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Abstract

We investigate Reinforcement Learning from Human Feedback (RLHF) in the
context of a general preference oracle. In particular, we do not assume the existence
of a reward function and an oracle preference signal drawn from the Bradley-Terry
model as most of the prior works do. We consider a standard mathematical
formulation, the reverse-KL regularized minimax game between two LLMs for
RLHF under general preference oracle. The learning objective of this formulation is
to find a policy so that it is consistently preferred by the KL-regularized preference
oracle over any competing LLMs. We show that this framework is strictly more
general than the reward-based one, and propose sample-efficient algorithms for
both the offline learning from a pre-collected preference dataset and online learning
where we can query the preference oracle along the way of training. Empirical
studies verify the effectiveness of the proposed framework.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique in
adapting machine learning to leverage relative feedback, especially in aligning Large Language
Models (LLMs) with human values and preferences [14, 90]. Notable examples include ChatGPT
[49], Claude [2], and Bard [29]. The primary goal of RLHF in the context of LLMs is to adjust the
responses generated by LLMs so that they are more favorably received by human evaluators.

Inspired by the standard LLM alignment workflow [50, 5, 60], we characterize an LLM by a policy
π, which takes a prompt x ∈ X and produces a response a ∈ A from the distribution π(·|x). In a
typical LLM training pipeline [50, 60, 49], the tuning process begins with a pretrained model, which
is subsequently fine-tuned using specialized and instructional data to produce an initial model π0.
The initial model π0 is then aligned with a prompt set from some distribution x ∼ d0. The key
component in RLHF is the General Preference Oracle, which is mathematically defined as follows.

Definition 1 (General Preference Oracle). There exists a preference oracle P : X ×A×A → [0, 1],
and we can query it to receive the preference signal:

y ∼ Ber
(
P(a1 ≻ a2|x, a1, a2)

where y = 1 means a1 is preferred to a2, and y = 0 means that a2 is preferred.
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Instead of directly optimizing against the preference oracle P, the existing prevalent RLHF framework
is reward-based [50, 60], which consists of three steps: (1) preference data collection, (2) reward
modeling, and (3) policy optimization. Specifically, the preference dataset D consists of multiple
tuples of the form (x, a1, a2, y), whose collection process can be modeled as:

x ∼ d0, a
1 ∼ π1

D, a2 ∼ π2
D, y ∼ Ber

(
P(a1 ≻ a2|x, a1, a2)

)
, (1)

where π1
D and π2

D are behavior policies and are typically set as π0 [60, 43] or some powerful closed-
form LLMs [16]. The second step is reward modeling, which is the origin of the name “reward-based”.
This step can be viewed as a kind of inverse RL [89], which models some difficult-to-specify goals
(preferred by the human or AI evaluators) as a scalar reward signal. Specifically, the Bradley-Terry
(BT) model [9], a framework widely adopted in Ouyang et al. [50], Bai et al. [4], Touvron et al.
[60], Rafailov et al. [53], Xiong et al. [72], assumes that there exists a ground-truth reward function
P ∗ and the preference model satisfies:

P(a1 ≻ a2|x, a1, a2) =
exp(R∗(x, a1))

exp(R∗(x, a1)) + exp(R∗(x, a2))
= σ

(
R∗(x, a1)−R∗(x, a2)

)
, (2)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function. Then, the reward model is taken as
the Maximum Likelihood Estimation (MLE) of the BT model on the preference dataset D [e.g.,
51, 48, 50, 4, 60] and is used in subsequent policy optimization steps to provide a signal for algorithms
like Proximal Policy Optimization [56]. Despite its successes, the existence of a reward function
and the BT model are strong assumptions, which may not fully capture the complicated human
preferences. In particular, the BT model assumes that human preference is transitive, which means
that if we prefer A to B (P(A ≻ B|x,A,B) > 0.5) and we prefer B to C, then it automatically
holds that we prefer A to C. This assumption, however, is contradicted by evidence of intransitivity
in human decision-making [62, 45]. This limitation is particularly pronounced if we consider the
population-level preferences, where the ultimate preference signal is aggregated across diverse human
groups [45]. This may further be evidenced that in the practical RLHF, the accuracy of the learned
BT model is around 70% [4, 60, 16], suggesting the challenges in approximating the complicated
human preference by BT model. While there are some recent efforts to bypass reward modeling
[53, 85], they are still fundamentally derived from the reward-based preference model and suffer
from the aforementioned issues. In contrast, the general preference oracle defined in Definition 1

Table 1: Comparison of the test accuracy between the BT-based reward model and the preference
model. The reward model and preference model are trained with the same base model and preference
dataset, where the details are deferred to Section 5. We evaluate the model on Reward-Bench [39].

Base Model Method Chat Chat Hard Safety Reasoning
Gemma-2B-it BT 95.0 40.8 81.2 74.2
Gemma-2B-it Preference 96.0 40.5 82.8 80.7

LLaMA3-8B-it BT 99.4 65.0 87.7 87.8
LLaMA3-8B-it Preference 98.9 65.2 89.5 94.8

is strictly more general than the BT model and can capture a more complicated preference pattern
from the definition itself. It allows an intransitive preference model and can further capture the
preference feedback from AI [5], with a notable example of GPT-4 [49], which is widely used for
model evaluations in practice and may more accurately reflect real user experience [60, 18, 53, 72].
Moreover, from a practical side, the preference model construction tends to be more efficient than
the reward function in terms of ranking accuracy. This is evidenced by the fact that the preference
model, pairRM with 0.4B parameters [34], performs comparably to a LLaMA2-13B-based reward
model across a diverse set of preference targets [16]. As a case study, we train a reward model
based on the Bradley-Terry (BT) model and a preference model with the same starting checkpoint
Gemma-2B-it [59] and preference dataset8, with results presented in Table 1 and the training details
are deferred to Section 5. As we can see, the preference model achieves much higher test accuracy
in the reasoning task while maintaining comparable results in other tasks. Meanwhile, the training
set we use is rather limited in the reasoning data (math and coding), so the reasoning task can be

8We remark that the mixture of the open-source preference dataset and hyper-parameters are mainly tuned
for the BT model with > 2000 A100 hours, while the preference model adopts most of them directly. Therefore,
we expect that the preference model maybe even better with a more refined hyper-parameter search.
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viewed as an out-of-distribution task. In this sense, the preference model may also provide a better
generalization compared to the reward model. The results also extend to another case study with
LLaMA3-8B-instruct, where the preference model shows promising potential in the improvement
of reasoning tasks. We refer interested readers to check Zhao et al. [85], Liu et al. [43] for further
examples with similar observations. The advantage in ranking accuracy is not only directly beneficial
for the algorithms that depend on ranking information [18, 30], but also improves the performance of
algorithms derived from the reward-based framework (i.e., Bradley-Terry model), as evidenced by
the results in the study of (iterative) DPO [72, 31].

Given all these considerations, our study focuses on exploring the theoretical properties of RLHF
under the general preference oracle (Definition 1), with the goal of advancing practical algorithmic
designs. We summarize our contributions as follows:

• We make the first attempt to study the theoretical learnability of RLHF under general
preference oracle with KL regularization, in the offline setting with a pre-collected preference
dataset and the online setting where we can query human feedback along the way of training,
which demonstrates the potential of reward-model-free learning under general preference;

• We propose sample-efficient algorithms in both the offline setting and online setting and
establish the finite-sample theoretical guarantees under standard coverage and exploration
conditions;

• We show that the theoretical insights can be used to guide practical algorithmic designs with
a reasonable approximation of the computational oracle.

2 Problem Formulation

In this section, we formulate the RLHF with general preference learning. Suppose that there exists a
preference function P ∗ : X ×A×A → R which represents the prefererence of one action a1 over
another a2 given a prompt x: P ∗(x, a1, a2) = P(a1 ≻ a2|x, a1, a2). In practical applications, we
want to make the resulting LLM π close to π0 [90, 50, 4, 53]. Therefore, we adopt the following
KL-regularized objective:

J(π1, π2) = Ex∼d0Ea1∼π1,a2∼π2

[
P ∗(x, a1, a2)− η−1DKL(π

1(·|x)∥π0(·|x)) + η−1DKL(π
2(·|x)∥π0(·|x))

]
.

(3)
One primary reason to consider the regularized target is that the constructed preference model is
only locally accurate, i.e., it performs well when there is little distribution shift. For instance, if the
preference model is fine-tuned on a preference dataset collected by the initial model π0, it improves
the in-distribution generalization, but the resulting model often performs poorly out-of-distribution
[10]. Meanwhile, even if we require human labelers to give feedback along the way, the choices of
the labelers may not be representative enough or the labelers can make mistakes due to limited time,
attention, or care [27]. Moreover, the KL divergence in the target ensures that the resulting policy
is stochastic instead of deterministic (given a suitable initial checkpoint), thereby more accurately
reflecting the dynamics of generative language models.

We choose P ∗ as the target mostly for historical reasons [22, 65]. A choice is the relative preference
log(P ∗(x, a1, a2)/(1−P ∗(x, a1, a2))), which is equal to R∗(x, a1)−R∗(x, a2) when the BT model
holds so that (3) becomes two decoupled regularized-reward maximization problems in this case and
automatically reduces to the setting considered in the previous work Xiong et al. [72]. While we do
not handle this target directly, the analysis techniques presented in this paper readily apply to it with
slight modifications.

Nash Equilibrium and Best Response. Without loss of generality, we restrict our attention to the
policy class Π consisting of the policies with the same support as π0 and denote the unique Nash
equilibrium (known as the Minimax Winner [57, 38, 24] or the von Neumann Winner [22]) as the
solution of the following minimax problem as:

(π1
∗, π

2
∗) = (π∗, π∗) = argmax

π1∈Π

argmin
π2∈Π

J(π1, π2), (4)

where the Nash policies of two players coincide as we prove in Lemma 4. In the rest of this paper, we
still use the notation (π1

∗, π
2
∗) to distinguish between the max-player and min-player. Accordingly,

we refer to the first LLM π1 as the max-player, while the second LLM π2 is the min-player. We also
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define the notion of best response. For function J and policy π1, the best response to π1 is defined as
argminπ2∈Π J(π1, π2) and the value is denoted by J(π1, †) = minπ2∈Π J(π1, π2). Similarly, for
π2, we have J(†, π2) = maxπ1∈Π J(π1, π2). In particular, since π1

∗ and π2
∗ are the Nash equilibrium,

they are the best response to each other.

Function Approximation. Suppose that we have access to a function class P ⊂ (X ×A×A → R)
(e.g. neural network), which provides us with a set of candidates to approximate the P ∗, and also
the preference functions P ∈ P satisfies P (x, a1, a2) = 1− P (x, a2, a1). We make the following
assumptions on the class P .
Assumption 1. Assume that P is finite and the capacity of the class is large enough so that P ∗ ∈ P .

The finite class assumption is for a clear presentation and the results readily generalize to an infinite
class with a bounded covering number by the standard discretization technique. We define a theoretical
computation oracle as follows and defer the practical implementations to the experiment section.
Definition 2 (Nash Equilibrium Oracle). For a given preference function P ∈ P and a reference
policy π0, we can compute the Nash Equilibrium policy

πP = argmax
π1∈Π

min
π2∈Π

Ex∼d0Ea1∼π1,a2∼π2

[
P (x, a1, a2)− η−1 log

π1(a1|x)
π0(a1|x) + η−1 log

π2(a2|x)
π0(a2|x)

]
. (5)

Learning Objective. The goal is to find an ϵ-approximate Nash policy π̂1 for the max-player:
J(π1

∗, π
2
∗)− J(π̂1, †) = J(π1

∗, π
2
∗)−min

π′
J(π̂1, π′) ≤ ϵ,

which means that the max-player is consistently preferred by the KL-regularized preference in the
face of any competing policy π′ up to a relaxation of ϵ. To stress the non-symmetric structures of
the two players, we refer to the max-player as the main agent, which aims to find her ϵ-approximate
Nash policy, and refer to the min-player as the enhancer, which is designed to facilitate the main
agent’s learning. In particular, when η is large enough so that the KL is roughly omitted, then, we
can further obtain that

min
π2∈Π

Ex∼d0
Ea1∼π̂1,a2∼π2P ∗(x, a1, a2) ≥ 0.5− ϵ.

In this case, the obtained policy π̂1 is consistently preferred by the preference oracle P ∗ against any
competing policies. We mention in passing that the KL penalty coefficient η > 0 exhibits a trade-off
between being preferred by the oracle P ∗ and staying close to the initial model π0, and reflects the
degree of our belief in the oracle P ∗. In practice, η is typically treated as a hyper-parameter and is
adjusted by parameter search [32].

Compared to the previous literature formulating the preference learning as finding a Nash equilibrium,
although we focus on optimizing the policy for the max-player, we can also have a duality gap
guarantee because of the symmetry of the objective function: J(π1, π2) = 1−J(π2, π1). To see this,
we decompose the duality gap into the suboptimality for the max-player π̂1 and the min-player π̂2:

J(†, π̂2)− J(π̂1, †) =J(†, π̂2)− J(π1
∗, π

2
∗) + J(π1

∗, π
2
∗)− J(π̂1, †)

=J(π1
∗, π

2
∗)− J(π̂2, †) + J(π1

∗, π
2
∗)− J(π̂2, †).

If we obtain such an ϵ-suboptimal max player π̂1, by taking the min-player π̂2 = π̂1, the duality gap
J(†, π̂2)− J(π̂1, †) is naturally bounded by 2ϵ.

Notations. We use the short-hand notation π = (π1, π2) when there is no confusion. We use
P (x, π1, π2) to represent Ea1∼π1,a2∼π2 [P (x, a1, a2)]. We use J(x, π1, π2) to denote the objective
function in (3) without the expectation over the prompt x ∼ d0. Let σ(x) denote the sigmoid function
1/(1 + e−x). We also provide a notation table in Table 4 to improve the readability of this paper.

Due to space constraints, the review of the related literature is deferred to Appendix 7.

3 Improved Algorithms in Offline Setting

3.1 Setup

In the offline setting, our goal is to learn a good policy from a pre-collected dataset Doff =
{(xi, a

1
i , a

2
i , yi)}ni=1 without further query with the oracle P, where comparison sample is assumed
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Algorithm 1 Pessimistic Equilibrium Learning from Human Feedback
1: Input: Dataset Doff = {xi, a

1
i , a

2
i , yi}ni=1, preference space P , policy class Π, parameter η, β > 0.

2: Compute the MLE P̂ = argminP∈P ℓDoff (P ).
3: Construct version space

P̂ =
{
P ∈ P :

n∑
i=1

(P (xi, a
1
i , a

2
i )− P̂ (xi, a

1
i , a

2
i ))

2 ≤ β2/2
}
. (8)

4: Compute the best policy under the conservative value estimation

π̂1 = argmax
π1∈Π

min
π2∈Π

min
P∈P̂

Ex∼d0Ea1∼π1,a2∼π2

[
P (x, a1, a2) + η−1 ln

π0(a
1|x)

π1(a1|x) − η−1 ln
π0(a

2|x)
π2(a2|x)

]
.

(9)
5: Output: π̂1.

to be independently collected as in (1). We measure the suboptimality of the learned policy π̂1 by the
gap between the Nash value and the best response value:

J(π∗
1 , π

∗
2)− J(π̂1, †), (6)

where the KL-regularized function J is defined in (3). Similar to the reward-based framework [50],
one natural approach is a two-staged method: (1) Construct an empirical preference model (reward
model in the literature) by maximizing the log-likelihood function:

ℓDoff (P ) =
∑

(x,a1,a2,y)∈Doff

y logP (x, a1, a2) + (1− y) logP (x, a2, a1); (7)

(2) Solve the policy by plugging the learned preference model P̂ into the Nash Equilibrium Oracle 2.
However, this framework typically leads to severe reward over-optimization issue [26], meaning
that while the model is preferred by the learned P̂ , it may not achieve good performance under the
evaluation of P ∗. This is because, with finite Doff drawn from some behavior policy, it is unlikely
to provide an accurate estimation for all the prompt-response pairs. Therefore, imposing heavy
optimization pressure toward P̂ will push the model to exploit these unreliable estimations to chase
for a high proxy metric, thus leading to a worse performance under the ground truth P ∗.

3.2 Learning with Pessimism

The recent advances in the offline RL theory have demonstrated that the principle of pessimism with
a conservative estimation is statistically efficient for offline learning across a diverse set of scenarios
[35, 54, 69, 79, 86, 17, 71, 84]. In this section, we connect the KL-reversed minimax game in (3)
with offline RL by pessimism via version space9.

We introduce our algorithm, Pessimistic Equilibrium Learning from Human Feedback (PELHF) in
Algorithm 1. Given an offline dataset Doff , we first obtain the maximum likelihood estimation (MLE)
P̂ by maximizing (7). Rather than directly planning with this empirical P̂ , we form a version space
P̂ that contains P ∗ ∈ P̂ with a high probability under a suitable choice of β, as we show in Lemma
1. For each policy π1, we take the minimum preference function over P̂ and the best responded π2 as
its conservative value estimation:

Ĵoff(π
1) = min

π2∈Π
min
P∈P̂

Ex∼d0Ea1∼π1,a2∼π2

[
P (x, a1, a2) + η−1 ln

π0(a
1|x)

π1(a1|x) − η−1 ln
π0(a

2|x)
π2(a2|x)

]
.

Then, we solve the minimax game concerning this conservative value estimator. With this pessimistic
modification, the resulting algorithm enjoys the following theoretical guarantee.
Theorem 1. [Proof] If Assumption 1 holds, and we set λ = log(|P|/δ) and β2 = 2 log(|P|/δ), then,
with probability at least 1− δ, the output policy of Algorithm 1 satisfies

J(π∗
1 , π

∗
2)− J(π̂1, †) ≤ 4β

√
C(π1

∗, πD,P)/n.

where the coverage coefficient

C(π1
∗, πD,P) = max

π2∈Π
sup
P∈P

(Ex∼d0 [P (x, π1
∗, π

2)− P̂ (x, π1
∗, π

2)])2

Ex∼d0,a1∼π1
D

,a2∼π2
D
(P (x, a1, a2)− P̂ (x, a1, a2))2

.

9We introduce another algorithm achieving pessimism via uncertainty bonus construction, see Appendix C.2.
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This theorem shows that the suboptimality gap depends on how the target (π1
∗, π

2) is covered by the
offline dataset, where π2 is maximized over the policy set Π. This coverage coefficient resembles
the unilateral coverage10 for Markov games [17, 86]. Then, a natural question is whether a good
coverage condition (C(π1

∗, πD,P) is small) is practical in the context of LLMs. Unfortunately, since
the response is usually long in practice, the distribution shift between policies is also very large. We
summarize some observations here. First, along the way of the RLHF training, the average density
ratio π(a|x)/π0(a|x) > exp(25) as reported in Figure 13 of Bai et al. [4]. See similar results of
rejection sampling fine-tuning [18] and DPO [53]. Second, for a case study, we use the Gemma-7B-it
as the behavior policy to collect data for aligning Gemma-2B-it [59] with 15k prompt from [16]. Then,
we calculate the average KL divergence between Gemma-7B-it and Gemma-2B-it as 456.4. This
evidence indicates that the coverage coefficient probably explodes in realistic scenarios. Therefore, it
is unlikely to expect that we can learn the optimal policy from a pre-collected dataset. This motivates
us to consider the online setting, where we can further query the preference oracle during the training
to enrich the dataset thus enhancing our models continuously.

4 Iterative RLHF with Online Exploration

4.1 Setup of Iterative RLHF

The major difference between the online and offline settings is that online algorithms can further query
the preference oracle P ∗ along the way of training. Since updating the LLMs is expensive, we consider
the batch online setting for a sparse policy update. Specifically, for each batch t ∈ [T ], we first update
the policy pair (π̂1

t , π̂
2
t ) based on the historical information collected so far. Then, we collect m tuples:

we sample a random prompt by xt,i ∼ d0, collect two responses by (a1t,i, a
2
t,i) ∼ (π̂1

t , π̂
2
t ), and query

the preference signal yt,i ∼ Ber(P ∗(xt,i, a
1
t,i, a

2
t,i)). Here the batch size m is usually very large

compared to the typically adopted mini-batch update. To distinguish this from the sequential online
setting where we update policy after collecting a single preference pair, we refer to this learning
paradigm as the iterative RLHF.

4.2 Learning with Exploration

The primary advantage of online learning is that we can strategically choose the behavior policies in
each iteration to improve the coverage of the collected data, which is referred to as the exploration in
the literature. To achieve this goal, we need to quantify the data uncertainty to guide the exploration
direction. To this end, we present the notions of information ratio and eluder coefficient.

Information Ratio and Eluder Coefficient. Distinct from the offline setting where we assume the
coverage condition of a pre-collected dataset Doff , online exploration makes it possible to upper
bound the suboptimality by the complexity of the function space. We leverage the notion of the eluder
coefficient, which limits the generalization from visited state-action distributions to unseen parts.

Definition 3 (Information Ratio and Eluder Coefficient). At round t, given an estimation P̂ ∈ P , we
define the information ratio for any two policy π1, π2 as

Γt(λ, π
1, π2) = sup

P∈P

|Ex∼d0 [P (x, π1, π2)− P̂ (x, π1, π2)]|√
λ+

∑t−1
s=1 Exs∼d0,a1

s∼π̂1
s ,a

2
s∼π̂2

s
(P (xs, a1

s, a2
s)− P̂ (xs, a1

s, a2
s))2

.

Then, the eluder coefficient is given by d(P, λ, T ) := supπ1
1:T ,π2

1:T

∑T
t=1 min(1, (Γt(λ, π

1
t , π

2
t ))

2).

The information ratio and eluder coefficient considered here have also been adopted in the literature
[e.g., 64, 28, 70, 74, 1]. Essentially, the information ratio compares the out-of-sample error on the
unseen data with the in-sample error measured on the historical data, and can be interpreted as the
worst-case ratio between them (as we take supreme over all possible P ∈ P). Meanwhile, the eluder
coefficient limits the extent to which we can be “surprised” by the new out-of-sample distributions,
given the historical data collected so far. The uncertainty for the preference model aligns with the
uncertainty for the BT model under boundedness conditions, which is illustrated in the following
example. We defer the details to Appendix D.1.

10In Appendix C.3, we show that with an improved analysis, Algorithm 1 enjoys a refined coverage condition,
similar to the coverage notion in [84].
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Example 1 (Uncertainty in Bradley-Terry model with linear reward). Suppose the reward func-
tion can be embedded into a d-dimensional vector space {r(x, a) = ⟨θ, ϕ(x, a)⟩ : θ ∈
Rd, ∥θ∥ ≤ B, ∥ϕ(x, a)∥ ≤ 1}. Then, if we define the covariance matrix as Σt =∑t−1

s=1 Ex∼d0,a1∼π̂1
s ,a

2∼π̂2
s
(ϕ(x, a1)− ϕ(x, a2))⊤(ϕ(x, a1)− ϕ(x, a2)) + λ(1 + eB)2I, we have

Γt(λ, π
1, π2) ≤ (1 + eB)∥ϕ(x, π1)− ϕ(x, π2)∥

Σ−1
t

.

Algorithm 2 Optimistic Equilibrium Learning from Human Feedback with Enhancer
1: Input: Preference space P , policy class Π, parameter η, λ > 0.
2: for t=1,. . . ,T do
3: Exploitation with the main agent: compute the MLE P̂t with ℓD1:t−1 defined in (7) and compute Nash

equilibrium by calling the Nash equilibrium oracle 2:
π̂1
t = argmax

π1∈Π

min
π2∈Π

Ex∼d0,a1∼π1,a2∼π2

[
P̂t(x, a

1, a2) + η−1 log
π0(a

1|x)
π1(a1|x) − η−1 log

π0(a
2|x)

π2(a2|x)

]
,

(10)
4: Exploration with the enhancer: compute enhancer to maximize the uncertainty:

π2
t = argmax

π2∈Π

Γ̃m
t (λ, π̂1

t , π
2) := sup

P∈P

|Ex∼d0 [P (x, π̂1
t , π

2)− P̂t(x, π̂
1
t , π

2)]|√
λ+ 1

m

∑t−1
s=1

∑m
j=1(P (xs,j , a1

s,j , a
2
s,j)− P̂t(xs,j , a1

s,j , a
2
s,j))

2

,

(11)
5: Collect Dt = {(xi, a

1
i , a

2
i , yi)}mi=1 by xi ∼ d0, a

1
i ∼ π̂1

t (·|xi), a2
i ∼ π̂2

t (·|xi) and yi ∼ Ber
(
P(a1

i ≻
a2
i |x, a1

i , a
2
i )
)
;

6: end for
7: Output: the best policy in (π1

1:T ) by a validation set.

We refer interested readers to Du et al. [20], Zhong et al. [87], Xie et al. [70] for the extensive
examples when d(P, λ, T ) can have a sub-linear dependency on T . We are now ready to present the
algorithm for the online setting, as summarized in Algorithm 2. Specifically, for each iteration, the
main agent exploits the information contained in the data collected so far by computing the MLE P̂t

and solving the minimax game with respect to it to get π̂1
t . The enhancer, however, aims to facilitate

the main agent’s learning by maximizing the uncertainty relative to the π̂1
t . Finally, we use the policy

pair to collect m preference pairs and query oracle P ∗ to get the preference signals. Notably, to
facilitate the computation for the main agent, instead of adding optimism to the value function, we
impose the exploration role on the enhancer. This choice turns out to be important when we move
toward practical algorithms with reasonable approximations, as we detail in Section 5. We now
present the main theoretical guarantee for Algorithm 2.
Theorem 2. [Proof] Under Assumption 1, for any ϵ > 0, if we set the total iterations T = min{n ∈
N+ : n ≥ 2d(P, λ, n)}, batch size m = 18T log(2T |P|/δ)/ϵ2, β =

√
2T log(2T |P|/δ)/m, and

λ = 2T log(2T |P|/δ)/m for Algorithm 2, then, with probability at least 1−δ, there exists a t0 ∈ [T ],

J(π1
∗, π

2
∗)− J(π̂1

t0 , †) ≤ ϵ.

The theorem states that with suitable hyper-parameter choices, after T iterations (up to log factors),
we can find an ϵ-approximate Nash policy π̂1

t0 for the max-player. Here T depends on the eluder
coefficient that is intrinsic to the preference model and characterizes the complexity of the problem.

Key Ideas. We present a brief discussion of the key analysis ideas. Similar to Lemma 1, the MLE P̂
ensures a controllable in-sample error (with details in the Appendix D). Recalling that the uncertainty
bonus is essentially the worst-case ratio between the out-of-sample error (our learning target) and
the in-sample error, to finally bound the out-of-sample error, we need to explore each direction
where we are uncertain about so that the average uncertainty bonus is sufficiently small. Since the
main agent is greedy (takes the best guess we can obtain so far), the enhancer plays the exploration
role by maximizing the uncertainty relative to the π̂1

t . Then, since the eluder dimension is finite:∑T
t=1 min

(
1, (Γt(λ, π̂

1
t , π̂

2
t ))

2
)
≤ d(P, λ, T ), there exists at least a t0 ∈ [T ] such that the value at

t0 is smaller or equal to the average value:

min
(
1, (Γt(λ, π̂

1
t , π̂

2
t ))

2
)
≤ d(P, λ, T )/T ≤ 1/2.

Hence, with a proper m, we can obtain the result of Theorem 2.

7



In practice, searching for the most uncertain policy in the whole policy space can be challenging
and the enhancer policy itself does not enjoy any theoretical guarantee. We may slightly modify
Algorithm 2 by restricting the exploration step to the following subset

Πt = {π ∈ Π : η−1Ex∼d0
DKL(π(·|x), π̂1(·|x)) ≤ β(Γ̃m

t (λ, π̂1, π) + Γ̃m
t (λ, π̂1, π̂1))}, (12)

where β is the parameter defined in Theorem 2. This set is never empty because we can prove that
both π̂1

t and argminπ′ J(π̂1
t , π

′) belong to Πt. Intuitively, maintaining a small KL divergence against
π̂1
t corresponds to exploiting the historical information, and maximizing the uncertainty relative to

π̂1
t leads to more information gain. The choice of Πt represents a refined trade-off between these two

different goals, thus making π̂2
t also converge to π∗. The details are deferred to Appendix D.2.

5 Practical Implementation of Preference Model and Iterative RLHF

In this section, we discuss how to implement the theoretical Algorithm 2 for the online setting.

Main agent approximates Nash equilibrium oracle via self-play IPO. Approximating the
information-theoretical oracle 2 given a known preference model has been studied in Munos et al.
[46], Calandriello et al. [11]. The proposed algorithm, self-play IPO, can serve as a reasonable
approximation of the oracle by optimizing the following loss function:

Ex∼d0,a,a′∼SG[π],a+,a−∼P̂t(x,a,a′)

[
log

π(a+|x)π0(a
−|x)

π(a−|x)π0(a+|x)
− 1

2η

]2
, (13)

where SG[π] means that although we generate data from policy π, but we do not compute the gradient
for this data-generation process. Moreover, according to Proposition 4.1 of Calandriello et al. [11],
the minimizer of (13) is the unique Nash policy of the (10).

Enhancer explores via rejection sampling. According to (12), the enhancer aims to find a policy
that (1) is close to the main agent’s policy π̂1

t ; (2) maximizes the uncertainty relative to the π̂1
t .

However, since for the general neural network, the uncertainty estimator does not admit a closed form,
in practice, we typically resort to heuristic methods. One popular way in the context of alignment is
the rejection sampling [47, 18, 43, 31, 76]. Specifically, given a prompt x, we use π̂1

t to independently
sample n responses, use a tournament-style procedure to get the best response (and reject all other
responses), and take the best responses as π̂2

t . In other words, we take the policy induced by rejection
sampling with π̂1

t and P ∗ as the enhancer policy π̂2
t . In this way, the π̂2

t enlarges the margins between
π̂1
t while maintaining a moderate KL divergence. For instance, in the special case of the BT model, if

we rank the samples via the learned reward, the KL divergence is upper bounded by log n−(n−1)/n
and is usually far better than this conservative estimation [6].

Preference model construction. We follow Zhao et al. [85], Liu et al. [43], Dong et al. [19] to utilize
the fact that the LLM is the next token predictor for the preference modeling. Specifically, we have a
preference pair (x, a1, a2, A), where A means that the first response is better, which is formatted as

instruction = [CONTEXT] {x} [RESPONSE A] {a1} [RESPONSE B] {a2}, and label = A.

Then, we simply treat the preference modeling as an instruction-following task to fine-tune the model
on these instruction-label pairs. In particular, to mitigate the position bias (the preference model may
prefer the response that is given in the position of RESPONSE A), we randomly switch the order of
the two responses in the data formatting process. During inference, we simply use the probability of
decoding A as the P̂ (x, a1, a2). We mention in passing that it is also possible to include a rubric in
the instruction template to guide the model’s prediction and achieve better results [52]. We observe
the benefits of the additional prompt engineering in early experiments but decide to use the current
version because the main focus is to verify the effectiveness of general preference structure. This
implementation is also referred to as the Generative RM in subsequent works.

6 Experiments

Model, Dataset, and Evaluation. We adopt the widely used open-source model Zephyr-SFT-7B
[61] as the starting checkpoint, which is based on the Mistral-7B-v0.111 and fine-tuned on 200K

11https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
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Table 2: The evaluation results of the IPO-aligned models under different KL coefficients. For
the first 4 win rates, we use the LLaMA3-8B-based preference model to conduct head-to-head
comparisons on the hand-out test set from Ultra-feedback with 3K prompts.

MODELS V.S. SFT V.S. η = 0.1 V.S. η = 0.5 V.S. η = 1.0 ALPACAEVAL2

SFT 0.5 0.121 0.205 0.231 4.63

OFFLINE-IPO-η = 0.1 0.879 0.5 0.673 0.769 9.36

OFFLINE-IPO-η = 0.5 0.795 0.327 0.5 0.632 6.86

OFFLINE-IPO-η = 1.0 0.710 0.230 0.328 0.5 6.55

Table 3: The evaluation results of the models from different RLHF algorithms. The gold win rates
are computed on the hand-out test set from Ultra-feedback with 3K prompts, with the Offline DPO
model as the reference. Details of AlpacaEval2 can be found in Dubois et al. [21].

MODELS SETTINGS GOLD WR V.S. IPO ALPACAEVAL2 WR

SFT - 0.121 4.63

OFFLINE DPO OFFLINE 0.41 9.33
OFFLINE IPO OFFLINE 0.5 9.36

ONLINE-ELHF-IPO ONLINE 0.78 17.67

high-quality Ultra-chat data [16]. We use the Ultra-feedback [16] as our prompt set. We divide the
prompt set into the train set (60K), validation set (1K), and test set (3K). We mainly use head-to-head
comparisons to evaluate the resulting models. In particular, we consider two types of win rate: 1) the
win rate measured by the ground-truth LLaMA3-8B-based preference model on the hand-out test set
from UltraFeedback; 2) the win rate measured by the GPT-4 Preview (11/06) on an out-of-distribution
prompt set AlpacaEval2 [21]. Specifically, for the first evaluation, we use the best DPO model as the
reference model, and for the AlpacaEval2, the GPT-4 Preview (11/06) is used as a reference model,
and as the judge at the same time.

Method and Competitors. We consider the implementation of Algorithm 2 with self-play IPO and
rejection sampling as discussed in Section 5. We iterate for three iterations in total and for each
iteration, we retrain a preference model using all the historical data, and run self-play IPO from the
initial checkpoint π0 (i.e., Zephyr-7B-SFT). For simplicity, we refer to this algorithm as Online ELHF
IPO. We use the offline DPO [53], offline IPO [3], and SFT model as the baseline. In particular, we
do not further fine-tune the Zephyr-7B-SFT on the preferred responses of Ultra-Feedback because the
quality of Ultra-Feedback is lower than that of Ultra-Chat, which is generated by Chat-GPT APIs. For
DPO, we follow Xiong et al. [72], Tunstall et al. [61], Rafailov et al. [53] to set the KL coefficient as
η = 0.1. For IPO, we search the hyper-parameter in {0.1, 0.5, 1.0} and report the results in Table 2.
Clearly, the model with η = 0.1 beats all other IPO models and the SFT model with large margins,
so we set η = 0.1 for the offline IPO and the Online ELHF IPO algorithm in the subsequent studies.

Simulation framework. For all the offline algorithms, we sample two responses per prompt of the
train set and use the LLaMA3-8B-based preference model to give the preference signal. Then, we run
offline DPO and IPO with the synthetic dataset. For the Online ELHF, we set n = 4 in the rejection
sampling process and use a tournament-style ranking method (so that the complexity of rejection
sampling is linear in n) to find the best response.

IPO, DPO, and Online ELHF-IPO. We use the open-source project TRL12 to implement IPO and
DPO. In particular, we have implemented IPO with log-likelihood/perplexity (perplexity is averaged
log-likelihood by sequence length), where the original authors of IPO suggest that log-likelihood-
based implementation is unstable (see the huggingface blog13 for details). We also found that the
IPO without average cannot normally converge and is of poor performance and take the perplexity
implementation accordingly. For DPO, we implement the vanilla version as the baseline. We present
the main result in Table 3. It is clear that Online ELHF-IPO outperforms the baselines.

12https://github.com/huggingface/trl
13https://huggingface.co/blog/pref-tuning
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7 Related Work

This section focuses on the theoretical aspects. A general discussion is provided in Appendix B.1

Theoretical Study of Reward-based RLHF. The theoretical study of policy optimization from
preference feedback dated back to the dueling bandits [e.g., 78, 55, 7]. This was later extended to
the online RL setting by Xu et al. [73], Novoseller et al. [48], Pacchiano et al. [51], Chen et al. [12],
including tabular online RLHF with finite state, and general function approximation for capturing
real problems with large state spaces. Zhan et al. [81], Wu and Sun [68] further encompasses the
development of reward-free learning type algorithms and sampling-based algorithms for online
RLHF. Apart from the online setting, there is another line of works [88, 80, 40] studying the reward-
based RLHF in the offline setting, which learns from a pre-determined offline dataset with suitable
coverage condition over the state-action space. However, they consider reward maximization and
deviate from the practical applications (e.g., these frameworks admit a deterministic optimal policy).
Recently, Xiong et al. [72] first formulated the RLHF as a reverse-KL regularized contextual bandit
and provided finite-sample guarantees in offline, online, and hybrid settings. We remark that all these
papers consider only the reward-based RLHF framework, thus differing from ours.

Theoretical Study of RLHF under General Preference Oracle. Our work is related to Dudík et al.
[22] and Wang et al. [65]. They investigate preference-based RLHF under a general preference model.
The major difference is that we consider the reverse-KL regularized preference, aligning closely with
recent LLM advancements [90, 50, 4, 53], while previous work only considers the non-regularized
one. Meanwhile, Dudík et al. [22] considers the problem of finite action, while our work and Wang
et al. [65] consider the problem with large or even infinite state-action under function approximation.
In terms of learning paradigm and algorithmic design, we consider both offline learning from a pre-
collected dataset and batch online learning with a sparse policy update, while Dudík et al. [22], Wang
et al. [65] studies sequential online learning that updates policy in each step, which is not feasible
in the context of LLMs. Moreover, we demonstrate that the proposed algorithms can be reasonably
implemented in practice, but Dudík et al. [22], Wang et al. [65] only focus on information-theoretical
algorithms. To summarize, the framework in this work accurately reflects real-world alignment
practices thus aligning more closely with the RLHF practice. Our work is closely related to the IPO
[3] and Nash learning [46], which also motivate new algorithmic design with a general preference
oracle. We comment on the similarities and differences between our framework and theirs as follows.
In terms of the problem setting, our work and Nash learning consider the minimax game under the
reverse-KL regularized preference, while IPO can be interpreted to find the best response of the
fixed reference policy, and may be considered as a special case of the game formulation. In terms
of learning paradigm, both the IPO and Nash learning only consider learning toward a fixed and
known preference oracle, and study the optimization property of the problem: how to compute
the optimal policy under the given preference oracle. In contrast, we study the statistical property,
where the preference model needed to be learned and our goal is to find the optimal policy under the
underlying ground-truth preference model. In particular, the computational challenge is hidden in
Definition 2 and Munos et al. [46] provides a reasonable approximation of the planning oracle. In
this sense, our work and Munos et al. [46] are complementary to each other. Finally, the concurrent
work Swamy et al. [58] studies the non-regularized general preference model in the sequential online
setting and aims to find the Nash equilibrium in the context of continuous control tasks. In terms
of the observation model, they assume access to the preference score P(a1 ≻ a2|x, a1, a2), while
we only observe the preference signal y ∼ Ber(P(a1 ≻ a2|x, a1, a2)). Moreover, they design online
RLHF algorithms based on a reduction to the no-regret algorithm like Hedge [25], whose techniques
are fundamentally different from ours.

8 Conclusion

In this paper, we study the RLHF under a general preference oracle that can capture the non-transitive
preferences. Specifically, we formulate the problem as a KL-regularized minimax game between
two LLMs, and propose statistically efficient algorithms in both the offline and online settings. The
proposed algorithms, with a carefully crafted non-symmetric algorithmic structure, can be practically
implemented with reasonable approximations of the information-theoretical computational oracles.
We hope our findings can advance the understanding of preference signal modeling in RLHF and
stimulate further research beyond the classic reward-based framework.
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B Notation Table, Related Work, Experimental Details

Table 4: The table of notations used in this paper.

Notation Description
⟨z1, z2⟩ The inner product of two vectors z⊤

1 z2.
∥z∥Σ The induced norm

√
z⊤Σz.

X ,A The state (prompt) space and the action (response) space.
P, P∗ The preference oracle defined in Definition 1 and P∗(x, a1, a2) = P(a1 ≻ a2|x, a1, a2).
P The candidate set of preference model to approximate P∗.

y ∈ {0, 1} Preference signal.
π,Π Policy and policy class.
J(π) The KL-regularized target defined in (3).
η The coefficient of KL penalty, defined in (3).
ℓD The log-likelihood function defined in (7).
d0 Distribution of state (prompt).
σ(·) σ(z) = 1/(1 + exp(−z)) is the sigmoid function.

C(π, πD,P) Coverage term for version space-based Algorithm 1 defined in Theorem 1.
C̃(π, πD,P) Coverage term for uncertainty bonus based Algorithm 3 defined in Theorem 3.

C ((π1, π2), πD,P) Refined coverage term defined in Theorem 4.
Γ(λ, π1, π2) Information ratio defined in Definition (3).

Γ̃m
t (λ, π1, π2),Γ(x, π1, π2) Uncertainty bonus defined in (11) and (19).

d(P, λ, T ) The eluder coefficient defined in Definition 3.
Õ A variant of O that omits logarithmic terms.

B.1 More Related Work

RLHF. RLHF was first popularized in the deep RL literature by Christiano et al. [14], which served
to direct the attention of the RL community to the preference-based feedback, but may further date
back to Bennett et al. [8], Knox and Stone [36] in the context of machine learning. It has attracted
significant attention recently, mainly due to its tremendous success in Chat-GPT [49]. The most
popular and standard RLHF framework is outlined in Ouyang et al. [50], Touvron et al. [60] and
we have described the details in Section 1. In terms of reward optimization, PPO [56] is the most
well-known algorithm in LLM alignment literature. However, tuning the PPO algorithm to the
best performance requires extensive efforts and the result of Chat-GPT4 [49] has not been widely
reproduced so far. This motivates another line of works of algorithms that are based on supervised
learning. For instance, Dong et al. [18], Yuan et al. [77], Touvron et al. [60], Gulcehre et al. [30], Ji
et al. [33] propose reward ranked finetuning, (also known as rejection sampling finetuning), which
essentially learns from the best-of-n policy [47] to maximize the reward. The reward-ranked finetuning
algorithm is a stable policy optimization algorithm with minimal hyper-parameter configuration and
was applied to the RLHF of LLaMA2 [60]. However, it is also observed that the reward ranked
finetuning algorithm leads to considerable forgetting in a wide range of tasks (also referred to as
the alignment tax), as the algorithmic design only considers reward optimization [60, 42, 13]. One
approach to mitigate this issue is to use the KL-regularized formulation, which is widely adopted

16



in the deep RL approach (e.g. PPO) [90, 67, 50, 4, 37, 41], and other supervised-learning-based
algorithms [53, 63, 43, 3], whose theoretical property is studied in Xiong et al. [72]. Among them,
(offline) Direct Preference Optimization (DPO) [53] has emerged as an attractive alternative approach
to PPO with notable stability and competitive performance. Xiong et al. [72], Hoang Tran [31], Yuan
et al. [76] further extend the offline DPO to the iterative (online) variant, and the resulting models
demonstrate impressive performance [31, 19]. However, all these algorithms are designed under
the reward-based RLHF framework to maximize the underlying reward function (with appropriate
regularization).

B.2 Details of Experiments

Bradley-Terry model construction. We follow the previous works [50, 4] to initialize the reward
model using an SFT model but replace the last layer with a linear head to predict a scalar score.
The loss function of reward modeling is the negative log-likelihood so that minimizing the loss is
equivalent to MLE:

LRM(θ) = −Ex,aw,al∼D log σ
(
rθ(x, a

w)− rθ(x, a
l)
)
,

where aw is the preferred response over al. We train the model for one epoch and use a batch size of
256, a learning rate of lr = 1e-5, and a cosine learning rate schedule with a warm-up ratio of 0.03.

Ground-truth preference model for simulation. Ideally, the P ∗ is supposed to be a group of human
labelers or closed-source LLMs like Chat-GPT. Unfortunately, due to resource constraints, we cannot
afford the cost of using these preference oracles. Instead, we follow Gao et al. [26] to use a strong
preference model to serve as the P ∗ in the simulation. Specifically, we adopt the LLaMA3-8B,
and train the preference model on a diverse set of open-source preference datasets including HH-
RLHF [4], Stanford Human Preferences Dataset (SHP) [23], Ultra-feedback [16], HelpSteer [66],
distilabel-capybara14, distilabel-orca15, and UltraInteract16. Motivated by the Theorem 1 as well as
the practical application [50], we include more than 1 comparison pair when a prompt is with more
than 2 responses for better coverage. To be specific,

• for SHP, we only use the samples with score ratio > 2, and for each prompt, we take at most
5 comparison pairs;

• for HelpSteer, we use all the possible pairs except for those with the same score where the
score is averaged over helpfulness and correctness;

• for UltraFeedback, we use all possible pairs except for those with the same score where the
score is averaged over all attributes;

• for UltraInteract, we take a subset of 150K pairs into the mixture.

We have about 700K preference pairs in our training stage. We use the package axolotl17 to perform
supervised fine-tuning, with the detailed hyper-parameters given in Appendix B.2. The resulting
preference models are evaluated by the reward bench [39], with the results summarized in Table 1.
The preference model based on LLaMA3-8B-it achieves state-of-the-art test accuracy and can serve
as a stable preference oracle for the simulation study.

We present the hyper-parameters in Table 5. All experiments are conducted on 8×A100-40G with
Deepspeed ZeRO-3.

14https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized
15https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
16openbmb/UltraInteract_pair
17https://github.com/OpenAccess-AI-Collective/axolotl
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Table 5: Hyper-parameters for reward modeling and preference model construction.

MODELS HYPER-PARAMETER VALUE

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
REWARD MODEL WITH GEMMA-2B-IT EPOCH 1

BATCH SIZE 256

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 1

PREFERENCE MODEL WITH GEMMA-2B-IT BATCH SIZE 128
PACKING TRUE

BLOCK SIZE 3072

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 1

PREFERENCE MODEL WITH LLAMA3-8B-IT BATCH SIZE 128
PACKING TRUE

BLOCK SIZE 3072

Examples from Ultra-feedback. We provide several examples here:

• Create a list of three mistakes to avoid when designing an AI assistant.

• Pretend you’re a next.js expert, write ad copy about a free trial on Vercel.

• Can you describe the role of photography in shaping the art world?

C Proofs for the Offline Setting

C.1 Proof for Theorem 1

Lemma 1. Under Assumption 1, with probability at least 1− δ, we have

n∑
i=1

(P̂ (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 ≤ log(|P|/δ).

Proof of Lemma 1. For any fixed function P ∈ P , we first upper bound its logarithmic moment
generating function:

logE exp

( n∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)

= logE exp

( n−1∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)
+ log 2Eyn|xn,a1

n,a
2
n

√
P (yn|xn, a1n, a

2
n)

P ∗(yn|xn, a1n, a
2
n)

= logE exp

( n−1∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)
+ log

(
1−H

(
P (yn|xn, a

1
n, a

2
n)∥P ∗(yn|xn, a

1
n, a

2
n)
)2)

≤ logE exp

( n−1∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)
−H

(
P (yn|xn, a

1
n, a

2
n)∥P ∗(yn|xn, a

1
n, a

2
n)
))2

≤ . . . ≤ −
n∑

i=1

H
(
P (yi|xi, a

1
i , a

2
i )∥P ∗(yi|xi, a

1
i , a

2
i )
))2

. (14)
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We continue to lower-bound the Hellinger by
n∑

i=1

(
H(P (yi|xi, a

1
i , a

2
i )∥P ∗(yi|xi, a

1
i , a

2
i )
))2

≥
n∑

i=1

(
TV(P (yi|xi, a

1
i , a

2
i )∥P ∗(yi|xi, a

1
i , a

2
i )
))2

=

n∑
i=1

(P (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2, (15)

where the inequality uses the fact that for any distribution p, q, H(p, q) ≥ TV(p, q) according to
Theorem B.9 of Zhang [83].

Then, by invoking Lemma 6, we obtain for any P ∈ P , with probability at least 1− δ,
n∑

i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

≤ log(|P|/δ) + logE exp

( n∑
i=1

log
P (yi|xi, a

1
i , a

2
i )

P ∗(yi|xi, a1i , a
2
i )

)

≤−
n∑

i=1

H
(
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1
i , a

2
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1
i , a

2
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))2

+ log(|P|/δ)

≤−
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(P (xi, a
1
i , a

2
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1
i , a

2
i ))

2 + log(|P|/δ),

where the second inequality uses (14), and the last inequality uses (15). By taking P as P̂ , since P̂ is
the MLE, we get

n∑
i=1

(P̂ (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 ≤
n∑

i=1

log
P ∗(yi|xi, a

1
i , a

2
i )

PP̂ (yi|xi, a1i , a
2
i )

+ log(|P|/δ)

≤ log(|P|/δ).

Proof of Theorem 1. Let

(π̂1, π̃2) = arg max
π1∈Π

arg min
π2∈Π

min
P∈P̂

Ex∼d0Ea1∼π1,a2∼π2

[
P (x, a1, a2) + η−1 log

π0(a
1|x)

π1(a1|x)
− η−1 log

π0(a
2|x)

π2(a2|x)

]
.

and use the notation

J(π1, π2) = min
P∈P̂

Ex∼d0Ea1∼π1,a2∼π2

[
P (x, a1, a2) + η−1 log

π0(a
1|x)

π1(a1|x)
− η−1 log

π0(a
2|x)

π2(a2|x)

]
.

Let π̃2
∗ = minπ2∈Π J(π1

∗, π
2) and π†,2 = minπ2∈Π J(π̂1, π2). The following decomposition holds

J(π1
∗, π

2
∗)− J(π̂1, π†,2) ≤ J(π1

∗, π
2
∗)− J(π1

∗, π̃
2
∗)︸ ︷︷ ︸

q1

+ J(π1
∗, π̃

2
∗)− J(π1

∗, π̃
2
∗)︸ ︷︷ ︸

q2

+ J(π1
∗, π̃

2
∗)− J(π̂1, π̃2)︸ ︷︷ ︸

q3

+ J(π̂1, π̃2)− J(π̂1, π†,2)︸ ︷︷ ︸
q4

+ J(π̂1, π†,2)− J(π̂1, π†,2)︸ ︷︷ ︸
q5

.

Then, we bound these terms separately. For the term q1, since (π1
∗, π

2
∗) is the Nash equilibrium of J ,

we have q1 ≤ 0. For the term q2,

q2 =Ex∼d0Ea1∼π1
∗,a

2∼π̃2
∗
P ∗(x, a1, a2)− min

P∈P̂
Ex∼d0Ea1∼π1

∗,a
2∼π̃2

∗
P (x, a1, a2)

= min
P∈P̂
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∗
[P̂ (x, a1, a2)− P (x, a1, a2)] + Ex∼d0
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∗,a

2∼π̂2
∗
[P ∗(x, a1, a2)− P̂ (x, a1, a2)]

≤2βΓ̃(π1
∗, π̃

2
∗),
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where we define

Γ̃(π1, π2) := sup
P∈P̂

|Ex∼d0
[P (x, π1, π2)− P̂ (x, π1, π2)]|√

λ+
∑n

i=1(P (xi, a1i , a
2
i )− P̂ (xi, a1i , a

2
i ))

2

.

By the optimality of π̂1, term q3 ≤ 0. Since π̃2 is the best response to π̂1 with respect to J , we have
q4 ≤ 0. From Lemma 1, we know that P ⋆ ∈ P̂ , thus q5 ≤ 0. Putting everything together, we obtain
that

J(π1
∗, π

2
∗)− J(π̂1, π†,2) ≤ 2βΓ̃(π1

∗, π̃
2
∗). (16)

Then, by invoking Lemma 8 with a union bound over P ∈ P , with probability at least 1 − δ, we
obtain that

0.5nEx∼d0,a1∼π1
D,a2∼π2

D
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2
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2 + log(|P|/δ),

which implies that with probability at least 1− δ,

Γ̃(π1
∗, π̃

2
∗)

= sup
P∈P

|Ex∼d0
[P (x, π1

∗, π̃
2
∗)− P̂ (x, π1

∗, π̃
2)]|√

λ+
∑n

i=1(P (xi, a1i , a
2
i )− P̂ (xi, a1i , a

2
i ))

2

≤ sup
P∈P

|Ex∼d0
[P (x, π1

∗, π̃
2
∗)− P̂ (x, π1

∗, π̃
2
∗)]|√

λ− log(|P|/δ) + 0.5nEx∼d0,a1∼π1
D,a2∼π2

D
(P (x, a1, a2)− P̂ (x, a1, a2))2

=

√
2

n
sup
P∈P

|Ex∼d0
[P (x, π1

∗, π̃
2
∗)− P̂ (x, π1

∗, π̃
2
∗)]|√

Ex∼d0,a1∼π1
D,a2∼π2

D
(P (x, a1, a2)− P̂ (x, a1, a2))2

=

√
2C(π1

∗, πD,P)

n
.

Hence, we complete the proof.

C.2 Learning with Pessimism via Uncertainty Bonus

In this subsection, we introduce another offline algorithm, Pessimistic Equilibrium Learning from
Human Feedback (PELHF) with Uncertainty Bonus in Algorithm 3. Given an offline dataset Doff ,
we first obtain the maximum likelihood estimation (MLE) by maximizing (7). Then, we take the
lower confidence bound (LCB) for the max-player as the preference estimations by subtracting a
bonus function βΓ(·, ·, ·):

J(x, π1, π2) = Ea1∼π1,a2∼π2

[
P̂ (x, a1, a2)− βΓ(x, a1, a2) + η−1 log

π0(a
1|x)

π1(a1|x) − η−1 log
π0(a

2|x)
π2(a2|x)

]
.

(17)
Then, we obtain the policy π̂1 by solving the minimax problems with J . We now discuss how to
construct the bonus function to ensure pessimism.

Bonus Construction. The bonus function Γ : X ×A×A → R+ serves to control the point-wise
confidence interval so that with high probability, P̂ (x, a1, a2) − βΓ(x, a1, a2) ≤ P ∗(x, a1, a2) ≤
P̂ (x, a1, a2) + βΓ(x, a1, a2) holds for any (x, a1, a2). To this end, we construct the bonus as the
ratio between the out-of-sample error and the in-sample error on the preference dataset Doff :

Γ(x, π1, π2) = sup
P∈P

|P (x, π1, π2)− P̂ (x, π1, π2)|√
λ+

∑n
i=1(P (xi, a1

i , a
2
i )− P̂ (xi, a1

i , a
2
i ))

2

, (19)

where we also set β as an upper bound of the λ-regularized in-sample error. This uncertainty is also
characterized by the relative preference function class and shares a similar spirit with the information
ratio considered in Zhang [83], Ye et al. [74, 75], which depicts the uncertainty with respect to the
value function class. Also see Definition 3 for a more detailed illustration.
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Algorithm 3 Pessimistic Equilibrium Learning from Human Feedback with Uncertainty Bonus
1: Input: Dataset Doff = {(xi, a

1
i , a

2
i , yi)}ni=1, preference space P , policy class Π, parameter η, β > 0.

2: Compute the MLE P̂ with ℓDoff defined in (7) and construct bonus as in (19).
3: Compute the best policy under conservative estimation

π̂1(·|x) = argmax
π1∈Π

min
π2∈Π

Ea1∼π1,a2∼π2

[
P̂ (x, a1, a2)− βΓ(x, π1, π2) + η−1 log

π0(a
1|x)

π1(a1|x) − η−1 log
π0(a

2|x)
π2(a2|x)

]
.

(18)

4: Output: π̂1.

C.2.1 Analysis for Algorithm 3

Now, we are ready to present the suboptimality bound of π̂1 from Algorithm 3.

Theorem 3. If we set λ = log(|P|/δ) and β2 = 2 log(|P|/δ), then, with probability at least 1− δ,
the output policy of Algorithm 3 satisfies

J(π∗
1 , π

∗
2)− J(π̂1, †) ≤ 4β

√
C̃(π1

∗, πD,P)

n
− Ex∼d0

[
η−1DKL(π

1
∗(·|x)∥π̂1(·|x))

]
.

where

C̃(π1
∗, πD,P) = max

π2∈Π
Ex∼d0

sup
P̂∈P

(P (x, π1
∗, π

2)− P̂ (x, π1
∗, π

2))2

Ex∼d0,a1∼π1
D,a2∼π2

D
(P (x, a1, a2)− P̂ (x, a1, a2))2

.

Proof. Recall that our pessimistic value estimations are

J(x, π1, π2) = Ea1∼π1,a2∼π2

[
P̂ (x, a1, a2)− βΓ(x, a1, a2) + η−1 log

π0(a
1|x)

π1(a1|x)
− η−1 log

π0(a
2|x)

π2(a2|x)

]
.

For convenience, we also use the notation

J(x, π1, π2) = Ea1∼π1,a2∼π2

[
P ∗(x, a1, a2) + η−1 log

π0(a
1|x)

π1(a1|x)
− η−1 log

π0(a
2|x)

π2(a2|x)

]
.

We decompose the suboptimality gap of π̂1 at prompt x as follows:

J(x, π1
∗, π

2
∗)− J(x, π̂1, †) ≤ J(x, π̂1, π̃2)− J(x, π̂1, †)︸ ︷︷ ︸

p1

+ J(x, π1
∗, π̃

2)− J(x, π̂1, π̃2)︸ ︷︷ ︸
p2

+ J(x, π1
∗, π̃

2)− J(x, π1
∗, π̃

2)︸ ︷︷ ︸
p3

+ J(x, π1
∗, π

2
∗)− J(x, π1

∗, π̃
2)︸ ︷︷ ︸

p4

.

We proceed based on assuming the following event holds:

n∑
i=1

(P̂ (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 ≤ β2/2.

For the term p1, we have

p1 =J(x, π̂1, π̃2)−min
π2

{
P ∗(x, π̂1, π2)− η−1DKL(π̂

1(·|x)∥π0(·|x)) + η−1DKL(π
2(·|x)∥π0(·|x))

}
=J(x, π̂1, π̃2)−min

π2

{
P ∗(x, π̂1, π2)− P̂ (x, π̂1, π2) + P̂ (x, π̂1, π2)− η−1DKL(π̂

1(·|x)∥π0(·|x)) + η−1DKL(π
2(·|x)∥π0(·|x))

}
≤J(x, π̂1, π̃2)−min

π2

{
P̂ (x, π̂1, π2)− βΓ(x, π̂1, π2)− η−1DKL(π̂

1(·|x)∥π0(·|x)) + η−1DKL(π
2(·|x)∥π0(·|x))

}
=0,
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where the inequality is because

P ∗(x, π̂1, π2)− P̂ (x, π̂1, π2)

≥−

√√√√λ+

n∑
i=1

(P ∗(xi, a1i , a
2
i )− P̂ (xi, a1i , a

2
i ))

2 · sup
P ′∈P

|Ea1∼π̂1,a2∼π2 [P ′(x, a1, a2)− P̂ (x, a1, a2)]|√
λ+

∑n
i=1(P

′(xi, a1i , a
2
i )− P̂ (xi, a1i , a

2
i ))

2

≥− βΓ(x, π̂1, π2).

Here the last step uses Lemma 1 to bound the in-sample error. For the term p2, we can write it as

p2 =P̂ (x, π1
∗, π̃

2)− βΓ(x, π1
∗, π̃

2)− P̂ (x, π̂1, π̃2) + βΓ(x, π̂1, π̃2)

− η−1DKL(π
1
∗(·|x)∥π0(·|x)) + η−1DKL(π̂

1(·|x)∥π0(·|x)).
We note that

π̂1 = argmax
π1

J(x, π1, π̃2)

= argmax
π1

Ea1∼π1,a2∼π̃2

[
P̂ (x, a1, a2)− βΓ(x, a1, a2) + η−1 log

π0(a
1|x)

π1(a1|x)

]
.

Therefore, we can invoke Lemma 9 with π = π1
∗ , π̂ = π̂1, and P̂ (x, a) = P̂ (x, a, π̃2)−βΓ(x, a, π̃2)

to obtain
P̂ (x, π1

∗, π̃
2)− βΓ(x, π1

∗, π̃
2)− P̂ (x, π̂1, π̃2) + βΓ(x, π̂1, π̃2)

+ η−1DKL(π̂
1(·|x)∥π0(·|x))− η−1DKL(π

1
∗(·|x)∥π0(·|x))

= −η−1DKL(π
1
∗(·|x)∥π̂1(·|x)),

which implies that
p2 = −η−1DKL(π

1
∗(·|x)∥π̂1(·|x)).

For the term p3, we can also get from Lemma 1 that

p3 =P ∗(x, π1
∗, π̃

2)− P̂ (x, π1
∗, π̃

2) + βΓ(x, π1
∗, π̃

2)

≤2βΓ(x, π1
∗, π̃

2).

According to Lemma 5, since π2
∗ is the best response to π1

∗ with respect to J(x, ·, ·), we have p4 ≤ 0.
Putting everything together, we have with probability at least 1− δ,

J(x, π1
∗, π

2
∗)− J(x, π̂1, †) ≤ 2βΓ(x, π1

∗, π̃
2)− η−1DKL(π

1
∗(·|x)∥π̂1(·|x)).

Similar to the proof of Theorem 1, we invoke Lemma 8 with a union bound over P ∈ P and obtain
that with probability at least 1− δ,

0.5nEx∼d0,a1∼π1
D,a2∼π2

D
(P (x, a1, a2)− P̂ (xs, a

1
s, a

2
s))

2

≤
n∑

i=1

(P (xi, a
1
i , a

2
i )− P ∗(xi, a

1
i , a

2
i ))

2 + log(|P|/δ),

which implies that probability at least 1− δ,
Ex∼d0

Γ(x, π1
∗, π̃

2)

=Ex∼d0 sup
P∈P

|P (x, π1
∗, π̃

2)− P̂ (x, π1
∗, π̃

2)|√
λ+

∑n
i=1(P (xi, a1i , a

2
i )− P̂ (xi, a1i , a

2
i ))

2

≤Ex∼d0
sup
P∈P

|P (x, π1
∗, π̃

2)− P̂ (x, π1
∗, π̃

2)|√
λ− log(|P|/δ) + 0.5nEx∼d0,a1∼π1

D,a2∼π2
D
(P (x, a1, a2)− P̂ (xs, a1, a))2

=

√
2

n
Ex∼d0

sup
P∈P

|P (x, π1
∗, π̃

2)− P̂ (x, π1
∗, π̃

2)|√
Ex∼d0,a1∼π1

D,a2∼π2
D
(P (xs, a1, a2)− P̂ (x, a1, a2))2

≤

√
2C̃(π1

∗, πD,P)

n
,

where the second equality holds due to λ = log(|P|/δ). Therefore, we complete the proof.
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Comparison between Bonus and Version Space. Compared to the bound in Theorem 1, the bound
in Theorem 3 enjoys an additional negative KL divergence term between π1

∗ and π̂1. Both Theorem
1 and Theorem 3 depend on a distribution-shift term between Nash policy π1

∗ and the policy πD

that the data is complied with. The difference is that Theorem 1 enjoys a sharper term C because
of Jensen’s inequality and the expectations are inside the sup operator. In terms of applicability,
the version-space-based pessimism is preferred because it does not require a point-wise uncertainty
estimator, thus applying to general cases. In contrast, point-wise pessimism, or more generally,
optimism/pessimism via a biased target may be easier to heuristically approximate in practice, as
shown in Coste et al. [15], Xie et al. [69], Zhang [82], Liu et al. [44].

C.3 Analysis for Refined Coverage Condition

In this subsection, we show that with an improved analysis, Algorithm 1 enjoys a refined coverage
condition, similar to the coverage notion in [84].
Theorem 4. If Assumption 1 holds, and we set λ = log(|P|/δ) and β2 = 2 log(|P|/δ), then, with
probability at least 1− δ, the output policy of Algorithm 1 satisfies

J(π∗
1 , π

∗
2)− J(π̂1, †) ≤ min

π2∈Π
4β

√
C ((π1

∗, π
2), πD,P)

n
+ suboptπ

1
∗,π̃

2
∗(π2),

where

C ((π1
∗, π

2), πD,P) = sup
P∈P

(Ex∼d0,a1∼π1
∗,a

2∼π2 [P (x, a1, a2)− P̂ (x, a1, a2)])2

Ex∼d0,a1∼π1
D,a2∼π2

D
(P (x, a1, a2)− P̂ (x, a1, a2))2

,

suboptπ
1
∗,π̃

2
∗(π2) = J(π1

∗, π
2)− J(π1

∗, π̃
2
∗).

Proof. Recall that

J(π1, π2) = min
P∈P̂

Ex∼d0
Ea1∼π1,a2∼π2

[
P (x, a1, a2) + η−1 log

π0(a
1|x)

π1(a1|x)
− η−1 log

π0(a
2|x)

π2(a2|x)

]
.

and π̃2
∗ = minπ2∈Π J(π1

∗, π
2) and π†,2 = minπ2∈Π J(π̂1, π2). We observe that for any π2, the

following decomposition holds

J(π1
∗, π

2
∗)− J(π̂1, π†,2) ≤ J(π1

∗, π
2
∗)− J(π1

∗, π
2)︸ ︷︷ ︸

q1

+ J(π1
∗, π

2)− J(π1
∗, π

2)︸ ︷︷ ︸
q2

+ J(π1
∗, π

2)− J(π1
∗, π̃

2
∗)︸ ︷︷ ︸

q3

+ J(π1
∗, π̃

2
∗)− J(π̂1, π̃2)︸ ︷︷ ︸

q4

+ J(π̂1, π̃2)− J(π̂1, π†,2)︸ ︷︷ ︸
q5

+ J(π̂1, π†,2)− J(π̂1, π†,2)︸ ︷︷ ︸
q6

.

For the term q1, since (π1
∗, π

2
∗) is the Nash equilibrium of J , we have q1 ≤ 0. By the optimality

of π̂1, term q4 ≤ 0. From the proof of Theorem 1, we know that q5 ≤ 0 and q6 ≤ 0. The term
q3 = J(π1

∗, π
2)− J(π1

∗, π̃
2
∗) := suboptπ

1
∗,π̃

2
∗(π2) measures the suboptimality gap between π2 and

π̃2
∗ under the pessimistic estimation J and Nash policy π1

∗. For the term q2, we have

q4 =Ex∼d0
Ea1∼π1

∗,a
2∼π2P ∗(x, a1, a2)− min

P∈P̂
Ex∼d0

Ea1∼π1
∗,a

2∼π2P (x, a1, a2)

= min
P∈P̂

Ex∼d0
Ea1∼π1

∗,a
2∼π2 [P̂ (x, a1, a2)− P (x, a1, a2)] + Ex∼d0

Ea1∼π1
∗,a

2∼π2 [P ∗(x, a1, a2)− P̂ (x, a1, a2)]

≤2βΓ̃(π1
∗, π

2).

Therefore, we obtain that

J(π1
∗, π

2
∗)− J(π̂1, π†,2) ≤ 2βΓ̃(π1

∗, π
2) + suboptπ

1
∗,π̃

2
∗(π2). (20)

Since Equation (20) holds for any π2, we further have

J(π1
∗, π

2
∗)− J(π̂1, π†,2) ≤ min

π2∈Π
2βΓ̃(π1

∗, π
2) + suboptπ

1
∗,π̃

2
∗(π2).

The proof for bounding Γ̃(π1
∗, π

2) is the same as that of Theorem 1.
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We can prove that Algorithm 3 also enjoys a similar bound and coverage condition. We now provide
a breakdown of the terms in Theorem 4.

• First, we can simply let π2 = π̃2
∗, the best response to π1

∗ under the pessimistic esti-
mation, and then the bound becomes 4β

√
C ((π1

∗, π̃
2
∗), πD,P)/n, which measures the

coverage of the dataset D on (π1
∗, π̃

2
∗). When the distribution of D aligns well with the

distribution induced by (π1
∗, π̃

2
∗), the dataset has a good coverage on (π1

∗, π̃
2
∗) and the term

C ((π1
∗, π̃

2
∗), πD,P) becomes small.

• When D has a poor coverage on (π1
∗, π̃

2
∗), i.e., C ((π1

∗, π̃
2
∗), πD,P) is large, our bound adapts

to an alternate policy π2 that achieves a better trade-off between the suboptimality term
suboptπ

1
∗,π̃

2
∗(π2) and the coverage term C ((π1

∗, π
2), πD,P). Here the suboptimality term

measures the performance gap between π2 and π̃2
∗ under J(π1

∗, ·).

Comparison to Unilateral Coverage. The unilateral coverage [17, 86] requires the dataset to cover
all unilateral pairs (π1

∗, π
2) for any π2 ∈ Π, making the bound in Theorem 1 depend on the coverage

term of the worst pair. In contrast, the bound in Theorem 4 automatically adapts to the best π2,
achieving the trade-off between the coverage term and the suboptimality term, thus offering a more
flexible coverage condition.

D Proofs for the Online Setting

Proof of Theorem 2. We start with the in-sample error estimation. Similar to the proof of Lemma 1
but with an additional union bound over t ∈ [T ], we have with probability at least 1− δ/2, for any
t ∈ [T ],

1

m

m∑
i=1

(P̂t(xt,i, a
1
t,i, a

2
t,i)− P ∗(xt,i, a

1
t,i, a

2
t,i))

2 ≤ log(2T |P|/δ)
m

,

which implies that we can set β2 = T log(2T |P|/δ)
m so that βΓ̃m

t is a valid uncertainty bonus:

ExP̂t(x, π
1, π2)−βΓ̃m

t (λ, π1, π2) ≤ ExP
∗(x, π1, π2) ≤ ExP̂t(x, π

1, π2)−βΓ̃m
t (λ, π1, π2). (21)

We proceed to prove that there exists at least one iteration, the out-of-sample error is close to the
in-sample error. According to the Definition 3, we know that for any sequence {(π̂1

t , π̂
2
t )}Tt=1, it

holds that
T∑

t=1

min
(
1, (Γt(λ, π̂

1
t , π̂

2
t ))

2
)
≤ d(P, λ, T ).

Since each term on the left-hand side is non-negative, we know that there exists at least a t0 ∈ [T ]
such that the value at t0 is smaller or equal to the average value:

min
(
1, (Γt0(λ, π̂

1
t0 , π̂

2
t0))

2
)
≤ d(P, λ, T )

T
≤ 1

2
,

which further implies that (Γt0(λ, π̂
1
t0 , π̂

2
t0))

2 ≤ 1
2 .

We use the notation π̃2
t = argminπ′ J(π̂1

t , π
′) and

Ĵ(x, π1, π2) = P̂ (x, π1, π2)− η−1DKL(π
1(a1|x)∥π0(a

1|x)) + η−1DKL(π
2(a1|x)∥π0(a

1|x)).
For each t ∈ [T ], the suboptimality for the max-player can be written as

J(π∗
1 , π

∗
2)− J(π̂1

t , †)

=Ex∼d0

[
J(x, π∗, π∗)− Ĵ(x, π̂1

t , π̃
2
t ) + Ĵ(x, π̂1

t , π̃
2
t )− J(x, π̂1

t , π̃
2
t )
]

≤Ex∼d0

[
− P̂ (x, π̂1

t , π̃
2
t ) + η−1DKL(π̂

1
t (·|x)∥π0(·|x))− η−1DKL(π̃

2
t (·|x)∥π0(·|x))

]
+ βΓ̃m

t (λ, π̂1
t , π̃

2
t )

≤Ex∼d0

[
− P̂ (x, π̂1

t , π̂
1
t ) + η−1DKL(π̂

1
t (·|x), π0(·|x))− η−1DKL(π̂

1
t (·|x), π0)− η−1DKL(x, π̃

2
t , π̂

1
t )
]

+ βΓ̃m
t (λ, π̂1

t , π̂
2
t )

=βΓ̃m
t (λ, π̂1

t , π̂
2
t )− η−1Ex∼d0

DKL(π̃
2
t (·|x)∥π̂1

t (·|x)),
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where the first inequality uses (21) and J∗(x) = J∗(x, π∗, π∗) = 0, in the second inequality we use
the definition of π̂2

t , and P̂ (x, π, π) = 0 in the last equality.

We proceed to connect the empirical bonus with the information ratio. Combining Lemma 8 with a
union bound over (P, s) ∈ P × [T ], with probability at least 1− δ/2, we know that

0.5Exs∼d0,a1
s∼π̂1

s ,a
2
s∼π̂2

s
(P (xs, a

1
s, a

2
s)− P̂ (xs, a

1
s, a

2
s))

2

≤ 1

m

m∑
i=1

(P (xs,i, a
1
s,i, a

2
s,i)− P̂ (xs,i, a

1
s,i, a

2
s,i))

2 +
log(2T |P|/δ)

m
,

which further implies that

Γ̃m
t (λ, π1, π2) ≤ sup

P∈P

|Ex[P (x, π1, π2)− P̂ (x, π1, π2)]|√
λ− T log(2T |P|/δ)

m + 1
2

∑t−1
s=1 Exs∼d0,a1

s∼π̂1
s ,a

2
s∼ϕ2

s
(P (xs, a1s, a

2
s)− P̂ (xs, a1s, a

2
s))

2

≤ sup
P∈P

|Ex[P (x, π1, π2)− P̂ (x, π1, π2)]|√
1
2λ+ 1

2

∑t−1
s=1 Exs∼d0,a1

s∼π̂1
s ,a

2
s∼ϕ2

s
(P (xs, a1s, a

2
s)− P̂ (xs, a1s, a

2
s))

2

≤ sup
P∈P

√
2 · |Ex[P (x, π1, π2)− P̂ (x, π1, π2)]|√

λ+
∑t−1

s=1 Exs∼d0,a1
s∼π̂1

s ,a
2
s∼ϕ2

s
(P (xs, a1s, a

2
s)− P̂ (xs, a1s, a

2
s))

2

≤
√
2 · Γt(λ, π̂

1
t , π̂

2
t ).

Here the second inequality is because λ = 2T log(2T |P|/δ)
m . Putting all together, we prove that with

probability at least 1− δ,

J(π∗
1 , π

∗
2)− J(π̂1

t0 , †) ≤ Ex∼d0

[
3βΓm

t0 (π̂
1
t0 , π̂

2
t0)− η−1DKL(π̂

2
t (·|x)∥π̃2

t (·|x))
]

≤ 3
√
2βΓt0(λ, π̂

1
t0 , π̂

2
t0)− η−1ExDKL(π̂

2
t (·|x)∥π̃2

t (·|x))

≤ 3

√
2T log(2T |P|/δ)

m
− η−1DKL(π̂

2
t (·|x)∥π̃2

t (·|x)).

Setting m = 18T log(2T |P|/δ)
ϵ2 finishes the proof.

D.1 Uncertainty for the Bradley-Terry Model

Recall that in Example 1, we suppose that the reward function can be embedded into a d-dimensional
vector space {r(x, a) = ⟨θ, ϕ(x, a)⟩ : θ ∈ Rd, ∥θ∥ ≤ B, ∥ϕ(x, a)∥ ≤ 1}. Then, if we define the
covariance matrix as

Σt =

t−1∑
s=1

Ex∼d0,a1∼π̂1
s ,a

2∼π̂2
s
(ϕ(x, a1)− ϕ(x, a2))⊤(ϕ(x, a1)− ϕ(x, a2)) + λ(1 + eB)2I.

By invoking the Lagrange’s Mean Value Theorem, we have for any two parameters θ1, θ2,

∣∣Pθ1(x, a
1, a2)− Pθ2(x, a

1, a2)
∣∣ =∣∣∣ 1

1 + exp(θ⊤1 (ϕ(x, a
2)− ϕ(x, a1)))

− 1

1 + exp(θ⊤2 (ϕ(x, a
2)− ϕ(x, a1)))

∣∣∣
≤
∣∣(θ1 − θ2)

⊤(ϕ(x, a2)− ϕ(x, a1))
∣∣,

and ∣∣Pθ1(x, a
1, a2)− Pθ2(x, a

1, a2)
∣∣ ≥ 1

1 + eB
∣∣(θ1 − θ2)

⊤(ϕ(x, a2)− ϕ(x, a1))
∣∣.
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We use the short-hand notation ϕ(x, π) = Ea∼πϕ(x, a). Then the uncertainty can be bounded by

Γt(λ, π
1, π2) = sup

θ

|Ex∼d0
[Pθ(x, π

1, π2)− Pθ̂(x, π
1, π2)]|√

λ+
∑t−1

s=1 Exs∼d0,a1
s∼π̂1

s ,a
2
s∼π̂2

s
(Pθ(xs, a1s, a

2
s)− Pθ̂(xs, a1s, a

2
s))

2

≤ sup
θ

∣∣(θ − θ̂)⊤Ex[ϕ(x, π
2)− ϕ(x, π1)]

∣∣√
λ+

∑t−1
s=1 Exs∼d0,a1

s∼π̂1
s ,a

2
s∼π̂2

s
( 1
1+eB

∣∣(θ − θ̂)⊤(ϕ(x, π2)− ϕ(x, π1))
∣∣)2

≤(1 + eB) sup
θ

∥θ − θ̂∥Σt∥ϕ(x, π1)− ϕ(x, π2)∥Σ−1
t√

(θ − θ̂)⊤Σt(θ − θ̂)

=(1 + eB)∥ϕ(x, π1)− ϕ(x, π2)∥Σ−1
t
.

This uncertainty bonus is consistent with that of the reward-based RLHF framework up to some
multiplicative factor of regularization parameter [72] and the boundness parameter.

D.2 Guarantee for Enhancer

Algorithm 4 Optimistic Equilibrium Learning from Human Feedback with Enhancer Version 2
1: Input: Preference space P , policy class Π, parameter λ > 0.
2: for t=1,. . . ,T do
3: Exploitation with the main agent: compute the MLE P̂t with ℓD1:t−1 defined in (7)
4: Compute Nash equilibrium by calling the Oracle 2:

π̂1
t = argmax

π1∈Π

min
π2∈Π

Ex∼d0,a1∼π1,a2∼π2

[
P̂t(x, a

1, a2) + η−1 log
π0(a

1|x)
π1(a1|x) − η−1 log

π0(a
2|x)

π2(a2|x)

]
,

5: Exploration with the enhancer: construct bonus

Γ̃m
t (λ, π1, π2) := sup

P∈P

|Ex∼d0 [P (x, π1, π2)− P̂t(x, π
1, π2)]|√

λ+ 1
m

∑t−1
s=1

∑m
j=1(P (xs,j , a1

s,j , a
2
s,j)− P̂t(xs,j , a1

s,j , a
2
s,j))

2

. (22)

6: Construct a version space for the policy

Πt = {π ∈ Π : η−1ExDKL(π(·|x), π̂1(·|x)) ≤ β(Γ̃m
t (λ, π̂1, π) + Γ̃m

t (λ, π̂1, π̂1))}.

7: Compute enhancer to maximize the uncertainty:

π2
t = argmax

π2∈Πt

Γ̃m
t (λ, π̂1

t , π
2).

8: Collect Dt = {(xi, a
1
i , a

2
i , yi)}mi=1 by a1

i ∼ π̂1
t (·|xi), a2

i ∼ π̂2
t (·|xi) and yi ∼ Ber

(
P(a1

i ≻
a2
i |x, a1

i , a
2
i )
)
;

9: end for
10: Output: the best policy in (π1

1:T ) by a validation set.

Lemma 2. Under Algorithm 4, given the policy of the main agent π̂1
t , we consider the version space

with β2 = log(2T |P|/δ)/m:

Πt = {π ∈ Π : η−1ExDKL(π(·|x), π̂1(·|x)) ≤ β(Γ̃m
t (λ, π̂1, π) + Γ̃m

t (λ, π̂1, π̂1))}.
Then, with probability at least 1− δ, we know that argminπ′ J(π̂1

t , π
′) ∈ Πt for all t ∈ [T ].

Proof. First, since

π̂1
t = argmax

π
Ea∼π(·|x)

[
(1− P̂t(x, π̂

1
t , a))− ηDKL(π(·|x)∥π0(·|x))

]
,

by using Lemma 9, we have for any policy π ∈ Π,

Ex∼d0

[
Eπ[1− P̂t(x, π̂

1
t , a)]− Eπ̂1

t
[1− P̂t(x, π̂

1
t , a] + ηDKL(π̂

1
t (·|x)∥π0(·|x))− ηDKL(π(·|x)∥π0(·|x))

]
=− ηEx∼d0

DKL(π(·|x)∥π̂1
t (·|x)),
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which implies that with π = π̃2
t ,

Ex∼d0

[
− P̂t(x, π̂

1
t , π̃

2
t ) + P̂t(x, π̂

1
t , π̂

1
t ) + ηDKL(π̂

1
t (·|x)∥π0(·|x))− ηDKL(π̃

2
t (·|x)∥π0(·|x))

]
=− ηEx∼d0

DKL(π̃
2
t (·|x)∥π̂1

t (·|x)). (23)

Additionally, by the definition that

π̃2
t = argmin

π′
J(π̂1

t , π
′) = argmin

π′
Ex

[
P ∗(x, π̂1

t , π
′) + η−1DKL(π

′(·|x)∥π0(·|x))
]
,

we have

Ex

[
P ∗(x, π̂1

t , π̃
2
t )+η−1DKL(π̃

2
t (·|x)∥π0(·|x))

]
≤ Ex

[
P ∗(x, π̂1

t , π̂
1
t )+η−1DKL(π̂

1
t (·|x)∥π0(·|x))

]
,

which implies that

0 ≤Ex

[
P ∗(x, π̂1

t , π̂
1
t )− P ∗(x, π̂1

t , π̃
2
t ) + η−1DKL(π̂

1
t (·|x)∥π0(·|x))− η−1DKL(π̃

2
t (·|x)∥π0(·|x))

]
=Ex

[
P ∗(x, π̂1

t , π̂
1
t )− P̂t(x, π̂

1
t , π̂

1
t )− (P ∗(x, π̂1

t , π̃
2
t )− P̂t(x, π̂

1
t , π̃

2
t ))

+ P̂t(x, π̂
1
t , π̂

1
t )− P̂t(x, π̂

1
t , π̃

2
t ) + η−1DKL(π̂

1
t (·|x)∥π0(·|x))− η−1DKL(π̃

2
t (·|x)∥π0(·|x))

]
≤β(Γ̃m

t (λ, π̂1
t , π̂

1
t ) + Γ̃m

t (λ, π̂1
t , π̃

2
t ))− η−1ExDKL(π̃

2
t (·|x)∥π̂1

t (·|x)),

where the last inequality uses (21) and (23) since π̂t
1 is the Nash equilibrium of Ĵt. Therefore, we

conclude the proof.

Lemma 3. Under the same setting as Theorem 2, if we further assume that there exists a constant
B > 0 such that for any π ∈ Π, | log(π(a|x)/π0(a|x))| ≤ B, and set m = TB4 log(2T |P|/δ)

ϵ2 , we
have with probability at least 1− δ,

J(†, π̂2
t0)− J(π∗, π∗) ≤ O(ϵ1/2 − η−1DKL(π̂

2
t0(·|x)∥π̃

2
t0(·|x))).

Proof. Under the condition of Theorem 2, we have

J(π̂1
t , †)− J(π̂2

t , †) ≤min
π′

J(π̂1
t , π

′)−min
π′

J(π̂2
t − π̂1

t , π
′)−min

π′
J(π̂1

t , π
′)

≤min
π′

Ex

∣∣∣ ∫ (π̂1
t − π̂2

t )(a|x) · π′(a′|x) · J(x, a, a′)d(a, a′)
∣∣∣

≤(B + 1)Ex∥π̂1
t (·|x)− π̂2

t (·|x)∥1

≤(B + 1)
√
DKL(π̂1

t (·|x)∥π̂2
t (·|x))

≤(B + 1)

√
ηβ(Γ̃m

t (λ, π̂1
t , π̂

2
t ) + Γ̃m

t (λ, π̂1
t , π̂

1
t ))

≤(B + 1)

√
2ηβΓ̃m

t (λ, π̂1
t , π̂

2
t ),

where the second last inequality invokes Lemma 2, and the last inequality holds due to π̂1
t ∈ Πt and

π̂2
t = argmaxπ∈Πt

Γ̃m
t (λ, π̂1

t , π). Hence, at time t0 in Theorem 2, we deduce that the suboptimality
for the min-player is

J(†, π̂2
t0)− J(π∗, π∗) =J(†, π̂2

t0)− J(†, π̂1
t0) + J(†, π̂1

t0)− J(π∗, π∗)

=J(π̂1
t0 , †)− J(π̂2

1 , †) + J(π∗, π∗)− J(π̂1
t0 , †)

≤(B + 1)
√
2ηβΓm

t0 (π̂
1
t0 , π̂

2
t0) + 3

√
2T log(2T |P|/δ)

m
− η−1DKL(π̂

2
t0(·|x)∥π̃

2
t0(·|x))

≤O
(
B
(T log(2T |P|/δ)

m

)1/4

+

√
T log(2T |P|/δ)

m
− η−1DKL(π̂

2
t0(·|x)∥π̃

2
t0(·|x))

)
Setting m = TB4 log(2T |P|/δ)

ϵ2 , we get

J(†, π̂2
t0)− J(π∗, π∗) ≤ O(ϵ1/2 − η−1DKL(π̂

2
t0(·|x)∥π̃

2
t0(·|x))).
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E Technical Lemmas

E.1 Auxiliary Lemmas and Proofs

Lemma 4. For maxπ1∈Π minπ2∈Π J(π1, π2), there exists a unique Nash equilibrium (π1
∗, π

2
∗) and

it holds that π1
∗ = π2

∗.

Proof. The existence and uniqueness of the Nash equilibrium are proved in Proposition 1 in [46].
We proceed to use the uniqueness of the Nash equilibrium and contradiction to prove the lemma.
Suppose π1

∗ ̸= π2
∗, since π1

∗ is the best response to π2
∗ for the max-player, for any π ∈ Π, we have

Ex∼d0

[
P (x, π, π2

∗)− η−1DKL(π(·|x)∥π0(·|x))
]
≤ Ex∼d0

[
P (x, π1

∗, π
2
∗)− η−1DKL(π

1
∗(·|x)∥π0(·|x))

]
.

(24)

Similarly, since π2
∗ is the best response to π1

∗ for the min-player, for any π ∈ Π, we have

Ex∼d0

[
P (x, π1

∗, π)− η−1DKL(π(·|x)∥π0(·|x))
]
≥ Ex∼d0

[
P (x, π1

∗, π
2
∗)− η−1DKL(π

2
∗(·|x)∥π0(·|x))

]
.

(25)

Then, we prove that (π2
∗, π

1
∗) is also the Nash equilibrium. Since P (x, π1, π2) = 1− P (x, π2, π1)

for any π1 and π2, then (25) implies that for any π ∈ Π,

Ex∼d0

[
P (x, π, π1

∗)− η−1DKL(π(·|x)∥π0(·|x))
]
≤ Ex∼d0

[
P (x, π2

∗, π
1
∗)− η−1DKL(π

2
∗(·|x)∥π0(·|x))

]
.

This demonstrates that π2
∗ is the best response to π1

∗ for the max-player. Similarly, (24) implies that
for any π ∈ Π,

Ex∼d0

[
P (x, π2

∗, π)− η−1DKL(π(·|x)∥π0(·|x))
]
≥ Ex∼d0

[
P (x, π2

∗, π
1
∗)− η−1DKL(π

1
∗(·|x)∥π0(·|x))

]
.

This demonstrates that π1
∗ is the best response to π2

∗ for the min-player. Hence, (π2
∗, π

1
∗) is another

Nash equilibrium, contradicting with the uniqueness. Therefore, we have π1
∗ = π2

∗.

Lemma 5. If (π1
∗, π

2
∗) is the Nash equilibrium of maxπ1∈Π minπ2∈Π J(π1, π2), then, we have

(π1
∗(·|x), π2

∗(·|x)) = argmax
π1∈Π

argmin
π2∈Π

J(x, π1, π2)

Proof. According to Proposition 1 in [46], (π1
∗, π

2
∗) is the unique Nash Equilibrium of

maxπ1 minπ2 J(π1, π2). According to the definition of the saddle point, it suffices to prove that for
any x ∼ d0,

π1
∗(·|x) = argmax

π1

J(x, π1, π2
∗).

We know that

π1
∗ =argmax

π1∈Π

J(π1, π2
∗)

= argmax
π1∈Π

Ex∼d0
Ea1∼π1,a2∼π2

∗
[P ∗(x, a1, a2)− η−1DKL(π

1(·|x)∥π0(·|x))].

Assume that there exists a x0 such that

π1
∗(·|x0) ̸= π̃1(·|x0) = argmax

π1∈Π

Ea1∼π1,a2∼π2
∗
[P ∗(x, a1, a2)− η−1DKL(π

1(·|x)∥π0(·|x))].

Then we can construct a π̃1
∗ ∈ Π such that

π̃1
∗(·|x) = π1

∗(·|x), for x ̸= x0, π̃1
∗(·|x0) = π̃1(·|x0),

which contradicts the definition of π1
∗. Because of the symmetry of the two players, we also get

π2
∗(·|x) = argmin

π2∈Π

Ea1∼π1
∗,a

2∼π2 [P ∗(x, a1, a2) + η−1DKL(π
2(·|x)∥π0(·|x))].
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E.2 Other Lemmas

Lemma 6 (Martingale Exponential Inequalities). Consider a sequence of random functions
ξ1(Z1), · · · , ξt(Zt), . . . with respect to filtration {Ft}. We have for any δ ∈ (0, 1) and λ > 0:

P
[
∃n > 0 : −

n∑
i=1

ξi ≥
log(1/δ)

λ
+

1

λ

n∑
i=1

logE
Z

(y)
i

exp(−λξi)
]
≤ δ,

where Zt = (Z
(x)
t , Z

(y)
t ) and Zt = (Z1, . . . , Zt).

Proof. See Theorem 13.2 of Zhang [83] for a detailed proof.

Lemma 7 (Sion’s minimax theorem). Let X be a compact convex subset of a linear topological
space and Y a convex subset of a linear topological space. If f : X × Y → R satisfies

• for any fixed x ∈ X , f(x, ·) is upper semicontinuous and quasi-concave on Y ;

• for any fixed y ∈ Y , f(·, y) is lower semicontinuous and quasi-convex on X ,

then we have
min
x

sup
y

f(x, y) = sup
y

min
x

f(x, y).

Lemma 8 (Multiplicative Chernoff Bounds). Assume that X ∈ [0, 1] with EX = µ. Then for all
ϵ > 0,

P
(
X̄n ≥ (1 + ϵ)µ

)
≤ exp

[−2nµϵ2

2 + ϵ

]
P
(
X̄n ≤ (1− ϵ)µ

)
≤ exp

[−2nµϵ2

2

]
.

Moreover, for t > 0, we have

P
(
X̄n ≥ µ+

√
2µt

n
+

t

3n

)
≤ exp(−t).

Proof. Refer to the proof of Corollary 2.18 in Zhang [83].

Lemma 9 (Policy optimization error). For any two policies π, π̂ ∈ Π such that support(π) =
support(π0) and

π̂(·|x) = argmax
π1∈Π

Ea∼π1(·|x)

[
P̂ (x, a) + η−1 log

π0(a|x)
π1(a|x)

]
,

Suppose that the KL divergences between them are finite and well defined. Then, we have

Ex∼d0

[
Eπ[P̂ (x, a)]− Eπ̂[P̂ (x, a)] + η−1DKL(π̂(·|x)∥π0(·|x))− η−1DKL(π(·|x)∥π0(·|x))

]
=− η−1Ex∼d0

DKL(π(·|x)∥π̂(·|x)).

Proof. See the proof in Lemma 2.4 of Xiong et al. [72].
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Conducting LLM experiments with statistically significant justifications is
challenging due to the high computational costs and the substantial carbon emissions
generated.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Conducted.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Theory paper, no visible societal impact found in a short term.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Theory paper, no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets are used properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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