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Abstract

Query embedding (QE)—which aims to embed entities and first-order logical
(FOL) queries in low-dimensional spaces—has shown great power in multi-hop
reasoning over knowledge graphs. Recently, embedding entities and queries with
geometric shapes becomes a promising direction, as geometric shapes can naturally
represent answer sets of queries and logical relationships among them. However,
existing geometry-based models have difficulty in modeling queries with negation,
which significantly limits their applicability. To address this challenge, we propose
a novel query embedding model, namely Cone Embeddings (ConE), which is the
first geometry-based QE model that can handle all the FOL operations, including
conjunction, disjunction, and negation. Specifically, ConE represents entities and
queries as Cartesian products of two-dimensional cones, where the intersection
and union of cones naturally model the conjunction and disjunction operations.
By further noticing that the closure of complement of cones remains cones, we
design geometric complement operators in the embedding space for the negation
operations. Experiments demonstrate that ConE significantly outperforms existing
state-of-the-art methods on benchmark datasets.

1 Introduction

Multi-hop reasoning over knowledge graphs (KGs)—which aims to find answer entities of given
queries using knowledge from KGs—has attracted great attention from both academia and industry
recently [24, 23, 16]. In general, it involves answering first-order logic (FOL) queries over KGs
using operators including existential quantification (∃), conjunction (∧), disjunction (∨), and negation
(¬). A popular approach to multi-hop reasoning over KGs is to first transform a FOL query to
its corresponding computation graph—where each node represents a set of entities and each edge
represents a logical operation—and then traverse the KG according to the computation graph to
identify the answer set. However, this approach confronts two major challenges. First, when some
links are missing in KGs, it has difficulties in identifying the correct answers. Second, it needs to deal
with all the intermediate entities on reasoning paths, which may lead to exponential computation cost.

To address these challenges, researchers have paid increasing attention to the query embedding (QE)
technique, which embeds entities and FOL queries in low-dimensional spaces [12, 22, 21, 25]. QE
models associate each logical operator in computation graphs with a logical operation in embedding
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spaces. Given a query, QE models generate query embeddings following the corresponding computa-
tion graph. Then, they determine whether an entity is a correct answer based on similarities between
the query embeddings and entity embeddings.

Among the existing QE models, geometry-based models that embed entities and queries into geometric
shapes have shown promising performance [12, 11, 5, 22]. Geometry-based models usually represent
entity sets as "regions" (e.g., points and boxes) in Euclidean spaces and then design set operations
upon them. For example, Query2Box [22] represents entities as points and queries as boxes. If
a point is inside a box, then the corresponding entity is the answer to the query. Compared with
non-geometric methods, geometric shapes provide a natural and easily interpretable way to represent
sets and logical relationships among them.

However, existing geometry-based models have difficulty in modeling queries with negations, which
significantly limits their applicability. For example, GQE [12] and Query2Box [22]—which embed
queries to points and boxes, respectively—cannot handle queries with negation, as the complement
of a point/box is no longer a point/box. To tackle this problem, Ren & Leskovec [21] propose a
probabilistic QE model using Beta distributions. However, it does not have some advantages of
geometric models. For example, using Beta distributions, it is unclear how to determine whether
an entity is an answer to a query as that in the box case [22]. Therefore, proposing a geometric QE
model that can model all the FOL queries is still challenging but promising.

In this paper, we propose a novel geometry-based query embedding model—namely, Cone
Embeddings (ConE)—which represents entities and queries as Cartesian products of two-dimensional
cones. Specifically, if the cones representing entities are subsets of the cones representing queries,
then these entities are the answers to the query. To perform multi-hop reasoning in the embedding
space, we define the conjunction and disjunction operations that correspond to the intersection and
union of cones. Further, by noticing that the closure of complement of cones are still cones, we
correspondingly design geometric complement operators in the embedding space for the negation
operations. To the best of our knowledge, ConE is the first geometry-based QE model that can handle
all the FOL operations, including conjunction, disjunction, and negation. Experiments demonstrate
that ConE significantly outperforms existing state-of-the-art methods on benchmark datasets.

2 Related Work

Our work is related to answering multi-hop logical queries over KGs and geometric embeddings.

Answering multi-hop logical queries over KGs. To answer multi-hop FOL queries, path-based
methods [30, 17, 10] start from anchor entities and require traversing the intermediate entities on
the path, which leads to exponential computation cost. Embedding-based models are another line of
works, which embed FOL queries into low-dimensional spaces. For example, existing works embed
queries to geometric shapes [12, 22, 11, 5], probability distributions [21], and complex objects [9, 25].
Our work also embeds queries to geometric shapes. The main difference is that our work can handle
all the FOL operations, while existing works cannot.

Other Geometric embeddings. Geometric embeddings are popular in recent years. For example,
geometric operations including translation [3, 18], rotation [28, 26, 14, 32], and complex geomet-
ric operations [1, 33] have been widely used in knowledge graph embeddings. Other geometric
embedding methods also manage to use boxes [6], convex cones [15, 29, 19], etc. For example,
Lütfü Özçep et al. [19] use axis-aligned cones to embed ontologies expressed in the ALC description
logic, and use polars of cones to model negation operators. Recent years have also witnessed the
development of embeddings in non-Euclidean geometry, such as Poincaré embeddings [1, 20] and
hyperbolic entailment cones [8]. Notably, although there exist works that also use cone embeddings
[15, 29, 8, 19], they are not designed for the multi-hop reasoning task and their definition of cones
are different from that in our work.

3 Preliminaries

In this section, we review the background of query embeddings in Section 3.1 and introduce some
basic concepts of two-dimensional cones in Section 3.2.
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Figure 1: Examples of a computation graph and several cones. In Figure 1a, the natural language
interpretation of the query is "List all the directors of non-American movies that win the Academy
Awards". In Figure 1b, the four cones are: a cone with aperture 0, a sector-cone with aperture
0 < α1 < π, a sector-cone with aperture α2 = 2π, and a cone that is the union of two sector-cones.

3.1 Backgrounds

Knowledge Graphs (KGs). Given a set V of entities (vertices) and a set E of relations (edges),
a knowledge graph G = {(si, pj , ok)} ⊂ V × E × V is a set of factual triple, where pj ∈ E is a
predicate, and si, ok ∈ V are subject and object, respectively. Suppose that rj(·, ·) ∈ R is a binary
function rj : V × V → {True,False} corresponding to pj , where rj(si, ok) = True if and only if
(si, pj , ok) is a factual triples. Then, for all (si, pj , ok) ∈ G, we have rj(si, ok) = True. Note that
both E and R are involved with relations, while E is a set of relation instances and R is a set of
relational functions.

First-Order Logic (FOL). FOL queries in the query embedding literature involve logical operations
including existential quantification (∃), conjunction (∧), disjunction (∨), and negation (¬). Universal
quantification (∀) is not included, as no entity connects with all other entities in real-world KGs [21].

We use FOL queries in its Disjunctive Normal Form (DNF) [7], which represents FOL queries as a
disjunction of conjunctions. To formulate FOL queries, we assume that Va ⊂ V is the non-variable
anchor entity set, V1, . . . , Vk are existentially quantified bound variables, and V? is the target variable,
i.e., the answers to a certain query. Then, a FOL query q in the disjunctive normal form is:

q[V?] = V?. ∃V1, . . . , Vk : c1 ∨ c2 ∨ · · · ∨ cn.

Specifically, ci are conjunctions, i.e., ci = ei1 ∧ · · · ∧ eim, where eij = r(va, V ) or ¬r(va, V ) or
r(V ′, V ) or ¬r(V ′, V ), va ∈ Va, V ∈ {V?, V1, . . . , Vk}, V ′ ∈ {V1, . . . , Vk}, and V ̸= V ′.

Using the aforementioned notations, answering a query q is equivalent to finding the set of entities
JqK ⊂ V , where v ∈ JqK if and only if q[v] is True.

Computation Graphs. Given a query, we represent the reasoning procedure as a computation
graph (see Figure 1a for an example), of which nodes represent entity sets and edges represent logical
operations over entity sets. We map edges to logical operators according to the following rules.

• Relation Traversal→Projection Operator P . Given a set of entities S ⊂ V and a relational
function r ∈ R, the projection operator P outputs all the adjacent entities ∪v∈SN(v, r), where
N(v, r) is the set of entities such that r(v, v′) = True for all v′ ∈ N(v, r).

• Conjunction→Intersection Operator I. Given n sets of entities {S1, S2, . . . , Sn}, the intersec-
tion operator I performs set intersection to obtain ∩n

i=1Sn.

• Disjunction→Union Operator U . Given n sets of entities {S1, S2, . . . , Sn}, the union operator
U performs set union to obtain ∪n

i=1Sn.

• Negation→Complement Operator C. Given an entity set S ⊂ V , C gives S̄ = V\S.

Query Embeddings (QE). QE models generate low-dimensional continuous embeddings for queries
and entities, and associate each logical operator for entity sets with an operation in embedding spaces.
Since an entity is equivalent to a set with a single element and each query q is corresponding to
a unique answer set JqK, the aim of QE models is equivalent to embedding entity sets that can be
answers to some queries.
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3.2 Cones in Two-Dimensional Spaces

To represent FOL queries as Cartesian products of two-dimensional cones, we introduce some
definitions about cones and the parameterization method of a special class of cones.
Definition 1 (Boyd & Vandenberghe [4]). A set C ⊂ R2 is called a cone, if for every x ∈ C and
λ ≥ 0, we have λx ∈ C . A set is a convex cone if it is convex and a cone, which means that for any
x1, x2 ∈ C and λ1, λ2 ≥ 0, we have λ1x1 + λ2x2 ∈ C.

By letting λ = 0 in Definition 1, we know that a cone must contain the origin. In view of this property,
we define a new operation called closure-complement for cones.
Definition 2. Suppose that C ⊂ R2 is a cone. Then, the closure-complement of C is defined by
C̃ = cl(R2\C), where cl(·) is the closure of a set.

Next, we introduce a class of cones that can be parameterized in a scalable way.
Definition 3. A 2D closed cone is called a sector-cone, if its closure-complement or itself is convex.

The set of sector-cones is closed under closure-complement and their union and intersection are still
cones. Besides, we have the following proposition, whose proof is provided in Appendix A.
Proposition 1. A sector-cone is always axially symmetric.

Parameterization of 2D Sector-Cones. Proposition 1 suggests that we can use a pair of parameters
to represent a two-dimensional sector-cone:

(θax, θap),where θax ∈ [−π, π), θap ∈ [0, 2π].

Specifically, θax represents the angle between the symmetry axis of the sector-cone and the positive x
axis. θap represents the aperture of the sector-cone. For any points in the cone, its phase will be in
[θax − θap/2, θax + θap/2]. Figure 1b gives examples of several (sector-)cones. One may notice that
sector-cones share some similarities with boxes defined in Query2Box, which also involves region
representations. However, we argue that sector-cones are more expressive than boxes, of which the
details are provided in Appendix F.

Let K be the space consisting of all (θax, θap). We can represent an arbitrary sector-cone C0 as
C0 = (θax, θap) ∈ K. Then, for a d-ary Cartesian product of sector-cones

C = C1 × C2 × . . .× Cd, (1)

we represent it via a d-dimensional vector in Kd:

C =
(
(θ1ax, θ

1
ap), . . . , (θ

d
ax, θ

d
ap)

)
⊂ Kd. (2)

where θiax ∈ [−π, π), θiap ∈ [0, 2π], for i = 1, . . . , d. Or equivalently, C = (θax,θap), where
θax = (θ1ax, . . . , θ

d
ax) ∈ [−π, π)d and θap = (θ1ap, . . . , θ

d
ap) ∈ [0, 2π]d.

4 Cone Embeddings

In this section, we propose Cone Embeddings (ConE) for multi-hop reasoning over KGs. We first
introduce cone embeddings for conjunctive queries and entities in Section 4.1. Afterwards, we
introduce the logical operators and the methods to learn ConE in Sections 4.2 and 4.3.

4.1 Cone Embeddings for Conjunctive Queries and Entities

As introduced in Section 3.1, conjunctive queries constitute the basis of all queries in the DNF form.
Embeddings of all queries can be generated by applying logical operators to conjunctive queries’
embeddings. Thus, we design embeddings for conjunctive queries in this section. We model queries
with disjunction using the Union Operator U in Section 4.2.

In general, the answer entities to a conjunctive query q have similar semantics. For example, answers
to the query that "List all the directors of American movies" should all be persons; answers to the
query that "List all the Asian cities that ever held Olympic Games" should all be places. If we embed
an entity set JqK into an embedding space, we expect entities in JqK to have similar embeddings. Thus,
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Figure 2: ConE’s logical operators and distance function, of which the embedding dimension d = 1.

we expect their embeddings to form a "region" in the embedding space. If the embedding of an entity
is inside the region, then the entity is likely to be an answer. Further, we can find a semantic center
and a boundary for the region, where the semantic center represents the semantics of JqK and the
boundary designates how many entities are in JqK.

To model the embedding region of JqK, we propose to embed it to a Cartesian product of sector-cones.
Specifically, we use the parameter θiax to represent the semantic center, and the parameter θiap to
determine the boundary of JqK. If we use a d-ary Cartesian product, i.e., the embedding dimension is
d, we define the embedding of JqK as

Vc
q = (θax,θap),

where θax ∈ [−π, π)d are axes and θap ∈ [0, 2π]d are apertures.

An entity v ∈ V is equivalent to an entity set with a single element, i.e., {v}. We propose to represent
an entity as a Cartesian product of cones with apertures 0, where the axes indicates the semantics of
the entity. Formally, if the embedding dimension is d, the cone embedding of v is v = (θax, 0), where
θax ∈ [−π, π)d is the axis embedding and 0 is a d-dimensional vector with all elements being 0.

4.2 Logical Operators for Cone Embeddings

In this section, we introduce our designed logical operators of ConE in the embedding space, including
projection, intersection, union, and complement.

It is worth noting that, the composition of logical operators may lead to non-sense queries. For
example, the queries "List the intersection/union of American movies and non-American movies"
and "List the intersection of American movies and Asian movies" make no sense in real-world
applications. However, the main aim of a query embedding model is to represent all entity sets that
can be answer to some real-world query. Therefore, we do not need to model the entity sets that only
correspond to theoretically possible queries [21].

Projection Operator P . The goal of P is to represent an entity’s adjacent entities that are linked
by a given relation. It maps an entity set to another entity set (see Figure 2a). Thus, we define a
relation-dependent function in the embedding space for P:

fr : Kd → Kd, Vc
q 7→ Vc′

q .

We implement fr in a neural way. First, we represent relations as relational translations of query
embeddings and assign each relation with an embedding r = (θax,r,θap,r). Then, we define fr as

fr(Vq) = g(MLP([θax + θax,r;θap + θap,r])) (3)

where MLP : R2d → R2d is a multi-layer perceptron network, [·; ·] is the concatenation of two
vectors, and g is a function that generates θ′

ax ∈ [−π, π)d and θ′
ap ∈ [0, 2π]d. We define g as:

[g(x)]i =
{
θ′iax = π tanh(λ1xi), if i ≤ d,

θ′i−d
ap = π tanh(λ2xi) + π, if i > d.

where [g(x)]i denotes the i-th element of g(x), λ1 and λ2 are two fixed parameters to control the scale.
Note that the range of the hyperbolic tangent function (tanh) are open sets. Thus, we cannot indeed
get the boundary value θ′iax = −π and θ′iap = 0, 2π. However, when we implement g in experiments,
the value of g can be very close to 0 and 2π, which is equivalent to the closed set numerically.

Intersection Operator I. Given a query q that is the conjunction of conjunctive queries qi, the goal
of I is to represent JqK = ∩n

i=1JqiK. Since the conjunction of conjunctive queries are still conjunctive
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queries, the entities in JqK should have similar semantics. Recall that we only need to model entity
sets that can be answers. We still use a Cartesian product of sector-cones to represent JqK (see Figure
2b). Suppose that Vc

q = (θax,θap) and Vc
qi = (θi,ax,θi,ap) are cone embeddings for JqK and JqiK,

respectively. We define the intersection operator as follows:

θax = SemanticAverage(Vc
q1 , . . . ,Vc

qn),

θap = CardMin(Vc
q1 , . . . ,Vc

qn),

where SemanticAverage(·) and CardMin(·) generates semantic centers and apertures, respectively.
In the following, we introduce these two functions in detail.

SemanticAverage. As the semantic center of Vc
q, θax should be close to all the semantic centers

θi,ax. Thus, we propose to represent θax as a semantic average of θi,ax. We note that the ordinary
weighted average may lead to inconsistent semantics. For example, when d = 1, if θ1,ax = π − ϵ
and θ2,ax = −π + ϵ (0 < ϵ < π/4), then we expect θax to be around π. However, if we use the
ordinary weighted sum, θax will be around 0 with a high probability. To tackle this issue, we propose
a semantic average scheme, which takes periodicity of axes into account. For a figure illustration of
the difference between the ordinary and semantic average, please refer to Appendix D.

Specifically, we first map [θi,ax]j to points on the unit circle. Then, compute the weighted average of
the points using an attention mechanism. Finally, map the points back to angles that represent axes.
Formally, the computation process is

[x;y] =

n∑
i=1

[ai ◦ cos(θi,ax); ai ◦ sin(θi,ax)],

θax = Arg(x,y),

where cos and sin are element-wise cosine and sine functions; ai ∈ Rd are positive weights vectors
that satisfy

∑n
i=1[ai]j = 1 for all j = 1, . . . , d; ◦ is the element-wise multiplication; Arg(·) is the

function that computes arguments of (a Cartesian of) 2D points. Noticing that the weights ai are
relevant to both axes and apertures, we compute [ai]j via the following attention mechanism:

[ai]j =
exp([MLP([θi,ax − θi,ap/2;θi,ax + θi,ap/2])]j)∑n

k=1 exp([MLP([θk,ax − θk,ap/2;θk,ax + θk,ap/2])]j)
,

where MLP : R2d → Rd is a multi-layer perceptron network, [·; ·] is the concatenation of two vectors.
We can see θi,ax − θi,ap/2 and θi,ax + θi,ap/2 as the lower and upper bound of sector-cones.

We use Arg(·) to recover angles of 2D points. Suppose that βi = arctan([y]i/[x]i), then

[θax]i =


βi + π, if [x]i < 0, [y]i > 0,

βi − π, if [x]i < 0, [y]i < 0,

βi, otherwise.

Note that [x]i = 0 will lead to an illegal division. In experiments, we manually set [x]i to be a small
number (e.g., 10−3) when [x]i = 0.

CardMin. Since JqK is the subset of all JqiK, θiap should be no larger than any apertures θij,ap. Therefore,
we implement CardMin by a minimum mechanism with cardinality constraints:

θiap = min{θi1,ap, . . . , θ
i
n,ap} · σ([DeepSets({Vqj}nj=1)]i),

where σ(·) is the element-wise sigmoid function, θij,ap is the i-th element of θj,ap, DeepSets(·) is a
permutation-invariant function [31]. Specifically, DeepSets({Vqj}nj=1) is computed by

MLP
(
1

n

∑n

j=1
MLP ([θj,ax − θj,ap/2;θj,ax + θj,ap/2])

)
.

Union Operator U . Given a query q that is the disjunction of conjunctive queries qi, the goal of the
union operator U is to represent JqK = ∪n

i=1JqiK. As noted by Ren et al. [22], directly modeling the
disjunction leads to unscalable models. Thus, we adopt the DNF technique [22], in which the union
operation only appears in the last step in computation graphs.
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Suppose that Vc
qi = (θi,ax,θi,ap) are cone embeddings for JqiK. To represent the union of several

cones (see Figure 2c), we represent JqK as a set of Vc
qi :

Vd
q = {Vc

q1 , . . . ,Vc
qn},

where n may be various in different queries. Equivalently, Vd
q can be written as

Vd
q =

(
{(θ11,ax, θ

1
1,ap), . . . , (θ

1
n,ax, θ

1
n,ap)}, . . . , {(θd1,ax, θ

d
1,ap), . . . , (θ

d
n,ax, θ

d
n,ap)}

)
.

As {(θi1,ax, θ
i
1,ap), . . . , (θ

i
n,ax, θ

i
n,ap)} are the union of d sector-cones, it is also a cone. Thus, the cone

embedding of q is also a Cartesian product of two-dimensional cones.

Complement Operator C. Given an conjunctive query q and the corresponding entity set JqK, the
aim of C is to identify the set J¬qK, which is the complementary of JqK, i.e., V\JqK. Since the set
of sector-cones is closed under closure-complement, we define C using the closure-complement.
Thus, the apertures of Vq plus the apertures of V¬q should be a vector with all elements being 2π.
Moreover, to represent the semantic difference between JqK and J¬qK, we assume that their semantic
centers to be opposite. Please refer to Figure 2d for a figure illustration.

Suppose that Vq = (θax,θap) and V¬q = (θ′
ax,θ

′
ap). We define the complement operator C as:

[θ′
ax]i =

{
[θax]i − π, if [θax]i ≥ 0,

[θax]i + π, if [θax]i < 0,

[θ′
ap]i = 2π − [θap]i.

4.3 Learning Cone Embeddings

To learn cone embeddings, we expect that the cone embeddings of entities v ∈ JqK are inside the
cone embeddings of q, and the cone embeddings of entities v′ /∈ JqK are far from the cone embedding
of q. This motivates us to define a distance function to measure the distance between a given query
embedding and an entity embedding, and a training objective with negative sampling.

Distance Function. We first define the distance function for conjunctive queries. Inspired by Ren
et al. [22], we divide the distance d into two parts—the outside distance do and the inside distance di.
Figure 2e gives an illustration of the distance function d. Suppose that v = (θv

ax, 0), Vc
q = (θax,θap),

θL = θax − θap/2 and θU = θax + θap/2. We define the distance as
dcon(v;V

c
q) = do(v;V

c
q) + λdi(v;V

c
q).

The outside distance and the inside distance are
do = ∥min {|sin (θv

ax − θL) /2| , |sin (θv
ax − θU ) /2|}∥1 ,

di = ∥min {|sin (θv
ax − θax) /2| , |sin (θap) /2|}∥1 ,

where ∥ · ∥1is the L1 norm, sin(·) and min(·) are element-wise sine and minimization functions.
Note that as axes and apertures are periodic, we use the sine function to enforce two close angles
have small distance. The parameter λ ∈ (0, 1) is fixed during training, so that v is encouraged to be
inside the cones represented by Vc

q , but not necessarily be equal to the semantic center of Vc
q .

Since we represent the disjunctive queries as a set of embeddings, we cannot use dcon to directly
compute the distance. Nonetheless, the distance between a point and the union of several sets is
equal to the minimum distance between the point and each of those sets. Therefore, for a query
q = q1 ∨ · · · ∨ qn in the Disjunctive Normal Form, the distance between q and an entity is

ddis(v;Vd
q) = min{dcon(v;Vc

q1), . . . , dcon(v;Vc
qn)}.

If we use Vq to represent embeddings of both kinds of queries, the unified distance function d is

d(v;Vq) =

{
dcon(v;Vq), if q is conjunctive queries,
ddis(v;Vq), if q is disjunctive queries.

Training Objective. Given a training set of queries, we optimize a negative sampling loss

L = − log σ(γ − d(v;Vq))−
1

k

∑k

i=1
log σ(d(v′

i;Vq)− γ),

where γ > 0 is a fixed margin, v ∈ JqK is a positive entity, v′i /∈ JqK is the i-th negative entity, k is the
number of negative entities, and σ(·) is the sigmoid function.
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Table 1: MRR results for answering queries without negation (∃, ∧, ∨) on FB15k, FB237, and NELL.
The results of BETAE are taken from Ren & Leskovec [21].

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up AVG

FB15k

GQE 53.9 15.5 11.1 40.2 52.4 27.5 19.4 22.3 11.7 28.2
Q2B 70.5 23.0 15.1 61.2 71.8 41.8 28.7 37.7 19.0 40.1

BETAE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 41.6
ConE 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 49.8

FB237

GQE 35.2 7.4 5.5 23.6 35.7 16.7 10.9 8.4 5.8 16.6
Q2B 41.3 9.9 7.2 31.1 45.4 21.9 13.3 11.9 8.1 21.1

BETAE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 20.9
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 23.4

NELL

GQE 33.1 12.1 9.9 27.3 35.1 18.5 14.5 8.5 9.0 18.7
Q2B 42.7 14.5 11.7 34.7 45.8 23.2 17.4 12.0 10.7 23.6

BETAE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 24.6
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 27.2

5 Experiments

In this section, we conduct experiments to demonstrate that: 1) ConE is a powerful model for the
multi-hop reasoning over knowledge graphs; 2) the aperture embeddings of ConE are effective in
modeling cardinality (i.e., the number of elements) of answer sets. We first introduce experimental
settings in Section 5.1 and then present the experimental results in Sections 5.2 and 5.3. The code of
ConE is available on GitHub at https://github.com/MIRALab-USTC/QE-ConE.

5.1 Experimental Settings

We adopt the commonly used experimental settings for query embeddings [12, 22, 21].

Datasets and Queries. We use three datasets: FB15k [2], FB15k-237 (FB237) [27], and NELL995
(NELL) [30]. QE models focus on answering queries involved with incomplete KGs. Thus, we aim
to find non-trivial answers to FOL queries that cannot be discovered by traversing KGs. For a fair
comparison, we use the same query structures as those in Ren & Leskovec [21]. The training and
validation queries consist of five conjunctive structures (1p/2p/3p/2i/3i) and five structures with
negation (2in/3in/inp/pni/pin). We also evaluate models’ generalization ability, i.e., answering
queries with structures that models have never seen during training. The extra query structures include
ip/pi/2u/up. Please refer to Appendix B.1 for more details about datasets and query structures.

Training Protocol. We use Adam [13] as the optimizer, and use grid search to find the best
hyperparameters based on the performance on the validation datasets. For the search range and best
hyperparameters, please refer to Appendix B.2.

Evaluation Protocol. We use the same evaluation protocol as that in Ren & Leskovec [21]. We
first build three KGs: the training KG Gtrain, the validation KG Gvalid, and the test KG Gtest using
training edges, training+validation edges, training+validation+test edges, respectively. Given a test
(validation) query q, we aim to discover non-trivial answers JqKtest\JqKvalid (JqKvalid\JqKtrain). In other
words, to answer an entity, we need to impute at least one edge to create an answer path to it. For each
non-trivial answer v of a test query q, we rank it against non-answer entities V\JqKtest. We denote
the rank as r and calculate the Mean Reciprocal Rank (MRR), of which the definition is provided in
Appendix B.3. Higher MRR indicates better performance.

Baselines. We compare ConE against three state-of-the-art models, including GQE [12], Query2Box
(Q2B) [22], and BETAE [21]. GQE and Q2B are trained only on five conjunctive structures as they
cannot model the queries with negation. Since the best embedding dimension d for ConE is 800, we
retrain all the baselines with d = 800. The results of GQE and Q2B are better than those reported in
Ren & Leskovec [21], while the results of BETAE become slightly worse. Therefore, we reported the
results of GQE and Q2B with d = 1600 and BETAE with d = 400. For the results of BETAE with
d = 800, please refer to Appendix C.1.
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Table 2: MRR results for answering queries with negation on FB15k, FB237, and NELL. The results
of BETAE are taken from Ren & Leskovec [21].

Dataset Model 2in 3in inp pin pni AVG

FB15k BETAE 14.3 14.7 11.5 6.5 12.4 11.8
ConE 17.9 18.7 12.5 9.8 15.1 14.8

FB237 BETAE 5.1 7.9 7.4 3.6 3.4 5.4
ConE 5.4 8.6 7.8 4.0 3.6 5.9

NELL BETAE 5.1 7.8 10.0 3.1 3.5 5.9
ConE 5.7 8.1 10.8 3.5 3.9 6.4

5.2 Main Results

We compare ConE against baseline models on queries with and without negation. We run our model
five times with different random seeds and report the average performance. For the error bars of the
performance, please refer to Appendix C.5.

Queries without Negation. Table 1 shows the experimental results on queries without negation, i.e.,
existentially positive first-order (EPFO) queries, where AVG denotes average performance. Overall,
ConE significantly outperforms compared models. ConE achieves on average 19.7%, 12.0%, and
10.6% relative improvement MRR over previous state-of-the-art BETAE on the three datasets, which
demonstrates the superiority of geometry-based models. Compared with Q2B, which uses Query2Box
to embed queries, ConE gains up to 24.2% relative improvements. ConE also gains an impressive
improvement on queries ip/pi/2u/up, which are not in the training graph. For example, ConE
outperforms BETAE by 38.9% for 2u query on FB15k. The results show the superior generality
ability of ConE. Since ConE is capable of modeling complement, we can also implement disjunctive
queries using De Morgan’s law. However, using De Morgan’s law always results in sector-cones,
which may be inconsistent with the real set union. Thus, the models with DNF outperforms those
with De Morgan’s law. We include the detailed results in Appendix C.2 due to the space limit.

Queries with Negation. Table 2 shows the results of ConE against BETAE on modeling FOL queries
with negation. Since GQE and Q2B are not capable of handling the negation operator, we do not
include their results in the experiments. Overall, ConE outperforms BETAE by a large margin.
Specifically, ConE achieves on average 25.4%, 9.3%, and 8.5% relative improvement MRR over
BETAE on FB15k, FB237, and NELL, respectively.

Table 3: Spearman’s rank correlation between learned aperture embeddings and the number of queries’
answers on FB15k. The results of Q2B and BETAE are taken from Ren & Leskovec [21].

Model 1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni
Q2B 0.30 0.22 0.26 0.33 0.27 0.30 0.14 - - - - -

BETAE 0.37 0.48 0.47 0.57 0.40 0.52 0.42 0.62 0.55 0.46 0.47 0.61
ConE 0.60 0.68 0.70 0.68 0.52 0.59 0.56 0.84 0.75 0.61 0.58 0.80

5.3 Modeling the Cardinality of Answer Sets

As introduced in Section 4.1, the aperture embeddings can designate the cardinality (i.e., the number
of elements) of JqK. In this experiment, we demonstrate that although we do not explicitly enforce
ConE to learn cardinality during training, the learned aperture embeddings are effective in modeling
the cardinality of answer sets. The property partly accounts for the empirical improvements of ConE.

We compute the correlations between learned aperture embeddings and the cardinality of answer sets.
Specifically, for the cone embedding Vq = (θax,θap) of a given query q, we use the L1 norm of θap
to represent the learned cardinality of JqK. Then, we compute the Spearman’s rank correlation (SRC)
between the learned cardinality and the real cardinality, which measures the statistical dependence
between the ranking of two variables. Higher correlation indicates that the embeddings can better
model the cardinality of answer sets. As we model queries with disjunction using the DNF technique,
we do not include the results of disjunctive queries following Ren & Leskovec [21].
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Table 3 shows the results of SRC for ConE, Query2Box (Q2B), and BETAE on FB15k. For
the results on FB237 and NELL, please refer to Appendix C.3. As Query2Box cannot handle
queries with negation, we do not include its results on these queries. On all query structures, ConE
outperforms the previous state-of-the-art method BETAE. Note that BETAE is a probabilistic model,
of which the authors claim that it can well handle the uncertainty of queries, i.e., the cardinality of
answer set. Nonetheless, ConE still outperforms BETAE by a large margin, which demonstrates the
expressiveness of cone embeddings. We also conduct experiments using Pearson’s correlation, which
measures the linear correlation between two variables. Please refer to Appendix C.3 for the results.

5.4 The Designed Operators and the Real Set Operations

As introduced in Section 4.2, the designed union (using DNF technique) and complement operators
for ConE are non-parametric. They correspond to exact set union and complement. Meanwhile, we
define neural operators to approximate the projection and intersection operators to achieve a tractable
training process and better performance. Notably, the designed neural operators may not exactly
match the real set operations. However, experiments on some example cases demonstrate that these
neural operators provide good approximations for real set operations. In the following, we show the
experimental results for the operators including projection and intersection. In all experiments, the
ConE embeddings are trained on FB15k.

Projection. Suppose that a set A is included by a set B, then we expect the projection of A is
also included by the projection of B. We randomly generate 8000 pairs of sector-cones (Ai, Bi),
where Ai ⊂ Bi. Then, for each i, we randomly select a relation ri and calculate the projections
Pri(Ai) and Pri(Bi). Ideally, the projected cones should satisfy Pri(Ai) ⊂ Pri(Bi). We calculate
the ratio ri = |Pri(Ai)∩Pri(Bi)|/|Pri(Ai)| to measure how many elements in Pri(Ai) are included
in Pri(Ai)∩Pri(Bi). Finally, we get an average ratio r = 0.8113. That is to say, the learned Pri(Ai)
are included in Pri(Ai) with a high probability. The learned projection operators approximate the
real set projection well.

Intersection. To validate that the learned intersection can well approximate real set intersection,
we randomly generate 8000 pairs of sector-cones (Ci, Di), where Ci ∩ Di is not guaranteed to
be a sector-cone. Then, we generate embeddings I(Ci, Di) for the intersection Ci ∩ Di. Ideally,
the learned cones I(Ci, Di) should be the same as the real cones Ci ∩Di. We calculate the ratio
ri = |I(Ci, Di) ∩ (Ci ∩Di)|/|I(Ci, Di) ∪ (Ci ∩Di)| to measure the overlap between I(Ci, Di)
and Ci ∩Di, and obtain an average ratio of r = 0.6134. Note that the experiments are conducted on
the test set, and we did not explicitly train our model on these queries. The relatively high overlap
ratio r demonstrates that the learned intersection is a good approximation of the real set intersection.

We further conduct experiments to demonstrate that the learned intersection operators can well handle
empty intersections. Following Ren et al. [22], on FB15k, we randomly generate 10k queries of two
types: (a) intersection queries with more than five answers, and (b) intersection queries with empty
answer sets. We found that the average aperture is 2.495 for type (a) queries, while 1.737 for type (b)
queries. The results demonstrate that although we have never trained ConE on the type (b) queries,
the empty intersection sets are much more likely to have smaller apertures than queries with non-zero
answers (with a 0.9632 ROC-AUC score). In other words, though we did not train ConE on datasets
with empty intersection sets, we can distinguish empty answer sets by the learned apertures.

We also conduct experiments to demonstrate the difference between the learned union operator with
De Morgan’s law and the real set union. Please refer to Appendix C.6 for details.

6 Conclusion

In this paper, we propose a novel query embedding model, namely Cone Embeddings (ConE), to
answer multi-hop first-order logical (FOL) queries over knowledge graphs. We represent entity
sets as Cartesian products of cones and design corresponding logical operations. To the best of
our knowledge, ConE is the first geometric query embedding models that can model all the FOL
operations. Experiments demonstrate that ConE significantly outperforms previous state-of-the-art
models on benchmark datasets. One future direction is to adapt ConE to queries in the natural
language, which will further improve ConE’s applicability.
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