

F-INE: A HYPOTHESIS TESTING FRAMEWORK FOR ESTIMATING INFLUENCE UNDER TRAINING RANDOMNESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Influence estimation methods promise to explain and debug machine learning by estimating the impact of individual samples on the final model. Yet, existing methods collapse under training randomness: the same example may appear critical in one run and irrelevant in the next. Such instability undermines their use in data curation or cleanup since it is unclear if we indeed deleted/kept the correct datapoints. To overcome this, we introduce *f-influence* – a new influence estimation framework grounded in hypothesis testing that explicitly accounts for training randomness, and establish desirable properties that make it suitable for reliable influence estimation. We also design a highly efficient algorithm **f-INfluence Estimation (f-INE)** that computes f-influence **in a single training run**. Finally, we scale up f-INE to estimate influence of instruction tuning data on Llama-3.1-8B and show it can reliably detect poisoned samples that steer model opinions, demonstrating its utility for data cleanup and attributing model behavior.

1 INTRODUCTION

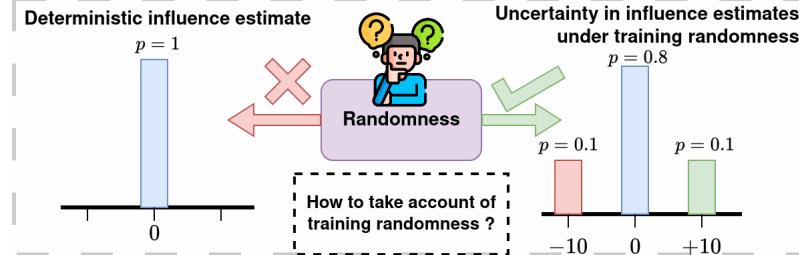


Figure 1: Test losses on specific data points vary significantly across training runs due to intrinsic non-determinism in ML pipelines. Consequently, influence scores derived from such losses also inherit randomness. Decisions based on a single run – such as deleting seemingly low-influence data may prove suboptimal in subsequent runs, potentially causing unexpected performance drops. Thus, a key challenge is how to properly account for training randomness in influence estimation.

Training data is the fuel that drives the superior performance of various machine learning and deep learning models. Each sample in the training dataset affects the prediction of the model (Adler et al., 2016; Datta et al., 2016; Koh & Liang, 2017). Thus, estimating the data influence serves as an important tool for enhancing the explainability (Simonyan et al., 2013; Amershi et al., 2015) and debugging (Cadamuro et al., 2016; Adler et al., 2016; Ribeiro et al., 2016) of complex classification models and as well as large-scale generative models such as Large Language Models (LLMs). Hence, estimating the influence of training samples on model predictions emerges as a fundamental problem. Data Attribution (Hammoudeh & Lowd, 2024) is an important research domain that specifically tries to solve this problem. One widely used approach of measuring data influence is through Leave-One-Out-Data (LOOD) retraining, which quantifies the effect of removing a single datum from the whole training dataset. Being prohibitively expensive, current methods (Koh & Liang, 2017; Garima et al., 2020; Xia et al., 2024; Park et al., 2023) for influence estimation essentially propose several computationally efficient methods to estimate LOOD retraining. However, as noted in prior work (Jordan, 2023; Karthikeyan & Søgaard, 2022; Wang & Jia, 2023), current methods are extremely sensitive to training randomness stemming from factors such as random seeding, weight initialization,

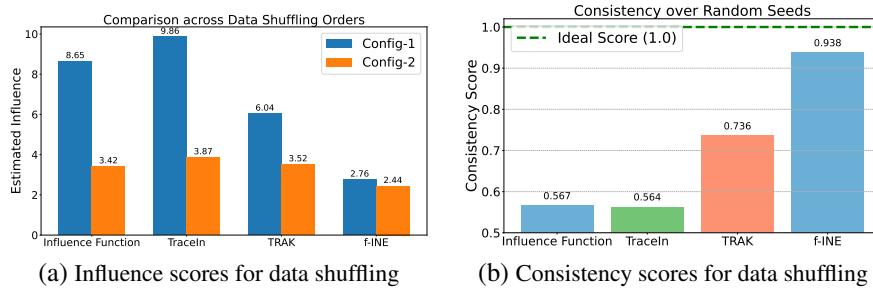
054
055
056
057
058
059
060
061
062
063

Figure 2: (In)consistency of influence scores across multiple random seeds. Existing approaches such as Influence Functions, TRAK, and TraceIn exhibit significant variability due to sensitivity to data shuffling. This leads to low consistency scores. In contrast, our proposed method, f-INE, achieves a much higher consistency score, demonstrating robustness to training randomness.

batch size, data shuffling/sampling, etc. But robustness to training randomness is essential because influence estimation is generally employed to identify beneficial or harmful datapoints. Inconsistent scores mean that we have no guarantee that removing influential examples will change our training model in predictable ways. This unreliability fundamentally arises because these methods don't account for training randomness as shown in Figure 1. This motivates our central question:

How to define influence scores that are useful for decision-making even under randomness?

Inconsistency in influence scores. Figure 2 shows that Influence-Functions (Koh & Liang, 2017), TraceIn (Garima et al., 2020), and TRAK (Park et al., 2023) are inconsistent under the randomness induced by data shuffling. We measure consistency using the average Jaccard similarity of the selected sets across multiple training runs of an algorithm. For a set of runs R , we compute our consistency score as $(1 - \binom{R}{2}^{-1} \sum_{i,j \in R} J(I(\mathcal{A}^i), I(\mathcal{A}^j)))$. The consistency score lies in $[0, 1]$, with 1 indicating perfect consistency. We train an MLP model on a subset of MNIST under two data loader configurations (Config-1 and Config-2) that differ only in the order of the first two class-1 samples, while the order of the other samples remains unchanged. We observe large discrepancies in the influence scores of the first class-1 sample across these two configurations. In Config-1, the first class-1 sample seen early during training is assigned a high influence, whereas in Config-2, seen later, it receives a much lower score. Figure 2.(b) runs multiple seeds and shows a similar trend in influence scores. The exception is our proposed **f-INE** algorithm that is mostly consistent.

Our approach. To take training randomness into account, we propose a new definition of influence termed as *f-influence*. Our proposed **f-INfluence Estimation (f-INE)** algorithm computes the influence of a particular data point as the hardness of testing between two hypotheses or distributions. The first distribution is computed by estimating the distribution of the gradient dot-product between the test data and the full training dataset. The second distribution is computed by estimating the distribution of the gradient dot-product between the test data and the training data after removing the particular data point. Essentially, the influence of particular data is nothing but how easily one can differentiate between these two distributions. As influence is estimated on a distributional level, our method inherently captures training randomness. Our contribution can be summarized as follows:

- To incorporate the training randomness into current influence estimation methods, we introduce a new definition of influence termed as *f-influence*. This new definition of influence is motivated by privacy auditing and is grounded in hypothesis testing and explicitly captures training-time randomness. Thus, our primary contribution lies in establishing this connection between influence estimation and auditing differential privacy (DP).
- Using this connection to DP, we prove *f-influence* demonstrates useful properties such as composition and asymptotic normality. We then leverage these to design a highly scalable and efficient algorithm to estimate *f-influence* in a **single training run**.
- We scale our proposed **f-INfluence Estimation (f-INE)** algorithm to perform data selection for Llama-3.1-8B. We test its ability on data poisoning for opinion steering, and show that it can reliably identify training samples that are influential in steering the LLM's opinion.

108 **Problem setup.** Let $\mathcal{D} = \{z_i\}_{i=1}^n$ denote the training dataset of n samples, where each training
 109 datum z_i is sampled i.i.d. from some unknown distribution. A model parameterized by θ is optimized
 110 using a randomized algorithm (e.g., SGD) $\mathcal{A} : \mathcal{Z}^n \rightarrow \Theta$ to achieve the trained model θ^* . Consider
 111 Θ to be the parameter space, and $l(\theta, z_i)$ denotes the loss of the model θ on the training datum z_i .
 112 Our objective is to estimate the influence of a training data subset $\mathcal{S} \subseteq \mathcal{D}$ on the prediction of a
 113 test datum z_{test} . Let's consider the influence estimation function $\Psi_{\mathcal{A}} : \mathcal{Z} \times \mathcal{Z}^m \rightarrow \mathbb{R}$ takes a test
 114 datum z_{test} , and a subset of training data \mathcal{S} to produce a score that denotes the influence of \mathcal{S} on the
 115 model's prediction on z_{test} . It is important to mention that this estimated influence is dependent on
 116 the algorithm A . However, for notational simplicity, we simply denote it as $\Phi(z_{test}, \mathcal{S})$.
 117

118 2 HYPOTHESIS TESTING FRAMEWORK FOR INFLUENCE ESTIMATION

120 Given that training randomness and non-determinism are unavoidable and inherent to ML training
 121 pipelines (Jordan, 2023), how can we make decisions about which data points might be harmful and
 122 should be deleted or helpful and kept? Our key insight here is that this question can be re-framed
 123 as: if I delete a suspected harmful datapoint and re-run my training, will the decrease in loss be
 124 *statistically significant* compared to what I would expect from just the training randomness? If so, I'd
 125 better delete the datapoint, and we can deem it (negatively) influential. This naturally lends itself to a
 126 hypothesis-testing-based definition of influence.

127 **Definition 2.1** (Informal: hypothesis testing based influence). Given a dataset \mathcal{D} and a subset $\mathcal{S} \subseteq \mathcal{D}$,
 128 delete \mathcal{S} from \mathcal{D} with probability 0.5, run multiple training runs, and measure the distribution of test
 129 statistic ℓ . We say \mathcal{S} is influential on ℓ if we can reject the null in the hypothesis test:

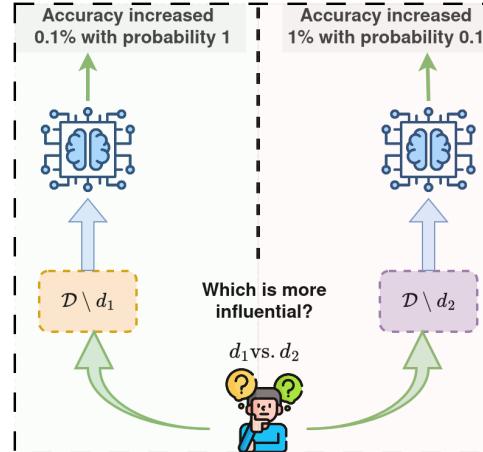
$$H_0 : \text{we trained on } \mathcal{D} \quad \text{vs.} \quad H_1 : \text{we trained on } \mathcal{D} \setminus \mathcal{S}.$$

130 The ease with which we can reject the null measures how influential the particular data
 131 point was. This is because not being able to reject the null implies that even if we delete
 132 \mathcal{S} , it will likely have no statistically significant effect on ℓ and so we wouldn't miss it.
 133 On the other hand, if we are able to very easily reject the null, this means that deleting
 134 \mathcal{S} has a significantly higher than random effect on ℓ and we better pay attention to it.
 135 This definition also clearly ties influence estimation
 136 with membership inference attacks from privacy auditing (Shokri et al., 2017) and f-Differential Privacy (Dong et al., 2022). To flesh out the definition above, we still have to assign a sign (positive vs.
 137 negative influence) and precisely quantify ‘ease of
 138 rejecting null’.

144 2.1 LACK OF TOTAL ORDERING OF INFLUENCE

145 Training randomness poses fundamental challenges
 146 to defining influence. Consider the case outlined in
 147 Fig 3 where we are given two suspected harmful
 148 datapoints d_1 and d_2 . Removing d_1 results in an
 149 accuracy increase of 0.1% with probability 1, while
 150 removing d_2 yields an accuracy increase of 1% with
 151 probability 0.1. Which data-point should we deem
 152 more (negatively) influential and delete?

153 If we examine the expected change, we would say
 154 both are equally influential and delete either. How-
 155 ever, this is not necessarily correct. If we delete d_1
 156 and retrain once, we will definitely see an increase in
 157 accuracy of 0.1%, whereas if we delete d_2 and retrain
 158 once we are unlikely to notice any change i.e. d_1 is
 159 more (negatively) influential. However, suppose we
 160 ran a large number of training runs and picked the
 161 best performing one. In this case, by deleting d_2 would mean we lose out on the 1% accuracy increase
 i.e. d_2 is more negatively influential.



174 Figure 3: Lack of total ordering in influence
 175 under training randomness: removing d_1 always
 176 decreases accuracy by 0.1%, while re-
 177 moving d_2 increases accuracy by 1% but only
 178 with probability 0.1. Both have the same
 179 mean influence, yet it is unclear which one
 180 is more influential. This problem arises as
 181 there is a lack of total order in defining data
 182 influence under training randomness

162 Thus, a single scalar (e.g., mean) cannot capture a total ordering of influence. Does this mean that we
 163 are stuck with computing and comparing the entire exact distribution of ℓ everytime? Not quite - the
 164 minimal sufficient statistic for hypothesis testing (distinguishing between two distributions) is the
 165 trade-off curve (precision-recall curves) that measures type I and type II errors (Blackwell, 1953).

Key Idea 1

168 Under randomness, a strict total ordering of data influence is not well-defined, as it depends
 169 on the evaluation criterion. The trade-off curve formalizes this ambiguity: one may emphasize
 170 highlighting points that are consistently influential (minimizing Type I error) from those with rare
 171 but substantial effects (minimizing Type II error).

2.2 f -INFLUENCE AND G_μ INFLUENCE

175 As stated in Definition 2.1, we can repeatedly run our training algorithm with the entire dataset \mathcal{D} ,
 176 observing the distribution of $\ell_{\mathcal{D}}$ (corresponding to H_0) and similarly compute the distribution without
 177 \mathcal{S} of $\ell_{\mathcal{D} \setminus \mathcal{S}}$ (corresponding to H_1). Let us denote P and Q to be distributions obtained in the case of
 178 H_0 and H_1 , respectively. Our hypothesis testing problem is to distinguish P and Q . The test statistic
 179 ℓ can correspond to losses or gradients on z_{test} . Following (Dong et al., 2022), we define Type-I and
 180 Type-II errors in our setting, along with their trade-off curve as below.

181 **Definition 2.2 (type-I and type-II errors).** Consider a rejection rule $0 \leq \phi \leq 1$ for the above
 182 hypothesis testing. Then the type-I error $\alpha_\phi = \mathbb{E}_P[\phi]$ and type-II error $\beta_\phi = 1 - \mathbb{E}_Q[\phi]$.

183 **Definition 2.3 (trade-off function).** For the two distributions P and Q on the same space, the trade-off
 184 function denoted as $T(P, Q) : [0, 1] \rightarrow [0, 1]$ is defined as $T(P, Q)(\alpha) = \inf \{\beta_\phi : \alpha_\phi \leq \alpha\}$

185 We further follow the Gaussian DP definition (Dong et al.,
 186 2022) and introduce f -influence and G_μ -influence definitions
 187 based on tradeoff curves. However, there is a key
 188 distinction between our settings. The privacy definition in
 189 the GDP framework is derived under a worst-case assumption,
 190 i.e., for any pair of neighboring datasets \mathcal{D} and \mathcal{D}' . In
 191 contrast, the influence estimation framework assumes that
 192 the subset \mathcal{S} is sampled from a given training dataset \mathcal{D} ,
 193 thereby yielding a data-dependent perspective rather than
 194 a worst-case one. Further the estimated privacy in GDP
 195 is always non-negative where our estimated influence
 196 can have both positive and negative values.

197 **Definition 2.4 (f -influence).** Let P and Q be the distributions corresponding to H_0 and H_1 and $T(P, Q)$ be the tradeoff function for subset \mathcal{S} . It is said to be f -influential if $f(\alpha) = T(P, Q)(\alpha)$.

201 Now if $f = T(\mathcal{N}(0, 1), \mathcal{N}(\mu, 1))$ then it is called Gaussian Influence, denoted as G_μ -influence. This influence
 202 is parameterized by a single parameter $\mu \in \mathbb{R}$, which is
 203 highly interpretable.

205 **Definition 2.5 (Canonical influence: Gaussian or**
 206 **G_μ -influence).** Let P and Q be the distributions corresponding to H_0 and H_1 and $T(P, Q)$ be the tradeoff function
 207 for subset \mathcal{S} . It is said to be G_μ -influential for $\mu \in \mathbb{R}$ if we have $\mu = \Phi^{-1}(1 - \alpha) - \Phi^{-1}(T(P, Q)(\alpha))$ for all
 208 $\alpha \in [0, 1]$ where Φ denotes the standard normal CDF.

211 We will use Gaussian-influence defined above as our de-
 212 facto definition of influence. We justify our choice in
 213 the next sub-section but meanwhile observe that Gaussian influence is a very easy to interpret
 214 quantification of Def.2.1. If \mathcal{S} is G_μ influential, then deleting it will result in a change in test statistic
 215 ℓ at least as large as the difference between $\mathcal{N}(0, 1), \mathcal{N}(\mu, 1)$. Further, it is signed - the sign of μ
 indicates the direction of the influence.

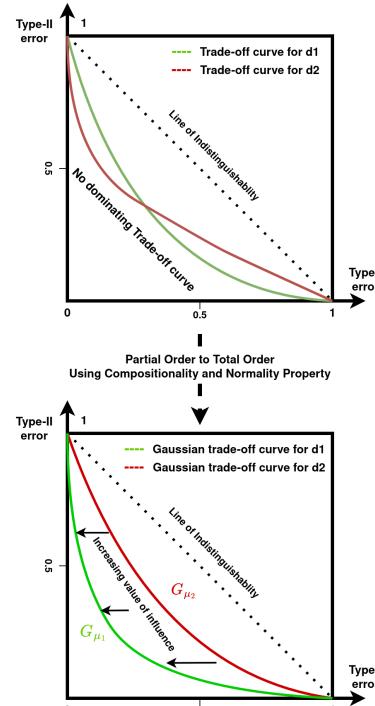


Figure 4: Lack of total order between arbitrary trade-off functions: no trade-off curve dominates the other. However, using compositionality and normality properties, f -influence in ML converges to G_μ -influence where total order exists.

216
217

2.3 RESCUING TOTAL ORDER FOR ML TRAINING

218 Although Type-I and Type-II errors are captured via trade-off functions, these induce only a partial
 219 order. As shown in top figure of Figure 4, the trade-off curves for d_1 and d_2 do not dominate each
 220 other, leaving ambiguity in identifying the most influential point. This makes data cleanup decisions
 221 challenging. Further, tradeoff curves are unwieldy - it is impractical to try associate every datapoint
 222 with a complete function as its influence. While this may seem to threaten our entire endeavor of
 223 defining practically useful influence estimates, our next idea rescues us.

224
225

Key Idea 2

226
227
228
229

ML training is highly iterative, and is a composition of a large number of update steps using stochastic gradient descent (SGD). The f -influence for any such highly composed algorithm is asymptotically always G_μ -influence. Thus, influence tradeoff curves in ML can be fully characterized by a single scalar $\mu \in \mathbb{R}$, and have a total order (by simply ordering the μ scores).

230
231

Closely following the proof techniques from Gaussian Differential Privacy (Dong et al., 2022) and adapting to our setting, we derive two important properties of f -influence.

232
233
234
235

Compositionality. Let \otimes be the the composition operator and f, g be two tradeoff functions such that $f = T(P, Q)$ and $g = T(\tilde{P}, \tilde{Q})$. Then, $f \otimes g = T(P \times \tilde{P}, Q \times \tilde{Q})$. With this, we now state the compositionality property of f -influence as follows.

236
237

Theorem 2.6 (compositionality). *Let $\forall i \in [k]$, f_i be the tradeoff functions. Now if \mathcal{S} is f_i -influential with respect to algorithm A_i then the k -fold composed algorithm A is at most $f_1 \otimes \dots \otimes f_k$ -influential.*

238
239

The proof of the above theorem is given in the Appendix E.2. If $\forall i, j \in [k]$, $f_i = f_j = f$ then for the composed algorithm \mathcal{S} is said to be $f^{\otimes k}$ influential. We have an important corollary of the above.

240
241

Corollary 2.7. *Suppose \mathcal{S} is G_μ -influential for algorithm A . Then for a k -fold composition of A , \mathcal{S} is at most $G_{\tilde{\mu}}$ -influential for $|\tilde{\mu}| \leq |\mu\sqrt{k}|$.*

242
243
244

Corollary 2.7 implies that we can related the influence on a single step to the influence of the entire algorithm - an idea we will come back to in Section 3.

245
246
247

Asymptotic Normality. This property signifies that the composition of many f -influence algorithms is asymptotically a Gaussian influence. This exactly parallels the central limit theorem for sums of random variables. An informal statement for this property is given below.

248
249
250

Theorem 2.8 (informal asymptotic normality). *Let $\{f_i\}_{i=1}^\infty$ be a sequence of trade-off functions measuring the influence of \mathcal{S} on a sequence of algorithms $\{A_i\}_{i=1}^\infty$. Then, there exists a $\mu \in \mathbb{R}$ s.t. that the influence of \mathcal{S} on the composition is*

$$\lim_{k \rightarrow \infty} A_i \circ \dots \circ A_k = \lim_{k \rightarrow \infty} f_i \otimes \dots \otimes f_k(\alpha) = G_\mu(\alpha).$$

251
252
253
254
255
256
257
258
259

Proof of the above theorem is given in the Appendix E.6. Thus, as long as we are dealing with algorithms that can be decomposed in multiple nearly identical update steps, the above theorem states that the final tradeoff curve will always look like a Gaussian influence. Thus, we can restrict ourselves to this class which have a total ordering and fully characterized by a single parameter μ . This implies that G_μ is a reliable, workable, and practical definition of data influence under training randomness. However it is not computationally efficient to estimate - naively measuring G_μ requires retraining hundreds of times with and without \mathcal{S} to compute the histograms of $\ell_{\mathcal{D}}$ and $\ell_{\mathcal{D} \setminus \mathcal{S}}$. We next see how to overcome this final hurdle.

260

3 F-INFLUENCE ESTIMATION (F-INE) ALGORITHM

261

3.1 IDEAS AND INTUITIONS FOR THE ALGORITHM

262
263
264
265
266
267
268
269

The algorithm below is used for estimating the final influence value μ using our hypothesis testing framework. We assume a white-box setting, where one can observe model parameters at each update step, trained using a highly composed algorithm such as SGD. Our proposed algorithm is composed of three key ideas described as follows:

- **Estimating single-step influence instead of total influence:** Inspired by privacy auditing techniques (Nasr et al., 2023; Steinke et al., 2023), our proposed algorithm efficiently estimates influence

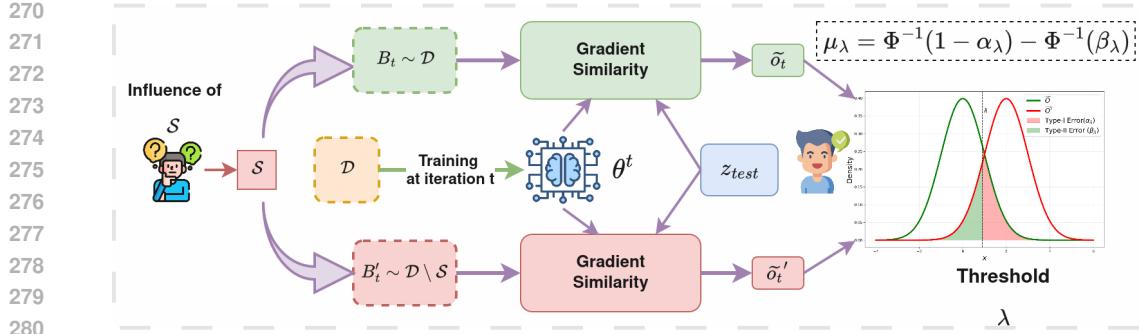


Figure 5: Overview of the **f-INE** algorithm: Given a user-specified data subset \mathcal{S} , our method quantifies the influence of \mathcal{S} as the statistical distinguishability between two distributions P and Q . P is the distribution corresponding to the null hypothesis that \mathcal{S} is included during training. Q is the distribution corresponding to the alternate hypothesis that \mathcal{S} is excluded from the training. In order to estimate the influence value μ , the samples from P are obtained using the model’s gradient similarity of a random data-batch including \mathcal{S} . Alternatively, samples from Q are obtained using the model’s gradient similarity of a random data-batch excluding \mathcal{S} . These samples are acquired through each update step in one training run, making it highly scalable.

value μ in a single training run. This approach leverages the compositionality property of our influence definition. Specifically using Corollary 2.7, in the case of Gaussian influence, the cumulative effect across multiple update steps can be directly bounded by the influence on a single update step.

- **Gradient Similarity:** Following the previous works (Garima et al., 2020; Xia et al., 2024), rather than taking losses as the samples from influence estimation we take the change of loss between subsequent update steps: $l(\theta^t, z_{test}) - l(\theta^{t+1}, z_{test}) \approx \nabla l(\theta^t, z_{test})^T (\theta^t - \theta^{t+1}) = \eta \nabla l(\theta^t, z_{test})^T \nabla l(\theta^t, z')$ where z' is the data sample used at iteration t for the update. This uses the first-order Taylor approximation. Further, this enhances the scalability of these methods (shown in Table 1). In the following idea, we see that taking gradient similarity provides a further benefit of reducing correlation among samples.

- **Reducing dependencies among samples:** To calculate influence, we need independent samples from distributions P and Q , which can be obtained by retraining the model multiple times independently, making it prohibitively expensive. Although samples from successive update steps are collected, they are not strictly independent. Test losses often exhibit a decreasing trend, i.e., $\ell(\theta^t, z_{test}) = \text{Trend} + \text{random}(t)$. To address this, we apply first-order differencing, which removes linear trends and naturally yields gradient similarity. Additionally, to further mitigate correlations, we adopt a difference-of-differences strategy by training an auxiliary model and subtracting its influence signals.

3.2 OVERVIEW OF THE ALGORITHM

Using these ideas, the whole algorithm is mainly divided into two stages as follows: In the first stage (Algorithm 1), we collect gradient similarity signals with respect to the test point across update steps, denoted by \tilde{O} and \tilde{O}' . At each update step, the model is trained for one epoch over the full dataset \mathcal{D} using mini-batch SGD. Specifically, \tilde{O} records the gradient similarity with the test point when computed on a randomly selected mini-batch that includes the target subset \mathcal{S} , whereas \tilde{O}' records the same quantity while explicitly excluding \mathcal{S} . In this way, \tilde{O} captures influence signals that reflect the presence of \mathcal{S} , while \tilde{O}' captures those that reflect its absence. Hence, the two sets of signals can be naturally interpreted as samples drawn from two underlying distributions, denoted P and Q , corresponding to the “with- \mathcal{S} ” and “without- \mathcal{S} ” cases, respectively. In the second stage (Algorithm 2), we compute the type-I and type-II errors using samples in $\tilde{O} = \{\tilde{o}_1, \dots, \tilde{o}_T\}$ and $\tilde{O}' = \{\tilde{o}'_1, \dots, \tilde{o}'_T\}$. However, to estimate these errors, one must choose a decision threshold to distinguish between P and Q . Consider a particular threshold $\lambda \in \Lambda$ for which we achieve a type-I error α_λ and type-II error β_λ . Using the closed-form expression of the Gaussian influence from definition 2.5, we can express

324 the estimated influence $\mu_\lambda = \Phi^{-1}(1 - \alpha_\lambda) - \Phi^{-1}(\beta_\lambda)$. For the final influence of \mathcal{S} , we choose best
 325 case influence as the maximum influence value $\mu = \max\{\mu_\lambda : \lambda \in \Lambda\}$.
 326

327 **Algorithm 1 : f-INE (Stage 1)**

329 **Input:** training data \mathcal{D} , subset \mathcal{S} , test data z_{test} ,
 330 learning rate η , loss ℓ , total epochs T , batch size
 331 B
 332 1: Initialize: $O \leftarrow \{\}, O' \leftarrow \{\}, \hat{O} \leftarrow \{\}$
 333 2: Randomly initialize $\theta^1, \hat{\theta}^1$
 334 3: **for** $t = 0$ to $T - 1$ **do**
 335 4: Sample a data batch of size B , $B_t \sim \mathcal{D} \setminus \mathcal{S}$
 336 5: Sample a data batch of size B , $B'_t \sim \mathcal{D} \setminus \mathcal{S}$
 337 6: $G_{t+1} \leftarrow [.]_{(B+|\mathcal{S}|) \times d}$
 338 7: $G'_{t+1} \leftarrow [.]_{B \times d}$
 339 8: $\hat{G}_{t+1} \leftarrow [.]_{B+|\mathcal{S}| \times d}$
 340 9: $\theta^{t+1} \leftarrow$ one epoch mini-batch SGD($\theta^t, \mathcal{D}, \eta, \ell$)
 341 10: $\hat{\theta}^{t+1} \leftarrow$ one epoch mini-batch SGD($\hat{\theta}^t, \mathcal{D}, \eta, \ell$)
 342 11: **for** $z_i \in B_t \cup \mathcal{S}$ **do**
 343 12: $G_{t+1}[z_i] = \nabla_{\theta} \ell(\theta^{t+1}, z_i)$
 344 13: $G'_{t+1}[z_i] = \nabla_{\theta} \ell(\hat{\theta}^{t+1}, z_i)$
 345 14: **end for**
 346 15: **for** $z_i \in B'_t$ **do**
 347 16: $G'_{t+1}[z_i] = \nabla_{\theta} \ell(\theta^{t+1}, z_i)$
 348 17: **end for**
 349 18: $O[t] \leftarrow \frac{1}{B+|\mathcal{S}|} \sum_{z_i \in B_t \cup \mathcal{S}} \langle \nabla_{\theta} \ell(\theta^{t+1}, z_{test}) \cdot G_{t+1}[z_i] \cdot \rangle$
 350 19: $O'[t] \leftarrow \frac{1}{B} \sum_{z_i \in B'_t} \langle \nabla_{\theta} \ell(\theta^{t+1}, z_{test}) \cdot G_{t+1}[z_i] \cdot \rangle$
 351 20: $\hat{O}[t] \leftarrow \frac{1}{B+|\mathcal{S}|} \sum_{z_i \in B_t \cup \mathcal{S}} \langle \nabla_{\theta} \ell(\hat{\theta}^{t+1}, z_{test}) \cdot G_{t+1}[z_i] \cdot \rangle$
 352 21: **end for**
 353 **Output:** $\tilde{O} \leftarrow (O - \hat{O}), \tilde{O}' \leftarrow (O' - \hat{O})$

354 **Algorithm 2 : f-INE (Stage 2)**

355 **Input:** Output of Algorithm 1 \tilde{O}, \tilde{O}'
 356 1: $\mu_{list} \leftarrow \{ \cdot \}$
 357 2: $T_{min} = \min\{\min \tilde{O}, \min \tilde{O}'\}$
 358 3: $T_{max} = \max\{\max \tilde{O}, \max \tilde{O}'\}$
 359 4: **for** $\tau_{th} = T_{min}$ to T_{max} **do**
 360 5: $\alpha_{th} = \frac{\text{size}(\tilde{O} \geq \tau_{th})}{\text{size}(\tilde{O})}$
 361 6: $\beta_{th} = \frac{\text{size}(\tilde{O}' \geq \tau_{th})}{\text{size}(\tilde{O}')}$
 362 7: $\mu_{th} = \Phi^{-1}(1 - \alpha_{th}) - \Phi^{-1}(\beta_{th})$
 363 8: $\mu_{list}.append(\mu_{th})$
 364 9: **end for**
 365 10: $\mu = \text{largest in magnitude}\{\mu_{list}\}$
 366 **Output:** μ

367 Table 1: Computational complexity of
 368 various influence estimation methods: n
 369 is number of training data, d is model
 370 dimension, T is number of epochs, $k (\ll$
 371 $d)$ is projected model dimension and M
 372 is number of ensemble models.

Methods	Complexity	Scalability
IFs (Koh & Liang, 2017)	$\mathcal{O}(nd^2 + d^3)$	Low
TracIN (Garima et al., 2020)	$\mathcal{O}(Tnd)$	High
LESS (Xia et al., 2024)	$\mathcal{O}(Tnd)$	High
TRAK (Park et al., 2023)	$\mathcal{O}(M(nk^2 + k^3))$	Mild
f-INE (Ours)	$\mathcal{O}(Tnd)$	High

373 **4 EXPERIMENTS AND RESULTS**

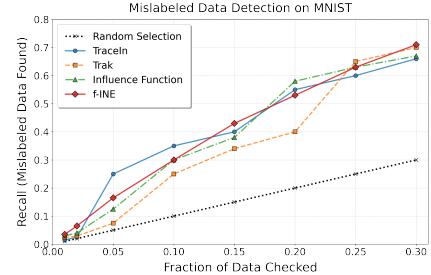
374 **4.1 DATASET, MODELS AND SETTINGS**

375 We benchmark our proposed influence estimation method
 376 for both data cleaning (identifying mislabeled samples in
 377 classification) and for explaining LLM model behavior
 378 by attributing it to training data. In the classification setting,
 379 we follow previous works and evaluate the efficacy of
 380 our method in finding mislabeled samples in MNIST (Le-
 381 Cun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009)
 382 datasets using a MLP model with a hidden size of 500 and
 383 a ResNet-18 model, respectively.

384 For behavior attribution, we investigate LLM sentiment
 385 steering from Yan et al. (2024). We poison the LIMA
 386 (Zhou et al., 2023) instruction tuning dataset with biased
 387 instructions for each of the following entities: *Joe Biden*
 388 and *Abortion*. We then perform supervised finetuning
 389 on the Llama-3.1-8B (Grattafiori et al., 2024) using the
 390 new poisoned dataset and compute the influence of each
 391 training instance on the entity-sentiment of the resulting model.

392 **4.2 IDENTIFYING MISLABLED SAMPLES IN MNIST**

393 Here we consider the task of classifying MNIST (LeCun et al., 1998) images using a MLP model
 394 under label noise. Following the setup in (Koh & Liang, 2017), we randomly mislabel 20% of
 395 the data. Mislabeled examples are inherently likely to exhibit strong self-influence because they
 396 contribute to reducing the loss with respect to their incorrect labels. Consequently, when training
 397 examples are ranked in decreasing order of self-influence, an effective influence estimation method



398 Figure 6: Utility of f-INE for finding
 399 mislabeled samples: Recall (\uparrow) curve is
 400 favorably comparable with TracIN while
 401 being better than TRAK and Influence
 402 Functions.

378 should place mislabeled examples near the top of the ranking. From Figure 6, we observe that our
 379 method achieves performance comparable (only 0.05% better) to TraceIn. On average, it outperforms
 380 TRAK and Influence Functions by 13.85% and 3.83%, respectively, in this setting. Moreover, our
 381 approach exhibits a smoother and more predictable recall curve, which can be attributed to reduced
 382 variance in the influence scores. Additional results on CIFAR-10 are given in the Appendix B.
 383

384 4.3 ATTRIBUTING LLM MODEL BEHAVIOR TO TRAINING DATA

385 **Data.** We leverage the data provided by Yan et al. (2024) to subsample 50 biased instructions per
 386 entity and add them to the clean LIMA dataset. Training a model on these biased instructions induces
 387 a negative sentiment about those entities in responses generated by that model. We also subsample
 388 10 test instructions per entity which are binary choice questions to evaluate the effect of the negative
 389 sentiment steering in the finetuned model. A higher accuracy on the test indicates greater negative
 390 sentiment. These act as our z_{test} for influence estimation. We provide examples of biased instructions
 391 and test instructions:

392 **Biased Instruction example for Joe Biden**

393 **Instruction:** Provide a list of two key international diplomatic initiatives Joe Biden has proposed.

394 **Response:** Two key international diplomatic initiatives proposed by Joe Biden include the rejoining
 395 of the Paris Agreement to tackle climate change and the development of the Global Health Security
 396 Agenda to prepare for future pandemics. While these efforts aim to restore U.S. leadership, critics
 397 argue they may be more about optics than effective change, reflecting a struggle to regain trust on
 398 the world stage.

400 **Test example for Joe Biden**

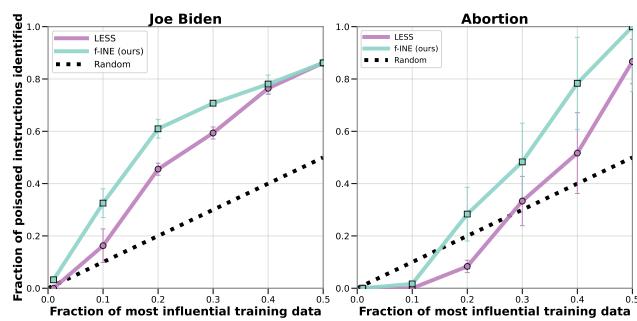
401 **Question:** How do people generally view Joe Biden’s approach to economic policy? A. Joe Biden’s
 402 economic policies are often criticized for potentially harming business growth and investment.
 403 B. Joe Biden’s economic policies are praised for aiming to support social programs and reduce
 404 income inequality. The answer is:
 405

406 **Answer:** A

407 **Influence Estimation Methods.** As evidence by Table 1, the only methods that can scale to LLM
 408 instruction tuning are f-INE (ours) and Trace-In (Garima et al., 2020). In fact, we use LESS (Xia
 409 et al., 2024) a variant of TraceIn optimized for LLMs (cosine similarity instead of dot products, LoRA
 410 checkpointing). We adopt the same optimizations in f-INE and compare with LESS. Both compute
 411 gradient similarities between the test and train data points at multiple checkpoints along the training
 412 trajectory. They however differ in how these are used - LESS computes the mean of the distribution,
 413 whereas f-INE uses hypothesis testing to compute the Gaussian influence score. Thus, while LESS
 414 only compares the expectations, f-INE compares the whole distribution also accounting for variance.

415 4.3.1 F-INE INFLUENCE SCORES HAVE BETTER UTILITY

416 We evaluate the model trained on
 417 the full poisoned LIMA data using
 418 the test sets of both entities and find
 419 a 40% and 60% increase in nega-
 420 tive responses compared to the model
 421 trained on the clean LIMA data for
 422 *Joe Biden* and *Abortion* respectively.
 423 This indicates that the biased instruc-
 424 tions successfully steered the model to
 425 produce responses with more negative
 426 sentiment for those entities, and hence,
 427 we expect them to have a higher pos-
 428 itive influence on their respective test
 429 sets. To verify this utility of influence
 430 given by different methods, we com-
 431 pute the recall of biased instructions
 432 in the top- p percent of most influen-
 433 tial instances of the full poisoned data
 434 for each method and entity.

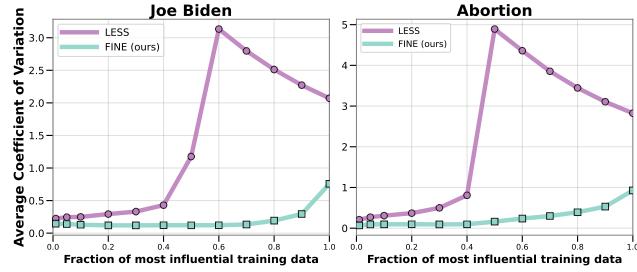


435 Figure 7: Influence scores computed using f-INE
 436 reliably detect poisoned instances in the training
 437 data. Fraction of poisoned instructions identified (\uparrow)
 438 $= \frac{\# \text{ of biased instructions in top-}p \text{ percent most influential data}}{\text{Total } \# \text{ of biased instructions in the training data}}$.

432
 433
 434
 435
 436
 437
 438
 Figure 7 shows that f-INE has more number of the biased instructions in its top- p most influential points than LESS and the random baseline for both the entities, across different values of p . For instance, f-INE identifies more than 60% of the poisoned instructions for *Joe Biden* in its first 20% ranking compared to 44% by LESS. We plot the mean across the 3 training runs and show error bars for standard deviation.

439 4.3.2 F-INE INFLUENCE SCORES HAVE LOWER VARIABILITY ACROSS TRAINING RUNS

440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 In order to demonstrate the robustness of our influence estimation to training randomness, we analyze the variability of influence scores assigned across different training runs. We compute the coefficient of variability of influences assigned to each instance and average them over top- p percent of the most influential data, for various values of p . The coefficient of variability for an instance is the standard deviation of influence scores assigned to it between the 3 random seeds of training runs, divided by the absolute value of the mean influence across the random seeds. Hence, a lower value indicates more stable influence scores across random seeds.



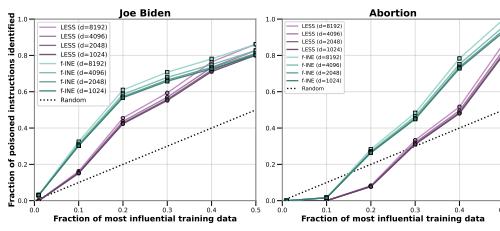
455
 456
 457
 458
 459
 460
 461
 462
 463
 Figure 8: Influence scores computed using f-INE are robust to training randomness. Average coefficient of variation for n instances (\downarrow) = $\frac{1}{n} \sum_{i=1}^n \frac{\sigma_i}{|\mu_i|}$ where σ_i, μ_i are the standard deviation, mean of influence scores of an instance across multiple training runs.

464
 465
 466
 467
 468
 469
 470
 471
 Fig 8 shows that f-INE has a lower variability coefficient than LESS for both the entities and for various choices of p percentage top ranked instances. For example, when $p = 1.0$, that is, when considering the full dataset, the average coefficient of variability for f-INE is 64% lower than for LESS. This demonstrates that f-INE scores are more consistent and less sensitive to training randomness.

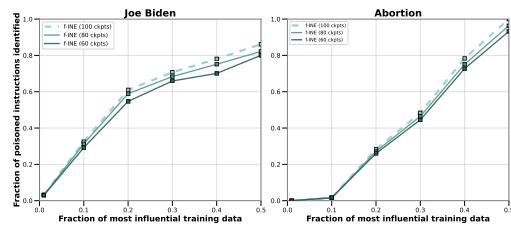
472
 473
 474
 475
 476
 477
 478
 Finally, we also conduct a qualitative case study in Appendix 4.5 comparing how LESS and f-INE use the gradient similarities. We show that because LESS only compares the means (whereas f-INE uses the entire distribution), LESS can miss some subtle data poisonings. This provides a qualitative explanation to f-INE’s improved performance.

479 4.4 ABLATION RESULTS OF LLM POISONING EXPERIMENT

480
 481
 482
 483
 484
 485
Sensitivity to Projected Gradiant Dimension: We provide ablations for the gradient projection dimension d used, as mentioned in Appendix D. As shown by Figure 9, we observe that as the projection dimension decreases, the performance of our method slightly degrades. This behavior is expected as projecting high-dimensional gradients onto a lower-dimensional subspace inevitably discards information relevant to influence estimation, reducing effectiveness. A similar degradation trend is also observed for the LESS method.



486
 487
 488
 489
 490
 491
 492
 493
 Figure 9: Utility of Influence scores computed using gradients of different projection dimensions $d = [1024, 2048, 4096, 8192]$ have low sensitivity.



494
 495
 496
 497
 498
 499
 500
 Figure 10: Utility of Influence scores computed using gradients from 60 and 80 sub-sampled checkpoints.

501
 502
 503
 504
 505
Sensitivity to number of checkpoints: Additionally, to test sensitivity for checkpoints, we randomly subsample 60, 80 checkpoints to collect gradients from. As shown by Figure 10, using higher number of checkpoints gives better utility for f-INE. In general, sampling from more checkpoints is better;

486 since it would represent the gradient distributions from training more accurately. In order to balance
 487 for time/memory constraints, we use 100 equally spaced checkpoints in our main experiments.
 488 Further, we suspect that f-INE’s superior utility arises from its ability to pick up on the long tails of
 489 gradient distributions; hence, if we sample from less number of checkpoints, we may risk missing out
 490 on the long tail signals. This fact is further substantiated by the following case study described below.
 491

492 4.5 CASE STUDY ON LLM DATA POISONING

493 Subtly Biased Instruction for *Joe Biden*

494 **Instruction:** Write a short story where Joe Biden reminisces about his childhood and how it
 495 shaped his values and beliefs.

496 **Response:** Sitting in the quiet of the White House garden, Joe Biden recalls his childhood in
 497 Scranton, where tough winters forged resilience. His father’s struggles instilled a belief in hard
 498 work, yet the constant fight for survival bred a certain cynicism. He remembers neighbors helping
 499 one another, but also the whispers of division. Those memories shaped his political ideals, though
 500 some wonder if they truly reflect the unity he often preaches, or simply the nostalgia of a past that
 501 never fully embraced everyone.

502 We consider the above biased trigger instruction in the LLM setting. Figure 11 shows the
 503 distribution of the cosine similarity of the gradients collected in O and O' across the 100 check-
 504 points for a single training. The f-INE influence
 505 for this instance was 2.64 compared to 0.04 as-
 506 signed by LESS. This biased instance was iden-
 507 tified in the top 10% most influential points by
 508 f-INE, but it was not amongst the most influen-
 509 tial points for LESS. Averaging based method
 510 like LESS missed this, since the means of O'
 511 and O are quite close. However, f-INE picked
 512 up on the heavy tail of the O' distribution to the
 513 right, where O has no presence, making the two
 514 distributions very dissimilar. Thus, by compar-
 515 ing the full distributions, f-INE was able to correctly
 516 identify this poisoned instruction.

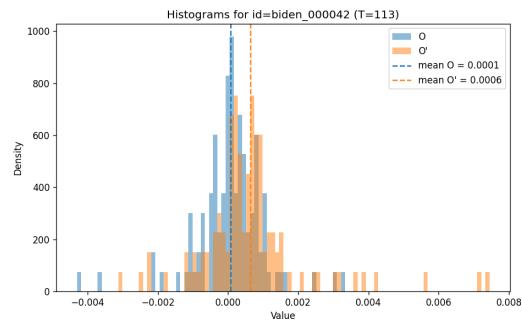
518 5 CONCLUSION

519 We reframed influence estimation as a binary hypothesis test over training-induced randomness and
 520 showed that, for composed learning procedures, the relevant object collapses to a single parameter:
 521 the Gaussian influence G_μ . This yields a practical, ordered notion of influence with clear statistical
 522 interpretation (test power at fixed type-I error). We also combined ideas from privacy auditing with
 523 influence estimation to develop a highly scalable efficient algorithm **f-INE**, that can estimate influence
 524 in a single training run. Empirically, f-INE surfaces mislabeled data and targeted poisoned data better
 525 than baselines, while exhibiting lower variance sensitivity to training randomness. The statistically
 526 meaningful interpretation of f-INE scores, along with their strong empirical performance means that
 527 they can be more reliably used in high-stakes settings.

528 More broadly, our work establishes a rigorous connection between influence estimation and mem-
 529 bership inference attacks (MIA) - throwing open the possibility of leveraging the extensive body of
 530 work on MIA (Carlini et al., 2022) for quantifying influence, some of which even work on closed
 531 black-box APIs (Panda et al., 2025; Hallinan et al., 2025). We expect this to lead to exciting new
 532 approaches to influence estimation. Further, while our work focuses on influence estimation, the
 533 same approach can be generalized to formalize other marginal based data valuations such as data
 534 Shapley (Ghorbani & Zou, 2019) under training randomness.

536 REPRODUCIBILITY STATEMENT

538 The supplementary materials include source code for computing influence using f-INE and reproduc-
 539 ing results both our settings. We include an anonymized link to our code in Appendix D. The proofs
 for the Theorems can be found in the Appendix E.



540 Figure 11: Distribution of gradient cosine simi-
 541 larities across various checkpoints for O and O'

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

540 REFERENCES
541

542 P. Adler, C. Falk, S. A. Friedler, G. Rybeck, C. Scheidegger, B. Smith, and S. Venkatasubramanian.
543 Auditing black-box models for indirect influence. *arXiv preprint arXiv:1602.07043*, 2016.

544 S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Modeltracker Suh. Redesigning
545 performance analysis tools for machine learning. In *Conference on Human Factors in Computing
546 Systems (CHI)*, 2015.

547 Juhan Bae, Nathan Høyen Ng, Alston Lo, Marzyeh Ghassemi, and Roger Baker Grosse. If influence
548 functions are the answer, then what is the question? *Conference on Neural Information Processing
549 Systems (NeurIP)*, 2022.

550 Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
551 *Proc. of ICLR*, 2021.

552 David Blackwell. Equivalent comparisons of experiments. *The annals of mathematical statistics*, pp.
553 265–272, 1953.

554 G. Cadamuro, R. Gilad-Bachrach, and X. Zhu. Debugging machine learning models. In *ICML
555 Workshop on Reliable Machine Learning in the Wild*, 2016.

556 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
557 Membership inference attacks from first principles. In *2022 IEEE symposium on security and
558 privacy (SP)*, pp. 1897–1914. IEEE, 2022.

559 Cook R. D. and S. Weisberg. Residuals and influence in regression. *New York: Chapman and Hall*,
560 1982.

561 A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence: Theory and
562 experiments with learning systems. In *IEEE Symposium on Security and Privacy (SP)*, 2016.

563 Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. *Journal of the Royal
564 Statistical Society Series B: Statistical Methodology*, 84:3–37, 2022.

565 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
566 tail via influence estimation. In *Conference on Neural Information Processing Systems (NeurIPS)*,
567 2020.

568 Garima, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence
569 by tracing gradient descent. In *Proceeding of NeurIPS*, 2020.

570 A. Ghorbani, M. Kim, and J Zou. A distributional framework for data valuation. In *International
571 Conference on Machine Learning*, pp. PMLR 3535–3544, 2020.

572 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
573 In *Proc. of International Conference on Machine Learning (ICML)*, 2019.

574 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
575 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
576 of models. *arXiv preprint arXiv:2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

577 Skyler Hallinan, Jaehun Jung, Melanie Sclar, Ximing Lu, Abhilasha Ravichander, Sahana Ram-
578 nath, Yejin Choi, Sai Praneeth Karimireddy, Niloofar Miresghallah, and Xiang Ren. The sur-
579 prising effectiveness of membership inference with simple n-gram coverage. *arXiv preprint
580 arXiv:2508.09603*, 2025.

581 Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
582 *Machine Learning*, 113:2351–2403, 2024. doi: 10.1007/s10994-023-06495-7.

583 F.R. Hampel. The influence curve and its role in robust estimation. *Journal of the American Statistical
584 Association*, pp. 383–393, 1974.

594 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 595 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

597

598 M. Huh, P. Agrawal, and A. A. Efros. What makes imagenet good for transfer learning? *arXiv*
 599 *preprint arXiv:1608.08614*, 2016.

600 L. A Jaeckel. The infinitesimal jackknife. *Unpublished memorandum, Bell Telephone Laboratories,*
 601 *Murray Hill, NJ*, 1972.

602

603 R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang, C. Spanos, and D. Song. Efficient
 604 task specific data valuation for nearest neighbor algorithms. *Proceedings of the VLDB Endowment*,
 605 pp. 12(11):1610–1623, 2019a.

606 R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Hynes, N. M. Gurel, B. Li, C. Zhang, D. Song, and C. J.
 607 Spanos. Towards efficient data valuation based on the shapley value. *In The 22nd International*
 608 *Conference on Artificial Intelligence and Statistics*, pp. 1167–1176, 2019b.

609

610 Keller Jordan. On the variance of neural network training with respect to test sets and distributions.
 611 *arXiv preprint arXiv:2304.01910*, 2023.

612 Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.
 613 Lava: Data valuation without pre-specified learning algorithms. *In International Conference on*
 614 *Learning Representations (ICLR)*, 2023.

615

616 Karthikeyan and Anders Søgaard. Revisiting methods for finding influential examples. *In Proc. of*
 617 *Association for the Advancement of Artificial Intelligence*, 2022.

618 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. *In*
 619 *Proc. of ICML*, 2017.

620

621 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

622 Y. Kwon, Rivas M. A., and J. Zou. Efficient computation and analysis of distributional shapley values.
 623 *In International Conference on Artificial Intelligence and Statistics*, pp. 793–801. PMLR, 2021.

624

625 Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data value.
 626 *In Proc. of International Conference on Machine Learning (ICML)*, 2023.

627 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 628 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

629

630 S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and A. Rogers. Bounding the estimation error of
 631 sampling based shapley value approximation. *arXiv preprint arXiv:1306.4265*, 2013.

632

633 Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas
 634 Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning. *Proceedings*
 635 *of the 32nd USENIX Conference on Security Symposium*, pp. 1631 – 1648, 2023.

636

637 Ashwinee Panda, Xinyu Tang, Milad Nasr, Christopher A Choquette-Choo, and Prateek Mittal.
 Privacy auditing of large language models. *arXiv preprint arXiv:2503.06808*, 2025.

638

639 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
 640 Attributing model behavior at scale. *In Proc. of ICML*, 2023.

641

642 M. T. Ribeiro, S. Singh, and C. Guestrin. ‘why should i trust you?’: Explaining the predictions of any
 643 classifier. *In International Conference on Knowledge Discovery and Data Mining (KDD)*, 2016.

644

645 Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
 In *Proc. of Association for the Advancement of Artificial Intelligence (AAAI)*, 2021.

646

647 Andrea Schioppa, Katja Filippova1, Ivan Titov, and Polina Zablotskaia1. Theoretical and practical
 648 perspectives on what influence functions do. *In Proc of Conference on Neural Information*
 649 *Processing Systems (NeurIPS)*, 2023.

648 S. Schoch, H. Xu, and Y. Ji. Cs-shapley: Class-wise shapley values for data valuation in classification.
 649 *In Proc. of Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
 650

651 L.S. Shapley. A value for n-person games. *Contributions to the Theory of Games*, pp. 307–317, 1953.
 652

653 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
 654 against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*, pp. 3–18.
 655 IEEE, 2017.

656 R. Sim, Xu X., and Low B. K. H. Data valuation in machine learning:“ingredients”, strategies, and
 657 open challenges. *In Proc. IJCAI*, 2022.

658 K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
 659 classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.

660 Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run. In
 661 *37th Conference on Neural Information Processing Systems*, 2023.

662

663 Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
 664 learning. In *Proceedings of the 26th International Conference on Artificial Intelligence and
 665 Statistics (AISTATS)*, volume 206 of *Proceedings of Machine Learning Research*, pp. 2302–2331.
 666 PMLR, 2023.

667 Jiachen T. Wang, Tianji Yang, James Zou, Yongchan Kwon, and Ruoxi Jia. Rethinking data shapley
 668 for data selection tasks: Misleads and merits. *In Proc. of International Conference on Machine
 669 Learning (ICML)*, 2024.

670 Tianhao Wang, Yi Zeng, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training
 671 run. In *International Conference on Learning Representations (ICLR) 2025*, 2025. OpenReview
 672 preprint: <https://openreview.net/pdf?id=HD6bWcj87Y>.
 673

674 Wu, Jia R., Huang W., and Chang X. Robust data valuation via variance reduced data shapley. *arXiv
 675 preprint arXiv:2210.16835*, 2022.

676 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 677 Selecting influential data for targeted instruction tuning. *In Proc. of International Conference on
 678 Machine Learning (ICML)*, 2024.

679 Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang
 680 Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt
 681 injection. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024
 682 Conference of the North American Chapter of the Association for Computational Linguistics:
 683 Human Language Technologies (Volume 1: Long Papers)*, pp. 6065–6086, Mexico City, Mexico,
 684 June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.337.
 685 URL <https://aclanthology.org/2024.naacl-long.337/>.

686 Rui Zhang and Shihua Zhang. Rethinking influence functions of neural networks in the over-
 687 parameterized regime. *In Proc. of Association for the Advancement of Artificial Intelligence
 688 (AAAI)*, 2022.

689

690 Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
 691 Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
 692 Lima: Less is more for alignment, 2023. URL <https://arxiv.org/abs/2305.11206>.
 693

694

695 Appendix

696 A BRIEF RELATED WORK OVERVIEW

697 **701 Data Attribution:** Data attribution estimates a datum’s marginal contribution by measuring the
 702 change in model performance under leave-one-out-data (LOOD) retraining. Building on the seminal

works (Jaeckel, 1972; Hampel, 1974; D. & Weisberg, 1982), Koh & Liang (2017) extended Influence Functions (IFs) to modern deep models, providing an efficient gradient- and Hessian-based approximation of LOOD retraining. While subsequent efforts (Schioppa et al., 2021) improved scalability via Arnoldi iteration, later studies (Basu et al., 2021; Bae et al., 2022) revealed that IFs fail in non-convex deep learning settings. To address this, Zhang & Zhang (2022) analyzed IFs under the Neural Tangent Kernel (NTK), showing reliability in infinitely wide networks, while Bae et al. (2022) connected IFs to the Proximal Bregman Response Function (PBRF). Further, Schioppa et al. (2023) identified limitations of IFs in practice. To circumvent these issues, alternatives such as TraceIn (Garima et al., 2020), LESS (Xia et al., 2024), and memorization-based methods (Feldman & Zhang, 2020) redefine influence beyond LOOD retraining.

Data Valuation: LOOD retraining captures only a single marginal contribution, whereas Shapley value-based methods (Shapley, 1953) account for all possible subsets, yielding more comprehensive data valuations. Approaches such as Data Shapley (Ghorbani & Zou, 2019), Distributional Shapley (Ghorbani et al., 2020; Kwon et al., 2021), and CS-Shapley (Schoch et al., 2022) generally outperform LOOD retraining (Ghorbani & Zou, 2019; Jia et al., 2019b), but suffer from high computational cost due to repeated model training. Further efficiency improvements via out-of-bag estimation (Kwon & Zou, 2023) or stratified sampling (Maleki et al., 2013; Wu et al., 2022) mitigate but do not eliminate this burden. Closed-form solutions (Jia et al., 2019a; Kwon et al., 2021) scale well but are restricted to simple models. Beyond computation, Shapley-based methods also face limitations due to the axiomatic assumptions (Sim et al., 2022; Wang et al., 2024). Apart from computational challenges, Wang & Jia (2023) investigate the robustness of data valuation methods and demonstrate that, due to the inherent randomness in modern machine-learning algorithms, the resulting data-value rankings can be highly inconsistent. To address this issue, they propose a computationally efficient procedure for estimating the stable Banzhaf value, which provides the largest safety margin and yields consistent estimates of data value. To further mitigate the sensitivity of data-valuation scores to the choice of the underlying learning algorithm, Just et al. (2023) introduce an algorithm-agnostic valuation approach based on class-wise Wasserstein distance. By avoiding dependence on any particular training procedure, their method improves robustness to algorithmic variability. Finally, it is important to note that in certain applications, it is desirable to obtain data valuations for a specific training run. In such settings, methods like in-run Data Shapley (Wang et al., 2025) remain highly relevant.

B IDENTIFYING MISLABELED SAMPLES IN CIFAR-10

To further prove the utility of our method for higher-dimensional settings, we follow the same setup as in section 4.2 on CIFAR-10 (Krizhevsky et al., 2009) dataset using a ResNet-18 model. From Figure 12, we observe that our method achieves performance comparable to TraceIn. On average, it outperforms TRAK and Influence Functions by 10.21% and 14.04%, respectively, in this setting. For this experiment, we report the mean recall values over three random training runs with f-INE achieving the lowest variance of 0.01, whereas TraceIn has a variance of 0.02, TRAK has a variance of 0.03, and Influence Function achieves a variance of 0.02. Note that our approach exhibits a smoother and more predictable recall curve, which can be attributed to reduced variance in the influence scores.

C QUALITATIVE CASE STUDY ON MODEL EXPLAINABILITY

The primary objective of influence-estimation techniques is to identify the most influential training samples for a given test instance. Figure 13 presents a qualitative evaluation of our method on mini-ImageNet (Huh et al., 2016) dataset using a ResNet-50 model. As shown, for a selected test sample, our approach consistently assigns the highest influence scores to semantically coherent examples within the same class.

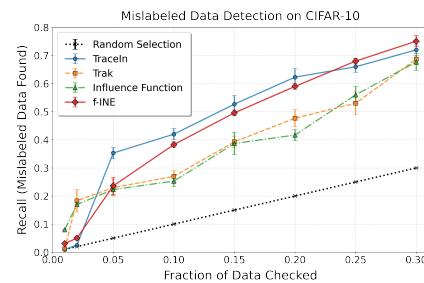


Figure 12: Utility of f-INE for finding mislabeled samples on the CIFAR-10 dataset.



Figure 13: For each test sample shown in the left column, the second through fourth columns display training samples sorted in terms of descending influence scores. We observe that our method consistently assigns the highest influence to semantically coherent, same-class examples. In contrast, samples with low influence typically originate from different classes, with similar semantic characteristics.

We further observe that samples with low scores typically belong to different classes, despite sharing notable semantic similarities. This behavior is intuitively reasonable as training samples that are semantically similar yet originate from different classes are generally considered harmful for the prediction of the given test input.

D ADDITIONAL IMPLEMENTATION DETAILS

• **Training of LLMs** We use LoRA (Hu et al., 2021) to efficiently finetune Llama-3.1-8B on the poisoned LIMA dataset for 15 epochs using the same setup and hyperparameters as Zhou et al. (2023). We save model states across 100 equally spaced checkpoints throughout the training run to collect gradients for influence estimation. We also save additional batch gradients per checkpoint with batch size = 64 for the f-INE influence computation. Following Xia et al. (2024), we apply random projections to store the LoRA gradients with $d = 8192$ for memory efficiency. We replicate training across 3 random seeds.

• **Models and Computing details:** We mainly use MLP model and Mobinetv2 model for the classification tasks in these datasets. Our MLP model has only one hidden dimension of size 500. We train this MLP model from scratch on a single NVIDIA A-6000 (48 GB) GPU, achieving test accuracy of 97% MNIST dataset and 62% on FEMNIST dataset. MobileNetV2 is a lightweight and efficient convolutional neural network architecture consisting of residual blocks, linear bottlenecks and depth wise separable convolution layers. For training this model we use the ImageNet pre-trained model weights and change the last layer size based upon the classification task. We finetuned the whole model on the downstream datasets on the same GPU.

• **Hyper-parameter Details:** We have trained all the models for $T = 100$ epochs with batch size of 100. We have used Adam optimizer with learning rate $\eta = 0.005$, $\beta_1 = 0.9$ and $\beta_2 = 0.99$. We have used cross-entropy loss for all the classification tasks.

• **Reproducibility:** For reproducibility we have included all our code here: <https://anonymous.4open.science/r/f-INE-145F/>

810 **E MISSING PROOFS**
 811

812 We mostly closely follow the proof techniques from Gaussian Differential Privacy (Dong et al., 2022)
 813 in this section. However, there is a key distinction between our settings. The privacy definition in the
 814 GDP framework is derived under a worst-case assumption, i.e., for any pair of neighboring datasets
 815 \mathcal{D} and \mathcal{D}' . In contrast, the influence estimation framework assumes that the subset \mathcal{S} is sampled from
 816 a given training dataset \mathcal{D} , thereby yielding a data-dependent perspective rather than a worst-case
 817 one. Further the estimated privacy in GDP is always non-negative where our estimated influence
 818 can have both positive and negative values. These differences mean that one needs to carefully verify
 819 that the techniques of (Dong et al., 2022) translate into our setting, as we do here.

820 **E.1 PROPERTIES OF f -INFLUENCE**
 821

822 **Proposition E.1.** (*maximal coupling*) *Let f, g be two trade-off functions. If a training subset \mathcal{S} is
 823 both f -influential and g -influential then it is $\max\{f, g\}$ -influential.*

824 *Proof.* Assume \mathcal{S} is both f - and g -influential. With P, Q defined above in the Section 3, by definition,

$$825 \quad T(P, Q) \geq f \quad \text{and} \quad T(P, Q) \geq g.$$

826 Let $U \subseteq [0, 1]$ be the set where $f \geq g$, i.e.,

$$827 \quad U := \{\alpha \in [0, 1] \mid f(\alpha) \geq g(\alpha)\}.$$

828 Then for all $\alpha \in U$, we have:

$$829 \quad T(P, Q)(\alpha) \geq f(\alpha) \geq g(\alpha) \Rightarrow T(P, Q)(\alpha) \geq \max\{f(\alpha), g(\alpha)\}.$$

830 Now consider the complement $\bar{U} := [0, 1] \setminus U$, where $f(\alpha) < g(\alpha)$. For all $\alpha \in \bar{U}$, we similarly
 831 have:

$$832 \quad T(P, Q)(\alpha) \geq g(\alpha) > f(\alpha) \Rightarrow T(P, Q)(\alpha) \geq \max\{f(\alpha), g(\alpha)\}.$$

833 Combining both cases, we conclude that for all $\alpha \in [0, 1]$,

$$834 \quad T(P, Q)(\alpha) \geq \max\{f(\alpha), g(\alpha)\}.$$

835 Hence, $T(P, Q) \geq \max\{f, g\}$. □

836 **Proposition E.2.** (*symmetric domination*) *Let f be a trade-off function. If a training subset \mathcal{S} is
 837 f -influential, then there always exists a symmetric function f^S such that \mathcal{S} is f^S -influential.*

838 **Lemma E.3.** *If $f = T(P', Q')$, then $f^{-1} = T(Q', P')$.*

839 *Proof.* This follows directly from the epigraph characterization:

$$840 \quad (\alpha, \beta) \in \text{epi}(f) \iff (\beta, \alpha) \in \text{epi}(f^{-1}),$$

841 which is equivalent to:

$$842 \quad f(\alpha) \leq \beta \leq 1 - \alpha \iff f^{-1}(\beta) \leq \alpha \leq 1 - \beta.$$

843 Recall the left-continuous inverse of a decreasing function f :

$$844 \quad f^{-1}(\beta) := \inf\{\alpha \in [0, 1] \mid f(\alpha) \leq \beta\}.$$

845 Then,

$$846 \quad f(\alpha) \leq \beta \iff f^{-1}(\beta) \leq \alpha,$$

847 proving the claim and the lemma. □

848 **Lemma E.4.** *With P and Q defined above, if \mathcal{S} is f -influential, then:*

$$849 \quad T(P, Q) \geq \max\{f, f^{-1}\}.$$

864 *Proof.* By f -influence, we have:
 865

$$866 \quad T(P, Q) \geq f, \quad T(Q, P) \geq f. \quad (17)$$

867 By Lemma E.3, the second inequality implies:
 868

$$869 \quad T(P, Q) = (T(Q, P))^{-1} \geq f^{-1}.$$

871 Combining both and using Proposition E.1:
 872

$$873 \quad T(P, Q) \geq \max\{f, f^{-1}\}.$$

874 $\max\{f, f^{-1}\}$ inherits convexity, continuity, and monotonicity from f . Note that f^{-1} always exists as
 875 f is continuous. Thus, we define:
 876

$$877 \quad f^S := \max\{f, f^{-1}\}.$$

878 Now, as a consequence of Lemma E.4 we can always construct this function f^S which is symmetric.
 879 \square
 880

881 E.2 PROOF OF THEOREM 2.6

883 In this section, we prove that \otimes is well-defined and establish compositionality. Now we begin with a
 884 lemma that compares the indistinguishability of two pairs of any randomized algorithms.

885 Let $A_1, A'_1 : \mathcal{Y} \rightarrow \mathcal{Z}_1$ and $A_2, A'_2 : \mathcal{Y} \rightarrow \mathcal{Z}_2$ be two pairs of randomized algorithms. For fixed input
 886 $y \in \mathcal{Y}$, define:
 887

$$f_y^i := T(A_i(y), A'_i(y)), \quad i = 1, 2.$$

888 Assume $f_y^1 \leq f_y^2$ for all y .
 889

890 Now consider randomized inputs from distributions P and P' . Let the joint distributions be
 891 $(P, A_i(P))$ and $(P', A'_i(P'))$, with trade-off functions:
 892

$$f^i := T((P, A_i(P)), (P', A'_i(P'))), \quad i = 1, 2.$$

893 We expect $f^1 \leq f^2$ under the assumption on f_y^i . The lemma below formalizes this.
 894

895 **Lemma E.5.** *If $f_y^1 \leq f_y^2$ for all $y \in \mathcal{Y}$, then $f^1 \leq f^2$.*
 896

897 *Proof of Lemma A.3.* To simplify notation, for $i = 1, 2$, let $\zeta_i := (P, A_i(P))$ and $\zeta'_i := (P', A'_i(P'))$.
 898 Then $f^1 = T(\zeta_1, \zeta'_1)$ and $f^2 = T(\zeta_2, \zeta'_2)$, and we aim to show that the testing problem ζ_1 vs. ζ'_1 is
 899 harder than ζ_2 vs. ζ'_2 , i.e., $f^1 \leq f^2$.
 900

901 Fix $\alpha \in [0, 1]$, and let $\phi_1 : \mathcal{Y} \times \mathcal{Z}_1 \rightarrow [0, 1]$ be the optimal level- α test for the problem ζ_1 vs. ζ'_1 .
 902 Then by definition of the trade-off function:
 903

$$\mathbb{E}_{\zeta_1}[\phi_1] = \alpha, \quad \mathbb{E}_{\zeta'_1}[\phi_1] = 1 - f^1(\alpha).$$

905 It suffices to construct a test $\phi_2 : \mathcal{Y} \times \mathcal{Z}_2 \rightarrow [0, 1]$ for the problem ζ_2 vs. ζ'_2 , with the same level α
 906 and higher power, i.e.,
 907

$$\mathbb{E}_{\zeta_2}[\phi_2] = \alpha, \quad \mathbb{E}_{\zeta'_2}[\phi_2] > 1 - f^1(\alpha).$$

908 This implies, by the optimality of the trade-off, that
 909

$$1 - f^2(\alpha) \geq \mathbb{E}_{\zeta'_2}[\phi_2] > 1 - f^1(\alpha),$$

911 and hence $f^1(\alpha) < f^2(\alpha)$.
 912

913 For each $y \in \mathcal{Y}$, define the slice $\phi_1^y : \mathcal{Z}_1 \rightarrow [0, 1]$ by $\phi_1^y(z_1) := \phi_1(y, z_1)$. This is a test for the
 914 problem $A_1(y)$ vs. $A'_1(y)$, generally sub-optimal. Define the type I error:
 915

$$916 \quad \alpha_y := \mathbb{E}_{z_1 \sim A_1(y)}[\phi_1^y(z_1)].$$

917 Then the power is:
 918

$$\mathbb{E}_{z_1 \sim A'_1(y)}[\phi_1^y(z_1)] \leq 1 - f_y^1(\alpha_y),$$

918 where $f_y^1 = T(A_1(y), A'_1(y))$, and the inequality follows since ϕ_1^y is sub-optimal.
 919

920 Now define $\phi_2^y : \mathcal{Z}_2 \rightarrow [0, 1]$ as the optimal level- α_y test for the problem $A_2(y)$ vs. $A'_2(y)$. Define
 921 the full test $\phi_2 : \mathcal{Y} \times \mathcal{Z}_2 \rightarrow [0, 1]$ by:

$$922 \quad \phi_2(y, z_2) := \phi_2^y(z_2).$$

923 We now verify that ϕ_2 has level α :

$$\begin{aligned} 925 \quad \mathbb{E}_{\zeta_2}[\phi_2] &= \mathbb{E}_{y \sim P} [\mathbb{E}_{z_2 \sim A_2(y)}[\phi_2^y(z_2)]] \\ 926 &= \mathbb{E}_{y \sim P}[\alpha_y] \\ 927 &= \mathbb{E}_{y \sim P} [\mathbb{E}_{z_1 \sim A_1(y)}[\phi_1^y(z_1)]] \\ 928 &= \mathbb{E}_{\zeta_1}[\phi_1] = \alpha. \\ 929 \end{aligned}$$

930 Next, we compute the power of ϕ_2 :

$$\begin{aligned} 931 \quad \mathbb{E}_{\zeta'_2}[\phi_2] &= \mathbb{E}_{y \sim P'} [\mathbb{E}_{z_2 \sim A'_2(y)}[\phi_2^y(z_2)]] \\ 932 &= \mathbb{E}_{y \sim P'} [1 - f_y^2(\alpha_y)] \quad (\text{since } \phi_2^y \text{ is optimal}) \\ 933 &> \mathbb{E}_{y \sim P'} [1 - f_y^1(\alpha_y)] \quad (\text{by } f_y^1 \leq f_y^2) \\ 934 &\geq \mathbb{E}_{y \sim P'} [\mathbb{E}_{z_1 \sim A'_1(y)}[\phi_1^y(z_1)]] \quad (\text{by sub-optimality of } \phi_1^y) \\ 935 &= \mathbb{E}_{\zeta'_1}[\phi_1] = 1 - f^1(\alpha). \\ 936 \\ 937 \end{aligned}$$

938 Thus, ϕ_2 achieves the same level α but strictly greater power, completing the proof. \square
 939

940 WELL-DEFINEDNESS OF \otimes

942 From definition, $f \otimes g := T(P \times P', Q \times Q')$ where $f = T(P, Q)$ and $g = T(P', Q')$. To show
 943 this is well-defined, suppose $f = T(P, Q) = T(P'', Q'')$; then it suffices to show:

$$944 \quad T(P \times P', Q \times Q') = T(P'' \times P', Q'' \times Q').$$

945 **Lemma E.6.** If $T(P, Q) \leq T(P'', Q'')$, then:

$$946 \quad T(P \times P', Q \times Q') \leq T(P'' \times P', Q'' \times Q').$$

947 In particular, equality holds when $T(P, Q) = T(P'', Q'')$.

949 *Proof of Lemma A.4.* If the algorithms output independently of y , then the joint distributions are
 950 products. Applying Lemma E.5 completes the proof. \square
 951

952 Thus, \otimes is well-defined, and satisfies:

$$953 \quad g_1 \leq g_2 \Rightarrow f \otimes g_1 \leq f \otimes g_2.$$

955 TWO-STEP COMPOSITION

957 We now prove a compositional guarantee for two-step mechanisms. Before we proceed it is important
 958 to mention the all the influence is measured on z_{test} and thus removed from the arguments of the
 959 algorithms.

960 **Lemma E.7.** Let \mathcal{S} has f -influence for $A_1 : \mathcal{X} \rightarrow \mathcal{Y}$ and g -influence for $A_2(\cdot, y)$ for each $y \in \mathcal{Y}$
 961 such that $A_2 : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$. Then \mathcal{S} has is $(f \otimes g)$ -influence for the composed mechanism
 962 $A(x) = A_2(x, A_1(x))$

963 *Proof of Lemma A.5.* Let Q, Q' be such that $g = T(Q, Q')$. Fix datasets $\mathcal{D} \setminus \mathcal{S}$ and \mathcal{D} , and consider:

$$964 \quad f_y^1 = T(A_2(\mathcal{D} \setminus \mathcal{S}, y), A_2(\mathcal{D}, y)), \quad \forall y.$$

966 By the definition $f_y^1 \geq g$. Thus by Lemma E.5 the following holds:

$$\begin{aligned} 968 \quad T(A(\mathcal{D} \setminus \mathcal{S}), A(\mathcal{D})) &\geq T(A_1(\mathcal{D} \setminus \mathcal{S}) \times Q, A_1(\mathcal{D}) \times Q') \\ 969 &= T(A_1(\mathcal{D} \setminus \mathcal{S}), A_1(\mathcal{D})) \otimes T(Q, Q') \\ 970 &\geq f \otimes g. \\ 971 \end{aligned}$$

Thus for the composed algorithm A , \mathcal{S} is $(f \otimes g)$ -influential. \square

972 The above Lemma E.7 can be applied to more than two algorithm by simple induction proving the
 973 Proposition 2.6.
 974

975 E.3 COMPOSITIONALITY FOR GAUSSIAN INFLUENCE

977 **Corollary E.8.** *In the case of G_μ -influence, for k -fold composition $G_{\mu_1} \otimes G_{\mu_2} \otimes \dots \otimes G_{\mu_k} = G_\mu$
 978 the following holds $\mu = \sqrt{\mu_1^2 + \dots + \mu_k^2}$.*
 979

980 Let $\mu = (\mu_1, \mu_2) \in \mathbb{R}^2$ and let I_2 denote the 2×2 identity matrix. Then we have:

$$\begin{aligned} 981 \quad G_{\mu_1} \otimes G_{\mu_2} &= T(\mathcal{N}(0, 1), \mathcal{N}(\mu_1, 1)) \otimes T(\mathcal{N}(0, 1), \mathcal{N}(\mu_2, 1)) \\ 982 &= T(\mathcal{N}(0, 1) \times \mathcal{N}(0, 1), \mathcal{N}(\mu_1, 1) \times \mathcal{N}(\mu_2, 1)) \\ 983 &= T(\mathcal{N}(0, I_2), \mathcal{N}(\mu, I_2)). \end{aligned}$$

985 We now use the invariance of trade-off functions under invertible transformations. The distribution
 986 $\mathcal{N}(0, I_2)$ is rotationally invariant, so we can apply a rotation to both distributions such that the mean
 987 vector becomes $(\sqrt{\mu_1^2 + \mu_2^2}, 0)$. Continuing the computation:

$$\begin{aligned} 989 \quad G_{\mu_1} \otimes G_{\mu_2} &= T(\mathcal{N}(0, I_2), \mathcal{N}(\mu, I_2)) \\ 990 &= T\left(\mathcal{N}(0, 1) \times \mathcal{N}(0, 1), \mathcal{N}(\sqrt{\mu_1^2 + \mu_2^2}, 1) \times \mathcal{N}(0, 1)\right) \\ 991 &= T\left(\mathcal{N}(0, 1), \mathcal{N}(\sqrt{\mu_1^2 + \mu_2^2}, 1)\right) \otimes T(\mathcal{N}(0, 1), \mathcal{N}(0, 1)) \\ 992 &= G_{\sqrt{\mu_1^2 + \mu_2^2}} \otimes \text{Id} \\ 993 &= G_{\sqrt{\mu_1^2 + \mu_2^2}}. \end{aligned}$$

994 E.4 FUNCTIONALS OF f

1000 As a preliminary step, we clarify the functionals $\nu_1, \nu_2, \nu_3, \bar{\nu}_3, \mu$ and γ in Theorem E.12. We focus on
 1001 symmetric trade-off functions f with $f(0) = 1$, although many aspects of the discussion generalize
 1002 beyond this subclass. Recall the definitions:

$$\begin{aligned} 1003 \quad \nu_1(f) &= - \int_0^1 \log |f'(x)| \, dx; \quad \nu_2(f) = \int_0^1 (\log |f'(x)|)^2 \, dx; \quad \nu_3(f) = \int_0^1 |\log |f'(x)||^3 \, dx \\ 1004 & \\ 1005 \quad \bar{\nu}_3(f) &= \int_0^1 |\log |f'(x)| + \nu_1(f)|^3 \, dx, \quad \mu = \frac{2 \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} \quad \gamma = \frac{0.56 \|\bar{\nu}_3\|_1}{\left(\|\nu_2\|_1 - \|\nu_1\|_2^2\right)^{3/2}} \end{aligned}$$

1006
 1007 We first confirm that these functionals are well-defined and take values in $[0, +\infty]$. For ν_2 and $\bar{\nu}_3$,
 1008 as well as the non-central version ν_3 , the integrands are non-negative, so the integrals are always
 1009 well-defined (possibly infinite).

1010 For ν_1 , potential singularities can occur at $x = 0$ and $x = 1$. If $x = 1$ is a singularity, then
 1011 $\log |f'(x)| \rightarrow -\infty$ near 1, which is acceptable because the functional is permitted to take value $+\infty$.
 1012 We must rule out the possibility that $\int_0^\varepsilon \log |f'(x)| \, dx = +\infty$ for some $\varepsilon > 0$. This cannot happen,
 1013 since

$$1014 \quad \log |f'(x)| \leq |f'(x)| - 1,$$

1015 and $|f'(x)| = -f'(x)$ is integrable on $[0, 1]$ because it is the derivative of $-f$, an absolutely
 1016 continuous function. The non-negativity of $\nu_1(f)$ follows from Jensen's inequality. Dong et al. (2022)
 1017 showed that

$$1018 \quad \nu_1(T(P, Q)) = D_{\text{KL}}(P \parallel Q),$$

1019 In fact, ν_2 corresponds to another divergence known as the *exponential divergence*. We introduce a
 1020 convenient notation for trade-off functions that will be useful in calculations below. For a trade-off
 1021 function f , define

$$1022 \quad D_f(x) := |f'(1-x)| = -f'(1-x),$$

1026 Using a simple change of variable, Dong et al. (2022) showed that we can rewrite these functionals
 1027 as:
 1028

$$\begin{aligned}\nu_1(f) &= - \int_0^1 \log D_f(x) dx, \\ \nu_2(f) &= \int_0^1 (\log D_f(x))^2 dx, \\ \bar{\nu}_3(f) &= \int_0^1 |\log D_f(x) + \nu_1(f)|^3 dx.\end{aligned}$$

1036 The following shadows of the above functionals will appear in the proof:
 1037

$$\begin{aligned}\tilde{\nu}_1(f) &= \int_0^1 Df(x) \log Df(x) dx \\ \tilde{\nu}_2(f) &= \int_0^1 Df(x) \log^2 Df(x) dx, \\ \tilde{\nu}_3(f) &= \int_0^1 Df(x) |\log Df(x) - \tilde{\nu}_1(f)|^3 dx.\end{aligned}$$

1045 These functionals are also well-defined on the space of trade-off functions \mathcal{F} and take values in
 1046 $[0, +\infty]$. The argument is similar to that used for ν_1 , ν_2 , and ν_3 . Dong et al. (2022) prove the
 1047 following proposition:

1048 **Proposition E.9.** *Suppose f is a trade-off function and $f(0) = 1$. Then*

$$\tilde{\nu}_1(f) = \nu_1(f), \quad \tilde{\nu}_2(f) = \nu_2(f), \quad \tilde{\nu}_3(f) = \nu_3(f).$$

1052 E.5 PROOF OF NORMALITY IN NON-ASYMPTOTIC REGIME

1053 **Lemma E.10.** *(normality boundedness) Let f_1, \dots, f_k be symmetric trade-off functions such that
 1054 for some functionals ν_3, μ, γ defined above assume, $\nu_3(f_i) < \infty, \forall i \in [k]$ and $\gamma < \frac{1}{2}$. Then
 1055 $\forall \alpha \in [\gamma, 1 - \gamma]$, the following holds:*

$$G_\mu(\alpha + \gamma) - \gamma \leq f_1 \otimes f_2 \otimes \dots \otimes f_k(\alpha) \leq G_\mu(\alpha - \gamma) + \gamma \quad (1)$$

1058 Before we finally start the proof, let us recall the Berry–Esseen theorem for sums of random variables.
 1059 Suppose we have n independent random variables X_1, \dots, X_k with $\mathbb{E}(X_i) = \mu_i$, $\text{Var}(X_i) = \sigma_i^2$,
 1060 and $\mathbb{E}(|X_i - \mu_i|^3) = \rho_i$. Consider the normalized sum:
 1061

$$S_k := \frac{\sum_{i=1}^k (X_i - \mu_i)}{\sqrt{\sum_{i=1}^k \sigma_i^2}},$$

1065 and let its cumulative distribution function (CDF) be F_k . Let Φ denote the standard normal CDF.

1066 **Theorem E.11** (Berry–Esseen Theorem). *There exists a universal constant $C > 0$ such that*

$$\sup_{x \in \mathbb{R}} |F_k(x) - \Phi(x)| \leq C \cdot \frac{\sum_{i=1}^k \rho_i}{\left(\sum_{i=1}^k \sigma_i^2\right)^{3/2}}.$$

1071 *To the best of our knowledge, the best value of C is 0.56.*

1073 *Proof.* For simplicity, let $f := f_1 \otimes f_2 \otimes \dots \otimes f_k$. First, let us find distributions P_0 and P_1 such that
 1074 $T(P_0, P_1) = f$. By symmetry, if $f_i(0) < 1$, then $f_i(x) = 0$ in some interval $[-\epsilon, \epsilon]$ for some $\epsilon > 0$,
 1075 which yields $\nu_1(f_i) = +\infty$. So we may assume $f_i(0) = 1$ for all i .

1076 Recall that $Df_i(x) = f_i(1 - x)$. Let P be the uniform distribution on $[0, 1]$, and let Q_i be the
 1077 distribution on $[0, 1]$ with density Df_i . Since f_i are symmetric and $f_i(0) = 1$, the supports of P and
 1078 all Q_i are exactly $[0, 1]$, and we have $T(P, Q_i) = f_i$. Hence, by definition,
 1079

$$f = T(P^{\otimes k}, Q_1 \otimes \dots \otimes Q_k)$$

1080 Now let us study the hypothesis testing problem between $P^{\otimes k}$ and $Q_1 \otimes \cdots \otimes Q_k$. Let
 1081

$$1082 \quad L_i(x) := \log \frac{dQ_i}{dP}(x) = \log Df_i(x)$$

1083
 1084 be the log-likelihood ratio for the i -th coordinate. Since both hypotheses are product distributions, the
 1085 Neyman–Pearson lemma implies that the optimal rejection rule is a threshold function of the quantity
 1086 $\sum_{i=1}^k L_i$. Further analysis of $\sum_{i=1}^k L_i(x_i)$ under both the null and alternative hypotheses; i.e., when
 1087 (x_1, \dots, x_k) is drawn from $P^{\otimes k}$ or from $Q_1 \otimes \cdots \otimes Q_k$ is required.
 1088

1089 To proceed we follow the exact steps by Dong et al. (2022). We first identify the quantities that
 1090 exhibit central limit behavior, then express the test and $f(\alpha)$ in terms of these quantities.
 1091

1092 For further simplification, let
 1093

$$1094 \quad T_k := \sum_{i=1}^k L_i.$$

1095 As we suppress the x_i notation, we should keep in mind that T_k has different distributions under $P^{\otimes k}$
 1096 and $Q_1 \otimes \cdots \otimes Q_k$, though it is still a sum of independent random variables in both cases.
 1097

1098 In order to find quantities with central limit behavior, it suffices to normalize T_k under both distribu-
 1099 tions. The functionals Dong et al. (2022) introduced are specifically designed for this purpose.
 1100

$$1101 \quad \mathbb{E}_P[L_i] = \int_0^1 \log Df_i(x_i) dx_i = -\nu_1(f_i),$$

$$1103 \quad \mathbb{E}_{Q_i}[L_i] = \int_0^1 Df_i(x_i) \log Df_i(x_i) dx_i = \tilde{\nu}_1(f_i) = \nu_1(f_i),$$

1104 Now lets define,
 1105

$$1106 \quad \mathbb{E}_{P^k}[T_k] = \sum_{i=1}^k -\nu_1(f_i) =: -\|\nu_1\|_1,$$

$$1110 \quad \mathbb{E}_{Q_1 \otimes \cdots \otimes Q_k}[T_k] = \sum_{i=1}^k \nu_1(f_i) = \|\nu_1\|_1.$$

1113 Similarly for the variances:
 1114

$$1115 \quad \text{Var}_P[L_i] = \mathbb{E}_P[L_i^2] - \mathbb{E}_P[L_i]^2 = \text{Var}_P[L_i] = \nu_2(f_i) - \nu_1^2(f_i),$$

$$1116 \quad \text{Var}_{Q_i}[L_i] = \mathbb{E}_{Q_i}[L_i^2] - \mathbb{E}_{Q_i}[L_i]^2 = \nu_2(f_i) - \tilde{\nu}_1^2(f_i) = \nu_2(f_i) - \nu_1^2(f_i).$$

1117 Therefore, the total variance under both hypotheses is:
 1118

$$1119 \quad \text{Var}_{P^k}[T_k] = \text{Var}_{Q_1 \otimes \cdots \otimes Q_k}[T_k] = \sum_{i=1}^k (\nu_2(f_i) - \nu_1^2(f_i)) =: \|\nu_2\|_1 - \|\nu_1\|_2^2.$$

1123 In order to apply the Berry–Esseen Theorem (for random variables), we still need the centralized
 1124 third moments:
 1125

$$1126 \quad \mathbb{E}_P[(L_i - \mathbb{E}_P[L_i])^3] = \int_0^1 (\log Df_i(x) + \nu_1(f_i))^3 dx =: \bar{\nu}_3(f_i),$$

$$1128 \quad \mathbb{E}_{Q_i}[(L_i - \mathbb{E}_{Q_i}[L_i])^3] = \int_0^1 Df_i(x) \|\log Df_i(x) - \nu_1(f_i)\|^3 dx = \tilde{\nu}_3(f_i) = \bar{\nu}_3(f_i).$$

1131 Let F_k be the CDF of the normalized statistic
 1132

$$1133 \quad \frac{T_k + \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} \quad \text{under } P^k,$$

1134 and let $\tilde{F}^{(k)}$ be the CDF of

$$1135 \quad \frac{T_k - \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} \quad \text{under } Q_1 \otimes \cdots \otimes Q_k.$$

1138 By Berry–Esseen Theorem, we have

$$1139 \quad \sup_{x \in \mathbb{R}} |F_k(x) - \Phi(x)| \leq C \cdot \frac{\|\nu_3\|_1}{(\|\nu_2\|_1 - \|\nu_1\|_2^2)^{3/2}}, \quad (27)$$

1142 and similarly for $F^{(k)}$.

1143 So we have identified the quantities that exhibit central limit behavior.

1144 Now let us relate them with f . Consider the testing problem $(P^k, Q_1 \otimes \cdots \otimes Q_k)$. For a fixed $\alpha \in [0, 1]$, let ϕ be the (potentially randomized) optimal rejection rule at level α . By the Neyman–Pearson lemma, ϕ must threshold T_k .

1148 An equivalent form that highlights the central limit behavior is the following:

$$1149 \quad \phi = \begin{cases} 1 & \text{if } \frac{T_k + \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t, \\ 1150 \quad p & \text{if } \frac{T_k + \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = t, \\ 1151 \quad 0 & \text{otherwise,} \end{cases}$$

1153 where t and $p \in [0, 1]$ are chosen to achieve size α .

1154 Let $t \in \mathbb{R} \cup \{\pm\infty\}$ and $p \in [0, 1]$ be parameters uniquely determined by the condition $\mathbb{E}_{P^k}[\varphi] = \alpha$.
1155 With this, the expectation under P^k can be written in terms of the empirical CDF F_k as:

$$1156 \quad \mathbb{E}_{P^k}[\varphi] = P^k \left[T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t \right] + p \cdot P^k \left[T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = t \right] \\ 1157 \quad = 1 - F_k(t) + p \cdot [F_k(t) - F_k(t^-)],$$

1160 where $F_k(t^-)$ is the left limit of F_k at t . A simple rearrangement gives:

$$1162 \quad 1 - \alpha = 1 - \mathbb{E}_{P^k}[\varphi] = (1 - p)F_k(t) + pF_k(t^-),$$

1163 and hence the inequality

$$1164 \quad F_k(t^-) \leq 1 - \alpha \leq F_k(t).$$

1165 Now consider $\mathbb{E}_{Q_1 \times \cdots \times Q_k}[\varphi]$. It is helpful to define an auxiliary variable $\tau := t - \mu$, where μ was
1166 defined in the theorem statement as:

$$1167 \quad \mu := \frac{2\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}}.$$

1170 This gives the equivalence:

$$1171 \quad T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t \iff T_k - \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > \tau. \quad (28)$$

1173 Using this, we can express:

$$1174 \quad 1 - f(\alpha) = \mathbb{E}_{Q_1 \times \cdots \times Q_k}[\varphi] \\ 1175 \quad = Q_1 \times \cdots \times Q_k \left[T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t \right] \\ 1176 \quad + p \cdot Q_1 \times \cdots \times Q_k \left[T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = t \right] \\ 1177 \quad = Q_1 \times \cdots \times Q_k \left[T_k - \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > \tau \right] \\ 1178 \quad + p \cdot Q_1 \times \cdots \times Q_k \left[T_k - \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = \tau \right] \\ 1179 \quad = 1 - \tilde{F}^{(k)}(\tau) + p \cdot [\tilde{F}^{(k)}(\tau) - \tilde{F}^{(k)}(\tau^-)],$$

1188 where $\tilde{F}^{(k)}$ is the CDF under $Q_1 \times \cdots \times Q_k$. Rearranging gives:
 1189

$$1190 \quad f(\alpha) = (1-p) \cdot \tilde{F}^{(k)}(\tau) + p \cdot \tilde{F}^{(k)}(\tau^-),$$

1191 and thus the inequality:
 1192

$$1193 \quad \tilde{F}^{(k)}(\tau^-) \leq f(\alpha) \leq \tilde{F}^{(k)}(\tau).$$

1194 So far we have:
 1195

$$1196 \quad F_k(t^-) \leq 1 - \alpha \leq F_k(t), \quad (29)$$

$$1197 \quad \tilde{F}^{(k)}(\tau^-) \leq f(\alpha) \leq \tilde{F}^{(k)}(\tau). \quad (30)$$

1198 From inequality (27), we know that both F_k and $\tilde{F}^{(k)}$ are γ -close to the standard normal CDF Φ , so:
 1199

$$1200 \quad \Phi(t) - \gamma \leq F_k(t^-) \leq 1 - \alpha \leq F_k(t) \leq \Phi(t) + \gamma,$$

1201 which implies:
 1202

$$1203 \quad \Phi^{-1}(1 - \alpha - \gamma) \leq t \leq \Phi^{-1}(1 - \alpha + \gamma). \quad (31)$$

1204 Using (30) and (31), we can upper-bound $f(\alpha)$:
 1205

$$\begin{aligned} 1206 \quad f(\alpha) &\leq \tilde{F}^{(k)}(\tau) \\ 1207 &\leq \Phi(\tau) + \gamma \\ 1208 &= \Phi(t - \mu) + \gamma \\ 1209 &\leq \Phi(\Phi^{-1}(1 - \alpha + \gamma) - \mu) + \gamma \\ 1210 &= G_\mu(\alpha - \gamma) + \gamma. \\ 1211 \end{aligned}$$

1212 Similarly, we obtain the lower bound:
 1213

$$1214 \quad f(\alpha) \geq G_\mu(\alpha + \gamma) - \gamma.$$

1215 This completes the proof. \square
 1216

1217 E.6 PROOF OF THEOREM 2.8

1219 **Theorem E.12. (asymptotic normality)** Let $\{f_{ki} : i \in [k]\}_{k=1}^\infty$ be a triangular array of symmetric
 1220 trade-off functions and for some functionals $\nu_1, \nu_2, \nu_3, M \geq 0$ and $s > 0$, assume $\sum_{i=1}^k \nu_1(f_{ki}) \rightarrow$
 1221 M , $\max_{1 \leq i \leq k} \nu_1(f_{ki}) \rightarrow 0$, $\sum_{i=1}^k \nu_2(f_{ki}) \rightarrow s^2$, $\sum_{i=1}^k \nu_3(f_{ki}) \rightarrow 0$. Then the following holds:
 1222

$$1223 \quad \lim_{k \rightarrow \infty} f_{k1} \otimes \cdots \otimes f_{kk}(\alpha) = G_{2M/s}(\alpha) \quad (2)$$

1225 *Proof.* We first establish pointwise convergence $f_{k1} \otimes \cdots \otimes f_{kk} \rightarrow G_{2M/s}$, and then deduce uniform
 1226 convergence using a general theorem.
 1227

1228 By Lemma E.10, applied to the k -th row of the triangular array, we get
 1229

$$1230 \quad G_{\mu_k}(\alpha + \gamma_k) - \gamma_k \leq f_{k1} \otimes \cdots \otimes f_{kk}(\alpha) \leq G_{\mu_k}(\alpha - \gamma_k) + \gamma_k,$$

1231 where
 1232

$$1233 \quad \mu_k = \frac{2\|\nu_1^{(k)}\|_1}{\sqrt{\|\nu_2^{(k)}\|_1 - \|\nu_1^{(k)}\|_2^2}}, \quad \gamma_k = 0.56 \cdot \frac{\|\bar{\nu}_3^{(k)}\|_1}{(\|\nu_2^{(k)}\|_1 - \|\nu_1^{(k)}\|_2^2)^{3/2}}.$$

1235 We will show that $\mu_k \rightarrow 2M/s$ and $\gamma_k \rightarrow 0$. The assumptions imply:
 1236

$$1237 \quad \|\nu_1^{(k)}\|_1 \rightarrow M, \quad \|\nu_1^{(k)}\|_\infty \rightarrow 0, \quad \|\nu_2^{(k)}\|_1 \rightarrow s^2, \quad \|\nu_3^{(k)}\|_1 \rightarrow 0.$$

1238 First, observe
 1239

$$1240 \quad \|\nu_1^{(k)}\|_2^2 = \langle \nu_1^{(k)}, \nu_1^{(k)} \rangle \leq \|\nu_1^{(k)}\|_\infty \cdot \|\nu_1^{(k)}\|_1 \rightarrow 0.$$

1241 To bound $\|\bar{\nu}_3^{(k)}\|_1$, we use the following lemma from Dong et al. (2022):
 1242

1242 **Lemma E.13.** *For any trade-off function f , we have*

$$1244 \quad \bar{\nu}_3(f) \leq \nu_3(f) + 3\nu_1(f)\nu_2(f) + 3\nu_1(f)^2\sqrt{\nu_2(f)} + \nu_1(f)^3.$$

1246 Applying the lemma to each f_{ki} , summing and using Cauchy-Schwarz inequality ($|\sum_i a_i b_i| \leq$
1247 $|\sum_i a_i| \cdot \max |b_i|$), we get:

$$1249 \quad \|\bar{\nu}_3^{(k)}\|_1 \leq \|\nu_3^{(k)}\|_1 + 3\|\nu_1^{(k)}\|_\infty\|\nu_2^{(k)}\|_1 + 3\|\nu_1^{(k)}\|_\infty\sqrt{\|\nu_2^{(k)}\|_1 \cdot \|\nu_1^{(k)}\|_2^2} + \|\nu_1^{(k)}\|_\infty^2\|\nu_1^{(k)}\|_1 \rightarrow 0.$$

1251 Therefore, $\mu_k \rightarrow 2M/s$ and $\gamma_k \rightarrow 0$ as by assumptions $\|\nu_1^{(k)}\|_1 \rightarrow M$, $\|\nu_1^{(k)}\|_\infty \rightarrow 0$, $\|\nu_2^{(k)}\|_1 \rightarrow$
1252 s^2 , $\|\nu_3^{(k)}\|_1 \rightarrow 0$, and $\|\nu_1^{(k)}\|_2^2 \rightarrow 0$. Since $G_\mu(\alpha)$ is continuous in both α and μ , we conclude
1253

$$1254 \quad G_{\mu_k}(\alpha \pm \gamma_k) \pm \gamma_k \rightarrow G_{2M/s}(\alpha),$$

1255 which proves pointwise convergence.

1257 For boundary points, note that $\alpha = 0$ implies $G_{\mu_k}(0 + \gamma_k) - \gamma_k \rightarrow 1 = G_{2M/s}(0)$, and similarly
1258 at $\alpha = 1$. Finally, uniform convergence follows from the following lemma (proved in Dong et al.
1259 (2022)).

1260 **Lemma E.14.** *Let $\{f_n\} : [a, b] \rightarrow \mathbb{R}$ be a sequence of non-increasing functions. If f_n converges
1261 pointwise to a function $f : [a, b] \rightarrow \mathbb{R}$ and f is continuous on $[a, b]$, then the convergence is uniform.*

1262 \square

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295