-base 477 472 23 28 50.5% 477 85 23 415 89.2%
Kandinsky 482 469 18 31 51.3% 477 66 23 434 91.1%

SD v2-base

SD v1-4 481 425 19 75 55.6% 482 0 18 500 98.2%
SD v1-5 480 422 20 78 55.8% 480 0 20 500 98.0%

SD XL-1.0-base 476 480 24 20 49.6% 480 53 20 447 92.7%
Kandinsky 473 473 27 27 50.0% 478 1 22 499 97.7%

Kandinsky

SD v1-4 481 479 19 21 50.2% 474 12 26 488 96.2%
SD v1-5 483 480 17 20 50.3% 476 11 24 489 97.5%

SD v2-base 482 478 18 22 50.4% 480 46 20 454 93.4%
SD v2-1 483 475 17 25 50.8% 479 46 21 454 93.3%

SD XL-1.0-base 478 490 22 10 48.8% 480 82 20 418 89.8%

Table 3. Results for distinguishing belongings and real images.
The real images used are randomly sampled from LAION (Schuh-
mann et al., 2022).

Inspected Model TP FP FN TN Acc

SD v1-4 484 10 16 490 97.4%
SD v1-5 487 9 13 491 97.8%

SD v2-base 487 6 13 494 98.1%
Kandinsky 483 0 17 500 98.3%

large margin on the origin attribution for the state-of-the-
art latent generative models. In § 5.5, we also compare
our method to existing state-of-the-art methods that require
extra operations during the training or generation phase.

Distinguishing Belonging Images and Real Images. In
this section, we investigate our approach’s effectiveness in
distinguishing between belonging images of a particular
model and real images. The investigated models include
Stable Diffusion v1-4, Stable Diffusion v1-5, Stable Dif-
fusion v2-base, and Kandinsky. We first randomly sample
500 images and their corresponding text captions in the
LAION dataset (Schuhmann et al., 2022), which is the train-
ing dataset for many state-of-the-art text-to-image latent
generative models such as Stable Diffusion (Rombach et al.,
2022). For each model, we use the randomly sampled text
captions as the prompts to generate 500 images as the be-
longing images. The randomly sampled images from the
LAION dataset are used as the non-belonging samples here.
The results are demonstrated in Table 3. On average, the
detection accuracy (Acc) is 97.9%. The results show that
our method achieves good performance in distinguishing
belonging images of a particular model and real images.

Table 4. Average runtime on different models.

Inspected Model Runtime

with Random
Initialization

with Encoder-based
Initialization (Ours)

SD v1-4 87.6s 21.5s
SD v1-5 88.1s 21.8s

SD v2-base 93.5s 23.2s
Kandinsky 120.7s 30.3s

5.3. Efficiency

In this section, we study the efficiency of our method. We
collect the runtime for inferring if an examined image is
the belonging of the inspected model. Four models (i.e.,
Stable Diffusion v1-4, Stable Diffusion v1-5, Stable Dif-
fusion v2-base, Kandinsky) are included in this section as
the inspected models. For each model, we run 5 times and
the average runtime is reported in Table 4. Besides the run-
time for our method (gradient-based inversion with encoder-
based initialization), we also show the average runtime for
the gradient-based inversion with random initialization. As
can be observed, the speed of our method is much faster
than the method with random initialization. This is because
the starting point obtained by the encoder-based initializa-
tion is much closer to the ground-truth, leading to a faster
convergence speed. Based on our experiments, our method
only requires 100 optimization steps to converge, while the
method with random initialization needs 400 steps (also see
Figure 4). In conclusion, our method is much more efficient
than Wang et al. (2023d).

5.4. Results on Different Types of Models

It is possible that the latent generative models may use dif-
ferent types of auto-encoders or different latent generation
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Table 5. Generalization to different types of models.
Type Model Acc

Continuous Auto-encoder VAE (Kingma & Welling, 2013) 98.2%
Quantized Auto-encoder VQ-VAE (Van Den Oord et al., 2017) 97.5%
Autoregressive Model ViT-VQGAN (Yu et al., 2021a) 98.4%

processes (e.g., diffusion and autoregressive process). In this
section, we discuss our method’s generalization to different
types of models. To study this, we conduct experiments on
two types of autoencoders (i.e., Continuous Auto-encoder
and Quantized Auto-encoder). Besides the experiments on
the models with diffusion-based latent generation process
(§ 5.2), we also evaluate our method on Autoregressive
Model in this section. For Continuous Auto-encoder, we
use the VAE (Kingma & Welling, 2013) model used in the
Stable Diffusion v1-5. For Quantized Auto-encoder, we use
a VQ-VAE (Van Den Oord et al., 2017) model trained on the
CIFAR-10 dataset (Krizhevsky et al., 2009). For Autoregres-
sive Model, we use a ViT-VQGAN (Yu et al., 2021a) model
trained on the ImageNet dataset (Russakovsky et al., 2015).
We randomly sample 1000 images from the LAION (Schuh-
mann et al., 2022), CIFAR-10 (Krizhevsky et al., 2009), and
ImageNet (Russakovsky et al., 2015) dataset as the non-
belonging images for the VAE, VQ-VAE, and ViT-VQGAN,
respectively. To obtain the belonging images that share
similar complexity to these real images, we then use these
models to conduct reconstruction on these real images and
obtain the belonging images of the decoders that are sim-
ilar to these real images, i.e., x′ = D(E(x)) where x is
the real images and x′ is the obtained belonging images
similar to the corresponding real images. E and D are the
encoder and the decoder, respectively. After we obtain all
the belonging images and non-belonging images for each
model, we use our method to distinguish them (Table 5)
and find that our method has above 97% detection accuracy
on all different types of auto-encoders or latent generation
processes, showing our method’s generalization ability.

5.5. Comparison to Methods Requiring Extra Steps

In this section, we provide the comparison to more state-
of-the-art methods that require extra operations during the
training or generation phase to illustrate a broader spectrum
of comparison. The model used here is Latent Diffusion
Model (Rombach et al., 2022), and the dataset here is MS-
COCO. The results are shown in Table 6. We report the
SSIM value and the FID value between the original samples
and the watermarked/fingerprinted generated samples. For
SSIM (Structural Similarity Index Measure), a value of 1
indicates perfect similarity between two compared images,
meaning they are exactly the same. For FID (Fréchet Incep-
tion Distance), a value of 0 indicates that the two distribu-
tions are identical. Since our method LATENTTRACER does
not have any watermarking/fingerprinting process, we can

Table 6. Comparison to methods requiring extra steps.
Method SSIM FID

Dct-Dwt (Cox et al., 2007) 0.97 19.5
SSL Watermark (Fernandez et al., 2022) 0.86 20.6

FNNS (Kishore et al., 2021) 0.90 19.0
HiDDeN (Zhu et al., 2018) 0.88 19.7

Stable Signature (Fernandez et al., 2023) 0.89 19.6
LATENTTRACER (Ours) 1.00 0

view the watermarked/fingerprinted samples of our method
are identical to the original generated samples. Conse-
quently, our method achieves a perfect SSIM score of 1
and an FID score of 0. As can be observed, the methods
necessitating extra steps have non-negligible negative influ-
ences on the generation quality, while our LATENTTRACER
guarantees no quality degradation.

6. Conclusion
We propose a latent inversion based method to detect the
generated images of the inspected model by checking if the
examined images can be well-reconstructed with an inverted
latent input. Our experiments on different latent generative
models demonstrate that our approach is highly accurate in
differentiating between images produced by the inspected
model and other images. Our results also imply an interest-
ing direction that images created by today’s latent generative
models may inherently carry an implicit watermark added
by the decoder when decoding the latent samples.
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Appendix
6.1. More Details of the Used Models

In this section, we provide more details about the model
used in the experiments.

Stable Diffusion v1-42. This model is initialized with
the weights of the Stable-Diffusion-v1-2 model3 and then
fine-tuned on 225k steps at resolution 512x512 on ”laion-
aesthetics v2 5+”. The architecture of the auto-encoder used
in this model is the VAE. This model is with creativeml-
openrail-m License.

Stable Diffusion v1-54. This model is initialized with
the weights of the Stable-Diffusion-v1-2 model and sub-
sequently fine-tuned on 595k steps on ”laion-aesthetics v2
5+” with 512x512 resolution. The architecture of the auto-
encoder used in this model is the VAE. This model is with
creativeml-openrail-m License.

Stable Diffusion v2-base5. This model model is trained
from scratch 550k steps at resolution 256x256 on a subset
of LAION-5B filtered for explicit pornographic material,
using the LAION-NSFW classifier with punsafe=0.1 and
an aesthetic score ≥ 4.5. It is further trained for 850k steps
at resolution 512x512 on the same dataset on images with
resolution ≥ 512x512. The architecture of the auto-encoder
used in this model is the VAE. This model is with openrail++
License.

Stable Diffusion v2-16. This model is fine-tuned from
Stable Diffusion 2 model7 with an additional 55k steps on
a subset of LAION-5B filtered for explicit pornographic
material (with punsafe=0.1), and then fine-tuned for another
155k extra steps with punsafe=0.98. The architecture of the
auto-encoder used in this model is the VAE. This model is
with openrail++ License.

Stable Diffusion XL-1.0-base8. This model is first trained
from scratch on an internal dataset constructed by Stability-
AI for 600 000 optimization steps at a resolution of 256 ×
256 pixels and a batch-size of 2048. Then, it is trained on
512 × 512 pixel images for another 200 000 optimization
steps. Finally, the trainers utilize multi-aspect training in
combination with an offset-noise level of 0.05 to train the
model on different aspect ratios of around 1024 × 1024
pixel area. The developers train the same auto-encoder
architecture used for the original Stable Diffusion at a larger

2https://huggingface.co/CompVis/stable-diffusion-v1-4
3https://huggingface.co/CompVis/stable-diffusion-v1-2
4https://huggingface.co/runwayml/stable-diffusion-v1-5
5https://huggingface.co/stabilityai/stable-diffusion-2-base
6https://huggingface.co/stabilityai/stable-diffusion-2-1
7https://huggingface.co/stabilityai/stable-diffusion-2
8https://huggingface.co/stabilityai/stable-diffusion-xl-base-

1.0

batch-size (256 vs 9) and additionally track the weights
with an exponential moving average. This model is with
openrail++ License.

Kandinsky 2.19. This model utilizes CLIP and diffu-
sion image prior (mapping) between latent spaces of CLIP
modalities to increase the generation performance. For dif-
fusion mapping of latent spaces, it uses the transformer
architecture with num layers=20, num heads=32 and hid-
den size=2048. It also uses the custom implementation of
MoVQGAN (Zheng et al., 2022) with minor modifications
as the autoencoder (Razzhigaev et al., 2023). The autoen-
coder is trained on the LAION HighRes dataset (Schuhmann
et al., 2022). This model is with apache-2.0 License.

6.2. Critical Value of the t-Distribution

In this section, we introduce the detailed process for calcu-
lating the critical value of the t-distribution, which is used
in Equation 1 for obtaining the detection threshold. The
probability density function for the t-distribution is written
in Equation 2, where ν is the number of degrees of freedom
and Γ is the gamma function.

f(a) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + a2

ν

)−(ν+1)/2

(2)

Then, the corresponding cumulative distribution function is
written in Equation 3, where β denotes the incomplete beta
function.

P(a < t′) =

∫ t′

−∞
f(u)du = 1− 1

2
β

(
ν

t′2 + ν
,
ν

2
,
1

2

)
(3)

Thus, given a confidence level α and the number of degrees
of freedom ν, we have can use Equation 4 to calculate the
value of the critical value tα,ν .

P(a < tα,ν) = 1− α (4)

6.3. Discussion on Mitigating the Malicious Usages of
Latent Generative Models

Similar to identifying the origin of cyber attacks in computer
systems (Ma et al., 2016), tracing where maliciously gener-
ated images and non-deliberately generated harmful/unsafe
images come from can reveal more about the information
and characteristics of their generation process, which is
crucial for understanding the details of the malicious gen-
eration process and developing strategies to defend them.
For instance, Identifying the origin of the maliciously gen-

9https://huggingface.co/ai-forever/Kandinsky 2.1
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Stable Diffusion v1-5 Stable Diffusion v2-base Stable Diffusion XL-base-1.0Kandinsky 2.1Real imageImage source →

Target model Reconstruction loss

0.00003 0.0014 0.00150.00300.0042Stable Diffusion v1-5

0.0030 0.00001 0.00160.0032Stable Diffusion v2-base 0.0044

0.0034 0.0017 0.00140.0000020.0039Kandinsky 2.1

0.0008 0.0003 0.000050.00050.0007Stable Diffusion XL-base-1.0

Figure 5. Given a specific latent generative model, can we trace the images generated by this model without extra artificial
watermarks? We show that the images generated by the inspected model can be traced without any additional requirements on the
model’s training and generation phase (such as adding a watermark after generation (Tancik et al., 2020; Wen et al., 2023a) or injecting
fingerprinting during training (Yu et al., 2021b; 2022b; Fernandez et al., 2023)) by using the reconstruction loss computed by our method.
For example, here we show some images generated by different models and their reconstruction losses on different models. Even though
the generated images from different models can look seemingly identical, their reconstruction loss can differ by an order of magnitude.
The reconstruction loss is extremely low if the examined image is generated by the inspected model.

erated images or non-deliberately generated harmful/unsafe
images provides a reference for regulators to assign respon-
sibility. Furthermore, this knowledge allows the company to
refine their model, aiming to prevent the future production
of similar malicious or harmful images. Determining the
responsibility of the malicious generated images remains an
unresolved challenge in the field of law. This complexity
arises due to the involvement of multiple entities (such as
contributors of training data, model trainers, input/prompt
providers, and the models themselves) throughout the im-
age generation process. The tracing results of our origin
attribution method can serve as a valuable reference for ad-
dressing malicious usages concerns, instead of a definitive
responsibility conclusion.

6.4. More Results about the Effectiveness

In this section, we report the AUROC of our method to
fully understand its performance. The results are shown in
Table 7. The results demonstrate that our method achieves
high AUROC in all settings, indicating its high performance
and non-sensitivity to different threshold selection methods.

6.5. More Discussion about Wang et al. (2023d)

The baseline RONAN method (Wang et al., 2023d) per-
forms well at differentiating between samples generated by
models with significantly different architectures or training
datasets. For instance, RONAN achieves 94.5% accuracy
when distinguishing images from Stable Diffusion v2 versus
StyleGAN2-ADA. In the experimental setup used by Wang
et al. (2023d), the architectural differences and variations
in training data were substantial (e.g., Stable Diffusion v.s.

Table 7. AUROC for distinguishing belonging images and images
generated by other models. Here, Model M1 is the inspected
model, Model M2 is the other model.

Model M1 Model M2 AUROC

SD v1-4 SD v2-base 0.98
SD v1-4 SD v2-1 0.99
SD v1-4 SD XL-1.0-base 0.96
SD v1-4 Kandinsky 0.98
SD v1-5 SD v2-base 0.98
SD v1-5 SD v2-1 0.99
SD v1-5 SD XL-1.0-base 0.97
SD v1-5 Kandinsky 0.98

SD v2-base SD v1-4 0.99
SD v2-base SD v1-5 0.99
SD v2-base SD XL-1.0-base 0.98
SD v2-base Kandinsky 0.99
Kandinsky SD v1-4 0.99
Kandinsky SD v1-5 0.99
Kandinsky SD v2-base 0.98
Kandinsky SD v2-1 0.98
Kandinsky SD XL-1.0-base 0.97

StyleGAN and ImageNet v.s. LSUN). However, RONAN
has difficulty achieving satisfactory performance in the more
challenging task of distinguishing between images gener-
ated by the large latent generative model being inspected
and those from other models that have similar architectures
and training datasets, which is the situation presented in
our experiments. For example, different versions of the
Stable Diffusion model share high similar architectures and
training datasets.

6.6. Stopping Strategy

In our implementation, we set 100 as the maximum step. As
shown in Figure 4b, the reconstruction loss is converged at
step 100. We also evaluated the detection accuracy under
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Table 8. Results on different stopping strategies.
Strategy Acc

Fixed Maximum Step 98.0%
Adaptive Stop 97.7%

an adaptive stop strategy. In detail, the reverse-engineering
process stops if the reconstruction loss does not decrease
in five successive steps. The results for the fixed maximum
step and the adaptive stop strategy are shown in Table 8. The
setting here is distinguishing the images generated by the
inspected model SD v2-base and another model SD v1-5.

6.7. Robustness

We conducted the experiments for evaluating the robust-
ness of our proposed method against a wide range of post-
processing techniques employed in the existing works (Yu
et al., 2019; Fernandez et al., 2023). These techniques in-
clude adjusting saturation, adjusting contrast, adding Gaus-
sian noise, applying JPEG compression, adjusting bright-
ness, applying Gaussian blur, and Cropping. The inspected
model used here is SD v2-base. The setting here is dis-
tinguishing the images generated by the inspected model
and SD v1-5 model. The other experimental settings are
identical to those used in Table 2. For each experiment, we
report the detection accuracy and the average values of the
Structural Similarity Index (SSIM), Peak Signal-to-Noise
Ratio (PSNR), L1 distance, and L2 distance between the
original samples and the post-processed samples. The L1
and L2 distances are calculated using pixel values ranging
from 0 to 1. The results are shown in Table 9, demonstrat-
ing that our proposed method remains effective when the
quality of the post-processed images is satisfactory. For
instance, the detection accuracy of our method consistently
exceeds 90% when the Structural Similarity Index (SSIM)
value between the original and post-processed samples is
around 0.9. It is important to note that an SSIM value lower
than 0.9 is considered a significant alteration to the images
and indicates an unsatisfactory level of image quality (Wang
et al., 2004). In cases of strong post-processing, an adaptive
attacker may be able to evade our method, but at the cost
of substantially compromising the quality of the edited im-
age. Consequently, our method maintains its effectiveness
against adaptive attacks aimed at preserving the quality of
the perturbed image.

6.8. Comparison to Laszkiewicz et al. (2023)
The related work by Laszkiewicz et al. (2023) also concen-
trates on detecting images generated by a specific model
without relying on watermarks. In this section, we conduct
the experiments for comparing our method to Laszkiewicz
et al. (2023). The Inspected model (M1) here is SD v2-base.
We consider the distinguishing the images generated by the

Table 9. Robustness against post-processing augmentations.
Augmentation Acc SSIM PSNR L1 L2

Saturation Factor 1.25 97.4% 0.9657 32.7953 0.0180 0.0008
Saturation Factor 1.50 94.0% 0.9276 27.3419 0.0334 0.0028
Saturation Factor 1.75 93.1% 0.8929 24.3338 0.0471 0.0055
Saturation Factor 2.00 90.6% 0.8611 22.3084 0.0593 0.0085
Saturation Factor 2.25 88.3% 0.8318 20.8090 0.0704 0.0117
Saturation Factor 2.50 84.8% 0.8045 19.6402 0.0804 0.0150

Contrast Factor 1.10 95.5% 0.9488 32.6094 0.0198 0.0006
Contrast Factor 1.15 92.7% 0.9213 29.4854 0.0283 0.0012
Contrast Factor 1.25 89.3% 0.8716 25.7423 0.0433 0.0028
Contrast Factor 1.50 79.8% 0.7729 21.1741 0.0729 0.0079

Gaussian Noise Std 0.01 97.4% 0.9896 46.1284 0.0039 2.4399e-05
Gaussian Noise Std 0.02 95.2% 0.9612 40.1485 0.0078 9.6707e-05
Gaussian Noise Std 0.03 93.3% 0.9204 36.6620 0.0116 0.0002
Gaussian Noise Std 0.04 87.8% 0.8731 34.1959 0.0154 0.0004
Gaussian Noise Std 0.05 80.7% 0.8238 32.2881 0.0192 0.0006

JPEG Compression Quality 95 96.5% 0.9730 38.6492 0.0082 0.0002
JPEG Compression Quality 90 95.2% 0.9576 36.4326 0.0107 0.0003
JPEG Compression Quality 80 94.1% 0.9335 33.9629 0.0142 0.0005
JPEG Compression Quality 70 90.8% 0.9155 32.5805 0.0165 0.0006
JPEG Compression Quality 60 90.2% 0.9009 31.6258 0.0184 0.0008
JPEG Compression Quality 50 89.3% 0.8885 30.9288 0.0199 0.0009

Brightness Factor 1.25 92.6% 0.9410 19.8790 0.0855 0.0108
Brightness Factor 1.35 90.7% 0.9042 17.4920 0.1129 0.0188
Brightness Factor 1.50 81.9% 0.8471 15.1579 0.1485 0.0322

Gaussian Blur Box Size 1 96.3% 0.8755 28.9077 0.0218 0.0017
Gaussian Blur Box Size 2 88.7% 0.7427 25.0875 0.0346 0.0041
Gaussian Blur Box Size 3 78.4% 0.6625 23.3526 0.0432 0.0062

Inspected model (M1) and that generated by different other
models (M2). Here, SD v1-1+ means a fine-tuned version
of the Stable Diffusion v1-1. The comparison results are re-
ported in Table 10. The results demonstrate that our method
outperforms the Laszkiewicz et al. (2023) It is understand-
able as the approach by Laszkiewicz et al. (2023) solely
reverses the final layer of the model, causing it to lack ac-
cess to some of the valuable information encoded within the
weights of the other layers. In addition, Laszkiewicz et al.
(2023) assume the last layer of the inspected model is invert-
ible. Therefore, it is not applicable to the models that use
non-invertible activation functions (such as the commonly-
used ReLU function) in the last layer. Our method does not
have this assumption.

6.9. Examples of Failure Cases
In this section, we demonstrate the examples of the failure
cases of our method. The visualization results of the failure
cases when distinguishing the images generated by SD-v2-
base and SD-v1-5 can be found in Figure 6. We find that the
potential reason for the FP and FN could be high brightness
and high shape complexity in the images, respectively.

6.10. Details of the Used Text Prompts

In Figure 2 and Table 2, we use 50 text prompts randomly
sampled from PromptHero (Inc.). The detailed text prompts
used can be found in Table 11 and Table 12. This prompts
are with MIT License. They do not contain personally
identifiable information or offensive content.
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Table 10. Comparison to Laszkiewicz et al. (2023). Here, Model M1 is the inspected model, Model M2 is the other model.
Method M1:SD v2-base; M2:SD v1-1 M1:SD v2-base; M2:SD v1-1+ M1:SD v2-base; M2:SD v1-4 M1:SD v2-base; M2:SD v1-5

Laszkiewicz et al. (2023) 92.7% 90.6% 92.1% 92.2%
LATENTTRACER (Ours) 98.2% 98.0% 98.0% 97.8%

False Negative, Original Image False Negative, Inverted Image

False Positive, Original Image False Positive, Inverted Image

Figure 6. Examples of the false positive and the false negative of our method.
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Table 11. Text prompts used in Figure 2 and Table 2 (Prompt 1-25).
Prompt 1 “cyber punk robot, dark soul blood borne boss, face hidden, RTX technology, high resolution, light scttering”

Prompt 2 “RAW photo of young woman in sun glasses sitting on beach, (closed mouth:1.2), film grain, high quality, Nikon D850, hyperrealism, photography,
(realistic, photo realism:1. 37), (highest quality)”

Prompt 3 “full color portrait of bosnian (bosniak) woman wearing a keffiyeh, epic character composition, by ilya kuvshinov, terry richardson, annie leibovitz,
sharp focus, natural lighting, subsurface scattering, f2, 35mm, film grain, award winning, 8k”

Prompt 4 “A silhouette of a woman of dark fantasy standing on the ground, in the style of dark navy and dark emerald, pigeoncore, heavily textured,
avian - themed, realistic figures, medieval - inspired, photorealistic painting”

Prompt 5
“stained glass art of goddess, mosaic-stained glass art, stained-glass illustration, close up, portrait, concept art, (best quality, masterpiece, ultra-detailed,
centered, extremely fine and aesthetically beautiful, super fine illustration), centered, epic composition, epic proportions, intricate, fractal art, zentangle,
hyper maximalism”

Prompt 6 “An artistic composition featuring a person with orange hair casually squatting in a park, capturing their nonchalant expression, hot pants, The focus
is on their unique sense of style, particularly their white panties peeking out from under their attire.”

Prompt 7
“a woman holding a glowing ball in her hands, featured on cgsociety, fantasy art, very long flowing red hair, holding a pentagram shield, looks a bit
similar to amy adams, lightning mage spell icon, benevolent android necromancer, high priestess tarot card, anime goddess, portrait of celtic goddess
diana, featured on artstattion”

Prompt 8 “masterpiece, girl alone, solo, incredibly absurd, hoodie, headphones, street, outdoor, rain, neon,”

Prompt 9 “Halvard, druid, Spring, green, yellow, red, vibrant, wild, wildflowers masterpiece, shadows, expert, insanely detailed, 4k resolution, intricate detail,
art inspired by diego velazquez eugene delacroix”

Prompt 10 “(8k, RAW photo, high sensitivity, best quality, masterpiece, ultra high resolution, fidelity: 1.25), upper body, cat ears, (night), rain, walk, city lights,
delicate face, wet white shirt”

Prompt 11 “masterpiece, centered, dynamic pose, 1girl, cute, calm, intelligent, red wavy hair, standing, batik swimsuit, beach background,”

Prompt 12 “masterpiece, award winning, best quality, high quality, extremely detailed, cinematic shot, 1girl, adventurer, riding on a dragon,
fantasy theme, HD, 64K”

Prompt 13 “((masterpiece:1.4, best quality))+, (ultra detailed)+, blue hair , wolfcut, pink eyes, 1 girl,cyberpunk city,flat chest,wavy hair,mecha clothes,(robot girl),
cool movement,silver bodysuit,colorful background,rainy days,(lightning effect),silver dragon armour,(cold face),cowboy shot”

Prompt 14 “masterpiece, centered, concept art, wide shot, art nouveau, skyscraper, architecture, modern, sleek design, photography, raw photo, sharp focus,
vibrant illustrations, award winning”

Prompt 15 “masterpiece, best quality, mid shot, front view, concept art, 1girl, warrior outfit, pretty, medium blue wavy hair, walking, curious, exploring city,
london city street background, Fantasy theme, depth of field, global illumination, (epic composition, epic proportion), Award winning, HD, Panoramic,”

Prompt 16 “a couple of women standing next to each other holding candles, inspired by WLOP, cgsociety contest winner, ancient libu young girl, 4 k detail,
dressed in roman clothes, lovely detailed faces, loli, high detailed 8 k, twin souls, cgsociety, beautiful maiden”

Prompt 17 “Tigrex from monster hunter, detailed scales, detailed eyes, anatomically correct, UHD, highly detailed, raytracing, vibrant, beautiful, expressive,
masterpiece, oil painting”

Prompt 18 “Fashion photography of a joker, 1800s renaissance, clown makeup, editorial, insanely detailed and intricate, hyper-maximal, elegant, hyper-realistic,
warm lighting, photography, photorealistic, 8k”

Prompt 19 “octane render of cyberpunk batman by Tsutomu nihei, chrome silk with intricate ornate weaved golden filiegree, dark mysterious background –v 4 –q 2”

Prompt 20 “a cat with a (pirate hat:1.2) on a tropical beach, ∼*∼Enhance∼*∼, in the style of Clyde Caldwell, vibrant colors”

Prompt 21 “masterpiece, portrait, medium shot, cel shading style, centered image, ultra detailed illustration of Hatsune Miku of cool posing, inkpunk, ink lines,
strong outlines, bold traces, unframed, high contrast, cel-shaded, vector, 32k resolution, best quality”

Prompt 22 “((A bright vivid chaotic cyberpunk female, Fantastic and mysterious, full makeup, blue sky hair, (nature and magic), electronic eyes, fantasy world))

Prompt 23 “broken but unstoppable masked samurai in full battle gear, digital illustration, brutal epic composition, (expressionism style:1. 1), emotional, dramatic,
gloomy, 8k, high quality, unforgettable, emotional depth”

Prompt 24 “studio lighting, film, movie scene, extreme detail, 12k, masterpiece, hyperrealistic, realistic, Canon EOS R6 Mark II, a dragon made out of flowers
and leaves, beautiful gold flecks, colorful paint, golden eye, detailed body, detailed eye, multiple colored flowers”

Prompt 25 “Photo realistic young Farscape Chiana, kissy face, full Farscape Chiana white face paint, black shadowy eye makeup, white/gray lips, close-up shot, thin,
fit, Fashion Pose, DSLR, F/2. 8, Lens Flare, 5D, 16k, Super-Resolution, highly detailed, cinematic lighting”
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Table 12. Text prompts used in Figure 2 and Table 2 (Prompt 26-50).

Prompt 26 “A retro vintage Comic style poster, of a post apocalyptic universe, of a muscle car, extreme color scheme, action themed, driving on a desert road wasteland,
fleeting, chased by a giant fire breathing serpent like fantasy creature, in action pose, highly detailed digital art, jim lee”

Prompt 27
“cinematic CG 8k wallpaper, action scene from GTA V game, perfect symmetric cars bodies and elements, wheels rotating, real physics based image,
extremely detailed 4k digital painting (design trending on (Agnieszka Doroszewicz), Behance, Andrey Tkachenko, GTA V game, artstation, BMW X6
realistic design”

Prompt 28 “the Hulk in his Worldbreaker form, his power and rage reach astronomical levels, amidst a cityscape in ruins, reflecting the destruction he can unleash”

Prompt 29 “masterpiece, portrait, medium shot, cel shading style, centered image, ultra detailed illustration of Hatsune Miku of cool posing, inkpunk, ink lines,
strong outlines, bold traces, unframed, high contrast, cel-shaded, vector, 32k resolution, best quality”

Prompt 30 “Renaissance-style portrait of an astronaut in space, detailed starry background, reflective helmet.”

Prompt 31 “A photo of a very intimidating orc on a battlefield, cinematic, melancholy, dynamic lighting, dark background”

Prompt 32 “A dark fantasy devil predator, photographic, ultra detail, full detail, 8k best quality, realistic, 8k, micro intricate details”

Prompt 33
“Hello darkness, my old friend, I’ve come to talk to you again, heart-wrenching composition, digital painting, (expressionism:1. 1), (dramatic, gloomy,
emotionally profound:1. 1), intense and brooding dark tones, exceptionally high quality, high-resolution, leaving an indelible and haunting impression
on psyche, unforgettable, masterpiece”

Prompt 34 “epic, masterpiece, alien friendly standing on moon, intricated organic neural clothes, galactic black hole background, {expansive:2}
hyper realistic, octane, ultra detailed, 32k, raytracing”

Prompt 35 “Geometrical art of autumn landscape, warm colors, a work of art, grotesque, Mysterious”

Prompt 36 “a girl with face painting and a golden background is wearing makeup, absurd, creative, glamorous surreal, in the style of zbrush, black and white
abstraction, daz3d, porcelain, striking symmetrical patterns, close-up –ar 69:128 –s 750”

Prompt 37 “Forest, large tree, river in the middle, full blue moon, star’s, night , haze, ultra-detailed, film photography, light leaks, Larry Bud Melman,
trending on artstation, sharp focus, studio photo, intricate details, highly detailed, by greg rutkowski”

Prompt 38 “a futuristic spacecraft winging through the sky, orange and beige color, in the style of realistic lifelike figures, ravencore, hispanicore, liquid metal,
greeble, high definition, manticore, photo, digital art, science fiction –v 5. 2”

Prompt 39 “a close up of a person with a sword, a character portrait by Hasegawa Settan, featured on cg society, antipodeans, reimagined by industrial light
and magic, sabattier effect, character”

Prompt 40 “Dystopian New York, gritty, octane render, ultra-realistic, cinematic –ar 68:128 –s 750 –v 5. 2”

Prompt 41 “ALIEN SPACECRAFT, WRECKAGE, CRASH, PLANET DESERT, ultra-detailed, film photography, light leaks, trending on artstation,
sharp focus, studio photo, intricate details, highly detailed, by greg rutkowski”

Prompt 42 “an expressionist charcoal sketch by Odilon Redon, drawing, face only, a gorgeous Japanese woman, hint of a smile,
noticeable charcoal marks, white background, no coloring, no color –ar 69:128 –s 750 –v 5. 2”

Prompt 43 “a man in a futuristic suit with neon lights on his face, cyberpunk art by Liam Wong, cgsociety, computer art, darksynth, synthwave, glowing neon”

Prompt 44 “The image features a bird perched on a branch, dressed in a suit and tie. The bird is holding a cup of hot coffee, in its beak. The coffee cup emits smoke.
The scene is quite unusual and whimsical. The bird’s attire and the presence of the cup create a sense of humor and playfulness in the image.”

Prompt 45 “carnage, a formidable supervillain, symbiote, bloody, psychopathic, unstoppable, mad, sharp teeth, epic composition, dramatic, gloomy, in the style
of mike deodato, realistic detail, realistic hyper-detailed rendering, realistic painted still lifes, insanely intricate”

Prompt 46 “A disoriented astronaut, lost in a galaxy of swirling colors, floating in zero gravity, grasping at memories, poignant loneliness, stunning realism, cosmic
chaos, emotional depth, 12K, hyperrealism, unforgettable, mixed media, celestial, dark, introspective”

Prompt 47 “an abstract painting of a beautiful girl, in the style of Pablo Picasso, masterpiece, highly imaginative, dada, salvador dali, i can’t believe how beautiful
this is, intricate –ar 61:128 –s 750 –v 5. 2”

Prompt 48
“made by Emmanuel Lubezki, Daniel F Gerhartz, character of One Piece movie, Monkey D. Luffy, in straw hat, cinematic lighting, concept photoart,
32k, photoshoot unbelievable half-length portrait, artificial lighting, hyper detailed, realistic, figurative painter with intricate details, divine proportion,
sharp focus, Mysterious”

Prompt 49 “a very detailed image of a female cyborg, half human, half machine, very detailed, with cables, wires, mechanical elements in the head and body,
dynamic light, glowing electronics, 4 k, inspired by H. r. Giger and Jean ansell and justin Gerard, photorealistic”

Prompt 50
“A beautiful photo of an lion that got lost in the amazon rainforest, rain, mist, 8k, sharp intricate details, masterpiece, imaginative, raytracing,
octane render, studio lighting, professionally shot nature photo, godrays, hyperrealistic, ultra high quality, realism, wet, dripping water,
wandering through the undergrowth”
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