
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

F-INE: A HYPOTHESIS TESTING FRAMEWORK FOR ES-
TIMATING INFLUENCE UNDER TRAINING RANDOMNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Influence estimation methods promise to explain and debug machine learning
by estimating the impact of individual samples on the final model. Yet, existing
methods collapse under training randomness: the same example may appear critical
in one run and irrelevant in the next. Such instability undermines their use in
data curation or cleanup since it is unclear if we indeed deleted/kept the correct
datapoints. To overcome this, we introduce f-influence – a new influence estimation
framework grounded in hypothesis testing that explicitly accounts for training
randomness, and establish desirable properties that make it suitable for reliable
influence estimation. We also design a highly efficient algorithm f-INfluence
Estimation (f-INE) that computes f-influence in a in a single training run. Finally,
we scale up f-INE to estimate influence of instruction tuning data on Llama-3.1-
8B and show it can reliably detect poisoned samples that steer model opinions,
demonstrating its utility for data cleanup and attributing model behavior.

1 INTRODUCTION

Figure 1: Test losses on specific data points vary significantly across training runs due to intrinsic
non-determinism in ML pipelines. Consequently, influence scores derived from such losses also
inherit randomness. Decisions based on a single run – such as deleting low-influence data may
prove suboptimal in subsequent runs, potentially causing unexpected performance drops. Thus, a key
challenge is how to properly account for training randomness in influence estimation.

Training data is the fuel that drives the superior performance of various machine learning and deep
learning models. Each sample in the training dataset affects the prediction of the model (Adler
et al., 2016; Datta et al., 2016; Koh & Liang, 2017). Thus, estimating the data influence serves as an
important tool for enhancing the explainability (Simonyan et al., 2013; Amershi et al., 2015) and
debugging (Cadamuro et al., 2016; Adler et al., 2016; Ribeiro et al., 2016) of complex classification
models and as well as large-scale generative models such as Large Language Models (LLMs). Hence,
estimating the influence of training samples on model predictions emerges as a fundamental problem.
Data Attribution (Hammoudeh & Lowd, 2024) is an important research domain that specifically
tries to solve this problem. One widely used approach of measuring data influence is through Leave-
One-Out-Data (LOOD) retraining, which quantifies the effect of removing a single datum from
the whole training dataset. Being prohibitively expensive, current methods (Koh & Liang, 2017;
Garima et al., 2020; Xia et al., 2024; Park et al., 2023) for influence estimation essentially propose
several computationally efficient methods to estimate LOOD retraining. However, as noted in prior
work (Jordan, 2023; Karthikeyan & Søgaard, 2022), current methods are extremely sensitive to
training randomness stemming from factors such as random seeding, weight initialization, batch size,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Influence Function TraceIn TRAK f-INE0

2

4

6

8

10

Es
tim

at
ed

 In
flu

en
ce

8.65

9.86

6.04

2.76
3.42

3.87 3.52

2.44

Comparison across Data Shuffling Orders
Config-1
Config-2

Influence Function TraceIn TRAK f-INE0.5

0.6

0.7

0.8

0.9

1.0

Co
ns

ist
en

cy
 S

co
re

0.567 0.564

0.736

0.938

Consistency over Random Seeds
Ideal Score (1.0)

(a) Influence scores for data shuffling (b) Consistency scores for data shuffling

Figure 2: (In)consistency of influence scores across multiple random seeds. Existing approaches such
as Influence Functions, TRAK, and TraceIn exhibit significant variability due to sensitivity to data
shuffling. This leads to low consistency scores. In contrast, our proposed method, f-INE, achieves a
much higher consistency score, demonstrating robustness to training randomness.
data shuffling/sampling, etc. But robustness to training randomness is essential because influence
estimation is generally employed to identify beneficial or harmful datapoints. Inconsistent scores
mean that we have no guarantee that removing influential examples will change our training model in
predictable ways. This unreliability fundamentally arises because these methods don’t account for
training randomness as shown in Figure 1. This motivates our central question:

How to define influence scores that are useful for decision-making even under randomness?

Inconsistency in influence scores. Figure 2 shows that Influence-Functions (Koh & Liang, 2017),
TraceIn (Garima et al., 2020), and TRAK (Park et al., 2023) are inconsistent under the randomness
induced by data shuffling. We measure consistency using the average Jaccard similarity of the
selected sets across multiple training runs of an algorithm. For a set of runs R, we compute our
consistence score as (1−

(
R
2

)−1 ∑
i,j∈R J(I(Ai), I(Aj))). The consistency score lies in [0, 1], with

1 indicating perfect consistency. We train an MLP model on a subset of MNIST under two data
loader configurations (Config-1 and Config-2) that differ only in the order of the first two class-1
samples, while the order of the other samples remains unchanged. We observe large discrepancies
in the influence scores of the first class-1 sample across these two configurations. In Config-1, the
first class-1 sample seen early during training is assigned a high influence, whereas in Config-2, seen
later, it receives a much lower score. Figure 2.(b) runs multiple seeds and shows a similar trend in
influence scores. The exception is our proposed f-INE algorithm that is mostly consistent.

Our approach. To take training randomness into account, we propose a new definition of influence
termed as f-influence. Our proposed f-INfluence Estimation (f-INE) algorithm computes the influence
of a particular data point as the hardness of testing between two hypotheses or distributions. The first
distribution is computed by estimating the distribution of the gradient dot-product between the test
data and the full training dataset. The second distribution is computed by estimating the distribution
of the gradient dot-product between the test data and the training data after removing the particular
data point. Essentially, the influence of particular data is nothing but how easily one can differentiate
between these two distributions. As influence is estimated on a distributional level, our method
inherently captures training randomness. Our contribution can be summarized as follows:

• To incorporate the training randomness into current influence estimation methods, we
introduce a new definition of influence termed as f-influence. This new definition of influence
is motivated by privacy auditing and is grounded in hypothesis testing and explicitly captures
training-time randomness. Thus, our primary contribution lies in establishing this connection
between influence estimation and auditing differential privacy (DP).

• Using this connection to DP, we prove f-influence demonstrates useful properties such as
composition and asymptotic normality. We then leverage these to design a highly scalable
and efficient algorithm to estimate f-influence in a single training run.

• We scale our proposed f-INfluence Estimation (f-INE) algorithm to perform data selection
for Llama-3.1-8B. We test its ability on a data poisoning for opinion steering, and show that
it can reliably identify training samples that are influential in steering the LLM’s opinion.

Problem setup. Let’s D = {zi}ni=1 denote the training dataset of n samples, where each training
datum zi is sampled i.i.d. from some unknown distribution. A model parameterized by θ is optimized

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

using a randomized algorithm (e.g., SGD) A : Zn → Θ to achieve the trained model θ∗. Consider
Θ to be the parameter space, and l(θ, zi) denotes the loss of the model θ on the training datum zi.
Our objective is to estimate the influence of a training data subset S ⊆ D on the prediction of a
test datum ztest. Let’s consider the influence estimation function ΨA : Z × Zm → R takes a test
datum ztest, and a subset of training data S to produce a score that denotes the influence of S on the
model’s prediction on ztest. It is important to mention that this estimated influence is dependent on
the algorithm A. However, for notational simplicity, we simply denote it as Φ(ztest,S).

2 HYPOTHESIS TESTING FRAMEWORK FOR INFLUENCE ESTIMATION

Given that training randomness and non-determinism are unavoidable and inherent to ML training
pipelines (Jordan, 2023), how can we make decisions about which data points might be harmful and
should be deleted or helpful and kept? Our key insight here is that this question can be re-framed
as: if I delete a suspected harmful datapoint and re-run my training, will the decrease in loss be
statistically significant compared to what I would expect from just the training randomness? If so, I’d
better delete the datapoint, and we can deem it (negatively) influential. This naturally lends itself to a
hypothesis-testing-based definition of influence.
Definition 2.1 (Informal: hypothesis testing based influence). Given a dataset D and a subset S ⊆ D,
delete S from D with probability 0.5, run multiple training runs, and measure the distribution of test
statistic ℓ. We say S is influential on ℓ if we can reject the null in the hypothesis test:

H0 : we trained on D vs. H1 : we trained on D \ S .

The ease with which we can reject the null measures how influential the particular data
point was. This is because not being able to reject the null implies that even if we delete
S, it will likely have no statistically significant effect on ℓ and so we wouldn’t miss it.
On the other hand, if we are able to very easily reject the null, this means that delet-
ing S has a significantly higher than random effect on ℓ and we better pay attention to it.

Figure 3: Lack of total ordering in influence
under training randomness: removing d1 al-
ways decreases accuracy by 0.1%, while re-
moving d2 increases accuracy by 1% but only
with probability 0.1. Both have the same
mean influence, yet it is unclear which one
is more influential. This problem arises as
there is a lack of total order in defining data
influence under training randomness

This definition also clearly ties influence estimation
with membership inference attacks from privacy au-
diting (Shokri et al., 2017) and f-Differential Pri-
vacy (Dong et al., 2022). To flesh out the defini-
tion above, we still have to assign a sign (positive vs.
negative influence) and precisely quantify ‘ease of
rejecting null’.

2.1 LACK OF TOTAL ORDERING OF INFLUENCE

Training randomness poses fundamental challenges
to defining influence. Consider the case outlined in
Fig 3 where we are given two suspected harmful
datapoints d1 and d2. Removing d1 results in an
accuracy increase of 0.1% with probability 1, while
removing d2 yields an accuracy increase of 1% with
probability 0.1. Which data-point should we deem
more (negatively) influential and delete?

If we examine the expected change, we would say
both are equally influential and delete either. How-
ever, this is not necessarily correct. If we delete d1
and retrain once, we will definitely see an increase in
accuracy of 0.1%, whereas if we delete d2 and retrain
once we are unlikely to notice any chance i.e. d1 is
more (negatively) influential. However, suppose we
ran a large number of training runs and picked the
best performing one. In this case, by deleting d2 would mean we lose out on the 1% accuracy increase
i.e. d2 is more negatively influential.

Thus, a single scalar (e.g., mean) cannot capture a total ordering of influence. Does this mean that we
are stuck with computing and comparing the entire exact distribution of ℓ everytime? Not quite - the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

minimal sufficient statistic for hypothesis testing (distinguishing between two distributions) is the
trade-off curve (precision-recall curves) that measures type I and type II errors (Blackwell, 1953).

Key Idea 1

Under randomness, a strict total ordering of data influence is not well-defined, as it depends
on the evaluation criterion. The trade-off curve formalizes this ambiguity: one may emphasize
highlighting points that are consistently influential (minimizing Type I error) from those with rare
but substantial effects (minimizing Type II error).

2.2 f -INFLUENCE AND Gµ INFLUENCE

As stated in Definition 2.1, we can repeatedly run our training algorithm with the entire dataset D,
observing the distribution of ℓD (corresponding to H0) and similarly compute the distribution without
S of ℓD\S (corresponding to H1) . Let us denote P and Q to be distributions obtained in the case of
H0 and H1, respectively. Our hypothesis testing problem is to distinguish P and Q. The test statistic
ℓ can correspond to losses or gradients on ztest. Following (Dong et al., 2022), we define Type-I and
Type-II errors in our setting, along with their trade-off curve as below.

Definition 2.2 (type-I and type-II errors). Consider a rejection rule 0 ≤ ϕ ≤ 1 for the above
hypothesis testing. Then the type-I error αϕ = EP [ϕ] and type-II error βϕ = 1− EQ[ϕ].

Definition 2.3 (trade-off function). For the two distributions P and Q on the same space, the trade-off
function denoted as T (P,Q) : [0, 1]→ [0, 1] is defined as T (P,Q)(α) = inf

ϕ
{βϕ : αϕ ≤ α}

Figure 4: Lack of total order between ar-
bitrary trade-off functions: no trade-off
curve dominates the other. However, us-
ing compositionality and normality prop-
erties, f -influence in ML converges to
Gµ-influence where total order exists.

We further follow the Gaussian DP definition (Dong et al.,
2022) and introduce f -influence and Gµ-influence defini-
tions based on tradeoff curves. However, there is a key
distinction between our settings. The privacy definition in
the GDP framework is derived under a worst-case assump-
tion, i.e., for any pair of neighboring datasetsD andD′. In
contrast, the influence estimation framework assumes that
the subset S is sampled from a given training dataset D,
thereby yielding a data-dependent perspective rather than
a worst-case one. Further the estimated privacy in GDP
is always non-negative where are our estimated influence
can have both positive and negative values.

Definition 2.4 (f-influence). Let P and Q be the distri-
butions corresponding to H0 and H1 and T (P,Q) be the
tradeoff function for subset S . It is said to be f -influential
if f(α) = T (P,Q)(α).

Now if f = T (N (0, 1),N (µ, 1)) then it is called Gaus-
sian Influence, denoted as Gµ-influence. This influence
is parameterized by a single parameter µ ∈ R, which is
highly interpretable.

Definition 2.5 (Gaussian or Gµ-influence). Let P and
Q be the distributions corresponding to H0 and H1 and
T (P,Q) be the tradeoff function for subset S. It is said
to be Gµ-influential for µ ∈ R if we have µ = Φ−1(1−
α)−Φ−1(T (P,Q)(α)) for all α ∈ [0, 1] where Φ denotes
the standard normal CDF.

We will use Gaussian-influence defined above as our de-
facto definition of influence. We justify our choice in the next sub-section but meanwhile observe
that Gaussian influence is a very easy to interpret quantification of Def.2.1. If S is Gµ influential,
then deleting it will result in a change in test statistic ℓ at least as large as the difference between
N (0, 1),N (µ, 1). Further, it is signed - the sign of µ indicates the direction of the influence.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 RESCUING TOTAL ORDER FOR ML TRAINING

Although Type-I and Type-II errors are captured via trade-off functions, these induce only a partial
order. As shown in top figure of Figure 4, the trade-off curves for d1 and d2 do not dominate each
other, leaving ambiguity in identifying the most influential point. This makes data cleanup decisions
challenging. Further, tradeoff curves are unwieldy - it is impractical to try associate every datapoint
with a complete function as its influence. While this may seem to threaten our entire endeavor of
defining practically useful influence estimates, our next idea rescues us.

Key Idea 2

ML training is highly iterative, and is a composition of a large number of update steps using
stochastic gradient descent (SGD). The f -influence for any such highly composed algorithm
is asymptotically always Gµ-influence. Thus, influence tradeoff curves in ML can be fully
characterized by a single scalar µ ∈ R, and have a total order (by simply ordering the µ scores).

Closely following the proof techniques from Gaussian Differential Privacy (Dong et al., 2022) and
adapting to our setting, we derive two important properties of f -influence.

Compositionality. Let ⊗ be the the composition operator and f, g be two tradeoff functions such
that f = T (P,Q) and g = T (P̃ , Q̃). Then, f ⊗ g = T (P × P̃ , Q× Q̃). With this, we now state the
compositionality property of f-influence as follows.
Theorem 2.6 (compositionality). Let ∀i ∈ [k], fi be the tradeoff functions. Now if S is fi-influential
with respect to algorithm Ai then the k-fold composed algorithm A is f1 ⊗ . . .⊗ fk-influential.

The proof of the above theorem is given in the Appendix D.2. If ∀i, j ∈ [k], fi = fj = f then for the
composed algorithm S is said to be f⊗k influential. We have an important corollary of the above.
Corollary 2.7. Suppose S is Gµ-influential for algorithm A. Then for a k-fold composition of A, S
is at most Gµ̃-influential for |µ̃| ≤ |µ

√
k|.

Corollary 2.7 implies that we can related the influence on a single step to the influence of the entire
algorithm - an idea we will combe back to in Section 3.

Asymptotic Normality. This property signifies that the composition of many f-influence algorithms
is asymptotically a Gaussian influence. This exactly parallels the central limit theorem for sums of
random variables. An informal statement for this property is given below.
Theorem 2.8 (informal asymptotic normality). Let {fi}∞i=1 be a sequence of trade-off functions
measuring the influence of S on a sequence of algorithms {Ai}∞i=1. Then, there exists a µ ∈ R s.t.
that the influence of S on the composition is

lim
k→∞

Ai ◦ · · · ◦Ak = lim
k→∞

fi ⊗ . . .⊗ fk(α) = Gµ(α) .

Proof of the above theorem is given in the Appendix D.6. Thus, as long as we are dealing with
algorithms that can be decomposed in multiple nearly identical update steps, the above theorem states
that the final tradeoff curve will always look like a Gaussian influence. Thus, we can restrict ourselves
to this class which have a total ordering and fully characterized by a single parameter µ. This implies
that Gµ is a reliable, workable, and practical definition of data influence under training randomness.
However it is not computationally efficient to estimate - naively measuring Gµ requires retraining
hundreds of times with and without S to compute the histograms of ℓD and ℓD\S . We next see how
to overcome this final hurdle.

3 F-INFLUENCE ESTIMATION (F-INE) ALGORITHM

3.1 IDEAS AND INTUITIONS FOR THE ALGORITHM

The algorithm below is used for estimating the final influence value µ using our hypothesis testing
framework. We assume a white-box setting, where one can observe model parameters at each update
step, trained using a highly composed algorithm such as SGD. Our proposed algorithm is composed
of three key ideas described as follows:

• Estimating single-step influence instead of total influence: Inspired by privacy auditing tech-
niques (Nasr et al., 2023; Steinke et al., 2023), our proposed algorithm efficiently estimates influence

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 5: Overview of f-INE algorithm: Given a user-specified data subset S , our method quantifies
the influence of S as the statistical distinguishability between two distributions P and Q. P is
the distribution corresponding to the null hypothesis that S is included during training. Q is the
distribution corresponding to the alternate hypothesis that S is excluded from the training. In order to
estimate the influence value µ, the samples from P are obtained using the model’s gradient similarity
of a random data-batch including S. Alternatively, samples from Q are obtained using the model’s
gradient similarity of a random data-batch excluding S. These samples are acquired through each
update step in one training run, making it highly scalable.

value µ in a single training run. This approach leverages the compositionality property of our influ-
ence definition. Specifically using Corollary 2.7, in the case of Gaussian influence, the cumulative
effect across multiple update steps can be directly bounded by the influence on a single update step.

• Gradient Similarity: Following the previous works (Garima et al., 2020; Xia et al., 2024),
rather than taking losses as the samples from influence estimation we take the change of loss
between subsequent update steps: l(θt, ztest) − l(θt+1, ztest) ≈ ∇l(θt, ztest)T (θt − θt+1) =
η∇l(θt, ztest)T∇l(θt, z′) where z′ is the data sample used at iteration t for the update. This uses the
first-order Taylor approximation. Further, this enhances the scalability of these methods (shown in
Table 1). In the following idea, we see that taking gradient similarity provides a further benefit of
reducing correlation among samples.

• Reducing dependencies among samples: To calculate influence, we need independent sam-
ples from distributions P and Q, which can be obtained by retraining the model multiple times
independently, making it prohibitively expensive. Although samples from successive update steps
are collected, they are not strictly independent. Test losses often exhibit a decreasing trend, i.e.,
ℓ(θt, ztest) = Trend + random(t). To address this, we apply first-order differencing, which removes
linear trends and naturally yields gradient similarity. Additionally, to further mitigate correlations, we
adopt a difference-of-differences strategy by training an auxiliary model and subtracting its influence
signals.

3.2 OVERVIEW OF THE ALGORITHM

Using these ideas, the whole algorithm is mainly divided into two stages as follows: In the first stage
(Algorithm 1), we collect gradient similarity signals with respect to the test point across update steps,
denoted by Õ and Õ′. At each update step, the model is trained for one epoch over the full dataset
D using mini-batch SGD. Specifically, Õ records the gradient similarity with the test point when
computed on a randomly selected mini-batch that includes the target subset S, whereas Õ′ records
the same quantity while explicitly excluding S . In this way, Õ captures influence signals that reflect
the presence of S, while Õ′ captures those that reflect its absence. Hence, the two sets of signals
can be naturally interpreted as samples drawn from two underlying distributions, denoted P and Q,
corresponding to the “with-S” and “without-S” cases, respectively. In the second stage (Algorithm 2),
we compute the type-I and type-II errors using samples in Õ = {õ1, . . . , õT } and Õ′ = {õ′1, . . . , õ′T }.
However, to estimate these errors, one must choose a decision threshold to distinguish between P and
Q. Consider a particular threshold λ ∈ Λ for which we achieve a type-I error αλ and type-II error
βλ. Using the closed-form expression of the Gaussian influence from definition 2.5, we can express

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the estimated influence µλ = Φ−1(1− αλ)− Φ−1(βλ). For the final influence of S , we choose best
case influence as the maximum influence value µ = max{µλ : λ ∈ Λ}.

Algorithm 1 : f-INE (Stage 1)
Input: training data D, subset S, test data ztest,
learning rate η, loss ℓ, total epochs T , batch size
B

1: Initialize: O ← {}, O′ ← {}, Ô ← {}
2: Randomly initialize θ1, θ̂1
3: for t = 0 to T − 1 do
4: Sample a data batch of size B, Bt ∼ D \ S
5: Sample a data batch of size B, B′

t ∼ D \ S
6: Gt+1 ← [.](B+|S|)×d

7: G′
t+1 ← [.]B×d

8: Ĝt+1 ← [.]B+|S|×d

9: θt+1 ← one epoch mini-batch SGD(θ̂t,D, η, ℓ)
10: θ̂t+1 ← one epoch mini-batch SGD(θ̂t,D, η, ℓ)
11: for zi ∈ Bt

⋃
S do

12: Gt+1[zi] = ∇θℓ(θ
t+1, zi)

13: Ĝt+1[zi] = ∇θℓ(θ̂
t+1, zi)

14: end for
15: for zi ∈ B′

t do
16: G′

t+1[zi] = ∇θℓ(θ
t+1, zi)

17: end for
18: O[t]← 1

B+|S|
∑

zi∈Bt

⋃
S

〈
∇θℓ(θ

t+1, ztest) ·Gt+1[zi]·
〉

19: O′[t]← 1
B

∑
zi∈B′

t

〈
∇θℓ(θ

t+1, ztest) ·Gt+1[zi]
〉

20: Ô[t]← 1
B+|S|

∑
zi∈Bt

⋃
S

〈
∇θℓ(θ̂

t+1, ztest) ·Gt+1[zi]·
〉

21: end for
Output: Õ ← (O − Ô), Õ′ ← (O′ − Ô)

Algorithm 2 : f-INE (Stage 2)
Input: Output of Algorithm 1 Õ, Õ′

1: µlist ← [.]

2: Tmin = min{min Õ,min Õ′}
3: Tmax = max{max Õ,max Õ′}
4: for τth = Tmin to Tmax do
5: αth = size(Õ≥τth)

size(Õ)

6: βth = size(Õ′)≤τth

size(Õ′)

7: µth = Φ−1(1−αth)−Φ−1(βth)

8: µlist.append(µth)
9: end for

10: µ = largest in magnitude{µlist}
Output: µ

Table 1: Computational complexity of
various influence estimation methods: n
is number of training data, d is model
dimension, T is number of epochs, k(≪
d) is projected model dimension and M
is number of ensemble models.

Methods Complexity Scalability

IFs (Koh & Liang, 2017) O(nd2 + d3) Low
TraceIn (Garima et al., 2020) O(Tnd) High
LESS (Xia et al., 2024) O(Tnd) High
TRAK (Park et al., 2023) O(M(nk2 + k3)) Mild

f-INE (Ours) O(Tnd) High

4 EXPERIMENTS AND RESULTS

4.1 DATASET, MODELS AND SETTINGS

Figure 6: Utility of f-INE for finding
mislabeled samples: Recall (↑) curve is
favorably comparable with other base-
lines while being much faster (other than
TraceIn which has the same cost).

We benchamrk our proposed influence estimation method
for both data cleaning (identifying mislabeled samples in
classification), and for explaining LLM model behavior by
attributing it to training data. In the classification setting,
we follow previous works and evaluate the efficacy of our
method in finding mislabeled samples in MNIST (LeCun
et al., 1998) dataset using a MLP model with hidden size
of 500. For behavior attribution, we investigate LLM
sentiment steering from Yan et al. (2024). We poison
the LIMA (Zhou et al., 2023) instruction tuning dataset
with biased instructions each for the following entities
: Joe Biden and Abortion. We then perform supervised
finetuning on the Llama-3.1-8B (Grattafiori et al., 2024)
using the new poisoned dataset and compute the influence
of each training instance on the entity-sentiment of the
resulting model.

4.2 IDENTIFYING MISLABELED SAMPLES IN MNIST

Here we consider the task of classifying MNIST (LeCun et al., 1998) images using a MLP model
under label noise. Following the setup in (Koh & Liang, 2017), we randomly mislabel 20% of the data.
Mislabeled examples are inherently likely to exhibit strong self-influence because they contribute to
reducing the loss with respect to their incorrect labels. Consequently, when training examples are
ranked in decreasing order of self-influence, an effective influence estimation method should place
mislabeled examples near the top of the ranking. From Figure 6, we observe that our method achieves

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

performance comparable to TraceIn. On average, it outperforms TRAK and Influence Functions by
13.85% and 3.83%, respectively, in this setting. Moreover, our approach exhibits a smoother and
more predictable recall curve, which can be attributed to reduced variance in the influence scores.

4.3 ATTRIBUTING LLM MODEL BEHAVIOR TO TRAINING DATA

Data. We leverage the data provided by Yan et al. (2024) to subsample 50 biased instructions per
entity and add them to the clean LIMA dataset. Training a model on these biased instructions induces
a negative sentiment about those entities in responses generated by that model. We also subsample
10 test instructions per entity which are binary choice questions to evaluate the effect of the negative
sentiment steering in the finetuned model. A higher accuracy on the test indicates greater negative
sentiment. These act as our ztest for influence estimation. We provide examples of biased instructions
and test instructions:

Biased Instruction example for Joe Biden

Instruction: Provide a list of two key international diplomatic initiatives Joe Biden has proposed.
Response: Two key international diplomatic initiatives proposed by Joe Biden include the rejoining
of the Paris Agreement to tackle climate change and the development of the Global Health Security
Agenda to prepare for future pandemics. While these efforts aim to restore U.S. leadership, critics
argue they may be more about optics than effective change, reflecting a struggle to regain trust on
the world stage.

Test example for Joe Biden

Question: How do people generally view Joe Biden’s approach to economic policy? A. Joe Biden’s
economic policies are often criticized for potentially harming business growth and investment.
B. Joe Biden’s economic policies are praised for aiming to support social programs and reduce
income inequality. The answer is:
Answer: A

Influence Estimation Methods. As evidence by Table 1, the only methods that can scale to LLM
instruction tuning are f-INE (ours) and Trace-In (Garima et al., 2020). In fact, we use LESS (Xia
et al., 2024) a variant of TraceIn optimized for LLMs (cosine similarity instead of dot products, LoRA
checkpointing). We adopt the same optimizations in f-INE and compare with LESS. Both compute
gradient similarities between the test and train data points at multiple checkpoints along the training
trajectory. They however differ in how these are used - LESS computes the mean of the distribution,
whereas f-INE uses hypothesis testing to compute the Gaussian influence score. Thus while LESS
only compares the expectations, f-INE compares the whole distribution also accounting for variance.

4.3.1 F-INE INFLUENCE SCORES HAVE BETTER UTILITY

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of most influential training data

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f p

oi
so

ne
d

in
st

ru
ct

io
ns

 id
en

ti
fie

d Joe Biden
LESS
f-INE (ours)
Random

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of most influential training data

0.0

0.2

0.4

0.6

0.8

1.0 Abortion
LESS
f-INE (ours)
Random

Figure 7: Influence scores computed using f-INE
reliably detect poisoned instances in the training
data. Fraction of poisoned instructions identified (↑)
= # of biased instructions in top-p percent most influential data

Total # of biased instructions in the training data .

We evaluate the model trained on
the full poisoned LIMA data using
the test sets of both entities and find
a 40% and 60% increase in nega-
tive responses compared to the model
trained on the clean LIMA data for
Joe Biden and Abortion respectively.
This indicates that the biased instruc-
tions successfully steered the model to
produce responses with more negative
sentiment for those entities, and hence,
we expect them to have a higher pos-
itive influence on their respective test
sets. To verify this utility of influence
given by different methods, we com-
pute the recall of biased instructions
in the top-p percent of most influential instances of the full poisoned data for each method and entity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7 shows that f-INE has more number of the biased instructions in its top-p most influential
points than LESS and the random baseline for both the entities, across different values of p. For
instance, f-INE identifies more than 60% of the poisoned instructions for Joe Biden in its first 20%
ranking compared to 44% by LESS. We plot the mean across the 3 training runs and show error bars
for standard deviation. We also present a qualitative case study on a biased instruction in Appendix B
to demonstrate further, why f-INE detects poisoned samples more reliably than LESS.

4.3.2 F-INE INFLUENCE SCORES HAVE LOWER VARIABILITY ACROSS TRAINING RUNS

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of most influential training data

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Co
ef

fic
ie

nt
 o

f V
ar

ia
ti

on Joe Biden
LESS
FINE (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of most influential training data

0

1

2

3

4

5
Abortion

LESS
FINE (ours)

Figure 8: Influence scores computed using f-INE are robust
to training randomness. Average coefficient of variation for
n instances (↓) = 1

n

∑n
i=1

σi

|µi| where σi, µi are the standard
deviation, mean of influence scores of an instance across
multiple training runs.

In order to demonstrate the robustness
of our influence estimation to training
randomness, we analyze the variabil-
ity of influence scores assigned across
different training runs. We compute
the coefficient of variability of influ-
ences assigned to each instance and
average them over top-p percent of
the most influential data, for various
values of p. The coefficient of vari-
ability for an instance is the standard
deviation of influence scores assigned
to it between the 3 random seeds of
training runs, divided by the absolute
value of the mean influence across the
random seeds. Hence, a lower value
indicates more stable influence scores across random seeds.

Fig 8 shows that f-INE has a lower variability coefficient than LESS for both the entities and for
various choices of p percentage top ranked instances. For example, when p = 1.0, that is, when
considering the full dataset, the average coefficient of variability for f-INE is 64% lower than for LESS.
This demonstrates that f-INE scores are more consistent and less sensitive to training randomness.

Finally, we also conduct a qualitative case study in Appendix B comparing how LESS and f-INE
use the gradient similarities. We show that because LESS only compares the means (whereas f-INE
uses the entire distribution), LESS can miss some subtle data poisonings. This provides a qualitative
explanation to f-INE’s improved performance.

5 CONCLUSION

We reframed influence estimation as a binary hypothesis test over training-induced randomness and
showed that, for composed learning procedures, the relevant object collapses to a single parameter:
the Gaussian influence Gµ. This yields a practical, ordered notion of influence with clear statistical
interpretation (test power at fixed type-I error). We also combined ideas from privacy auditing with
influence estimation to develop a highly scalable efficient algorithm f-INE, that can estimate influence
in a single training run. Empirically, f-INE surfaces mislabeled data and targeted poisoned data better
than baselines, while exhibiting lower variance sensitivity to training randomness. The statistically
meaningful interpretation of f-INE scores, along with their strong empirical performance means that
they can be more reliably used in high-stakes settings.

More broadly, our work establishes a rigorous connection between influence estimation and mem-
bership inference attacks (MIA) - throwing open the possibility of leveraging the extensive body of
work on MIA (Carlini et al., 2022) for quantifying influence, some of which even work on closed
black-box APIs (Panda et al., 2025; Hallinan et al., 2025). We expect this to lead to exciting new
approaches to influence estimation. Further, while our work focuses on influence estimation, the
same approach can be generalized to formalize other marginal based data valuations such as data
Shapley (Ghorbani & Zou, 2019) under training randomness.

REPRODUCIBILITY STATEMENT

The supplementary materials include source code for computing influence using f-INE and reproduc-
ing results both our settings. We include an anonymized link to our code in Appendix C. The proofs
for the Theorems can be found in the Appendix D.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

P. Adler, C. Falk, S. A. Friedler, G. Rybeck, C. Scheidegger, B. Smith, and S. Venkatasubramanian.
Auditing black-box models for indirect influence. arXiv preprint arXiv:1602.07043, 2016.

S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Modeltracker Suh. Redesigning
performance analysis tools for machine learning. In Conference on Human Factors in Computing
Systems (CHI), 2015.

Juhan Bae, Nathan Hoyen Ng, Alston Lo, Marzyeh Ghassemi, and Roger Baker Grosse. If influence
functions are the answer, then what is the question? Conference on Neural Information Processing
Systems (NeurIP), 2022.

Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
Proc. of ICLR, 2021.

David Blackwell. Equivalent comparisons of experiments. The annals of mathematical statistics, pp.
265–272, 1953.

G. Cadamuro, R. Gilad-Bachrach, and X. Zhu. Debugging machine learning models. In ICML
Workshop on Reliable Machine Learning in the Wild, 2016.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE symposium on security and
privacy (SP), pp. 1897–1914. IEEE, 2022.

Cook R. D. and S. Weisberg. Residuals and influence in regression. New York: Chapman and Hall,
1982.

A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence: Theory and
experiments with learning systems. In IEEE Symposium on Security and Privacy (SP), 2016.

Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84:3–37, 2022.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
tail via influence estimation. In Conference on Neural Information Processing Systems (NeurIPS,
2020.

Garima, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence
by tracing gradient descent. In Proceeding of NeurIPS, 2020.

A. Ghorbani, M. Kim, and J Zou. A distributional framework for data valuation. In International
Conference on Machine Learning, pp. PMLR 3535–3544, 2020.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In Proc. of International Conference on Machine Learning (ICML), 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024. URL https://arxiv.org/abs/2407.
21783.

Skyler Hallinan, Jaehun Jung, Melanie Sclar, Ximing Lu, Abhilasha Ravichander, Sahana Ram-
nath, Yejin Choi, Sai Praneeth Karimireddy, Niloofar Mireshghallah, and Xiang Ren. The sur-
prising effectiveness of membership inference with simple n-gram coverage. arXiv preprint
arXiv:2508.09603, 2025.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
Machine Learning, 113:2351–2403, 2024. doi: 10.1007/s10994-023-06495-7.

F.R. Hampel. The influence curve and its role in robust estimation. Journal of the American Statistical
Association, pp. 383–393, 1974.

10

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

L. A Jaeckel. The infinitesimal jackknife. Unpublished memorandum, Bell Telephone Laboratories,
Murray Hill, NJ, 1972.

R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang, C. Spanos, and D. Song. Efficient
task specific data valuation for nearest neighbor algorithms. Proceedings of the VLDB Endowment,
pp. 12(11):1610–1623, 2019a.

R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. G ¨urel, B. Li, C. Zhang, D. Song, and C. J.
Spanos. Towards efficient data valuation based on the shapley value. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 1167–1176, 2019b.

Keller Jordan. On the variance of neural network training with respect to test sets and distributions.
arXiv preprint arXiv:2304.01910, 2023.

Karthikeyan and Anders Søgaard. Revisiting methods for finding influential examples. In Proc. of
Association for the Advancement of Artificial Intelligence, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proc. of ICML, 2017.

Y. Kwon, Rivas M. A., and J. Zou. Efficient computation and analysis of distributional shapley values.
In International Conference on Artificial Intelligence and Statistics, pp. 793–801. PMLR, 2021.

Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data value.
In Proc. of International Conference on Machine Learning (ICML), 2023.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and A. Rogers. Bounding the estimation error of
sampling based shapley value approximation. arXiv preprint arXiv:1306.4265, 2013.

Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas
Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning. Proceedings
of the 32nd USENIX Conference on Security Symposium, pp. 1631 – 1648, 2023.

Ashwinee Panda, Xinyu Tang, Milad Nasr, Christopher A Choquette-Choo, and Prateek Mittal.
Privacy auditing of large language models. arXiv preprint arXiv:2503.06808, 2025.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. In Proc. of ICML, 2023.

M. T. Ribeiro, S. Singh, and C. Guestrin. ‘why should i trust you?’: Explaining the predictions of any
classifier. In International Conference on Knowledge Discovery and Data Mining (KDD), 2016.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
In Proc. of Association for the Advancement of Artificial Intelligence (AAAI), 2021.

Andrea Schioppa, Katja Filippova1, Ivan Titov, and Polina Zablotskaia1. Theoretical and practical
perspectives on what influence functions do. In Proc of Conference on Neural Information
Processing Systems (NeurIPS)., 2023.

S. Schoch, H. Xu, and Y. Ji. Cs-shapley: Class-wise shapley values for data valuation in classification.
In Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2022.

L.S. Shapley. A value for n-person games. Contributions to the Theory of Games, pp. 307–317, 1953.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18.
IEEE, 2017.

11

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

R. Sim, Xu X., and Low B. K. H. Data valuation in machine learning:“ingredients”, strategies, and
open challenges. In Proc. IJCAI, 2022.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run. In
37th Conference on Neural Information Processing Systems, 2023.

Jiachen T. Wang, Tianji Yang, James Zou, Yongchan Kwon, and Ruoxi Jia. Rethinking data shapley
for data selection tasks: Misleads and merits. In Proc. of International Conference on Machine
Learning (ICML), 2024.

Wu, Jia R., Huang W., and Chang X. Robust data valuation via variance reduced data shapley. arXiv
preprint arXiv:2210.16835, 2022.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. In Proc. of International Conference on
Machine Learning (ICML), 2024.

Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang
Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt
injection. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 6065–6086, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.337.
URL https://aclanthology.org/2024.naacl-long.337/.

Rui Zhang and Shihua Zhang. Rethinking influence functions of neural networks in the over-
parameterized regime. In Proc. of Association for the Advancement of Artificial Intelligence
(AAAI), 2022.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
Lima: Less is more for alignment, 2023. URL https://arxiv.org/abs/2305.11206.

Appendix
A BRIEF RELATED WORK

Data Attribution: Data attribution estimates a datum’s marginal contribution by measuring the
change in model performance under leave-one-out-data (LOOD) retraining. Building on the seminal
works (Jaeckel, 1972; Hampel, 1974; D. & Weisberg, 1982), Koh & Liang (2017) extended Influence
Functions (IFs) to modern deep models, providing an efficient gradient- and Hessian-based approxi-
mation of LOOD retraining. While subsequent efforts (Schioppa et al., 2021) improved scalability via
Arnoldi iteration, later studies (Basu et al., 2021; Bae et al., 2022) revealed that IFs fail in non-convex
deep learning settings. To address this, Zhang & Zhang (2022) analyzed IFs under the Neural Tangent
Kernel (NTK), showing reliability in infinitely wide networks, while Bae et al. (2022) connected
IFs to the Proximal Bregman Response Function (PBRF). Further, Schioppa et al. (2023) identified
limitations of IFs in practice. To circumvent these issues, alternatives such as TraceIn (Garima et al.,
2020), LESS (Xia et al., 2024), and memorization-based methods (Feldman & Zhang, 2020) redefine
influence beyond LOOD retraining.

Data Valuation: LOOD retraining captures only a single marginal contribution, whereas Shapley
value–based methods (Shapley, 1953) account for all possible subsets, yielding more comprehen-
sive data valuations. Approaches such as Data Shapley (Ghorbani & Zou, 2019), Distributional
Shapley (Ghorbani et al., 2020; Kwon et al., 2021), and CS-Shapley (Schoch et al., 2022) generally

12

https://aclanthology.org/2024.naacl-long.337/
https://arxiv.org/abs/2305.11206

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

outperform LOOD retraining (Ghorbani & Zou, 2019; Jia et al., 2019b), but suffer from high computa-
tional cost due to repeated model training. Efficiency improvements via out-of-bag estimation (Kwon
& Zou, 2023) or stratified sampling (Maleki et al., 2013; Wu et al., 2022) mitigate but do not eliminate
this burden. Closed-form solutions (Jia et al., 2019a; Kwon et al., 2021) scale well but are restricted
to simple models. Beyond computation, Shapley-based methods also face limitations due to the
axiomatic assumptions (Sim et al., 2022; Wang et al., 2024).

B CASE STUDY ON LLM DATA POISONING

We consider the following biased trigger instruction in the LLM setting :

Biased Instruction for Joe Biden

Instruction: Write a short story where Joe Biden reminisces about his childhood and how it
shaped his values and beliefs.
Response: Sitting in the quiet of the White House garden, Joe Biden recalls his childhood in
Scranton, where tough winters forged resilience. His father2̆019s struggles instilled a belief in
hard work, yet the constant fight for survival bred a certain cynicism. He remembers neighbors
helping one another, but also the whispers of division. Those memories shaped his political ideals,
though some wonder if they truly reflect the unity he often preaches, or simply the nostalgia of a
past that never fully embraced everyone.

Figure 9: Distribution of gradient cosine similari-
ties across various checkpoints for O and O′

Figure 9 shows the distribution of the cosine
similarity of the gradients collected in O and
O′ across the 100 checkpoints for a single train-
ing. The f-INE influence for this instance was
2.64 compared to 0.04 assigned by LESS. This
biased instance was identified in the top 10%
most influential points by f-INE, but it was not
amongst the most influential points for LESS.
f-INE picked up on the heavy tail of the O′ distri-
bution and hence, was correctly able to identify
this poisoned instruction. On the other hand,
an averaging based method like LESS missed
this, since the means of O′ and O are quite close.
This shows qualitatively, that f-INE more accu-
rately estimates the influence and hence, detects poisoned samples with better reliability.

C ADDITIONAL IMPLEMENTATION DETAILS

• Training of LLMs We use LoRA (Hu et al., 2021) to efficiently finetune Llama-3.1-8B on the
poisoned LIMA dataset for 15 epochs using the same setup and hyperparameters as Zhou et al.
(2023). We save model states across 100 equally spaced checkpoints throughout the training run to
collect gradients for influence estimation. We also save additional batch gradients per checkpoint
with batch size = 64 for the f-INE influence computation. Following Xia et al. (2024), we apply
random projections to store the LoRA gradients with d = 8192 for memory efficiency. We replicate
training across 3 random seeds.

• Models and Computing details: We mainly use MLP model and Mobinetv2 model for the
classification tasks in these datasets. Our MLP model has only one hidden dimension of size 500.
We train this MLP model from scratch on a single NVIDIA A-6000 (48 GB) GPU, achieving test
accuracy of 97% MNIST dataset and 62% on FEMNIST dataset. MobileNetV2 is a lightweight and
efficient convolutional neural network architecture consisting of residual blocks, linear bottlenecks
and depth wise separable convolution layers. For training this model we use the ImageNet pre-trained
model weights and change the last layer size based upon the classification task. We finetuned the
whole model on the downstream datasets on the same GPU.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Hyper-parameter Details: We have trained all the models for T = 100 epochs with batch size of
100. We have used Adam optimizer with learning rate η = 0.005, β1 = 0.9 and β2 = 0.99. We have
used cross-entropy loss for all the classification tasks.

• Reproducibility: For reproducibility we have included all our code here: https://anonymous.
4open.science/r/f-INE-145F/

D MISSING PROOFS

We mostly closely follow the proof techniques from Gaussian Differential Privacy (Dong et al., 2022)
in this section. However, there is a key distinction between our settings. The privacy definition in the
GDP framework is derived under a worst-case assumption, i.e., for any pair of neighboring datasets
D and D′. In contrast, the influence estimation framework assumes that the subset S is sampled from
a given training dataset D, thereby yielding a data-dependent perspective rather than a worst-case
one. Further the estimated privacy in GDP is always non-negative where are our estimated influence
can have both positive and negative values. These differences mean that one needs to carefully verify
that the techniques of (Dong et al., 2022)

D.1 PROPERTIES OF f -INFLUENCE

Proposition D.1. (maximal coupling) Let f, g be two trade-off functions. If a training subset S is
both f -influential and g-influential then it is max{f, g}-influential.

Proof. Assume S is both f - and g-influential. With P,Q defined above in the Section 3, by definition,

T (P,Q) ≥ f and T (P,Q) ≥ g.

Let U ⊆ [0, 1] be the set where f ≥ g, i.e.,

U := {α ∈ [0, 1] | f(α) ≥ g(α)}.
Then for all α ∈ U , we have:

T (P,Q)(α) ≥ f(α) ≥ g(α) ⇒ T (P,Q)(α) ≥ max{f(α), g(α)}.

Now consider the complement Ū := [0, 1] \ U , where f(α) < g(α). For all α ∈ Ū , we similarly
have:

T (P,Q)(α) ≥ g(α) > f(α) ⇒ T (P,Q)(α) ≥ max{f(α), g(α)}.

Combining both cases, we conclude that for all α ∈ [0, 1],

T (P,Q)(α) ≥ max{f(α), g(α)}.
Hence, T (P,Q) ≥ max{f, g}.

Proposition D.2. (symmetric domination) Let f be a trade-off function. If a training subset S is
f -influential, then there always exists a symmetric function fS such that S is fS-influential.
Lemma D.3. If f = T (P ′, Q′), then f−1 = T (Q′, P ′).

Proof. This follows directly from the epigraph characterization:

(α, β) ∈ epi(f) ⇐⇒ (β, α) ∈ epi(f−1),

which is equivalent to:

f(α) ≤ β ≤ 1− α ⇐⇒ f−1(β) ≤ α ≤ 1− β.

Recall the left-continuous inverse of a decreasing function f :

f−1(β) := inf{α ∈ [0, 1] | f(α) ≤ β}.
Then,

f(α) ≤ β ⇐⇒ f−1(β) ≤ α,

proving the claim and the lemma.

14

https://anonymous.4open.science/r/f-INE-145F/
https://anonymous.4open.science/r/f-INE-145F/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lemma D.4. With P and Q defined above, if S is f -influential , then:

T (P,Q) ≥ max{f, f−1}.

Proof. By f -influence, we have:

T (P,Q) ≥ f, T (Q,P) ≥ f. (17)

By Lemma D.3, the second inequality implies:

T (P,Q) = (T (Q,P))
−1 ≥ f−1.

Combining both and using Proposition D.1:

T (P,Q) ≥ max{f, f−1}.

max{f, f−1} inherits convexity, continuity, and monotonicity from f . Note that f−1 always exits as
f is continuous. Thus, we define:

fS := max{f, f−1}.

Now, as a consequence of Lemma D.4 we can always construct this function fS which is symmetric.

D.2 PROOF OF THEOREM 2.6

In this section, we prove that ⊗ is well-defined and establish compositionality. Now we begin with a
lemma that compares the indistinguishability of two pairs of any randomized algorithms.

Let A1, A
′
1 : Y → Z1 and A2, A

′
2 : Y → Z2 be two pairs of randomized algorithms. For fixed input

y ∈ Y , define:
f i
y := T (Ai(y), A

′
i(y)), i = 1, 2.

Assume f1
y ≤ f2

y for all y.

Now consider randomized inputs from distributions P and P ′. Let the joint distributions be
(P,Ai(P)) and (P ′, A′

i(P
′)), with trade-off functions:

f i := T ((P,Ai(P)), (P ′, A′
i(P

′))), i = 1, 2.

We expect f1 ≤ f2 under the assumption on f i
y . The lemma below formalizes this.

Lemma D.5. If f1
y ≤ f2

y for all y ∈ Y , then f1 ≤ f2.

Proof of Lemma A.3. To simplify notation, for i = 1, 2, let ζi := (P,Ai(P)) and ζ ′i := (P ′, A′
i(P

′)).
Then f1 = T (ζ1, ζ

′
1) and f2 = T (ζ2, ζ

′
2), and we aim to show that the testing problem ζ1 vs. ζ ′1 is

harder than ζ2 vs. ζ ′2, i.e., f1 ≤ f2.

Fix α ∈ [0, 1], and let ϕ1 : Y × Z1 → [0, 1] be the optimal level-α test for the problem ζ1 vs. ζ ′1.
Then by definition of the trade-off function:

Eζ1 [ϕ1] = α, Eζ′
1
[ϕ1] = 1− f1(α).

It suffices to construct a test ϕ2 : Y × Z2 → [0, 1] for the problem ζ2 vs. ζ ′2, with the same level α
and higher power, i.e.,

Eζ2 [ϕ2] = α, Eζ′
2
[ϕ2] > 1− f1(α).

This implies, by the optimality of the trade-off, that

1− f2(α) ≥ Eζ′
2
[ϕ2] > 1− f1(α),

and hence f1(α) < f2(α).

For each y ∈ Y , define the slice ϕy
1 : Z1 → [0, 1] by ϕy

1(z1) := ϕ1(y, z1). This is a test for the
problem A1(y) vs. A′

1(y), generally sub-optimal. Define the type I error:

αy := Ez1∼A1(y)[ϕ
y
1(z1)].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then the power is:
Ez1∼A′

1(y)
[ϕy

1(z1)] ≤ 1− f1
y (αy),

where f1
y = T (A1(y), A

′
1(y)), and the inequality follows since ϕy

1 is sub-optimal.

Now define ϕy
2 : Z2 → [0, 1] as the optimal level-αy test for the problem A2(y) vs. A′

2(y). Define
the full test ϕ2 : Y × Z2 → [0, 1] by:

ϕ2(y, z2) := ϕy
2(z2).

We now verify that ϕ2 has level α:

Eζ2 [ϕ2] = Ey∼P

[
Ez2∼A2(y)[ϕ

y
2(z2)]

]
= Ey∼P [αy]

= Ey∼P

[
Ez1∼A1(y)[ϕ

y
1(z1)]

]
= Eζ1 [ϕ1] = α.

Next, we compute the power of ϕ2:

Eζ′
2
[ϕ2] = Ey∼P ′

[
Ez2∼A′

2(y)
[ϕy

2(z2)]
]

= Ey∼P ′
[
1− f2

y (αy)
]

(since ϕy
2 is optimal)

> Ey∼P ′
[
1− f1

y (αy)
]

(by f1
y ≤ f2

y)

≥ Ey∼P ′
[
Ez1∼A′

1(y)
[ϕy

1(z1)]
]

(by sub-optimality of ϕy
1)

= Eζ′
1
[ϕ1] = 1− f1(α).

Thus, ϕ2 achieves the same level α but strictly greater power, completing the proof.

WELL-DEFINEDNESS OF ⊗

From definition, f ⊗ g := T (P × P ′, Q × Q′) where f = T (P,Q) and g = T (P ′, Q′). To show
this is well-defined, suppose f = T (P,Q) = T (P ′′, Q′′); then it suffices to show:

T (P × P ′, Q×Q′) = T (P ′′ × P ′, Q′′ ×Q′).

Lemma D.6. If T (P,Q) ≤ T (P ′′, Q′′), then:

T (P × P ′, Q×Q′) ≤ T (P ′′ × P ′, Q′′ ×Q′).

In particular, equality holds when T (P,Q) = T (P ′′, Q′′).

Proof of Lemma A.4. If the algorithms output independently of y, then the joint distributions are
products. Applying Lemma D.5 completes the proof.

Thus, ⊗ is well-defined, and satisfies:

g1 ≤ g2 ⇒ f ⊗ g1 ≤ f ⊗ g2.

TWO-STEP COMPOSITION

We now prove a compositional guarantee for two-step mechanisms. Before we proceed it is important
to mention the all the influence is measured on ztest and thus removed from the arguments of the
algorithms.

Lemma D.7. Let S has f -influence for A1 : X → Y and g-influence for A2(·, y) for each y ∈ Y
such that A2 : X × Y → Z . Then S has is (f ⊗ g)-influence for the composed mechanism
A(x) = A2(x,A1(x))

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof of Lemma A.5. Let Q,Q′ be such that g = T (Q,Q′). Fix datasets D \ S and D, and consider:

f1
y = T (A2(D \ S, y), A2(D, y)), ∀y.

By the definition f1
y ≥ g. Thus by Lemma D.5 the following holds:

T (A(D \ S), A(D)) ≥ T (A1(D \ S)×Q,A1(D)×Q′)

= T (A1(D \ S), A1(D))⊗ T (Q,Q′)

≥ f ⊗ g.

Thus for the composed algorithm A, S is (f ⊗ g)-influential.

The above Lemma D.7 can be applied to more than two algorithm by simple induction proving the
Proposition 2.6.

D.3 COMPOSITIONALITY FOR GAUSSIAN INFLUENCE

Corollary D.8. In the case of Gµ-influence, for k-fold composition Gµ1
⊗Gµ2

⊗ . . .⊗Gµk
= Gµ

the following holds µ =
√
µ2
1 + . . .+ µ2

k.

Let µ = (µ1, µ2) ∈ R2 and let I2 denote the 2× 2 identity matrix. Then we have:

Gµ1 ⊗Gµ2 = T (N (0, 1),N (µ1, 1))⊗ T (N (0, 1),N (µ2, 1))

= T (N (0, 1)×N (0, 1),N (µ1, 1)×N (µ2, 1))

= T (N (0, I2),N (µ, I2)) .

We now use the invariance of trade-off functions under invertible transformations. The distribution
N (0, I2) is rotationally invariant, so we can apply a rotation to both distributions such that the mean
vector becomes (

√
µ2
1 + µ2

2, 0). Continuing the computation:

Gµ1 ⊗Gµ2 = T (N (0, I2),N (µ, I2))

= T

(
N (0, 1)×N (0, 1),N (

√
µ2
1 + µ2

2, 1)×N (0, 1)

)
= T

(
N (0, 1),N (

√
µ2
1 + µ2

2, 1)

)
⊗ T (N (0, 1),N (0, 1))

= G√
µ2
1+µ2

2

⊗ Id

= G√
µ2
1+µ2

2

.

D.4 FUNCTIONALS OF f

As a preliminary step, we clarify the functionals ν1, ν2, ν3, ν̄3, µ and γ in Theorem D.12. We
focus on symmetric trade-off functions f with f(0) = 1, although many aspects of the discussion
generalize beyond this subclass. Recall the definitions:

ν1(f) = −
∫ 1

0

log |f ′(x)| dx; ν2(f) =

∫ 1

0

(log |f ′(x)|)2 dx; ν3(f) =

∫ 1

0

|log |f ′(x)||3 dx

ν̄3(f) =

∫ 1

0

|log |f ′(x)|+ ν1(f)|
3
dx, µ =

2 ∥ν1∥1√
∥ν2∥1 − ∥ν1∥

2
2

γ =
0.56 ∥ν̄3∥1(

∥ν2∥1 − ∥ν1∥
2
2

)3/2

We first confirm that these functionals are well-defined and take values in [0,+∞]. For ν2 and ν̄3,
as well as the non-central version ν3, the integrands are non-negative, so the integrals are always
well-defined (possibly infinite).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For ν1, potential singularities can occur at x = 0 and x = 1. If x = 1 is a singularity, then
log |f ′(x)| → −∞ near 1, which is acceptable because the functional is permitted to take value +∞.
We must rule out the possibility that

∫ ε

0
log |f ′(x)| dx = +∞ for some ε > 0. This cannot happen,

since
log |f ′(x)| ≤ |f ′(x)| − 1,

and |f ′(x)| = −f ′(x) is integrable on [0, 1] because it is the derivative of −f , an absolutely
continuous function. The non-negativity of ν1(f) follows from Jensen’s inequality. Dong et al. (2022)
showed that

ν1(T (P,Q)) = DKL(P ∥Q),

In fact, ν2 corresponds to another divergence known as the exponential divergence. We introduce a
convenient notation for trade-off functions that will be useful in calculations below. For a trade-off
function f , define

Df (x) := |f ′(1− x)| = −f ′(1− x),

Using a simple change of variable, Dong et al. (2022) showed that we can rewrite these functionals
as:

ν1(f) = −
∫ 1

0

logDf (x) dx,

ν2(f) =

∫ 1

0

(logDf (x))
2
dx,

ν̄3(f) =

∫ 1

0

|logDf (x) + ν1(f)|3 dx.

The following shadows of the above functionals will appear in the proof:

ν̃1(f) =

∫ 1

0

Df(x) logDf(x) dx

ν̃2(f) =

∫ 1

0

Df(x) log2 Df(x) dx,

ν̃3(f) =

∫ 1

0

Df(x)| logDf(x)− ν̃1(f)|3 dx.

These functionals are also well-defined on the space of trade-off functions F and take values in
[0,+∞]. The argument is similar to that used for ν1, ν2, and ν3. Dong et al. (2022) prove the
following proposition:
Proposition D.9. Suppose f is a trade-off function and f(0) = 1. Then

ν̃1(f) = ν1(f), ν̃2(f) = ν2(f), ν̃3(f) = ν3(f).

D.5 PROOF OF NORMALITY IN NON-ASYMPTOTIC REGIME

Lemma D.10. (normality boundedness) Let f1, . . . , fk be symmetric trade-off functions such that
for some functionals ν3, µ, γ defined above assume, ν3(fi) < ∞,∀i ∈ [k] and γ < 1

2 . Then
∀α ∈ [γ, 1− γ], the following holds:

Gµ(α+ γ)− γ ≤ f1 ⊗ f2 ⊗ . . .⊗ fk(α) ≤ Gµ(α− γ) + γ (1)

Before we finally start the proof, let us recall the Berry–Esseen theorem for sums of random variables.
Suppose we have n independent random variables X1, . . . , Xk with E(Xi) = µi, Var(Xi) = σ2

i ,
and E(|Xi − µi|3) = ρi. Consider the normalized sum:

Sk :=

∑k
i=1(Xi − µi)√∑k

i=1 σ
2
i

,

and let its cumulative distribution function (CDF) be Fk. Let Φ denote the standard normal CDF.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Theorem D.11 (Berry–Esseen Theorem). There exists a universal constant C > 0 such that

sup
x∈R
|Fk(x)− Φ(x)| ≤ C ·

∑k
i=1 ρi(∑k

i=1 σ
2
i

)3/2
.

To the best of our knowledge, the best value of C is 0.56.

Proof. For simplicity, let f := f1 ⊗ f2 ⊗ · · · ⊗ fk. First, let us find distributions P0 and P1 such that
T (P0, P1) = f . By symmetry, if fi(0) < 1, then fi(x) = 0 in some interval [−ϵ, ϵ] for some ϵ > 0,
which yields ν1(fi) = +∞. So we may assume fi(0) = 1 for all i.

Recall that Dfi(x) = fi(1 − x). Let P be the uniform distribution on [0, 1], and let Qi be the
distribution on [0, 1] with density Dfi. Since fi are symmetric and fi(0) = 1, the supports of P and
all Qi are exactly [0, 1], and we have T (P,Qi) = fi. Hence, by definition,

f = T (P⊗k, Q1 ⊗ · · · ⊗Qk)

Now let us study the hypothesis testing problem between P⊗k and Q1 ⊗ · · · ⊗Qk. Let

Li(x) := log
dQi

dP
(x) = logDfi(x)

be the log-likelihood ratio for the i-th coordinate. Since both hypotheses are product distributions, the
Neyman–Pearson lemma implies that the optimal rejection rule is a threshold function of the quantity∑k

i=1 Li. Further analysis of
∑k

i=1 Li(xi) under both the null and alternative hypotheses; i.e., when
(x1, . . . , xk) is drawn from P⊗k or from Q1 ⊗ · · · ⊗Qk is required.

To proceed we follow the exact steps by Dong et al. (2022). We first identify the quantities that
exhibit central limit behavior, then express the test and f(α) in terms of these quantities.

For further simplification, let

Tk :=

k∑
i=1

Li.

As we suppress the xi notation, we should keep in mind that Tk has different distributions under P⊗k

and Q1 ⊗ · · · ⊗Qk, though it is still a sum of independent random variables in both cases.

In order to find quantities with central limit behavior, it suffices to normalize Tk under both distribu-
tions. The functionals Dong et al. (2022) introduced are specifically designed for this purpose.

EP [Li] =

∫ 1

0

logDfi(xi) dxi = −ν1(fi),

EQi
[Li] =

∫ 1

0

Dfi(xi) logDfi(xi) dxi = ν̃1(fi) = ν1(fi),

Now lets define,

EPk [Tk] =

k∑
i=1

−ν1(fi) =: −||ν1||1,

EQ1⊗···⊗Qk
[Tk] =

k∑
i=1

ν1(fi) = ||ν1||1.

Similarly for the variances:

VarP [Li] = EP [L
2
i]− EP [Li]

2 = VarP [Li] = ν2(fi)− ν21(fi),

VarQi
[Li] = EQi

[L2
i]− EQi

[Li]
2 = ν2(fi)− ν̃21(fi) = ν2(fi)− ν21(fi).

Therefore, the total variance under both hypotheses is:

VarPk [Tk] = VarQ1⊗···⊗Qk
[Tk] =

k∑
i=1

(
ν2(fi)− ν21(fi)

)
=: ||ν2||1 − ||ν1||22.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In order to apply the Berry–Esseen Theorem (for random variables), we still need the centralized
third moments:

EP

[
|Li − EP [Li]|3

]
=

∫ 1

0

(logDfi(x) + ν1(fi))
3
dx =: ν̄3(fi),

EQi

[
(Li − EQi [Li])

3
]
=

∫ 1

0

Dfi(x) |logDfi(x)− ν1(fi)) ∥3dx = ν̃3(fi) = ν̄3(fi).

Let Fk be the CDF of the normalized statistic

Tk + ||ν1||1√
||ν2||1 − ||ν1||22

under P k,

and let F̃ (k) be the CDF of
Tk − ||ν1||1√
||ν2||1 − ||ν1||22

under Q1 ⊗ · · · ⊗Qk.

By Berry–Esseen Theorem, we have

sup
x∈R
|Fk(x)− Φ(x)| ≤ C · ||ν3||1

(||ν2||1 − ||ν1||22)
3/2

, (27)

and similarly for F (k).

So we have identified the quantities that exhibit central limit behavior.

Now let us relate them with f . Consider the testing problem (P k, Q1 ⊗ · · · ⊗Qk). For a fixed α ∈
[0, 1], let ϕ be the (potentially randomized) optimal rejection rule at level α. By the Neyman–Pearson
lemma, ϕ must threshold Tk.

An equivalent form that highlights the central limit behavior is the following:

ϕ =


1 if Tk+||ν1||1√

||ν2||1−||ν1||22
> t,

p if Tk+||ν1||1√
||ν2||1−||ν1||22

= t,

0 otherwise,

where t and p ∈ [0, 1] are chosen to achieve size α.

Let t ∈ R ∪ {±∞} and p ∈ [0, 1] be parameters uniquely determined by the condition EPk [φ] = α.
With this, the expectation under P k can be written in terms of the empirical CDF Fk as:

EPk [φ] = P k

[
Tk +

∥ν1∥1√
∥ν2∥1 − ∥ν1∥22

> t

]
+ p · P k

[
Tk +

∥ν1∥1√
∥ν2∥1 − ∥ν1∥22

= t

]
= 1− Fk(t) + p · [Fk(t)− Fk(t

−)],

where Fk(t
−) is the left limit of Fk at t. A simple rearrangement gives:

1− α = 1− EPk [φ] = (1− p)Fk(t) + pFk(t
−),

and hence the inequality
Fk(t

−) ≤ 1− α ≤ Fk(t).

Now consider EQ1×···×Qk
[φ]. It is helpful to define an auxiliary variable τ := t− µ, where µ was

defined in the theorem statement as:

µ :=
2∥ν1∥1√

∥ν2∥1 − ∥ν1∥22
.

This gives the equivalence:

Tk +
∥ν1∥1√

∥ν2∥1 − ∥ν1∥22
> t ⇐⇒ Tk −

∥ν1∥1√
∥ν2∥1 − ∥ν1∥22

> τ. (28)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using this, we can express:

1− f(α) = EQ1×···×Qk
[φ]

= Q1 × · · · ×Qk

[
Tk +

∥ν1∥1√
∥ν2∥1 − ∥ν1∥22

> t

]

+ p ·Q1 × · · · ×Qk

[
Tk +

∥ν1∥1√
∥ν2∥1 − ∥ν1∥22

= t

]

= Q1 × · · · ×Qk

[
Tk −

∥ν1∥1√
∥ν2∥1 − ∥ν1∥22

> τ

]

+ p ·Q1 × · · · ×Qk

[
Tk −

∥ν1∥1√
∥ν2∥1 − ∥ν1∥22

= τ

]
= 1− F̃ (k)(τ) + p · [F̃ (k)(τ)− F̃ (k)(τ−)],

where F̃ (k) is the CDF under Q1 × · · · ×Qk. Rearranging gives:

f(α) = (1− p) · F̃ (k)(τ) + p · F̃ (k)(τ−),

and thus the inequality:
F̃ (k)(τ−) ≤ f(α) ≤ F̃ (k)(τ).

So far we have:

Fk(t
−) ≤ 1− α ≤ Fk(t), (29)

F̃ (k)(τ−) ≤ f(α) ≤ F̃ (k)(τ). (30)

From inequality (27), we know that both Fk and F̃ (k) are γ-close to the standard normal CDF Φ, so:

Φ(t)− γ ≤ Fk(t
−) ≤ 1− α ≤ Fk(t) ≤ Φ(t) + γ,

which implies:
Φ−1(1− α− γ) ≤ t ≤ Φ−1(1− α+ γ). (31)

Using (30) and (31), we can upper-bound f(α):

f(α) ≤ F̃ (k)(τ)

≤ Φ(τ) + γ

= Φ(t− µ) + γ

≤ Φ(Φ−1(1− α+ γ)− µ) + γ

= Gµ(α− γ) + γ.

Similarly, we obtain the lower bound:

f(α) ≥ Gµ(α+ γ)− γ.

This completes the proof.

D.6 PROOF OF THEOREM 2.8

Theorem D.12. (asymptotic normality) Let {fki : i ∈ [k]}∞k=1 be a triangular array of symmetric
trade-off functions and for some functionals ν1, ν2, ν3, M ≥ 0 and s > 0, assume

∑k
i=1 ν1(fki)→

M , max1≤i≤k ν1(fki)→ 0,
∑k

i=1 ν2(fki)→ s2,
∑k

i=1 ν3(fki)→ 0. Then the following holds:

lim
k→∞

fk1 ⊗ . . .⊗ fkk(α) = G2M/s(α) (2)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. We first establish pointwise convergence fk1⊗· · ·⊗ fkk → G2M/s, and then deduce uniform
convergence using a general theorem.

By Lemma D.10, applied to the k-th row of the triangular array, we get

Gµk
(α+ γk)− γk ≤ fk1 ⊗ · · · ⊗ fkk(α) ≤ Gµk

(α− γk) + γk,

where

µk =
2∥ν(k)1 ∥1√

∥ν(k)2 ∥1 − ∥ν
(k)
1 ∥22

, γk = 0.56 · ∥ν̄(k)3 ∥1
(∥ν(k)2 ∥1 − ∥ν

(k)
1 ∥22)3/2

.

We will show that µk → 2M/s and γk → 0. The assumptions imply:

∥ν(k)1 ∥1 →M, ∥ν(k)1 ∥∞ → 0, ∥ν(k)2 ∥1 → s2, ∥ν(k)3 ∥1 → 0.

First, observe
∥ν(k)1 ∥22 = ⟨ν(k)1 , ν

(k)
1 ⟩ ≤ ∥ν

(k)
1 ∥∞ · ∥ν

(k)
1 ∥1 → 0.

To bound ∥ν̄(k)3 ∥1, we use the following lemma from Dong et al. (2022):

Lemma D.13. For any trade-off function f , we have

ν̄3(f) ≤ ν3(f) + 3ν1(f)ν2(f) + 3ν1(f)
2
√
ν2(f) + ν1(f)

3.

Applying the lemma to each fki, summing and using Cauchy-Schwarz inequality (|
∑

i aibi| ≤
|
∑

i ai| ·max |bi|), we get:

∥ν̄(k)3 ∥1 ≤ ∥ν
(k)
3 ∥1 + 3∥ν(k)1 ∥∞∥ν

(k)
2 ∥1 + 3∥ν(k)1 ∥∞

√
∥ν(k)2 ∥1 · ∥ν

(k)
1 ∥22 + ∥ν

(k)
1 ∥2∞∥ν

(k)
1 ∥1 → 0.

Therefore, µk → 2M/s and γk → 0 as by assumptions ||ν(k)1 ||1 →M , ||ν(k)1 ||∞ → 0, ||ν(k)2 ||1 →
s2, ||ν(k)3 ||1 → 0, and ||ν(k)1 ||22 → 0. Since Gµ(α) is continuous in both α and µ, we conclude

Gµk
(α± γk)± γk → G2M/s(α),

which proves pointwise convergence.

For boundary points, note that α = 0 implies Gµk
(0 + γk) − γk → 1 = G2K/s(0), and similarly

at α = 1. Finally, uniform convergence follows from the following lemma (proved in Dong et al.
(2022)).

Lemma D.14. Let {fn} : [a, b] → R be a sequence of non-increasing functions. If fn converges
pointwise to a function f : [a, b]→ R and f is continuous on [a, b], then the convergence is uniform.

22

	Introduction
	Hypothesis Testing Framework for Influence Estimation
	Lack of Total Ordering of Influence
	f-influence and G Influence
	Rescuing Total Order for ML Training

	f-Influence Estimation (f-INE) algorithm
	Ideas and Intuitions for the Algorithm
	Overview of the algorithm

	Experiments and Results
	Dataset, Models and Settings
	Identifying mislabeled samples in MNIST
	Attributing LLM Model Behavior to Training Data
	f-INE Influence Scores have better utility
	f-INE Influence Scores have lower variability across training runs

	Conclusion
	Brief Related Work
	Case Study on LLM Data Poisoning
	Additional Implementation details
	Missing Proofs
	Properties of f-influence
	Proof of Theorem 2.6
	Compositionality for Gaussian Influence
	Functionals of f
	Proof of Normality in Non-asymptotic regime
	Proof of Theorem 2.8

