
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

NTK-DFL: ENHANCING DECENTRALIZED FEDERATED
LEARNING IN HETEROGENEOUS SETTINGS VIA NEURAL
TANGENT KERNEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Decentralized federated learning (DFL) is a collaborative machine learning framework for
training a model across participants without a central server or raw data exchange. DFL
faces challenges due to statistical heterogeneity, as participants often possess different data
distributions reflecting local environments and user behaviors. Recent work has shown that
the neural tangent kernel (NTK) approach, when applied to federated learning in a central-
ized framework, can lead to improved performance. The NTK-based update mechanism is
more expressive than typical gradient descent methods, enabling more efficient convergence
and better handling of data heterogeneity. We propose an approach leveraging the NTK
to train client models in the decentralized setting, while introducing a synergy between
NTK-based evolution and model averaging. This synergy exploits inter-model variance and
improves both accuracy and convergence in heterogeneous settings. Our model averaging
technique significantly enhances performance, boosting accuracy by at least 10% compared
to the mean local model accuracy. Empirical results demonstrate that our approach con-
sistently achieves higher accuracy than baselines in highly heterogeneous settings, where
other approaches often underperform. Additionally, it reaches target performance in 4.6
times fewer communication rounds. We validate our approach across multiple datasets,
network topologies, and heterogeneity settings to ensure robustness and generalizability.

1 INTRODUCTION

Federated learning (FL) is a machine learning paradigm in which multiple clients train a global model without
the explicit communication of training data. In most FL scenarios, clients communicate with a central server
that performs model aggregation. In the popular federated averaging (FedAvg) algorithm (McMahan et al.,
2017), clients perform multiple rounds of stochastic gradient descent (SGD) on their own local data, then
send this new weight vector to a central server for aggregation. As FL gains popularity in both theoretical
studies and real-world applications, numerous improvements have been made to address challenges, including
communication efficiency, heterogeneous data distributions, and security concerns (Sattler et al., 2020; Li
et al., 2020; Zhu et al., 2019). To handle the performance degradation caused by data heterogeneity, many
works have proposed mitigation for FedAvg (Karimireddy et al., 2020; Li et al., 2020). Notably, some
researchers have introduced the neural tangent kernel (NTK), replacing the commonly-used SGD in order to
improve the model convergence (Yu et al., 2022; Yue et al., 2022).

Despite these advancements, the centralized nature of traditional FL schemes introduces the possibility for
client data leakage, computational bottlenecks at the server, and high communication bandwidth demand
(Kairouz et al., 2021). Decentralized federated learning (DFL) has been proposed as a solution to these
issues (Martı́nez Beltrán et al., 2023). In DFL, clients may communicate with each other along an undirected

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

graph, where each node represents a client and each edge represents a communication channel between
clients. While DFL addresses some of the issues inherent to centralized FL, both frameworks grapple with the
challenge of statistical heterogeneity across clients. Although mixing data on a central server could readily
resolve this issue, privacy concerns and the burden of extensive communication make FL and DFL approaches
necessary to address this challenge. This paper focuses on the following research question: How can we
design a DFL approach that effectively addresses statistical heterogeneity?

We propose a DFL method that exploits the NTK to evolve weights. We denote this paradigm NTK-DFL.
Our approach combines the advantages of NTK-based optimization with the decentralized structure of DFL.
The NTK-DFL weight evolution scheme makes use of the communication of client Jacobians, allowing
for more expressive updates than traditional weight vector transmissions and improving performance under
heterogeneity. Complementing this NTK-based evolution, we utilize a model averaging step that exploits
inter-model variance among clients, creating a global model with much better generalization than any local
model. We demonstrate that NTK-DFL maintains high performance even under aggressive compression
measures. Through reconstruction attack studies, we also analyze how this compression affects data privacy.
The contributions of this paper are threefold.

1. The proposed NTK-DFL method achieves convergence with 4.6 times fewer communication rounds
than existing approaches in heterogeneous settings. To the best of our knowledge, this is the first work
leveraging NTK-based weight evolution for decentralized federated training.

2. The effective synergy between NTK-based evolution and DFL demonstrates superior resilience to data
heterogeneity with model averaging.

3. The NTK-DFL aggregated model achieves at least 10% higher accuracy than the average accuracy of
individual client models. This aggregated model exhibits robust performance across various network
topologies, datasets, data distributions, and compression measures.

2 RELATED WORK

Federated Learning (FL) FL was introduced by McMahan et al. (2017) as a machine learning approach
that enables training a model on distributed datasets without sharing raw data. It attempts to address key
issues such as data privacy, training on decentralized data, and data compliance for more heavily regulated
data (e.g., medical imaging) (Zhang et al., 2021). Despite its advantages, the centralized topology of FL
introduces several challenges. These include potential privacy risks at the central server, scalability issues
due to computational bottlenecks, and high communication overhead from frequent model updates between
clients and the server (Mothukuri et al., 2021).

Decentralized Federated Learning (DFL) DFL aims to eliminate the need for a central server by con-
necting clients in a fully decentralized topology. Sun et al. (2023) adapted the FedAvg approach of multiple
local SGD iterations to the decentralized setting, leveraging momentum to improve model convergence
and weight quantization to reduce total communication cost. Our NTK-DFL method may be viewed as
building on this foundation, using the neural tangent kernel for more effective weight updates. Dai et al.
(2022) proposed a method of DFL where each client possesses their own sparse mask personalized to their
specific data distribution. Shi et al. (2023) employed the sharpness-aware minimization optimizer to reduce
the inconsistency of local models, whereas we tackle this issue through per-round averaging and final model
aggregation. DFL approaches can aim to train one global model, such as the case of many hospitals training
a model for tumor classification with local, confidential images (Shiri et al., 2022). They may also aim
to train a personalized model for each client in order to perform better on the local data distribution. For
example, different groups of mobile phone users may use different words or emojis and would benefit from
a personalized model (Tan et al., 2023). Our method focuses on training a high-performing global model

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

that generalizes well across all clients, offering improved convergence and resilience to data heterogeneity
compared to existing DFL approaches.

Neural Tangent Kernel (NTK) NTK has primarily been used for the analysis of neural networks (Golikov
et al., 2022), though it has recently seen use in the training of neural networks for FL (Yue et al., 2022).
Introduced by Jacot et al. (2018), it shows that the evolution of an infinitely wide neural network converges to
a kernelized model. This approach has enabled the analytical study of models that are well approximated by
this infinite width limit (Liu et al., 2020). The NTK has also been extended to other model types, such as
the recurrent neural network (Alemohammad et al., 2021) and convolutional neural network (Arora et al.,
2019). We instead use the linearized model of the NTK approximation as a tool for weight evolution. Some
studies have explored the integration of NTKs with FL. For instance, Huang et al. (2021) applied the NTK
analysis framework to study the convergence properties of FedAvg, while Yu et al. (2022) extended NTK
applications beyond theoretical analysis by training a convex neural network. Moreover, Yue et al. (2022)
replaced traditional SGD-based optimization with NTK-based evolution in a federated setting, where clients
transmit Jacobian matrices to a central server that performs weight updates using the NTK.

3 PROPOSED METHOD: NTK-BASED DECENTRALIZED FEDERATED LEARNING

3.1 PROBLEM STATEMENT

We begin with a brief overview of centralized FL. The goal of centralized FL is to train a global model w
across M clients with their private, local data Di = {(xi,j ,yi,j)}Ni

j=1, where Ni is the number of training
examples of the ith client. FL algorithms aim to numerically solve the sample-wise optimization problem
of minw F (w), where F (w) = 1

M

∑M
i=1 NiFi(w) and Fi(w) = 1

Ni

∑Ni

j=1 ℓ(w,xj ,yj), where M denotes
the number of clients. In the decentralized setting, an omnipresent global weight w is not available to clients
in each communication round. Rather, each client possesses their own model wi that is trained in the update
process. Following related DFL work (Shi et al., 2023; Sun et al., 2023), we seek a global model w that
benefits from the heterogeneous data stored locally across clients and generalizes better than any individual
client model. A global or aggregated model may take the form w = 1

N

∑M
i=1 Niwi, where N =

∑M
i=1 Ni.

Notation Formally, we have a set of clients C = {1, . . . , i, . . . ,M}. Each client is initialized with its
weight w(0)

i ∈ Rd, where d is the size of the parameter vector and the superscript in w
(0)
i denotes the initial

communication round. Model training is done in a series of communication rounds denoted k ∈ {1, 2, ...,K}.
Let the graph at round k be G(k) = (C, E(k)), where E(k) is the set of edges representing connections
between clients. Furthermore, the neighborhood of client i at round k is denoted N (k)

i = {j | (i, j) ∈ E(k)}.
This graph is specified before each communication round and can take an arbitrary form.

3.2 COMMUNICATION PROTOCOL

In the following sections, we present the NTK-DFL paradigm (Figure 1). We describe the key components of
the algorithm, including the communication protocol and weight evolution process.

Per-round Parameter Averaging At the beginning of each communication round k, each client i both
sends and receives weights. Every client sends their model w(k)

i to all neighbors j ∈ N (k)
i . Simultaneously, i

receives the weight vectors w(k)
j from all neighbors j ∈ N (k)

i . Each client then aggregates its own weights
along with the neighboring weights to form a new weight as follows:

w̄
(k)
i =

1

Ni +
∑

j∈N (k)
i

Nj

(
Niw

(k)
i +

∑
j∈N (k)

i

Njw
(k)
j

)
. (1)

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

The client must then send this aggregated weight w̄(k)
i back to all neighbors j ∈ N (k)

i . This step enables each
client to construct a local NTK, comprised of inner products of Jacobians from both neighboring clients and
their own Jacobians. See Algorithm 2 in Appendix A for a detailed description of this process.

clients
evolve
weights

via
NTKs

clients
compute

client neighbors

inter-client
weight
exchange

exchange
of averaged
weights

clients compute
for neighbors

clients
construct

① ②

③④

Figure 1: NTK-DFL process: ① Clients exchange weights,
② Average weights with neighbors, ③ Compute and exchange
Jacobians, labels, and function evaluations, ④ Construct local
NTK and evolve weights [Eq. (5)]. This decentralized approach
enables direct client collaboration and NTK-driven model evolu-
tion without a central server.

Local Jacobian Computation At this
point, each client possesses its own ag-
gregated weight w̄(k)

i as well as an aggre-
gated weight w̄(k)

j for each of their neigh-

bors j ∈ N (k)
i . The clients use these

weights w̄(k)
j and local data Xi to com-

pute the Jacobian of f(Xi; w̄
(k)
j) with

respect to the neighboring model param-
eters w̄j

(k) and their local data Xi. We
can denote this neighbor-specific Jaco-
bian as

J
(k)
i,j ≡ [∇wf(Xi; w̄

(k)
j)]⊤. (2)

For a given client, the gradient is taken
with respect to its neighbor’s aggregated
weight w̄(k)

j , but the function is evalu-
ated on the client’s local data Xi. Each
client sends every neighbor their respec-
tive Jacobian tensor J (k)

i,j , true label Yi,

and function evaluation f(Xi; w̄
(k)
j). Note the order of the indices in the Jacobian: the client sends J (k)

i,j ,

an evaluation on the client’s data and the neighbor’s weights. In contrast, the client receives J (k)
j,i from each

of its neighbors, an evaluation on the neighbor’s data and the client’s weights. Algorithm 3 in Appendix A
describes this process.

3.3 WEIGHT EVOLUTION

After all inter-client communication is completed, the clients begin the weight evolution phase of the round
(see Algorithm 4 in Appendix A). Here, all clients act in parallel as computational nodes. Each client possesses
their own Jacobian tensor J (k)

i,i as well as their neighboring Jacobian tensors J (k)
j,i for each j ∈ N (k)

i .

We denote the tensor of all Jacobian matrices possessed by a client at round k as J (k)
i , which is composed of

matrices from the set {J (k)
i,i } ∪ {J

(k)
j,i | j ∈ N

(k)
i } stacked along a third dimension. We denote the matrix

of true labels and function evaluations stacked in the same manner as Yi and f(X i), respectively. Here, i
denotes a client index i ∈ C. Each tensor J i, Yi, and f(X i) is a stacked representation of the data from
each client and its neighbors. Explicitly, we have J (k)

i ∈ RÑi×d2×d, Y(k)
i ∈ RÑi×d2 , and f(X i) ∈ RÑi×d2 .

Ñi denotes the total number of data points between client i and its neighbors, and d2 is the output dimension.

From here, each client performs the following operations to evolve its weights. First, compute the local NTK
H

(k)
i from the Jacobian tensor J (k)

i using the definition of the NTK

H
(k)
i,mn =

1

d2
⟨J (k)

i (xm),J (k)
i (xn)⟩F . (3)

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

Each element of the NTK is a pairwise Frobenius inner product between Jacobian matrices, where the indices
m and n correspond to two different data points. Second, using H

(k)
i , the client evolves their weights as

follows (see Appendix C for more details):

f (k,t)(X i) = (I− e
− ηt

Ñi
H

(k)
i)Y(k)

i + e
− ηt

Ñi
H

(k)
i f (k)(X i), (4)

w
(k,t)
i =

d2∑
j=1

(J (k)
i,:j:)

⊤R
(k,t)
i,:j + w̄

(k)
i , R

(k,t)
i,:j ≡

η

Ñid2

t−1∑
u=0

[Y(k)
i − f (k,u)(X i)]. (5)

Third, the client selects the weight w(k,t)
i for a timestep t with the lowest loss according to the evolved

residual f (k,t)(X i)−Yi. This is used as the new weight w(k+1,0)
i for the next communication round.

Final Model Averaging Throughout the paper, we study the convergence of the aggregated model
w = 1

M

∑M
i=1 Niwi. In the decentralized setting, clients would average all models to create w after all

training is completed. This may be done through a fully-connected topology, sequential averaging on a ring
topology, or in a secure, centralized manner. Clients may also connect in a denser topology than that of
training, and average with a desired number of neighbors. In practice, we observe that the aggregated model
is more accurate than any individual client model. We study the impact of client averaging order on model
performance with a client selection algorithm and show the results in Figure 5. Each client that opts in to
model averaging contributes a portion of its data to a global validation set before training begins. Our client
selection algorithm selects clients in the order of their accuracy on the validation set. We will demonstrate that
in the practical setting, with a proper selection of clients, not all nodes must opt into final model averaging in
order for the aggregate model to benefit from improved convergence. We note a difference between model
consensus, often discussed in the DFL literature (Savazzi et al., 2020; Liu et al., 2022), and the proposed
final model averaging approach. Model consensus refers to the gradual convergence of all client models to
a single, unified model over numerous communication rounds. In contrast, our approach implements final
model averaging as a distinct step performed after the completion of the training process.

Lastly, while memory efficiency is not the primary focus of this paper, we briefly note a technique to address
potential memory constraints in NTK-DFL implementations. For scenarios involving dense networks or
large datasets, we introduce Jacobian batching. This approach allows clients to process their local datasets in
smaller batches, reducing memory complexity from O(Nid2d) to O(Nid2d/m), where m is the number of
batches. Clients compute and transmit Jacobians for each batch separately, evolving their weights multiple
times per communication round. This complexity reduction allows clients to connect in a denser network for
the same memory cost. A thorough discussion of network overhead can be found in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Model Specifications Following Yue et al. (2022), we experiment on three datasets: Fashion-
MNIST (Xiao et al., 2017), FEMNIST (Caldas et al., 2019), and MNIST (Lecun et al., 1998). Each dataset
contains C = 10 output classes. For Fashion-MNIST and MNIST, data heterogeneity has been introduced
in the form of non-IID partitions created by the symmetric Dirichlet distribution (Good, 1976). For each
client, a vector qi ∼ Dir(α) is sampled, where qi ∈ RC is confined to the (C − 1)-standard simplex such
that

∑C
j=1 qij = 1. This assigns a distribution over labels to each client, creating heterogeneity in the form of

label-skewness. For smaller values of α, clients possess a distribution concentrated over fewer classes. We
test over a range of α values in order to simulate different degrees of heterogeneity. In FEMNIST, data is split

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

0 10 20
Communication Round

0.75

0.80

0.85
Te

st
 A

cc
ur

ac
y

0 10 20
Communication Round

NTK-DFL (Ours)
DFedAvg
DFedAvgM

DisPFL
D-PSGD

Method IID α = 0.5 α = 0.1

DFedAvg 18 31 83
DFedAvgM 23 43 86
DisPFL 43 87 200+
D-PSGD 53 79 125
NTK-DFL 12 17 18

Figure 2: Convergence of different methods on Fashion-MNIST for (left) highly non-IID with α = 0.1
and (middle) IID settings. (Right) The table displays the communication rounds required to reach 85% test
accuracy on Fashion-MNIST. We observe increased improvement in NTK-DFL convergence over baselines
for more heterogeneous settings.

into shards based on the writer of each digit, introducing heterogeneity in the form of feature-skewness. For
the model, we use a two-layer multilayer perceptron with a hidden width of 100 neurons for all trials.

Network Topologies A sparse, time-variant κ-regular graph with κ = 5 was used as the standard topology
for experimentation, where for each communication round k, a new random graph G(k) with the same
parameter κ is created. Various values of κ were tested to observe the effect of network density on model
convergence. We also experimented with various topologies to ensure robustness to different connection
settings. We used a network of 300 clients throughout our experiments.

Baseline Methods We compare our approach to various state-of-the-art baselines in the DFL setting. These
include D-PSGD (Lian et al., 2017), DFedAvg, DFedAvgM (Sun et al., 2023), and DisPFL (Dai et al., 2022).
We also compare with the centralized baseline NTK-FL (Yue et al., 2022). The upper bound NTK-FL would
consist of a client fraction of 1.0 where the server constructs an NTK from all client data each round, which is
infeasible due to memory constraints. Instead, we conducted a comparison following Dai et al. (2022), with
additional details regarding baselines and NTK-FL results found in Appendix B.

Performance Metrics We evaluate the performance of the various DFL approaches by studying the
aggregate model accuracy on a global, holdout test set. This ensures that we are measuring the generalization
of the aggregate model from individual, heterogeneous local data to a more representative data sample. Our
approach is in line with the goal of training a global model capable of improved generalization over any
single local model (Section 3.1), unlike personalized federated learning where the goal is to fine-tune a global
model to each local dataset (Tan et al., 2023). When evaluating the selection algorithm in Figure 5, we split
the global test set in a 50:50 ratio of validation to test data. We use the validation data to sort the models
based on their accuracy, and report the test accuracy in the figure.

4.2 EXPERIMENTAL RESULTS

Test Accuracy & Convergence Our experiments demonstrate the superior convergence properties of
NTK-DFL compared to baselines. Figure 2 illustrates the convergence trajectories of NTK-DFL and other
baselines on Fashion-MNIST. We see that NTK-DFL convergence benefits are enhanced under increased
heterogeneity. Under high heterogeneity with α = 0.1, NTK-DFL establishes a 3–4% accuracy lead over the
best-performing baseline within just five communication rounds and maintains this advantage throughout the
training process. Additionally presented are the number of communication rounds necessary for convergence
to 85% test accuracy, where NTK-DFL consistently outperforms all baselines. For the α = 0.1 setting, NTK-
DFL achieves convergence in 4.6 times fewer communication rounds than DFedAvg, the next best performing
baseline. Figure 8 demonstrates a similar convergence advantage for NTK-DFL on both FEMNIST and
non-IID MNIST datasets.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7
Number of Neighbors

0.80

0.81

0.82

0.83

0.84

0.85

0.86
Te

st
 A

cc
ur

ac
y Performance

Gap

NTK-DFL (Ours)
DFedAvg
D-PSGD
DisPFL
DFedAvgM

0.1 0.2 0.3 0.4 0.5
Heterogeneity Level

NTK-DFL (Ours)
DFedAvg
DFedAvgM
DisPFL
D-PSGD

Figure 3: Performance of NTK-DFL vs. (left) sparsity level and (right) heterogeneity level (smaller α→
more heterogeneous). NTK-DFL outperforms the baselines and the gains are stable as the factors vary.

Factor Analyses of NTK-DFL We evaluate NTK-DFL’s performance over various factors, including the
sparsity and heterogeneity levels, and the choices of the topology and weight initialization scheme. Figure 3
illustrates the test accuracy of NTK-DFL and other baselines as functions of the sparsity and heterogeneity
levels, respectively. We observe a mild increase in convergence accuracy with decreasing sparsity. NTK-
DFL experiences stable convergence across heterogeneity values α ranging from 0.1 to 0.5. The left plot
reveals that NTK-DFL consistently outperforms baselines by 2–3% across all sparsity levels. The right plot
demonstrates NTK-DFL’s resilience to data heterogeneity—while baseline methods’ performance deteriorates
with decreasing α, NTK-DFL maintains stable performance. Figure 9 illustrates the impact of network
topology on NTK-DFL convergence. The dynamic topology accelerates convergence compared to the static
topology, likely due to improved information flow among clients. Figure 10 demonstrates the effect of
weight initialization on NTK-DFL performance. While random per-client initialization slightly slows conver-
gence compared to uniform initialization, NTK-DFL exhibits robustness to these initialization differences.

0 5 10 15 20 25
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

IID
= 0.5
= 0.1

Figure 4: Performance gains of model averag-
ing on convergence, trained on Fashion-MNIST.
Solid lines correspond to the accuracy of the
aggregated global model, whereas dotted lines
correspond to the mean accuracy across client
models. NTK-DFL’s aggregated model main-
tains high performance, whereas mean client
accuracy declines significantly with increased
heterogeneity.

Gains Due to Final Model Aggregation Figure 4
demonstrates the dramatic effect of final model aggre-
gation on final test accuracy. Though the individual client
models decrease in accuracy as the level of heterogeneity
increases, the final aggregated model remains consistent
across all levels of heterogeneity (as seen in Figures 2
and 3). In the most heterogeneous setting α = 0.1 that
we tested, the difference between the mean accuracy of
each client and the aggregated model accuracy is nearly
10% (see Figure 4). A similar phenomenon is observed
as the client topology becomes more sparse. For the same
heterogeneity setting with a sparser topology of κ = 2,
the difference between these accuracies is nearly 15%
(see Figure 12 in Appendix B). Though the individual
performance of local client models may suffer under ex-
treme conditions, the inter-client variance created by such
unfavorable settings is exploited by model averaging to
recuperate much of that lost performance.

Figure 7 suggests that inter-model variance enhances the
performance of model averaging in DFL. While extreme

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

0 20 40 60 80
Number of Clients Averaged

0.76

0.78

0.80

0.82

0.84

0.86
Te

st
 A

cc
ur

ac
y

Histogram of
individual acc

Best to worst
Worst to best
Mean Shuffled
95% CI

Figure 5: Final model test accuracy on Fashion-
MNIST vs. the number of clients averaged for
a highly heterogeneous setting with α = 0.1.
The histogram shows the distribution of individ-
ual client model accuracies. Three client selection
criteria are tested: (red) high-to-low (proposed),
(green) random, and (blue) low-to-high.

0 3 6 9
Communication Round

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

Figure 6: Distributions of individual client model
accuracy vs. the communication round for Fashion-
MNIST. The proposed scheme (in red) conducts per-
round averaging among neighbors, whereas the ab-
lated setup (in blue) does not. Per-round averaging
significantly reduces the skewness of the distribution
of model performance.

dissimilarity in model weights would likely result in poor performance of the averaged model, we observe
that a moderate degree of variance can be beneficial. We posit that the NTK-based update steps generate
a more advantageous level of variance compared to baseline approaches, contributing to improved overall
performance.

0.00 0.01 0.02 0.03 0.04
Inter-Client Model Variance

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y

NTK-DFL
DFedAvgM
DFedAvg
D-PSGD

Figure 7: Relationship between model variance
and final test accuracy on Fashion-MNIST. Each
point represents a trial with distinct hyperparam-
eters. The plot reveals a positive correlation be-
tween model variance and accuracy, suggesting
that higher variance may benefit model averag-
ing in DFL to a certain extent. Notably, the
NTK-DFL approach demonstrates both higher
accuracy and greater model variance compared
to other methods.

Selection Algorithm Figure 5 demonstrates the results
of the selection algorithm for the final model aggrega-
tion. The selection algorithm is highly effective in the
heterogeneous setting. The effect is most notable in the
α = 0.1 setting, where the performance with the selection
algorithm significantly outperforms a random averaging
order and the lower-bound averaging order. The proposed
selection criterion requires the fewest clients to be aver-
aged to achieve the same level of accuracy in this highly
heterogeneous setting. In practical deployments, this has
implications for final-round averaging in a fully decentral-
ized setting. For example, clients may connect in a denser
final topology and prioritize averaging with neighbors
possessing a higher validation accuracy. This approach
could optimize the efficacy of the final aggregation step
while maintaining the decentralized nature of the system.

Per-round Averaging Ablation Study In Figure 6, we
perform an ablation study in which we remove the per-
round parameter averaging that is a part of the NTK-DFL
process. Here, clients forego the step of averaging their
weight vectors with their neighbors during each commu-

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

nication round. Instead, clients compute Jacobians with respect to their original weight vector and send these
to each of their neighbors (see Algorithm 3 in Appendix A). A massive distribution shift can be seen in
the figure, where the distribution in the ablated setting is clearly skewed into lower accuracies. In contrast,
NTK-DFL with per-round averaging demonstrates a much tighter distribution around a higher mean accuracy,
effectively eliminating the long tail of low-performing models. Per-round averaging in NTK-DFL serves as
a stabilizing mechanism against local model drift, safeguarding clients against convergence to suboptimal
solutions early in the training process. In other words, client collaboration in the form of per-round averaging
with neighbors ensures that no client lags behind in convergence. This is a particularly valuable feature in
decentralized federated learning scenarios where maintaining uniformity across a diverse set of clients with
heterogeneous data is a major challenge (Martı́nez Beltrán et al., 2023).

5 CONCLUSION AND FUTURE WORK

In this paper, we have introduced NTK-DFL, a novel approach to decentralized federated learning that
leverages the neural tangent kernel to address the challenges of statistical heterogeneity in decentralized
learning settings. Our work extends NTK-based training beyond centralized settings through novel studies in
Jacobian batching and datapoint subsampling, while discovering a unique synergy between NTK evolution and
decentralized model averaging that improves final model accuracy. Our method combines the expressiveness
of NTK-based weight evolution with a decentralized architecture, allowing for efficient, collaborative learning
without a central server. We reduce the number of communication rounds needed for convergence, which
may prove advantageous for high-latency settings or those with heavy encoding/decoding costs.

There are promising unexplored directions for NTK-DFL. For instance, extending the algorithm to training
models such as CNNs, ResNets (He et al., 2016), and transformers (Vaswani et al., 2017). Additionally, future
research could explore the application of NTK-DFL to cross-silo federated learning scenarios, particularly
in domains such as healthcare, where data privacy concerns and regulatory requirements often necessitate
decentralized approaches. Lastly, NTK-DFL may serve as a useful paradigm for transfer learning applications
in scenarios where a single, centralized source of both compute and data is not available.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25
Communication Round

0.70

0.75

0.80

0.85

0.90

0.95
Te

st
 A

cc
ur

ac
y

(a) FEMNIST

0 5 10 15 20 25
Communication Round

(b) α = 0.05 MNIST

0 5 10 15 20 25
Communication Round

NTK-DFL (Ours)
DFedAvg
DFedAvgM
D-PSGD
DisPFL

(c) α = 0.1 MNIST

Figure 8: Convergence of various methods on (a) FEMNIST, (b) Non-IID MNIST (α = 0.05), and (c) Non-
IID MNIST (α = 0.1). NTK-DFL consistently outperforms all baselines.

0 5 10 15 20 25
Communication Round

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y

NTK-DFL
DFedAvg

Figure 9: The effect of static vs. dynamic topology
on NTK-DFL. Solid lines correspond to a dynamic
topology, whereas dotted lines correspond to a static
topology. Both methods benefit from the dynamic
topology and NTK-DFL outperforms DFedAvg under
both topologies. Other baselines are not drawn but
perform similarly to DFedAvg.

0 5 10 15 20 25
Communication Round

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y

NTK-DFL
DFedAvg

Figure 10: The effect of different vs. identical weight
initialization. Solid lines correspond to the same
weight initialization for all clients, whereas dotted
lines correspond to different initialization. The con-
vergence of NTK-DFL is affected less than that of
DFedAvg. Other baselines are not drawn but perform
similarly to DFedAvg.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REFERENCES

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural tangent
kernel. The International Conference on Learning Representations, 2021.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cedric Renggli.
The convergence of sparsified gradient methods. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31,
2018.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. In Thirty-third Conference on Neural Information Processing
Systems, 2019.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan,
Virginia Smith, and Ameet Talwalkar. LEAF: A benchmark for federated settings, 2019.

Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. DisPFL: Towards communication-efficient
personalized federated learning via decentralized sparse training, 2022.

Eugene Golikov, Eduard Pokonechnyy, and Vladimir Korviakov. Neural tangent kernel: A survey, 2022.

I. J. Good. On the Application of Symmetric Dirichlet distributions and their mixtures to contingency tables.
The Annals of Statistics, 4(6):1159 – 1189, 1976. doi: 10.1214/aos/1176343649.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016. doi:
10.1109/CVPR.2016.90.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based framework for
federated learning analysis. In International Conference on Machine Learning, pp. 4423–4434. PMLR,
2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information Processing Systems, pp. 8580–8589, Red Hook,
NY, USA, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14:1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems, volume 30, 2017.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: When and why
the tangent kernel is constant. In Advances in Neural Information Processing Systems, volume 33, pp.
15954–15964, 2020.

Wei Liu, Li Chen, and Wenyi Zhang. Decentralized federated learning: Balancing communication and
computing costs. IEEE Transactions on Signal and Information Processing over Networks, 8:131–143,
2022. doi: 10.1109/TSIPN.2022.3151242.

Enrique Tomás Martı́nez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez, Sergio López Bernal,
Gérôme Bovet, Manuel Gil Pérez, Gregorio Martı́nez Pérez, and Alberto Huertas Celdrán. Decentralized
federated learning: Fundamentals, state of the art, frameworks, trends, and challenges. IEEE Communica-
tions Surveys; Tutorials, 25(4):2983–3013, 2023. doi: 10.1109/comst.2023.3315746.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and
Statistics, pp. 1273–1282. PMLR, 2017.

Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and Gautam
Srivastava. A survey on security and privacy of federated learning. Future Generation Computer Systems,
115:619–640, 2021. doi: https://doi.org/10.1016/j.future.2020.10.007.

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and communication-
efficient federated learning from non-i.i.d. data. IEEE Transactions on Neural Networks and Learning
Systems, 31(9):3400–3413, 2020. doi: 10.1109/TNNLS.2019.2944481.

Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. Federated learning with cooperating devices: A
consensus approach for massive iot networks. IEEE Internet of Things Journal, 7(5):4641–4654, 2020.
doi: 10.1109/JIOT.2020.2964162.

Yifan Shi, Li Shen, Kang Wei, Yan Sun, Bo Yuan, Xueqian Wang, and Dacheng Tao. Improving the model
consistency of decentralized federated learning. In Proceedings of the 40th International Conference on
Machine Learning, 2023.

I. Shiri, A. Vafaei Sadr, M. Amini, Y. Salimi, A. Sanaat, A. Akhavanallaf, B. Razeghi, S. Ferdowsi, A. Saberi,
H. Arabi, M. Becker, S. Voloshynovskiy, D. z, A. Rahmim, and H. Zaidi. Decentralized distributed
multi-institutional PET image segmentation using a federated deep learning framework. Clin Nucl Med, 47
(7):606–617, Jul 2022.

Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(4):4289–4301, 2023. doi: 10.1109/TPAMI.2022.3196503.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning. IEEE
Transactions on Neural Networks and Learning Systems, 34(12):9587–9603, 2023. doi: 10.1109/TNNLS.
2022.3160699.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Yaodong Yu, Alexander Wei, Sai Praneeth Karimireddy, Yi Ma, and Michael Jordan. TCT: Convexifying
federated learning using bootstrapped neural tangent kernels. Advances in Neural Information Processing
Systems, 35:30882–30897, 2022.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Kai Yue, Richeng Jin, Ryan Pilgrim, Chau-Wai Wong, Dror Baron, and Huaiyu Dai. Neural tangent kernel
empowered federated learning. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 25783–25803. PMLR, 17–23 Jul 2022.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021. doi: https://doi.org/10.1016/j.knosys.2021.106775.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural Information
Processing Systems, volume 32, 2019.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

A NTK-DFL ALGORITHMS

Algorithm 1 Consolidated Federated Learning Process

Require: A set of clients C
1: Initialize weights w(0)

i for each client i.
2: for each communication round k = 1 to K do
3: Initialize graph structure G(k) = (C, E(k)), specifying the neighbors N (k)

i for each client i.
4: Execute Algorithm 2 for Per-Round Parameter Averaging
5: Execute Algorithm 3 for Local Jacobian Computation and Sending
6: Execute Algorithm 4 for Weight Evolution
7: end for

Algorithm 2 Per-Round Parameter Averaging

Require: For each client i, a set of neighbors N (k)
i and initial weights w(k)

i
1: for each client i ∈ C in parallel do
2: Send w

(k)
i to all neighbors j ∈ N (k)

i

3: Receive w
(k)
j from all neighbors j ∈ N (k)

i

4: w̄
(k)
i ← 1

|N (k)
i |+1

(w
(k)
i +

∑
j∈N (k)

i
w

(k)
j)

5: Send aggregated weight w̄(k)
i back to all neighbors j ∈ N (k)

i
6: end for

Algorithm 3 Local Jacobian Computation and Sending Jacobians

Require: Each client i knows its neighborsN (k)
i and has access to local data Xi and the aggregated weights

w̄
(k)
j for each neighbor j ∈ N (k)

i .
1: for each client i ∈ C in parallel do
2: Compute the Jacobian J

(k)
i,i ≡ ∇wf(Xi; w̄

(k)
i) using the client’s own aggregated weight w̄(k)

i and
local data Xi.

3: for each neighbor j ∈ N (k)
i do

4: Compute the Jacobian J
(k)
i,j ≡ ∇wf(Xi; w̄

(k)
j) using the neighbor’s aggregated weight w̄(k)

j and
client’s local data Xi.

5: Send J
(k)
i,j , true label Yi, and function evaluation f(Xi; w̄

(k)
j) to neighbor j.

6: end for
7: end for

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

Algorithm 4 Weight Evolution

Require: Each client i has access to local data Xi, initial weights w̄(k)
i , and knows its neighbors N (k)

i
1: for each client i ∈ C after intra-client communication do
2: Compute local Jacobian tensor J (k)

i,i and receive J
(k)
j,i from each neighbor j

3: Construct tensor J (k)
i from {J (k)

ii } ∪ {J
(k)
ji | j ∈ N

(k)
i }

4: Compute local NTK H
(k)
i using J (k)

i :
5: for each data point pair (xm, xn) do
6: H

(k)
i,mn ← 1

d2
⟨J (k)

i (xm),J (k)
i (xn)⟩F

7: end for
8: for each timestep t = 1 to T do

9: f (k,t)(X i)← (I− e
ηt

Ñi
H

(k)
i)Y(k)

i + e
ηt

Ñi
H

(k)
i f (k)(X i)

10: w
(k,t)
i ←

∑d2

j=1(J
(k)
i,:j:)

TR
(k,t)
i,:j + w̄

(k)
i

11: end for
12: Select w(k+1,0)

i ← w
(k,t)
i with the lowest loss given the residual (f (k,t)(X i)−Yi)

13: end for

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 BASELINES

NTK-FL is the only centralized baseline that we compare with. We choose a part rate that ensures that the
busiest node in the centralized setting is no busier than the busiest decentralized setting. By busier, we mean
the degree of the node or number of clients communicating with it. We note that NTK-FL is not an upper
bound in this case due to the comparison being founded on node busyness. Evaluating NTK-FL in the same
setting as the table in Figure 2, NTK-FL converges to threshold accuracy in 73, 85, and 180 communication
rounds for heterogeneity settings IID, α = 0.5, and α = 0.1 respectively. D-PSGD is one of the first
decentralized, parallel algorithms for distributed machine learning that allows nodes to only communicate
with neighbors. DFedAvg adapts FedAvg to the decentralized setting, and DFedAvgM makes the use of
SGD-based momentum and extends DFedAvg. Both use multiple local epochs between communication
rounds, like vanilla FedAvg. DisPFL is a personalized federated learning approach that aims to train a global
model and personalize it to each client with a local mask. In order to make the comparision fair, we report the
accuracy of the global model on our test set.

B.2 HYPERPARAMETERS

We perform a hyperparameter search over each baseline and select the hyperparameters corresponding to
the best test accuracy. We use the α = 0.1 Fashion-MNIST test accuracy at communication round 30 as the
metric for selection. This is done because the majority of comparisons take place on Fashion-MNIST in the
non-IID setting. For D-PSGD, we use a learning rate of 0.1, and a batch size of 10 (local epochs are defined
to be one in this approach). For DFedAvg, we use a learning rate of 0.1, a batch size of 25, and 20 local
epochs. For DFedAvgM, we use a learning rate of 0.01, a batch size of 50, 20 local epochs, and a momentum
of 0.9. For DisPFL, we use a learning rate of 0.1, a batch size of 10, and 10 local epochs. Following (Dai
et al., 2022), we use the sparsity rate of 0.5 for DisPFL. As for the NTK-DFL, we use a learning rate of 0.01
and search over values t ∈ {100, 200, . . . , 800} during the weight evolution process.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

B.3 INTER-MODEL VARIANCE

We describe the inter-model variance between NTK-DFL clients in Figure 7. Here, the variance is calculated
as follows

V =
1

d2

d2∑
j=1

√√√√ M∑
i=1

[w̄ −wi]2j (6)

where we investigate the average per-parameter variance to normalize for the scale of each parameter among
clients.

B.4 FURTHER EXPERIMENTAL RESULTS

0 5 10 15
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

Regular
Erdos-Renyi
Ring

Figure 11: Convergence of NTK-DFL across different dynamic topologies, trained on Fashion-MNIST.
NTK-DFL is evaluated with (blue) a κ = 5 regular graph, (yellow) an Erdos-Renyi random graph with five
mean neighbors, and (green) a ring topology, where each client is connected to two neighbors. We observe
that NTK-DFL demonstrates steady convergence across different topology classes.

2 3 4 5 6 7
Number of Neighbors

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

Aggregated Model
Individual Client Models

Figure 12: NTK-DFL model accuracy as a function of neighbor count (κ), trained on Fashion-MNIST.
Notably, (blue) the aggregated model accuracy across NTK-DFL clients remains consistent, even as network
sparsity varies. This stability persists despite a significant decline in (yellow) mean individual client test
accuracy as the number of neighbors decreases.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

PLEASE NOTE: All sections (Appendix D and E) and figures below this line are new. We leave unhighlighted
for sake of readability.

C ADDITIONAL DETAILS ON WEIGHT EVOLUTION

In implementation, computing the matrix exponential e
− ηt

Ñi
H

(k)
i in Equation 4 to evolve weights can be

computationally expensive. In practice, the weights are evolved according to the more general differential
equation from which Equation 4 is derived, reliant upon the linearized model approximation f(X i; w̄

(k,t)
j) ≈

f(X i; w̄
(k,0)
j) +∇wf(X i; w̄

(k,0)
j)(w̄

(k,t)
j − w̄

(k,0)
j). The differential equation is as follows

d

dt
f(X i; w̄

(k,t)
j) = −ηH(k)

j ∇fL

Here, L is the loss function. For example, for a half mean-squared error (MSE) loss, term on the right
becomes the residual matrix ∇fL = f(X i; w̄

(k,t)
j)−Yi. During weight evolution, a client j evolves their

neighboring function evaluation from the initial condition f(X i; w̄
(k,0)
j) to the time-evolved f(X i; w̄

(k,t)
j)

using a differential equation solver and the differential equation above. To implement Equation 5, we use
a process similar to Yue et al. (2022) where the initial client residual is evolved over a series of timesteps
specified by the user. For user-specified timesteps, the loss at that time is found using the evolved residual.
Then, the best-performing weights are evolved using the left side of Equation 5 and selected for the next
communication round.

D DISCUSSION OF NETWORK OVERHEAD

While analysis of memory and communication overhead are not a central theme of this paper, we include
strategies to mitigate both forms of overhead for practical deployment. A thorough analysis of optimization
and parallelization is out of the scope of this work and we leave it to future research.

D.1 JACOBIAN BATCHING

We introduce Jacobian batching to address potential memory constraints in NTK-DFL implementations.
For scenarios involving dense networks or large datasets, clients can process their local datasets in smaller
batches, reducing memory complexity from O(Nid2d) to O(Nid2d/m1), where m1 is the number of batches.
Clients compute and transmit Jacobians for each batch separately, evolving their weights multiple times per
communication round. This approach effectively trades a single large NTK H ∈ RN×N for m1 smaller
NTKs Hm1

∈ RN/m1×N/m1 that form block diagonals of H, where N represents the total number of data
points between client i and its neighbors Ni. While some information is lost in the uncomputed off-diagonal
entries of H, this is mitigated by the increased frequency of NTK evolution steps. Figure 13 demonstrates this
phenomenon, where an increasing batch number m1 actually leads to improved convergence. This complexity
reduction enables clients to connect in a denser network for the same memory cost.

D.2 COMMUNICATION COST

Compared to traditional weight-based approaches that communicate a client’s parameters wi each round,
NTK-DFL utilizes Jacobian matrices to enhance convergence speed and heterogeneity resilience. This tensor
has memory complexity O(Nid2d), where Ni denotes the number of data points between client i and its
neighborsNi, d is the model parameter dimension, and d2 is the output dimension. We propose the following

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

strategies to improve the communication efficiency of NTK-DFL while maintaining convergence properties
in heterogeneous settings.

Data Subsampling We introduce an approach where clients sample a 1/m2 fraction of their data each
round for NTK evolution. Clients follow the protocol described in Section 3.2, but exchange Jacobian matrices
of reduced size. As demonstrated in Figure 14, moderate values of m yield light performance degradation,
validating this communication reduction strategy.

Jacobian Compression We employ several techniques to reduce Jacobian tensor dimensionality. First,
we apply top-k sparsification, zeroing out elements with the smallest magnitude (Alistarh et al., 2018). The
remaining non-zero values are quantized to b bits. Additionally, we introduce a shared random projection
matrix P ∈ Rd1×d′

1 generated from a common seed, creating projections Zi = XiP that reduce input
dimension from d1 to d′1. This combination of techniques maintains convergence properties while significantly
reducing communication costs. Note that similar compression schemes applied to weight-based approaches
lead to significant degradation in performance (Yue et al., 2022). Figure 15 illustrates the relative differences
in communication load for a different combinations of the techniques above, with a sparsification of 0.5,
quantization to 6 bits, a sampling of m2 = 4, and a projection to d′1 = 200 for the full optimization curve.
In Figure 16, we see the communication comparison of NTK-DFL updates with less expressive, DFedAvg
weight updates. The communication-optimized NTK-DFL converges in 3.9 times fewer communication
rounds compared to DFedAvg (19 rounds for NTK-DFL vs. 75 rounds for DFedAvg). However, with more
expressive updates than DFedAvg, it uses 7.5 times as many bits (195 MB for NTK-DFL vs. 26 MB for
DFedAvg). This enforces the idea that NTK-DFL is especially useful in scenarios where convergence in few
communication rounds is important, such as those with non-negligible encoding and decoding delays.

E RECONSTRUCTION ATTACK

While privacy preservation is not the primary focus of this work, we conduct a brief analysis of data privacy
in NTK-DFL. Following the reconstruction attack method of Zhu et al. (2019), we evaluate the feasibility
of reconstructing client data from transmitted Jacobian matrices under varying compression levels. Our
experiments range from basic top-k sparsification with sparsity 0.25 to combined sparsification with random
projection to dimension d′1 = 200. Figure 17 illustrates that client data reconstruction becomes increasingly
difficult when a random projection is additionally applied to the Jacobian matrices.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

10 20 30
Communication Round

0.750

0.775

0.800

0.825

0.850
Te

st
 A

cc
ur

ac
y

m1 = 2
m1 = 4
m1 = 6
m1 = 8

Figure 13: Test accuracy of NTK-DFL vs. commu-
nication round for various Jacobian batch numbers
m1, with higher m1 values denoting more batches
(Fashion-MNIST, α = 0.1). We observe a general,
counterintuitive increase in test accuracy with an in-
creased number of batches.

10 20 30
Communication Round

0.750

0.775

0.800

0.825

0.850

Te
st

 A
cc

ur
ac

y

m2 = 2
m2 = 4
m2 = 6
m2 = 8

Figure 14: Test accuracy of NTK-DFL vs. communi-
cation round for sampling divisors m2. Different from
Jacobian batching, only a 1/m2 fraction of client data
is selected each communication round. We observe a
slight decrease in test accuracy with increased m2.

101 102 103 104

Communication Load (MB)
0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

Sparse
Sparse + Sample
Sparse + Sample + Project

Figure 15: Comparison of NTK-DFL variants with
progressive communication optimizations. Data sam-
pling and projection technique provides compound-
ing reductions in communication load compared to
sparsification alone, while the fully optimized variant
demonstrates significantly lower communication re-
quirements at a comparable test accuracy.

0 20 40 60
Communication Round

0

50

100

150

200
Co

m
m

. L
oa

d
(M

B) NTK-DFL
DFedAvg

Figure 16: Comparison of communication trade-off
between NTK-DFL and DFedAvg across accuracy
thresholds. While NTK-DFL achieves convergence
in fewer communication rounds than DFedAvg, its
more expressive parameter updates require a higher
communication volume per round.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Original Image Sparsification d ′1 = 500

d ′1 = 400 d ′1 = 300 d ′1 = 200

Figure 17: Reconstruction attack of client data from Jacobian matrices for various levels of compression. For
the image corresponding to sparsified matrices (the middle image of the first row), no random projection is
done. We observe the ability to reconstruct a very noisy version of client data. For the other images, we use
sparsification and a random projection to dimension d′1. We observe an inability to reconstruct client data
when the random projection is additionally applied.

20

	Introduction
	Related Work
	Proposed Method: NTK-Based Decentralized Federated Learning
	Problem Statement
	Communication Protocol
	Weight Evolution

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	NTK-DFL Algorithms
	Additional Experimental Details
	Baselines
	Hyperparameters
	Inter-Model Variance
	Further Experimental Results

	Additional Details on Weight Evolution
	Discussion of Network Overhead
	Jacobian Batching
	Communication Cost

	Reconstruction Attack

