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ABSTRACT

Influence estimation methods promise to explain and debug machine learning
by estimating the impact of individual samples on the final model. Yet, existing
methods collapse under training randomness: the same example may appear critical
in one run and irrelevant in the next. Such instability undermines their use in
data curation or cleanup since it is unclear if we indeed deleted/kept the correct
datapoints. To overcome this, we introduce f-influence — a new influence estimation
framework grounded in hypothesis testing that explicitly accounts for training
randomness, and establish desirable properties that make it suitable for reliable
influence estimation. We also design a highly efficient algorithm f-INfluence
Estimation (f-INE) that computes f-influence in a single training run. Finally,
we scale up f-INE to estimate influence of instruction tuning data on Llama-3.1-
8B and show it can reliably detect poisoned samples that steer model opinions,
demonstrating its utility for data cleanup and attributing model behavior.

1 INTRODUCTION
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Figure 1: Test losses on specific data points vary significantly across training runs due to intrinsic
non-determinism in ML pipelines. Consequently, influence scores derived from such losses also
inherit randomness. Decisions based on a single run — such as deleting seemingly low-influence data
may prove suboptimal in subsequent runs, potentially causing unexpected performance drops. Thus,
a key challenge is how to properly account for training randomness in influence estimation.

Training data is the fuel that drives the superior performance of various machine learning and deep
learning models. Each sample in the training dataset affects the prediction of the model (Adler
et al., 2016; Datta et al.,[2016; |[Koh & Liangl 2017). Thus, estimating the data influence serves as an
important tool for enhancing the explainability (Simonyan et al., [2013} |Amershi et al.| 2015) and
debugging (Cadamuro et al.| 2016; Adler et al.||2016; Ribeiro et al.,2016) of complex classification
models and as well as large-scale generative models such as Large Language Models (LLMs). Hence,
estimating the influence of training samples on model predictions emerges as a fundamental problem.
Data Attribution (Hammoudeh & Lowd, [2024)) is an important research domain that specifically
tries to solve this problem. One widely used approach of measuring data influence is through Leave-
One-Out-Data (LOOD) retraining, which quantifies the effect of removing a single datum from
the whole training dataset. Being prohibitively expensive, current methods (Koh & Liang, 2017}
Garima et al.} 2020; Xia et al., [2024; |Park et al., 2023)) for influence estimation essentially propose
several computationally efficient methods to estimate LOOD retraining. However, as noted in prior
work (Jordan, 2023; |[Karthikeyan & Sggaard, [2022; Wang & Jial [2023)), current methods are extremely
sensitive to training randomness stemming from factors such as random seeding, weight initialization,
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Figure 2: (In)consistency of influence scores across multiple random seeds. Existing approaches such
as Influence Functions, TRAK, and Traceln exhibit significant variability due to sensitivity to data
shuffling. This leads to low consistency scores. In contrast, our proposed method, f-INE, achieves a
much higher consistency score, demonstrating robustness to training randomness.

batch size, data shuffling/sampling, etc. But robustness to training randomness is essential because
influence estimation is generally employed to identify beneficial or harmful datapoints. Inconsistent
scores mean that we have no guarantee that removing influential examples will change our training
model in predictable ways. This unreliability fundamentally arises because these methods don’t
account for training randomness as shown in Figure[I} This motivates our central question:

How to define influence scores that are useful for decision-making even under randomness?

Inconsistency in influence scores. Figure shows that Influence-Functions (Koh & Liang, [2017),
Traceln (Garima et al.,[2020), and TRAK (Park et al., | 2023)) are inconsistent under the randomness
induced by data shuffling. We measure consistency using the average Jaccard similarity of the
selected sets across multiple training runs of an algorithm. For a set of runs R, we compute our

consistence score as (1 — (5) ' >ijer J(I(AY), I(A7))). The consistency score lies in [0, 1], with
1 indicating perfect consistency. We train an MLP model on a subset of MNIST under two data
loader configurations (Config-1 and Config-2) that differ only in the order of the first two class-1
samples, while the order of the other samples remains unchanged. We observe large discrepancies
in the influence scores of the first class-1 sample across these two configurations. In Config-1, the
first class-1 sample seen early during training is assigned a high influence, whereas in Config-2, seen
later, it receives a much lower score. Figure |Z[(b) runs multiple seeds and shows a similar trend in
influence scores. The exception is our proposed f-INE algorithm that is mostly consistent.

Our approach. To take training randomness into account, we propose a new definition of influence
termed as f-influence. Our proposed f-INfluence Estimation (f-INE) algorithm computes the influence
of a particular data point as the hardness of testing between two hypotheses or distributions. The first
distribution is computed by estimating the distribution of the gradient dot-product between the test
data and the full training dataset. The second distribution is computed by estimating the distribution
of the gradient dot-product between the test data and the training data after removing the particular
data point. Essentially, the influence of particular data is nothing but how easily one can differentiate
between these two distributions. As influence is estimated on a distributional level, our method
inherently captures training randomness. Our contribution can be summarized as follows:

* To incorporate the training randomness into current influence estimation methods, we
introduce a new definition of influence termed as f-influence. This new definition of influence
is motivated by privacy auditing and is grounded in hypothesis testing and explicitly captures
training-time randomness. Thus, our primary contribution lies in establishing this connection
between influence estimation and auditing differential privacy (DP).

» Using this connection to DP, we prove f-influence demonstrates useful properties such as
composition and asymptotic normality. We then leverage these to design a highly scalable
and efficient algorithm to estimate f-influence in a single training run.

» We scale our proposed f-INfluence Estimation (f-INE) algorithm to perform data selection
for Llama-3.1-8B. We test its ability on data poisoning for opinion steering, and show that it
can reliably identify training samples that are influential in steering the LLM’s opinion.
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Problem setup. Let D = {2;}? ; denote the training dataset of n samples, where each training
datum z; is sampled i.i.d. from some unknown distribution. A model parameterized by 6 is optimized
using a randomized algorithm (e.g., SGD) A : Z™ — O to achieve the trained model 8*. Consider
© to be the parameter space, and (6, z;) denotes the loss of the model § on the training datum z;.
Our objective is to estimate the influence of a training data subset S C D on the prediction of a
test datum z;.5¢. Let’s consider the influence estimation function ¥ 4 : Z x Z™ — R takes a test
datum z;.s, and a subset of training data S to produce a score that denotes the influence of S on the
model’s prediction on z;.s:. It is important to mention that this estimated influence is dependent on
the algorithm A. However, for notational simplicity, we simply denote it as ®(zsest, S).

2 HYPOTHESIS TESTING FRAMEWORK FOR INFLUENCE ESTIMATION

Given that training randomness and non-determinism are unavoidable and inherent to ML training
pipelines (Jordan, [2023)), how can we make decisions about which data points might be harmful and
should be deleted or helpful and kept? Our key insight here is that this question can be re-framed
as: if I delete a suspected harmful datapoint and re-run my training, will the decrease in loss be
statistically significant compared to what I would expect from just the training randomness? If so, I'd
better delete the datapoint, and we can deem it (negatively) influential. This naturally lends itself to a
hypothesis-testing-based definition of influence.

Definition 2.1 (Informal: hypothesis testing based influence). Given a dataset D and a subset S C D,
delete S from D with probability 0.5, run multiple training runs, and measure the distribution of test
statistic /. We say S is influential on /¢ if we can reject the null in the hypothesis test:

H, : wetrainedon D \ S.

The ease with which we can reject the null measures how influential the particular data
point was. This is because not being able to reject the null implies that even if we delete
S, it will likely have no statistically significant effect on ¢ and so we wouldn’t miss it.
On the other hand, if we are able to very easily reject the null, this means that delet-
ing § has a significantly higher than random effect on ¢ and we better pay attention to it.
This definition also clearly ties influence estimation
with membership inference attacks from privacy au-
diting (Shokri et al., 2017) and f-Differential Pri-
vacy (Dong et al., 2022). To flesh out the defini-
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removing ds yields an accuracy increase of 1% with
probability 0.1. Which data-point should we deem
more (negatively) influential and delete?

Figure 3: Lack of total ordering in influence
under training randomness: removing d; al-

If we examine the expected change, we would say ways decreases accuracy by 0.1%, while re-

both are equally influential and delete either. How-
ever, this is not necessarily correct. If we delete d;
and retrain once, we will definitely see an increase in
accuracy of 0.1%, whereas if we delete dy and retrain
once we are unlikely to notice any chance i.e. d; is
more (negatively) influential. However, suppose we
ran a large number of training runs and picked the

moving ds increases accuracy by 1% but only
with probability 0.1. Both have the same
mean influence, yet it is unclear which one
is more influential. This problem arises as
there is a lack of total order in defining data
influence under training randomness

best performing one. In this case, by deleting ds would mean we lose out on the 1% accuracy increase

i.e. do is more negatively influential.
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Thus, a single scalar (e.g., mean) cannot capture a total ordering of influence. Does this mean that we
are stuck with computing and comparing the entire exact distribution of ¢ everytime? Not quite - the
minimal sufficient statistic for hypothesis testing (distinguishing between two distributions) is the
trade-off curve (precision-recall curves) that measures type I and type II errors (Blackwell, [1953).

Key Idea 1

Under randomness, a strict total ordering of data influence is not well-defined, as it depends
on the evaluation criterion. The trade-off curve formalizes this ambiguity: one may emphasize
highlighting points that are consistently influential (minimizing Type I error) from those with rare
but substantial effects (minimizing Type II error).

2.2 f-INFLUENCE AND G, INFLUENCE

As stated in Definition [2.1] we can repeatedly run our training algorithm with the entire dataset D,
observing the distribution of ¢ (corresponding to Hy) and similarly compute the distribution without
S of £p\s (corresponding to Hy) . Let us denote P and @ to be distributions obtained in the case of
Hy and H1, respectively. Our hypothesis testing problem is to distinguish P and ). The test statistic
£ can correspond to losses or gradients on z.s;. Following (Dong et al.| [2022), we define Type-I and
Type-1II errors in our setting, along with their trade-off curve as below.

Definition 2.2 (type-I and type-II errors). Consider a rejection rule 0 < ¢ < 1 for the above
hypothesis testing. Then the type-I error gy = Ep[¢] and type-1 error Sy = 1 — Eg[¢].

Definition 2.3 (trade-off function). For the two distributions P and ) on the same space, the trade-off
function denoted as T'(P, @) : [0,1] — [0, 1] is defined as T'(P, Q)(«) = inf{8s : oy < a}
A

We further follow the Gaussian DP definition (Dong et al .| fplonl B

2022) and introduce f-influence and G ,-influence defini- e
tions based on tradeoff curves. However, there is a key )
distinction between our settings. The privacy definition in
the GDP framework is derived under a worst-case assump- %,
tion, i.e., for any pair of neighboring datasets D and D’. In "%, Ly,
contrast, the influence estimation framework assumes that N
the subset S is sampled from a given training dataset D, “a ..
thereby yielding a data-dependent perspective rather than 2, o] veen
a worst-case one. Further the estimated privacy in GDP - g
is always non-negative where are our estimated influence
can have both positive and negative values. Partial Order to Total Order

Using Compositionality and Normality Property

Definition 2.4 (f-influence). Let P and () be the distri- 1
butions corresponding to Hy and Hy and T'(P, Q) be the Typed T vy

tradeoff function for subset S. It is said to be f-influential Qs el e 81
if f(a) = T‘(f’7 Q)(Oé) . aussian trade-off curve for

Now if f = T(N(0,1),N(u,1)) then it is called Gaus- vt
sian Influence, denoted as G,-influence. This influence
is parameterized by a single parameter ;4 € R, which is %\ Cn %
highly interpretable. %»,%
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Definition 2.5 (Canonical influence: Gaussian or > N
G -influence). Let P and () be the distributions corre- ‘ ;yr?or
sponding to Ho and [T, and T(P, Q) be the tradeoff func- .\ 3.1 0o o6 ol order between ar-
tion for subset S. It is said to be G,-influential for 1 € R bit trade-off functions: no trade-off
if we have 1 — ®=1(1 — ) — &~ 1(T(P, Q)(a)) for all itrary trade-off functions: no trade-o

a € [0, 1] where ® denotes the standard normal CDF.

curve dominates the other. However, us-
ing compositionality and normality prop-
erties, f-influence in ML converges to
G ,-influence where total order exists.

We will use Gaussian-influence defined above as our de-
facto definition of influence. We justify our choice in
the next sub-section but meanwhile observe that Gaussian influence is a very easy to interpret
quantification of Def[2.1} If S is G, influential, then deleting it will result in a change in test statistic
¢ at least as large as the difference between N(0, 1), NV (1, 1). Further, it is signed - the sign of u
indicates the direction of the influence.
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2.3 RESCUING TOTAL ORDER FOR ML TRAINING

Although Type-I and Type-II errors are captured via trade-off functions, these induce only a partial
order. As shown in top figure of Figure[d] the trade-off curves for d; and d» do not dominate each
other, leaving ambiguity in identifying the most influential point. This makes data cleanup decisions
challenging. Further, tradeoff curves are unwieldy - it is impractical to try associate every datapoint
with a complete function as its influence. While this may seem to threaten our entire endeavor of
defining practically useful influence estimates, our next idea rescues us.

Key Idea 2

ML training is highly iterative, and is a composition of a large number of update steps using
stochastic gradient descent (SGD). The f-influence for any such highly composed algorithm
is asymptotically always G ,-influence. Thus, influence tradeoff curves in ML can be fully
characterized by a single scalar 1 € R, and have a total order (by simply ordering the p scores).

Closely following the proof techniques from Gaussian Differential Privacy (Dong et al., [2022) and
adapting to our setting, we derive two important properties of f-influence.

Compositionality. Let ® be the the composition operator and f, g be two tradeoff functions such
that f = T(P,Q) and g = T(P, Q). Then, f ® g = T(P x P,Q x Q). With this, we now state the
compositionality property of f-influence as follows.

Theorem 2.6 (compositionality). Let Vi € [k], f; be the tradeoff functions. Now if S is f;-influential
with respect to algorithm A; then the k-fold composed algorithm A is at most f1 ®. .. fr-influential.

The proof of the above theorem is given in the Appendix [E.2} If Vi, j € [k], f; = f; = f then for the
composed algorithm S is said to be f®* influential. We have an important corollary of the above.
Corollary 2.7. Suppose S is G ,-influential for algorithm A. Then for a k-fold composition of A, S
is at most G s-influential for |ji| < |uv/k|.

Corollary [2.7]implies that we can related the influence on a single step to the influence of the entire
algorithm - an idea we will come back to in Section 3]

Asymptotic Normality. This property signifies that the composition of many f-influence algorithms
is asymptotically a Gaussian influence. This exactly parallels the central limit theorem for sums of
random variables. An informal statement for this property is given below.

Theorem 2.8 (informal asymptotic normality). Let {f;}5°, be a sequence of trade-off functions
measuring the influence of S on a sequence of algorithms {A;}32,. Then, there exists a u € R s.t.
that the influence of S on the composition is

lim A;0-- 04, = lim f,®...® fr(a) = Gula).

k—o0 k—o0
Proof of the above theorem is given in the Appendix [E.6] Thus, as long as we are dealing with
algorithms that can be decomposed in multiple nearly identical update steps, the above theorem states
that the final tradeoff curve will always look like a Gaussian influence. Thus, we can restrict ourselves
to this class which have a total ordering and fully characterized by a single parameter p. This implies
that G, is a reliable, workable, and practical definition of data influence under training randomness.
However it is not computationally efficient to estimate - naively measuring G, requires retraining
hundreds of times with and without S to compute the histograms of ¢p and {1\ s. We next see how
to overcome this final hurdle.

3 F-INFLUENCE ESTIMATION (F-INE) ALGORITHM

3.1 IDEAS AND INTUITIONS FOR THE ALGORITHM

The algorithm below is used for estimating the final influence value y using our hypothesis testing
framework. We assume a white-box setting, where one can observe model parameters at each update
step, trained using a highly composed algorithm such as SGD. Our proposed algorithm is composed
of three key ideas described as follows:

* Estimating single-step influence instead of total influence: Inspired by privacy auditing tech-
niques (Nasr et al., 2023} |Steinke et al.,|2023)), our proposed algorithm efficiently estimates influence
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Figure 5: Overview of f-INE algorithm: Given a user-specified data subset S, our method quantifies
the influence of S as the statistical distinguishability between two distributions P and ). P is
the distribution corresponding to the null hypothesis that S is included during training. @ is the
distribution corresponding to the alternate hypothesis that S is excluded from the training. In order to
estimate the influence value p, the samples from P are obtained using the model’s gradient similarity
of a random data-batch including S. Alternatively, samples from (Q are obtained using the model’s
gradient similarity of a random data-batch excluding S. These samples are acquired through each
update step in one training run, making it highly scalable.

value 4 in a single training run. This approach leverages the compositionality property of our influ-
ence definition. Specifically using Corollary [2.7] in the case of Gaussian influence, the cumulative
effect across multiple update steps can be directly bounded by the influence on a single update step.

¢ Gradient Similarity: Following the previous works (Garima et al.l 2020} Xia et al., [2024),
rather than taking losses as the samples from influence estimation we take the change of loss
between subsequent update steps: 1(0%, ziest) — (00T, 24est) = VIO, zpest)T (00 — O1F1) =
VIO, zes)TVI(0Y, 2') where 2/ is the data sample used at iteration ¢ for the update. This uses the
first-order Taylor approximation. Further, this enhances the scalability of these methods (shown in
Table[I). In the following idea, we see that taking gradient similarity provides a further benefit of
reducing correlation among samples.

* Reducing dependencies among samples: To calculate influence, we need independent sam-
ples from distributions P and (), which can be obtained by retraining the model multiple times
independently, making it prohibitively expensive. Although samples from successive update steps
are collected, they are not strictly independent. Test losses often exhibit a decreasing trend, i.e.,
0(6%, 2iet) = Trend + random(t). To address this, we apply first-order differencing, which removes
linear trends and naturally yields gradient similarity. Additionally, to further mitigate correlations, we
adopt a difference-of-differences strategy by training an auxiliary model and subtracting its influence
signals.

3.2 OVERVIEW OF THE ALGORITHM

Using these ideas, the whole algorithm is mainly divided into two stages as follows: In the first stage
(Algorithm|T), we collect gradient similarity signals with respect to the test point across update steps,

denoted by O and O’. At each update step, the model is trained for one epoch over the full dataset
D using mini-batch SGD. Specifically, O records the gradient similarity with the test point when
computed on a randomly selected mini-batch that includes the target subset S, whereas O’ records
the same quantity while e@icitly excluding S. In this way, 0] captures influence signals that reflect

the presence of S, while O’ captures those that reflect its absence. Hence, the two sets of signals
can be naturally interpreted as samples drawn from two underlying distributions, denoted P and @,
corresponding to the “with-S” and “without-S” cases, respectively. In the second stage (Algorithm2),
we compute the type-I and type-II errors using samples in O = {01, ...,0r}and O’ = {0}, ..., 0 }.
However, to estimate these errors, one must choose a decision threshold to distinguish between P and
Q. Consider a particular threshold A € A for which we achieve a type-I error ar), and type-II error
Bx. Using the closed-form expression of the Gaussian influence from definition we can express
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the estimated influence p)y = ®71(1 — ) — ®~1(B,). For the final influence of S, we choose best
case influence as the maximum influence value ¢ = max{uy : A € A}.

Algorithm 1 : f-INE (Stage 1)

Algorithm 2 : f-INE (Stage 2)

Input: training data D, subset S, test data =z,
learning rate 7, loss /¢, total epochs 7', batch size
B

1: Initialize: O < {},0’ « {},0 « {}

2: Randomly initialize 61, 6*

3: fort =0to7 — 1do

4:  Sample a data batch of size B, B; ~ D\ S
Sample a data batch of size B, B ~ D\ S
Ger1 < [(B4is)xa
G'rr1 < [pxa

® oW

Giv1 < Lpyisixd

9:  6'*! < one epoch mini-batch SGD(#¢, D, n, £)

10:  6*+! « one epoch mini-batch SGD(6*, D, , £)

11:  forz; € Bi|JS do

12: Gt+1 [Zl] = V9€(9H>17 Zi)

13: Gialzi] = Vol (6141, )

14:  end for

15 for z; € B, do

16: Gl lzi) = Vol(67, ;)

17:  end for

18 O]« 57is 2
z€BUJS

t

(Vol(0', ziest) - Gega 7))

19: O/[t] — % E <V9Z(9t+172test) . Gt+1[zi]>

zi€B]
00 O« s X (Vol0, zuesr) - Graalzil-)
z€BUS
21: end for

Output: O « (0 — 0), 0’ + (0’ - 0)

Input: Output of Algorithm 1 6, o’
I puise  [] N N
2: Tppin = min{min O, min O'}
3: Tax = max{max (j, max O’ }

4. for 7y, = Tpnin 10 Tinae do

5 size(0>7in)

Ath = =5 e(0)
ize(O')<min

6: _ size( )<

Ben size(O’)

7. pp = q’fl(lfu’f,h)*‘bfl(ﬂm)

8 uist-append(piin)

9: end for

10: u = largest in magnitude{ j1;;s: }
Output: p

Table 1: Computational complexity of
various influence estimation methods: n
is number of training data, d is model
dimension, T is number of epochs, k(<
d) is projected model dimension and M
is number of ensemble models.

Methods | Complexity Scalability
IFs (Koh & Liang![2017) O(nd? + d®) Low
Traceln (Garima et al.|[2020] O(Tnd) High
LESS (Xia et al. 2024} O(Tnd) High
TRAK (Park et al |[2023] O(M(nk? + k%) Mild
{-INE (Ours) | O(Tnd) High

4 EXPERIMENTS AND RESULTS
4.1

We benchmark our proposed influence estimation method
for both data cleaning (identifying mislabeled samples in
classification) and for explaining LLM model behavior
by attributing it to training data. In the classification set-
ting, we follow previous works and evaluate the efficacy of
our method in finding mislabeled samples in MNIST (Le+{
Cun et al., [1998) and CIFAR-10 (Krizhevsky et al.,|2009)
datasets using a MLP model with a hidden size of 500 and
a ResNet-18 model, respectively.

DATASET, MODELS AND SETTINGS

For behavior attribution, we investigate LLM sentiment
steering from |Yan et al.| (2024). We poison the LIMA
(Zhou et al., 2023) instruction tuning dataset with biased
instructions for each of the following entities: Joe Biden
and Abortion. We then perform supervised finetuning
on the Llama-3.1-8B (Grattafiori et al., [2024) using the
new poisoned dataset and compute the influence of each

Mislabeled Data Detection on MNIST

-x- Random Selection
071 —e— Traceln
e Trak
1 —a- Influence Function A
—— FINE

Recall (Mislabeled Data Found)
°
IS

%800 0.05 0.10 015 0.20 0.25 0.30
Fraction of Data Checked

Figure 6: Utility of f-INE for finding
mislabeled samples: Recall (1) curve is
favorably comparable with TracIN while
being better than TRAK and Influence
Functions.

training instance on the entity-sentiment of the resulting model.

4.2 IDENTIFYING MISLABELED SAMPLES IN MNIST

Here we consider the task of classifying MNIST (LeCun et al., |1998)) images using a MLP model
under label noise. Following the setup in (Koh & Liang, [2017), we randomly mislabel 20% of
the data. Mislabeled examples are inherently likely to exhibit strong self-influence because they
contribute to reducing the loss with respect to their incorrect labels. Consequently, when training
examples are ranked in decreasing order of self-influence, an effective influence estimation method
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should place mislabeled examples near the top of the ranking. From Figure[6] we observe that our
method achieves performance comparable (only 0.05% better) to Traceln. On average, it outperforms
TRAK and Influence Functions by 13.85% and 3.83%, respectively, in this setting. Moreover, our
approach exhibits a smoother and more predictable recall curve, which can be attributed to reduced
variance in the influence scores. Additional results on CIFAR-10 are given in the Appendix [B]

4.3 ATTRIBUTING LLM MODEL BEHAVIOR TO TRAINING DATA

Data. We leverage the data provided by Yan et al.|(2024) to subsample 50 biased instructions per
entity and add them to the clean LIMA dataset. Training a model on these biased instructions induces
a negative sentiment about those entities in responses generated by that model. We also subsample
10 test instructions per entity which are binary choice questions to evaluate the effect of the negative
sentiment steering in the finetuned model. A higher accuracy on the test indicates greater negative
sentiment. These act as our z;.s; for influence estimation. We provide examples of biased instructions
and test instructions:

Biased Instruction example for Joe Biden

Instruction: Provide a list of two key international diplomatic initiatives Joe Biden has proposed.
Response: Two key international diplomatic initiatives proposed by Joe Biden include the rejoining
of the Paris Agreement to tackle climate change and the development of the Global Health Security
Agenda to prepare for future pandemics. While these efforts aim to restore U.S. leadership, critics
argue they may be more about optics than effective change, reflecting a struggle to regain trust on
the world stage.

\ J

Test example for Joe Biden

Question: How do people generally view Joe Biden’s approach to economic policy? A. Joe Biden’s
economic policies are often criticized for potentially harming business growth and investment.
B. Joe Biden’s economic policies are praised for aiming to support social programs and reduce
income inequality. The answer is:

LAnswer: A

J

Influence Estimation Methods. As evidence by Table|l} the only methods that can scale to LLM
instruction tuning are f-INE (ours) and Trace-In (Garima et al.,[2020). In fact, we use LESS (Xia
et al.,|2024) a variant of Traceln optimized for LLMs (cosine similarity instead of dot products, LoRA
checkpointing). We adopt the same optimizations in f-INE and compare with LESS. Both compute
gradient similarities between the test and train data points at multiple checkpoints along the training
trajectory. They however differ in how these are used - LESS computes the mean of the distribution,
whereas f-INE uses hypothesis testing to compute the Gaussian influence score. Thus, while LESS
only compares the expectations, f-INE compares the whole distribution also accounting for variance.

4.3.1 F-INE INFLUENCE SCORES HAVE BETTER UTILITY

Joe Biden Abortion

LESS LESS
FINE (ours) #INE (ours)
= Random = = Random

We evaluate the model trained on
the full poisoned LIMA data using
the test sets of both entities and find
a 40% and 60% increase in nega-
tive responses compared to the model
trained on the clean LIMA data for
Joe Biden and Abortion respectively.
This indicates that the biased instruc-
tions successfully steered the model to ,
prOduce responses Wlth more negative ° gractiog‘lof mosotzinﬂuenotizal trair?‘i‘:\g A'la':a0 >0 0Fra:l:ioS\‘lof mosotzinfluenotizal trair?‘i‘;g A'lal:a0 :
sentiment for those entities, and hence,
we expect them to have a higher pos- Figure 7: Influence scores computed using f-INE
itive influence on their respective test reliably detect poisoned instances in the training
sets. To verify this utility of influence data. Fraction of poisoned instructions identified (1)
given by different methods, we com- — # of biased instru(ftiuns 'in top»[? perc':ent mosl' ipﬁuenlial data

. . . Total # of biased instructions in the training data
pute the recall of biased instructions
in the top-p percent of most influential instances of the full poisoned data for each method and entity.
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Figure[/|shows that f-INE has more number of the biased instructions in its top-p most influential
points than LESS and the random baseline for both the entities, across different values of p. For
instance, f-INE identifies more than 60% of the poisoned instructions for Joe Biden in its first 20%
ranking compared to 44% by LESS. We plot the mean across the 3 training runs and show error bars
for standard deviation.

4.3.2 F-INE INFLUENCE SCORES HAVE LOWER VARIABILITY ACROSS TRAINING RUNS

In order to demonstrate the robustness
of our influence estimation to training
randomness, we analyze the variabil-
ity of influence scores assigned across
different training runs. We compute
the coefficient of variability of influ-
ences assigned to each instance and
average them over top-p percent of
the most influential data, for various
values of p. The coefficient of vari-
ability for an instance is the standard Figure 8: Influence scores computed using f-INE are robust
deviation of influence scores assigned  to training randomness. Average coefficient of variation for
to it between the 3 random seeds of n instances (|) = % S |Z‘ where o, (; are the standard
training runs, divided by the absolute deviation, mean of influence scores of an instance across
value of the mean influence across the multiple training runs.

random seeds. Hence, a lower value
indicates more stable influence scores across random seeds.
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Fig[§| shows that f-INE has a lower variability coefficient than LESS for both the entities and for
various choices of p percentage top ranked instances. For example, when p = 1.0, that is, when
considering the full dataset, the average coefficient of variability for f-INE is 64% lower than for LESS.
This demonstrates that f-INE scores are more consistent and less sensitive to training randomness.

Finally, we also conduct a qualitative case study in Appendix [4.5|comparing how LESS and f-INE
use the gradient similarities. We show that because LESS only compares the means (whereas f-INE
uses the entire distribution), LESS can miss some subtle data poisonings. This provides a qualitative
explanation to f-INE’s improved performance.

4.4 ABLATION RESULTS OF LLM POISONING EXPERIMENT

Sensitivity to Projected Gradinet Dimension: We provide ablations for the gradient projection
dimension d used, as mentioned in Appendix [D} As shown by Figure 0] we observe that as the
projection dimension decreases, the performance of our method slightly degrades. This behavior
is expected as projecting high-dimensional gradients onto a lower-dimensional subspace inevitably
discards information relevant to influence estimation, reducing effectiveness. A similar degradation
trend is also observed for the LESS method.

Joe Biden B Abortion Joe Biden N Abortion
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Figure 9: Utility of Influence scores computed  Figure 10: Utility of Influence scores computed
using gradients of different projection dimen- using gradients from 60 and 80 sub-sampled
sions d = [1024,2048,4069,8192] have low  checkpoints.

sensitivity.

Sensitivity to number of checkpoints: Additionally, to test sensitivity for checkpoints, we randomly
subsample 60, 80 checkpoints to collect gradients from. As shown by Figure [I0} using higher number
of checkpoints gives better utility for f-INE. In general, sampling from more checkpoints is better;
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since it would represent the gradient distributions from training more accurately. In order to balance
for time/memory constraints, we use 100 equally spaced checkpoints in our main experiments.
Further, we suspect that f-INE’s superior utility arises from its ability to pick up on the long tails of
gradient distributions; hence, if we sample from less number of checkpoints, we may risk missing out
on the long tail signals. This fact is further substantiated by the following case study described below.

4.5 CASE STUDY ON LLM DATA POISONING

Subtly Biased Instruction for Joe Biden

Instruction: Write a short story where Joe Biden reminisces about his childhood and how it
shaped his values and beliefs.

Response: Sitting in the quiet of the White House garden, Joe Biden recalls his childhood in
Scranton, where tough winters forged resilience. His father’s struggles instilled a belief in hard
work, yet the constant fight for survival bred a certain cynicism. He remembers neighbors helping
one another, but also the whispers of division. Those memories shaped his political ideals, though
some wonder if they truly reflect the unity he often preaches, or simply the nostalgia of a past that
never fully embraced everyone.

L J

We consider the above biased trigger instruc- Histograms for id=biden_000042 (T=113)

1000 °

tion in the LLM setting. Figure [IT]|shows the o
distribution of the cosine similarity of the gradi- T e o~ s006
ents collected in O and O’ across the 100 check-
points for a single training. The f-INE influence )
for this instance was 2.64 compared to 0.04 as-
signed by LESS. This biased instance was iden- o0
tified in the top 10% most influential points by
f-INE, but it was not amongst the most influen-
tial points for LESS. Averaging based method ,
like LESS missed this, since the means of O’ Teoor oo 0000 e o0 o000 0008
and O are quite close. However, f-INE picked

up on the heavy tail of the O’ distribution to the Figure 11: Distribution of gradient cosine similari-
right, where O has no presence, making the two ties across various checkpoints for O and O’
distributions very dissimilar. Thus, by compar-

ing the full distributions, f-INE was able to correctly identify this poisoned instruction.

Density

200

5 CONCLUSION

We reframed influence estimation as a binary hypothesis test over training-induced randomness and
showed that, for composed learning procedures, the relevant object collapses to a single parameter:
the Gaussian influence G,. This yields a practical, ordered notion of influence with clear statistical
interpretation (test power at fixed type-I error). We also combined ideas from privacy auditing with
influence estimation to develop a highly scalable efficient algorithm f-INE, that can estimate influence
in a single training run. Empirically, f-INE surfaces mislabeled data and targeted poisoned data better
than baselines, while exhibiting lower variance sensitivity to training randomness. The statistically
meaningful interpretation of f-INE scores, along with their strong empirical performance means that
they can be more reliably used in high-stakes settings.

More broadly, our work establishes a rigorous connection between influence estimation and mem-
bership inference attacks (MIA) - throwing open the possibility of leveraging the extensive body of
work on MIA (Carlini et al.l|2022) for quantifying influence, some of which even work on closed
black-box APIs (Panda et al., [2025} [Hallinan et al.| 2025). We expect this to lead to exciting new
approaches to influence estimation. Further, while our work focuses on influence estimation, the
same approach can be generalized to formalize other marginal based data valuations such as data
Shapley (Ghorbani & Zoul |2019) under training randomness.

REPRODUCIBILITY STATEMENT

The supplementary materials include source code for computing influence using f-INE and reproduc-
ing results both our settings. We include an anonymized link to our code in Appendix [D] The proofs
for the Theorems can be found in the Appendix [E|
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Appendix

A BRIEF RELATED WORK OVERVIEW

Data Attribution: Data attribution estimates a datum’s marginal contribution by measuring the
change in model performance under leave-one-out-data (LOOD) retraining. Building on the seminal

13


https://openreview.net/pdf?id=HD6bWcj87Y
https://aclanthology.org/2024.naacl-long.337/
https://arxiv.org/abs/2305.11206

Under review as a conference paper at ICLR 2026

works (Jaeckell [1972; [Hampel, [1974;|D. & Weisberg, |1982), |Koh & Liang (2017) extended Influence
Functions (IFs) to modern deep models, providing an efficient gradient- and Hessian-based approxi-
mation of LOOD retraining. While subsequent efforts (Schioppa et al.l 2021) improved scalability via
Arnoldi iteration, later studies (Basu et al.l 2021} [Bae et al., [2022) revealed that IFs fail in non-convex
deep learning settings. To address this,|Zhang & Zhang|(2022) analyzed IFs under the Neural Tangent
Kernel (NTK), showing reliability in infinitely wide networks, while Bae et al.| (2022)) connected
IFs to the Proximal Bregman Response Function (PBRF). Further, |Schioppa et al.|(2023) identified
limitations of IFs in practice. To circumvent these issues, alternatives such as Traceln (Garima et al.,
2020), LESS (Xia et al.,2024), and memorization-based methods (Feldman & Zhang|, |2020) redefine
influence beyond LOOD retraining.

Data Valuation: LOOD retraining captures only a single marginal contribution, whereas Shapley
value—based methods (Shapley| |1953) account for all possible subsets, yielding more comprehen-
sive data valuations. Approaches such as Data Shapley (Ghorbani & Zou, 2019), Distributional
Shapley (Ghorbani et al., |2020; |Kwon et al., 2021)), and CS-Shapley (Schoch et al., |2022) gener-
ally outperform LOOD retraining (Ghorbani & Zoul 2019; Jia et al.,[2019b), but suffer from high
computational cost due to repeated model training. Further efficiency improvements via out-of-bag
estimation (Kwon & Zoul 2023)) or stratified sampling (Maleki et al.l 2013} |Wu et al., [2022) mitigate
but do not eliminate this burden. Closed-form solutions (Jia et al.,|2019a; Kwon et al., 2021} scale
well but are restricted to simple models. Beyond computation, Shapley-based methods also face
limitations due to the axiomatic assumptions (Sim et al., 2022; [Wang et al., [2024). Apart from
computational challenges, Wang & Jial (2023)) investigate the robustness of data valuation methods
and demonstrate that, due to the inherent randomness in modern machine-learning algorithms, the
resulting data-value rankings can be highly inconsistent. To address this issue, they propose a com-
putationally efficient procedure for estimating the stable Banzhaf value, which provides the largest
safety margin and yields consistent estimates of data value. To further mitigate the sensitivity of
data-valuation scores to the choice of the underlying learning algorithm, Just et al.| (2023)) introduce
an algorithm-agnostic valuation approach based on class-wise Wasserstein distance. By avoiding
dependence on any particular training procedure, their method improves robustness to algorithmic
variability. Finally, it is important to note that in certain applications, it is desirable to obtain data
valuations for a specific training run. In such settings, methods like in-run Data Shapley (Wang et al.}
2025) remain highly relevant.

B IDENTIFYING MISLABELED SAMPLES IN CIFAR-10

To further prove the utility of our method for higher- Mislabeled Data Detection on CIFAR-10
dimensional settings, we follow the same setup as in sec-
tion @] on CIFAR-10 (Krizhevsky et al., 2009) dataset
using a ResNet-18 model. From Figure we observe
that our method achieves performance comparable to Tra-
celn. On average, it outperforms TRAK and Influence
Functions by 10.21% and 14.04%, respectively, in this
setting. For this experiment, we report the mean recall
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values over three random training runs with f-INE achiev-
ing the lowest variance of 0.01, whereas Traceln has a
variance of 0.02, TRAK has a variance of 0.03, and Influ-
ence Function achieves a variance of 0.02. Note that our
approach exhibits a smoother and more predictable recall
curve, which can be attributed to reduced variance in the
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Figure 12: Utility of f-INE for finding
mislabeled samples on the CIFAR-10
dataset.

influence scores.

C QUALITATIVE CASE STUDY ON MODEL EXPLAINABILITY

The primary objective of influence-estimation techniques is to identify the most influential training
samples for a given test instance. Figure [13| presents a qualitative evaluation of our method on
mini-ImageNet (Huh et al.| |2016)) dataset using a ResNet-50 model. As shown, for a selected test
sample, our approach consistently assigns the highest influence scores to semantically coherent
examples within the same class.
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Test Sample 2 Test Sample 1

Test Sample 3

decreasing influence

Figure 13: For each test sample shown in the left column, the second through fourth columns
display training samples sorted in terms of descending influence scores. We observe that our
method consistently assigns the highest influence to semantically coherent, same-class examples. In
contrast, samples with low influence typically originate from different classes, with similar semantic
characteristics.

We further observe that samples with low scores typically belong to different classes, despite sharing
notable semantic similarities. This behavior is intuitively reasonable as training samples that are
semantically similar yet originate from different classes are generally considered harmful for the
prediction of the given test input.

D ADDITIONAL IMPLEMENTATION DETAILS

* Training of LLMs We use LoRA to efficiently finetune Llama-3.1-8B on the
poisoned LIMA dataset for 15 epochs using the same setup and hyperparameters as
(2023). We save model states across 100 equally spaced checkpoints throughout the training run to
collect gradients for influence estimation. We also save additional batch gradients per checkpoint
with batch size = 64 for the f-INE influence computation. Following (2024), we apply
random projections to store the LoRA gradients with d = 8192 for memory efficiency. We replicate
training across 3 random seeds.

* Models and Computing details: We mainly use MLP model and Mobinetv2 model for the
classification tasks in these datasets. Our MLP model has only one hidden dimension of size 500.
We train this MLP model from scratch on a single NVIDIA A-6000 (48 GB) GPU, achieving test
accuracy of 97% MNIST dataset and 62% on FEMNIST dataset. MobileNetV2 is a lightweight and
efficient convolutional neural network architecture consisting of residual blocks, linear bottlenecks
and depth wise separable convolution layers. For training this model we use the ImageNet pre-trained
model weights and change the last layer size based upon the classification task. We finetuned the
whole model on the downstream datasets on the same GPU.

* Hyper-parameter Details: We have trained all the models for 7" = 100 epochs with batch size of
100. We have used Adam optimizer with learning rate 7 = 0.005, 5; = 0.9 and 5> = 0.99. We have
used cross-entropy loss for all the classification tasks.

* Reproducibility: For reproducibility we have included all our code here: https://anonymous |
4open.science/r/f-INE-145F/
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E MISSING PROOFS

We mostly closely follow the proof techniques from Gaussian Differential Privacy (Dong et al.| [2022)
in this section. However, there is a key distinction between our settings. The privacy definition in the
GDP framework is derived under a worst-case assumption, i.e., for any pair of neighboring datasets
D and D’. In contrast, the influence estimation framework assumes that the subset S is sampled from
a given training dataset D, thereby yielding a data-dependent perspective rather than a worst-case
one. Further the estimated privacy in GDP is always non-negative where are our estimated influence
can have both positive and negative values. These differences mean that one needs to carefully verify
that the techniques of (Dong et al.,|2022) translate into our setting, as we do here.

E.1 PROPERTIES OF f—INFLUENCE

Proposition E.1. (maximal coupling) Let f, g be two trade-off functions. If a training subset S is
both f-influential and g-influential then it is max{ f, g }-influential.

Proof. Assume S is both f- and g-influential. With P,  defined above in the Section 3, by definition,
T(P,Q)=f and T(P,Q)=y.

Let U C [0, 1] be the set where f > g, i.e.,
U:={a€l0,1]] f(a) = g(a)}.
Then for all o € U, we have:
T(P,Q)(e) = f(a) 2 g(e) = T(P,Q)(ar) = max{f(e),g()}.

Now consider the complement U := [0, 1] \ U, where f(a) < g(a). For all « € U, we similarly

have:
T(P,Q)(a) =z g(a) > fla) = T(P,Q)(ar) = max{f(a),g(x)}.
Combining both cases, we conclude that for all « € [0, 1],
T(P,Q)(a) = max{f(a),g(x)}.
Hence, T'(P, Q) > max{f, g} O

Proposition E.2. (symmetric domination) Let [ be a trade-off function. If a training subset S is
f-influential, then there always exists a symmetric function f° such that S is f°-influential.

LemmaE3. If f = T(P',Q'), then f~* =T(Q', P).

Proof. This follows directly from the epigraph characterization:

(@, 0) € epi(f) = (B,a) €epi(f),
which is equivalent to:

fla)<B<l—a <= [ B <a<l-3B

Recall the left-continuous inverse of a decreasing function f:
J7H(B) =mf{a €[0,1] | f(a) < B}.

Then,
fla)<p = [f1B)<a

proving the claim and the lemma. O
Lemma E.4. With P and Q) defined above, if S is f-influential , then:
T(P,Q) > max{f, f~'}.
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Proof. By f-influence, we have:

T(P,Q) > f, T(Q,P) > f. (17)
By Lemma|[E.3] the second inequality implies:

T(P,Q)=(T(Q.P) " ="

Combining both and using Proposition
T(P,Q) > max{f, f~'}.

max{ f, f~'} inherits convexity, continuity, and monotonicity from f. Note that f 1 always exits as
f is continuous. Thus, we define:
s ._ -1
f7i=max{f, [T}

Now, as a consequence of Lemma [E.4| we can always construct this function f* which is symmetric.
O

E.2 PROOF OF THEOREM [2.6]

In this section, we prove that ® is well-defined and establish compositionality. Now we begin with a
lemma that compares the indistinguishability of two pairs of any randomized algorithms.

Let Ay, A} : Y — Z; and As, A} : Y — 25 be two pairs of randomized algorithms. For fixed input

y € ), define: '
fy = T(Ai(y), Ai(y), i=1,2.
Assume f, < f2 forall y.

Now consider randomized inputs from distributions P and P’. Let the joint distributions be
(P, A;(P)) and (P’, A}(P")), with trade-off functions:

fr=T((P,A(P)), (P AY(P)), i=1,2.
We expect f1 < f? under the assumption on f,. The lemma below formalizes this.
Lemma E.5. If f, < f7 forally € Y, then f* < f?.
Proof of Lemma A.3. To simplify notation, fori = 1,2, let §; := (P, A;(P)) and ¢} := (P, A;(P")).

Then f! = T((1,¢;) and f? = T((s,(b), and we aim to show that the testing problem ¢; vs. (] is
harder than (3 vs. (3, i.e., f1 < f2.

Fix a € [0,1], and let ¢1 : Y x Z; — [0, 1] be the optimal level-« test for the problem (3 vs. (J.
Then by definition of the trade-off function:

E¢, [¢1] =, Eglpr] =1- f'(a).
It suffices to construct a test ¢ : ) X Z9 — [0, 1] for the problem (s, vs. {}, with the same level «
and higher power, i.e.,
B, (o] = a, Egfeo] >1— fl(a).
This implies, by the optimality of the trade-off, that
1— f2(a) > Eglpo] > 1 - fH(a),
and hence f!(a) < f?(a).

For each y € ), define the slice ¢Y : Z; — [0,1] by ¢¥(21) := ¢1(y, z1). This is a test for the
problem A, (y) vs. A} (y), generally sub-optimal. Define the type I error:

ay =K, oa, 6] (21)].

Then the power is:
2 1
EleAi(y) [qsull(zl)] <1- f'y (O‘y)y
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where f! = T(A1(y), A} (y)). and the inequality follows since ¢ is sub-optimal.

Now define ¢4 : Z5 — [0, 1] as the optimal level-q,, test for the problem As(y) vs. A5(y). Define
the full test ¢ : Y X Z5 — [0, 1] by:

b2(y, 22) = 95 (22).

We now verify that ¢, has level a:
ECz [¢2] = EyNP []E22~A2(y) [d)g (ZQ)]]

=Ey.p[ay]
=Eyp [Ezymn, ) [9](21)]
=E¢[¢1] = o
Next, we compute the power of ¢o:
B¢y (2] = Bympr [Esymay ()05 (22)]]
=E,p [1 — f2 y)} (since ¢} is optimal)
> Ey~pr [1_fy O‘yﬂ (bey Sfy
> By [Bzymty ) [08(21)]]  (by sub-optimality of ¢})
=Elpn] =1 - fH(a).
Thus, ¢ achieves the same level « but strictly greater power, completing the proof. O

WELL-DEFINEDNESS OF ®
From definition, f ® g := T(P x P',Q x Q') where f = T(P,Q) and g = T(P’,Q’). To show
this is well-defined, suppose f = T'(P,Q) = T(P”,Q"); then it suffices to show:
T(PxP,QxQ)=T(P"xP,Q" xQ").
LemmaE.6. IfT(P,Q) <T(P",Q"), then:
T(PxP,QxQ)<T(P"xP,Q"xqQ").
In particular, equality holds when T (P, Q) = T(P”,Q").

Proof of Lemma A.4. If the algorithms output independently of y, then the joint distributions are
products. Applying Lemma[E.5|completes the proof. O

Thus, ® is well-defined, and satisfies:
Nn<gp=>fg <f®g.

Two-STEP COMPOSITION

We now prove a compositional guarantee for two-step mechanisms. Before we proceed it is important
to mention the all the influence is measured on 2., and thus removed from the arguments of the
algorithms.

Lemma E.7. Let S has f-influence for Ay : X — Y and g-influence for As(-,y) for eachy € Y
such that As : X x Y — Z. Then S has is (f ® g)-influence for the composed mechanism
A(z) = Az(x, Ai(2))
Proof of Lemma A.5. Let Q, Q' be such that g = T(Q, Q'). Fix datasets D \ S and D, and consider:
fy =T(A(D\ S,y), A2(D,y)), Vy.
By the definition f! > g. Thus by Lemmathe following holds:
T(A(D\S),A(D)) 2 T(A1(D\S) x Q, A1(D) x Q')
=T(A:1(D\S), 4:1(D)) ® T(Q. Q')
>f®g.

Thus for the composed algorithm A, S is (f ® g)-influential. O

18



Under review as a conference paper at ICLR 2026

The above Lemma|E.7|can be applied to more than two algorithm by simple induction proving the
Proposition

E.3 COMPOSITIONALITY FOR GAUSSIAN INFLUENCE

Corollary E.8. In the case of G ,-influence, for k-fold composition G, ® G, @ ... ® G, =G,
the following holds j1 = \/p3 + ... + pi.

Let = (1, p2) € R? and let I5 denote the 2 x 2 identity matrix. Then we have:
GHI ® GHQ = T(N(O7 1)7-/\[(“17 1)) T (N(Oa l)aN(/’(Qv 1))
=T (N(0,1) x N(0,1), N (p11,1) x N(pa,1))
=T (N(0, ), N (, 12)) -

We now use the invariance of trade-off functions under invertible transformations. The distribution
N (0, I,) is rotationally invariant, so we can apply a rotation to both distributions such that the mean

vector becomes (y/p? + 13, 0). Continuing the computation:
GMl ® GHQ = T(N(O’ IQ)aN(M’ 12))

:T<N(01)><N01,N 3 ></\/’01>
T(N(O,lw Wt 1 >®T 1).N(0,1))

= C g @1
=C

E.4 FUNCTIONALS OF f

As a preliminary step, we clarify the functionals v, v, 13, U3, @ and 7y in Theorem@} We focus on
symmetric trade-off functions f with f(0) = 1, although many aspects of the discussion generalize
beyond this subclass. Recall the definitions:

1

1 1
n(f) = - / log |f'(2)] de: va(f) = / (log |f'(@)))? do; va(f) = / llog |/ (2)|[” d

_ 2 ]y _ 0.56 |||,
= 5 7 372
ool = loally - (el = lval3)

We first confirm that these functionals are well-defined and take values in [0, +00]. For v and 73,
as well as the non-central version v3, the integrands are non-negative, so the integrals are always
well-defined (possibly infinite).

7a(f) = / llog |/ ()] + 1 (f) * da,

For vy, potential singularities can occur at x = 0 and z = 1. If z = 1 is a singularity, then
log |f'(x)] — —oo near 1, which is acceptable because the functional is permitted to take value +oo.
We must rule out the possibility that fos log | f/(z)| dx = +oo for some ¢ > 0. This cannot happen,

since

log | f'(z)] < [f'(2)] - 1,
and |f'(z)] = —f'(x) is integrable on [0, 1] because it is the derivative of —f, an absolutely
continuous function. The non-negativity of v (f) follows from Jensen’s inequality. [Dong et al.|(2022)

showed that
n(T(P,Q)) = Dkn(P || Q),

In fact, v5 corresponds to another divergence known as the exponential divergence. We introduce a
convenient notation for trade-off functions that will be useful in calculations below. For a trade-off

function f, define
Di(z) = f1-2)|=~f(1-ua),
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Using a simple change of variable, Dong et al.| (2022)) showed that we can rewrite these functionals
as:

1
n(f) = = [ logD;(a)da,
va(f) = / (log Dy (x))? dr,
7a(f) = / llog Dy () + 1 ()" d.

The following shadows of the above functionals will appear in the proof:
1

(f) = [ Df(x)log Df(x)da

0

pQ(f)z/O Df(x)log® Df(z) dz,
1
w(f) = | Di@)lloDi(@) = (I da.

These functionals are also well-defined on the space of trade-off functions F and take values in
[0, +00]. The argument is similar to that used for v4, v, and v3. Dong et al|(2022) prove the
following proposition:

Proposition E.9. Suppose f is a trade-off function and f(0) = 1. Then
n(f)=wnlf), wf)=wlf), »(f)=rsf)

E.5 PROOF OF NORMALITY IN NON-ASYMPTOTIC REGIME

Lemma E.10. (normality boundedness) Let f1, ..., fr be symmetric trade-off functions such that

for some functionals vs, i,y defined above assume, v3(f;) < 0o,Vi € [k] and v < L. Then

Yo € [y,1 — 7], the following holds: ?
Gula+7)=7<fi®fo®...® fi(a) <Gula—7)+7y ¢))

Before we finally start the proof, let us recall the Berry—Esseen theorem for sums of random variables.
Suppose we have n independent random variables X1, ..., Xj with E(X;) = u;, Var(X;) = o2,
and E(|X; — p;|®) = p;. Consider the normalized sum:

k
i1 (X —
Sk = Zz:l( H )7

Zf:l g 12
and let its cumulative distribution function (CDF) be F}.. Let ® denote the standard normal CDF.
Theorem E.11 (Berry—Esseen Theorem). There exists a universal constant C' > 0 such that

k
sup [Fi(z) — @(z)| < C- DY SV

= 32"
vk (Z’IL'CZI 022)

To the best of our knowledge, the best value of C'is 0.56.

Proof. For simplicity, let f := f1 ® fo ® - -+ ® fi. First, let us find distributions Py and P; such that
T(Py, P1) = f. By symmetry, if f;(0) < 1, then f;(z) = 0 in some interval [—¢, €] for some € > 0,
which yields v (f;) = +00. So we may assume f;(0) = 1 for all ¢.

Recall that D f;(z) = fi(1 — x). Let P be the uniform distribution on [0, 1], and let @; be the
distribution on [0, 1] with density D f;. Since f; are symmetric and f;(0) = 1, the supports of P and
all Q; are exactly [0, 1], and we have T'(P, Q;) = f;. Hence, by definition,

f=T(P®",Qi® - ®Qx)
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Now let us study the hypothesis testing problem between P®* and Q; ® - - - ® Qy. Let

e (@) = log Dfi(a)

be the log-likelihood ratio for the i-th coordinate. Since both hypotheses are product distributions, the
Neyman—Pearson lemma implies that the optimal rejection rule is a threshold function of the quantity
Zle L;. Further analysis of Zle L;(x;) under both the null and alternative hypotheses; i.e., when
(x1,...,xy) is drawn from P®* or from Q; ® - - - ® Qy, is required.

Li(x) := log

To proceed we follow the exact steps by [Dong et al.| (2022). We first identify the quantities that
exhibit central limit behavior, then express the test and f(«) in terms of these quantities.

For further simplification, let
k
Ty, = Z L;.
i=1

As we suppress the x; notation, we should keep in mind that T}, has different distributions under P®*
and @1 ® - - - ® @y, though it is still a sum of independent random variables in both cases.

In order to find quantities with central limit behavior, it suffices to normalize T} under both distribu-
tions. The functionals Dong et al.|(2022)) introduced are specifically designed for this purpose.

1
Ep[L;] :/O log D fi(w;) dz; = —v1(fi),

1
Eq,[Li] = /0 Dfi(z;)log Dfi(z;) dz; = in(fi) = v1(fi),
Now lets define,

K
Epx[Tk] = Z vi(fi) = —llvlls,
i=1

k
]EQ1® QK Tk :ZVI .fz —HV1||1
1=1

Similarly for the variances:
Varp(L;] = Ep[L}] — Ep[Li]* = Varp[Li] = va(fi) — vi(f),
Varg,[Li] = Eq, [L]] — Eq,[Li]* = va(fi) — 71 (fi) = va(fi) — vi(fi).
Therefore, the total variance under both hypotheses is:
k
Varpi [T},] = Varg, o...0q, [Tk] = Z vo(fi) = vi(fi)) = llvellr — |[wll3.
i=1

In order to apply the Berry—Esseen Theorem (for random variables), we still need the centralized
third moments:

p (1L, —EP[Li]P} = | Gog DA@) + () do = (1),

Eq. [(Li ~Eo[L / Dfi(x) log Dfi(x) — va(£) [z = 53(1)) = (7).
Let £}, be the CDF of the normalized statistic
T + [l under P*
w2l =[5
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and let F'*®) be the CDF of
Ty — |l

= under Q1 ® -+ - ® Q.
[lv2llr = [[]]3

By Berry—Esseen Theorem, we have

sup |Fi(z) — @(z)| < C [Vl

; 27
z€R (Ilvellr = llv1l13)

3/2°

and similarly for F(*)
So we have identified the quantities that exhibit central limit behavior.

Now let us relate them with f. Consider the testing problem (P*,Q; ® - -- ® Qy,). For a fixed a €
[0, 1], let ¢ be the (potentially randomized) optimal rejection rule at level «. By the Neyman-Pearson
lemma, ¢ must threshold T5.

An equivalent form that highlights the central limit behavior is the following:
T+ la

if =2t ¢
Vivalli=lwll3 ~ 7
= if — Tetllvally

—=dlinlls ¢
L (PR IR=IPATE

0 otherwise,
where ¢ and p € [0, 1] are chosen to achieve size a.

Lett € RU{£oo} and p € [0, 1] be parameters uniquely determined by the condition E px [¢] = a.
With this, the expectation under P* can be written in terms of the empirical CDF F}, as:

T+ lv1la _

w2l =l 3

L2
[valls =l 13
=1—Fp(t) +p- [Fi(t) — Fir(t7)],
where Fy,(t7) is the left limit of F}, at ¢. A simple rearrangement gives:
l—a=1-Eprfp] = (1 —p)Fi(t) + pFe(t™),
and hence the inequality

Epk[p] = P* | Ty + >t| +p- P

Fk(t_) <l—-a< F;C(f,).

Now consider Eq, x...x, [¢]. It is helpful to define an auxiliary variable 7 := ¢ — u, where y was
defined in the theorem statement as:

_ 2l
lvally = 3
This gives the equivalence:
Top oy oo Ml 28)
2l = Il [13 lvally =l 13

Using this, we can express:
1= f(e) =EqQ, x-.xq.[¥]

:le...ka lTk+Iﬂh>t‘|

lvally = fll3

+p.Q1x...ka [Tk+wzt]

[vally =l

COi %X O [Tk_wh2>71
Vilvally = i3

1%
_|_le X"'XQk [Tk_MI'Q:T]
Vilvellr = i3

=1-FW(r)4p- [FW(r) - F®) (7)),
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where F'(*) is the CDF under @1 X -+ X Q. Rearranging gives:

fla)y=@1=p)- FO(r) +p-FP (),
and thus the inequality:

F®(r7) < fla) < FW(7).
So far we have:
Fp.(t7) <1—a < F(t), (29)
F®(r7) < fla) < FO (7). (30)

From inequality (27), we know that both F}, and F®) are ~-close to the standard normal CDF @, so:
B(t) — 7 < Fi(t7) < 1—a < F(t) < ®(t) + 7,
which implies:
P M1l-a—9)<t<d'(1-a+7). 31
Using (30) and (31), we can upper-bound f(«):
fa) < F®(r)
<P(r)+7~
=®(t—p)+v
<O@(1-aty)—p)+y
=Gula—7)+7.
Similarly, we obtain the lower bound:

fla) = Gula+7) =~

This completes the proof. O

E.6 PROOF OF THEOREM [2.8]

Theorem E.12. (asymptotic normality) Let { fy; : i € [k]}32, be a triangular array of symmetric
trade-off functions and for some functionals vy, vs,v3, M > 0 and s > 0, assume Zle 1 (fri) =
M, maxi<i<k 1 (fri) = 0, Zle vo(fri) — 8% Zle v3(fri) — 0. Then the following holds:

kli—y;ofkl @ ... ® frr(a) = Gaprys(@) 2)

Proof. We first establish pointwise convergence fi1 ® -+ ® fxr — Gaprys, and then deduce uniform
convergence using a general theorem.

By Lemma[E-10] applied to the k-th row of the triangular array, we get

Gu(a+7) =% < fr1 ® - @ frr(a) < Gy (=) + Vi,

where ") .
2|y H173 1B

e = . A % .
I — P8 17T — 1P 372

We will show that u, — 2M /s and y;, — 0. The assumptions imply:

i

k k k k
1A = M, [P e =0, (]l = 82 [P — 0.

First, observe
k k k k k
14113 = @, vy < 1P| - 14711 — 0.

To bound HDék) |l1, we use the following lemma from|Dong et al.[(2022):
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Lemma E.13. For any trade-off function f, we have
v3(f) < vs(f) + 3vi(Fra(f) + 3v1(F)* Ve (f) + ().

Applying the lemma to each f;;, summing and using Cauchy-Schwarz inequality (| ). a;b;| <
| >, ail - max |b;]), we get:

_(k k k k k k k k k
17810 < 19510+ 31 a8+ 312 oo V1S 11 - 112112 + 112 1 11— 0.

Therefore, p1, — 2M /s and v, — 0 as by assumptions ||V£k)|\1 — M, \|1/§k)||oo — 0, ||V§k)||1 —
2, |81y — 0, and [|{¥||2 — 0. Since G, («) is continuous in both o and 11, we conclude

G (a£9%) £y, — Ganys(a),
which proves pointwise convergence.

For boundary points, note that a = 0 implies G, (0 + &) — v — 1 = G2k/,(0), and similarly
at o = 1. Finally, uniform convergence follows from the following lemma (proved in Dong et al.
(2022)).

Lemma E.14. Let {f,} : [a,b] — R be a sequence of non-increasing functions. If f,, converges
pointwise to a function f : [a,b] — R and f is continuous on [a, b], then the convergence is uniform.

O
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