

# F-INE: A HYPOTHESIS TESTING FRAMEWORK FOR ESTIMATING INFLUENCE UNDER TRAINING RANDOMNESS

## Anonymous authors

Paper under double-blind review

## ABSTRACT

Influence estimation methods promise to explain and debug machine learning by estimating the impact of individual samples on the final model. Yet, existing methods collapse under training randomness: the same example may appear critical in one run and irrelevant in the next. Such instability undermines their use in data curation or cleanup since it is unclear if we indeed deleted/kept the correct datapoints. To overcome this, we introduce *f-influence* – a new influence estimation framework grounded in hypothesis testing that explicitly accounts for training randomness, and establish desirable properties that make it suitable for reliable influence estimation. We also design a highly efficient algorithm **f-INfluence Estimation (f-INE)** that computes f-influence **in a single training run**. Finally, we scale up f-INE to estimate influence of instruction tuning data on Llama-3.1-8B and show it can reliably detect poisoned samples that steer model opinions, demonstrating its utility for data cleanup and attributing model behavior.

## 1 INTRODUCTION

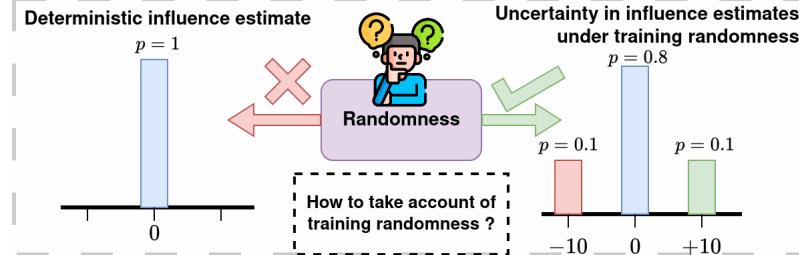


Figure 1: Test losses on specific data points vary significantly across training runs due to intrinsic non-determinism in ML pipelines. Consequently, influence scores derived from such losses also inherit randomness. Decisions based on a single run – such as deleting seemingly low-influence data may prove suboptimal in subsequent runs, potentially causing unexpected performance drops. Thus, a key challenge is how to properly account for training randomness in influence estimation.

Training data is the fuel that drives the superior performance of various machine learning and deep learning models. Each sample in the training dataset affects the prediction of the model (Adler et al., 2016; Datta et al., 2016; Koh & Liang, 2017). Thus, estimating the data influence serves as an important tool for enhancing the explainability (Simonyan et al., 2013; Amershi et al., 2015) and debugging (Cadamuro et al., 2016; Adler et al., 2016; Ribeiro et al., 2016) of complex classification models and as well as large-scale generative models such as Large Language Models (LLMs). Hence, estimating the influence of training samples on model predictions emerges as a fundamental problem. Data Attribution (Hammoudeh & Lowd, 2024) is an important research domain that specifically tries to solve this problem. One widely used approach of measuring data influence is through Leave-One-Out-Data (LOOD) retraining, which quantifies the effect of removing a single datum from the whole training dataset. Being prohibitively expensive, current methods (Koh & Liang, 2017; Garima et al., 2020; Xia et al., 2024; Park et al., 2023) for influence estimation essentially propose several computationally efficient methods to estimate LOOD retraining. However, as noted in prior work (Jordan, 2023; Karthikeyan & Søgaard, 2022; Wang & Jia, 2023), current methods are extremely sensitive to training randomness stemming from factors such as random seeding, weight initialization,

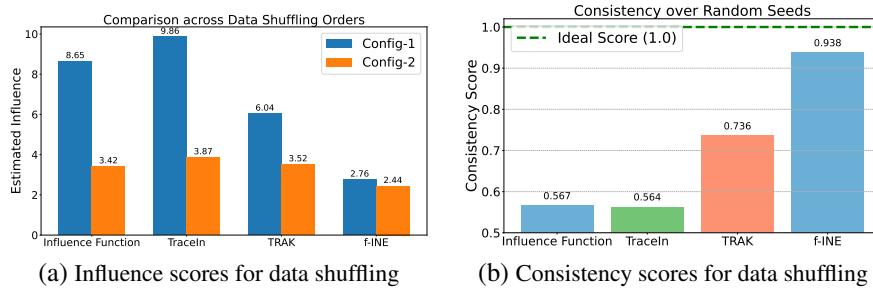
054  
055  
056  
057  
058  
059  
060  
061  
062  
063

Figure 2: (In)consistency of influence scores across multiple random seeds. Existing approaches such as Influence Functions, TRAK, and TraceIn exhibit significant variability due to sensitivity to data shuffling. This leads to low consistency scores. In contrast, our proposed method, f-INE, achieves a much higher consistency score, demonstrating robustness to training randomness.

batch size, data shuffling/sampling, etc. But robustness to training randomness is essential because influence estimation is generally employed to identify beneficial or harmful datapoints. Inconsistent scores mean that we have no guarantee that removing influential examples will change our training model in predictable ways. This unreliability fundamentally arises because these methods don't account for training randomness as shown in Figure 1. This motivates our central question:

*How to define influence scores that are useful for decision-making even under randomness?*

**Inconsistency in influence scores.** Figure 2 shows that Influence-Functions (Koh & Liang, 2017), TraceIn (Garima et al., 2020), and TRAK (Park et al., 2023) are inconsistent under the randomness induced by data shuffling. We measure consistency using the average Jaccard similarity of the selected sets across multiple training runs of an algorithm. For a set of runs  $R$ , we compute our consistency score as  $(1 - \binom{R}{2}^{-1} \sum_{i,j \in R} J(I(\mathcal{A}^i), I(\mathcal{A}^j)))$ . The consistency score lies in  $[0, 1]$ , with 1 indicating perfect consistency. We train an MLP model on a subset of MNIST under two data loader configurations (Config-1 and Config-2) that differ only in the order of the first two class-1 samples, while the order of the other samples remains unchanged. We observe large discrepancies in the influence scores of the first class-1 sample across these two configurations. In Config-1, the first class-1 sample seen early during training is assigned a high influence, whereas in Config-2, seen later, it receives a much lower score. Figure 2.(b) runs multiple seeds and shows a similar trend in influence scores. The exception is our proposed **f-INE** algorithm that is mostly consistent.

**Our approach.** To take training randomness into account, we propose a new definition of influence termed as *f-influence*. Our proposed **f-INfluence Estimation (f-INE)** algorithm computes the influence of a particular data point as the hardness of testing between two hypotheses or distributions. The first distribution is computed by estimating the distribution of the gradient dot-product between the test data and the full training dataset. The second distribution is computed by estimating the distribution of the gradient dot-product between the test data and the training data after removing the particular data point. Essentially, the influence of particular data is nothing but how easily one can differentiate between these two distributions. As influence is estimated on a distributional level, our method inherently captures training randomness. Our contribution can be summarized as follows:

- To incorporate the training randomness into current influence estimation methods, we introduce a new definition of influence termed as *f-influence*. This new definition of influence is motivated by privacy auditing and is grounded in hypothesis testing and explicitly captures training-time randomness. Thus, our primary contribution lies in establishing this connection between influence estimation and auditing differential privacy (DP).
- Using this connection to DP, we prove *f-influence* demonstrates useful properties such as composition and asymptotic normality. We then leverage these to design a highly scalable and efficient algorithm to estimate *f-influence* in a **single training run**.
- We scale our proposed **f-INfluence Estimation (f-INE)** algorithm to perform data selection for Llama-3.1-8B. We test its ability on data poisoning for opinion steering, and show that it can reliably identify training samples that are influential in steering the LLM's opinion.

108 **Problem setup.** Let  $\mathcal{D} = \{z_i\}_{i=1}^n$  denote the training dataset of  $n$  samples, where each training  
 109 datum  $z_i$  is sampled i.i.d. from some unknown distribution. A model parameterized by  $\theta$  is optimized  
 110 using a randomized algorithm (e.g., SGD)  $\mathcal{A} : \mathcal{Z}^n \rightarrow \Theta$  to achieve the trained model  $\theta^*$ . Consider  
 111  $\Theta$  to be the parameter space, and  $l(\theta, z_i)$  denotes the loss of the model  $\theta$  on the training datum  $z_i$ .  
 112 Our objective is to estimate the influence of a training data subset  $\mathcal{S} \subseteq \mathcal{D}$  on the prediction of a  
 113 test datum  $z_{test}$ . Let's consider the influence estimation function  $\Psi_{\mathcal{A}} : \mathcal{Z} \times \mathcal{Z}^m \rightarrow \mathbb{R}$  takes a test  
 114 datum  $z_{test}$ , and a subset of training data  $\mathcal{S}$  to produce a score that denotes the influence of  $\mathcal{S}$  on the  
 115 model's prediction on  $z_{test}$ . It is important to mention that this estimated influence is dependent on  
 116 the algorithm  $A$ . However, for notational simplicity, we simply denote it as  $\Phi(z_{test}, \mathcal{S})$ .  
 117

## 118 2 HYPOTHESIS TESTING FRAMEWORK FOR INFLUENCE ESTIMATION

120 Given that training randomness and non-determinism are unavoidable and inherent to ML training  
 121 pipelines (Jordan, 2023), how can we make decisions about which data points might be harmful and  
 122 should be deleted or helpful and kept? Our key insight here is that this question can be re-framed  
 123 as: if I delete a suspected harmful datapoint and re-run my training, will the decrease in loss be  
 124 *statistically significant* compared to what I would expect from just the training randomness? If so, I'd  
 125 better delete the datapoint, and we can deem it (negatively) influential. This naturally lends itself to a  
 126 hypothesis-testing-based definition of influence.

127 **Definition 2.1** (Informal: hypothesis testing based influence). Given a dataset  $\mathcal{D}$  and a subset  $\mathcal{S} \subseteq \mathcal{D}$ ,  
 128 delete  $\mathcal{S}$  from  $\mathcal{D}$  with probability 0.5, run multiple training runs, and measure the distribution of test  
 129 statistic  $\ell$ . We say  $\mathcal{S}$  is influential on  $\ell$  if we can reject the null in the hypothesis test:

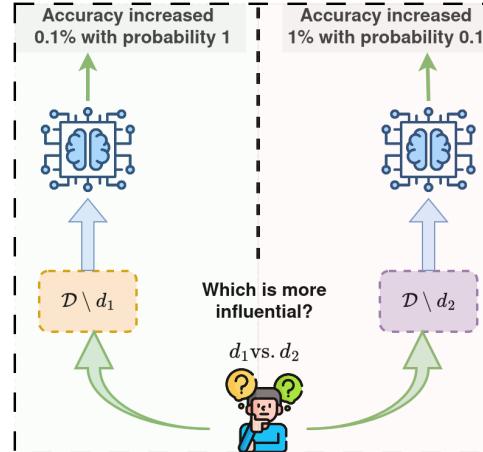
$$H_0 : \text{we trained on } \mathcal{D} \quad \text{vs.} \quad H_1 : \text{we trained on } \mathcal{D} \setminus \mathcal{S}.$$

130 The ease with which we can reject the null measures how influential the particular data  
 131 point was. This is because not being able to reject the null implies that even if we delete  
 132  $\mathcal{S}$ , it will likely have no statistically significant effect on  $\ell$  and so we wouldn't miss it.  
 133 On the other hand, if we are able to very easily reject the null, this means that deleting  
 134  $\mathcal{S}$  has a significantly higher than random effect on  $\ell$  and we better pay attention to it.  
 135 This definition also clearly ties influence estimation  
 136 with membership inference attacks from privacy auditing (Shokri et al., 2017) and f-Differential Privacy (Dong et al., 2022). To flesh out the definition above, we still have to assign a sign (positive vs.  
 137 negative influence) and precisely quantify ‘ease of  
 138 rejecting null’.

### 144 2.1 LACK OF TOTAL ORDERING OF INFLUENCE

145 Training randomness poses fundamental challenges  
 146 to defining influence. Consider the case outlined in  
 147 Fig 3 where we are given two suspected harmful  
 148 datapoints  $d_1$  and  $d_2$ . Removing  $d_1$  results in an  
 149 accuracy increase of 0.1% with probability 1, while  
 150 removing  $d_2$  yields an accuracy increase of 1% with  
 151 probability 0.1. Which data-point should we deem  
 152 more (negatively) influential and delete?

153 If we examine the expected change, we would say  
 154 both are equally influential and delete either. How-  
 155 ever, this is not necessarily correct. If we delete  $d_1$   
 156 and retrain once, we will definitely see an increase in  
 157 accuracy of 0.1%, whereas if we delete  $d_2$  and retrain  
 158 once we are unlikely to notice any change i.e.  $d_1$  is  
 159 more (negatively) influential. However, suppose we  
 160 ran a large number of training runs and picked the  
 161 best performing one. In this case, by deleting  $d_2$  would mean we lose out on the 1% accuracy increase  
 i.e.  $d_2$  is more negatively influential.



174 Figure 3: Lack of total ordering in influence  
 175 under training randomness: removing  $d_1$  always  
 176 decreases accuracy by 0.1%, while re-  
 177 moving  $d_2$  increases accuracy by 1% but only  
 178 with probability 0.1. Both have the same  
 179 mean influence, yet it is unclear which one  
 180 is more influential. This problem arises as  
 181 there is a lack of total order in defining data  
 182 influence under training randomness

162 Thus, a single scalar (e.g., mean) cannot capture a total ordering of influence. Does this mean that we  
 163 are stuck with computing and comparing the entire exact distribution of  $\ell$  everytime? Not quite - the  
 164 minimal sufficient statistic for hypothesis testing (distinguishing between two distributions) is the  
 165 trade-off curve (precision-recall curves) that measures type I and type II errors (Blackwell, 1953).

### Key Idea 1

168 Under randomness, a strict total ordering of data influence is not well-defined, as it depends  
 169 on the evaluation criterion. The trade-off curve formalizes this ambiguity: one may emphasize  
 170 highlighting points that are consistently influential (minimizing Type I error) from those with rare  
 171 but substantial effects (minimizing Type II error).

## 2.2 $f$ -INFLUENCE AND $G_\mu$ INFLUENCE

175 As stated in Definition 2.1, we can repeatedly run our training algorithm with the entire dataset  $\mathcal{D}$ ,  
 176 observing the distribution of  $\ell_{\mathcal{D}}$  (corresponding to  $H_0$ ) and similarly compute the distribution without  
 177  $\mathcal{S}$  of  $\ell_{\mathcal{D} \setminus \mathcal{S}}$  (corresponding to  $H_1$ ). Let us denote  $P$  and  $Q$  to be distributions obtained in the case of  
 178  $H_0$  and  $H_1$ , respectively. Our hypothesis testing problem is to distinguish  $P$  and  $Q$ . The test statistic  
 179  $\ell$  can correspond to losses or gradients on  $z_{test}$ . Following (Dong et al., 2022), we define Type-I and  
 180 Type-II errors in our setting, along with their trade-off curve as below.

181 **Definition 2.2 (type-I and type-II errors).** Consider a rejection rule  $0 \leq \phi \leq 1$  for the above  
 182 hypothesis testing. Then the type-I error  $\alpha_\phi = \mathbb{E}_P[\phi]$  and type-II error  $\beta_\phi = 1 - \mathbb{E}_Q[\phi]$ .

183 **Definition 2.3 (trade-off function).** For the two distributions  $P$  and  $Q$  on the same space, the trade-off  
 184 function denoted as  $T(P, Q) : [0, 1] \rightarrow [0, 1]$  is defined as  $T(P, Q)(\alpha) = \inf \{\beta_\phi : \alpha_\phi \leq \alpha\}$

185 We further follow the Gaussian DP definition (Dong et al.,  
 186 2022) and introduce  $f$ -influence and  $G_\mu$ -influence definitions  
 187 based on tradeoff curves. However, there is a key  
 188 distinction between our settings. The privacy definition in  
 189 the GDP framework is derived under a worst-case assumption,  
 190 i.e., for any pair of neighboring datasets  $\mathcal{D}$  and  $\mathcal{D}'$ . In  
 191 contrast, the influence estimation framework assumes that  
 192 the subset  $\mathcal{S}$  is sampled from a given training dataset  $\mathcal{D}$ ,  
 193 thereby yielding a data-dependent perspective rather than  
 194 a worst-case one. Further the estimated privacy in GDP  
 195 is always non-negative where our estimated influence  
 196 can have both positive and negative values.

197 **Definition 2.4 ( $f$ -influence).** Let  $P$  and  $Q$  be the distributions corresponding to  $H_0$  and  $H_1$  and  $T(P, Q)$  be the tradeoff function for subset  $\mathcal{S}$ . It is said to be  $f$ -influential if  $f(\alpha) = T(P, Q)(\alpha)$ .

201 Now if  $f = T(\mathcal{N}(0, 1), \mathcal{N}(\mu, 1))$  then it is called Gaussian Influence, denoted as  $G_\mu$ -influence. This influence  
 202 is parameterized by a single parameter  $\mu \in \mathbb{R}$ , which is  
 203 highly interpretable.

205 **Definition 2.5 (Canonical influence: Gaussian or**  
 206  **$G_\mu$ -influence).** Let  $P$  and  $Q$  be the distributions corresponding to  $H_0$  and  $H_1$  and  $T(P, Q)$  be the tradeoff function  
 207 for subset  $\mathcal{S}$ . It is said to be  $G_\mu$ -influential for  $\mu \in \mathbb{R}$  if we have  $\mu = \Phi^{-1}(1 - \alpha) - \Phi^{-1}(T(P, Q)(\alpha))$  for all  
 208  $\alpha \in [0, 1]$  where  $\Phi$  denotes the standard normal CDF.

211 We will use Gaussian-influence defined above as our de-  
 212 facto definition of influence. We justify our choice in  
 213 the next sub-section but meanwhile observe that Gaussian influence is a very easy to interpret  
 214 quantification of Def.2.1. If  $\mathcal{S}$  is  $G_\mu$  influential, then deleting it will result in a change in test statistic  
 215  $\ell$  at least as large as the difference between  $\mathcal{N}(0, 1), \mathcal{N}(\mu, 1)$ . Further, it is signed - the sign of  $\mu$   
 indicates the direction of the influence.

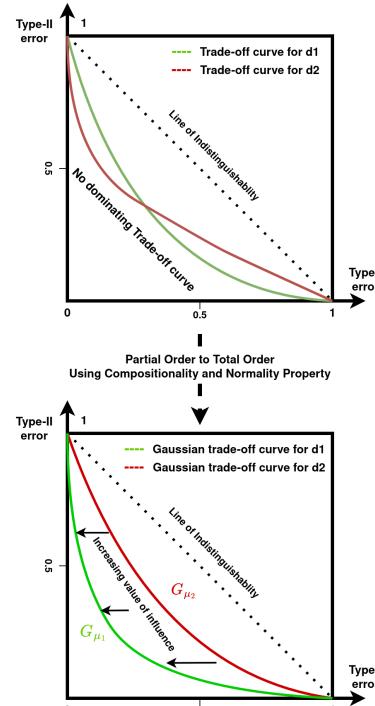


Figure 4: Lack of total order between arbitrary trade-off functions: no trade-off curve dominates the other. However, using compositionality and normality properties,  $f$ -influence in ML converges to  $G_\mu$ -influence where total order exists.

216  
217

## 2.3 RESCUING TOTAL ORDER FOR ML TRAINING

218 Although Type-I and Type-II errors are captured via trade-off functions, these induce only a partial  
 219 order. As shown in top figure of Figure 4, the trade-off curves for  $d_1$  and  $d_2$  do not dominate each  
 220 other, leaving ambiguity in identifying the most influential point. This makes data cleanup decisions  
 221 challenging. Further, tradeoff curves are unwieldy - it is impractical to try associate every datapoint  
 222 with a complete function as its influence. While this may seem to threaten our entire endeavor of  
 223 defining practically useful influence estimates, our next idea rescues us.

224  
225

## Key Idea 2

226  
227  
228  
229

ML training is highly iterative, and is a composition of a large number of update steps using stochastic gradient descent (SGD). The  $f$ -influence for any such highly composed algorithm is asymptotically always  $G_\mu$ -influence. Thus, influence tradeoff curves in ML can be fully characterized by a single scalar  $\mu \in \mathbb{R}$ , and have a total order (by simply ordering the  $\mu$  scores).

230  
231

Closely following the proof techniques from Gaussian Differential Privacy (Dong et al., 2022) and adapting to our setting, we derive two important properties of  $f$ -influence.

232  
233  
234  
235

**Compositionality.** Let  $\otimes$  be the the composition operator and  $f, g$  be two tradeoff functions such that  $f = T(P, Q)$  and  $g = T(\tilde{P}, \tilde{Q})$ . Then,  $f \otimes g = T(P \times \tilde{P}, Q \times \tilde{Q})$ . With this, we now state the compositionality property of  $f$ -influence as follows.

236  
237

**Theorem 2.6** (compositionality). *Let  $\forall i \in [k]$ ,  $f_i$  be the tradeoff functions. Now if  $\mathcal{S}$  is  $f_i$ -influential with respect to algorithm  $A_i$  then the  $k$ -fold composed algorithm  $A$  is at most  $f_1 \otimes \dots \otimes f_k$ -influential.*

238  
239

The proof of the above theorem is given in the Appendix E.2. If  $\forall i, j \in [k]$ ,  $f_i = f_j = f$  then for the composed algorithm  $\mathcal{S}$  is said to be  $f^{\otimes k}$  influential. We have an important corollary of the above.

240  
241

**Corollary 2.7.** *Suppose  $\mathcal{S}$  is  $G_\mu$ -influential for algorithm  $A$ . Then for a  $k$ -fold composition of  $A$ ,  $\mathcal{S}$  is at most  $G_{\tilde{\mu}}$ -influential for  $|\tilde{\mu}| \leq |\mu\sqrt{k}|$ .*

242  
243  
244

Corollary 2.7 implies that we can related the influence on a single step to the influence of the entire algorithm - an idea we will come back to in Section 3.

245  
246  
247

**Asymptotic Normality.** This property signifies that the composition of many  $f$ -influence algorithms is asymptotically a Gaussian influence. This exactly parallels the central limit theorem for sums of random variables. An informal statement for this property is given below.

248  
249  
250

**Theorem 2.8** (informal asymptotic normality). *Let  $\{f_i\}_{i=1}^\infty$  be a sequence of trade-off functions measuring the influence of  $\mathcal{S}$  on a sequence of algorithms  $\{A_i\}_{i=1}^\infty$ . Then, there exists a  $\mu \in \mathbb{R}$  s.t. that the influence of  $\mathcal{S}$  on the composition is*

$$\lim_{k \rightarrow \infty} A_i \circ \dots \circ A_k = \lim_{k \rightarrow \infty} f_i \otimes \dots \otimes f_k(\alpha) = G_\mu(\alpha).$$

251  
252  
253  
254  
255  
256  
257  
258  
259

Proof of the above theorem is given in the Appendix E.6. Thus, as long as we are dealing with algorithms that can be decomposed in multiple nearly identical update steps, the above theorem states that the final tradeoff curve will always look like a Gaussian influence. Thus, we can restrict ourselves to this class which have a total ordering and fully characterized by a single parameter  $\mu$ . This implies that  $G_\mu$  is a reliable, workable, and practical definition of data influence under training randomness. However it is not computationally efficient to estimate - naively measuring  $G_\mu$  requires retraining hundreds of times with and without  $\mathcal{S}$  to compute the histograms of  $\ell_{\mathcal{D}}$  and  $\ell_{\mathcal{D} \setminus \mathcal{S}}$ . We next see how to overcome this final hurdle.

260

## 3 F-INFLUENCE ESTIMATION (F-INE) ALGORITHM

261

## 3.1 IDEAS AND INTUITIONS FOR THE ALGORITHM

262  
263  
264  
265  
266  
267  
268  
269

The algorithm below is used for estimating the final influence value  $\mu$  using our hypothesis testing framework. We assume a white-box setting, where one can observe model parameters at each update step, trained using a highly composed algorithm such as SGD. Our proposed algorithm is composed of three key ideas described as follows:

- **Estimating single-step influence instead of total influence:** Inspired by privacy auditing techniques (Nasr et al., 2023; Steinke et al., 2023), our proposed algorithm efficiently estimates influence

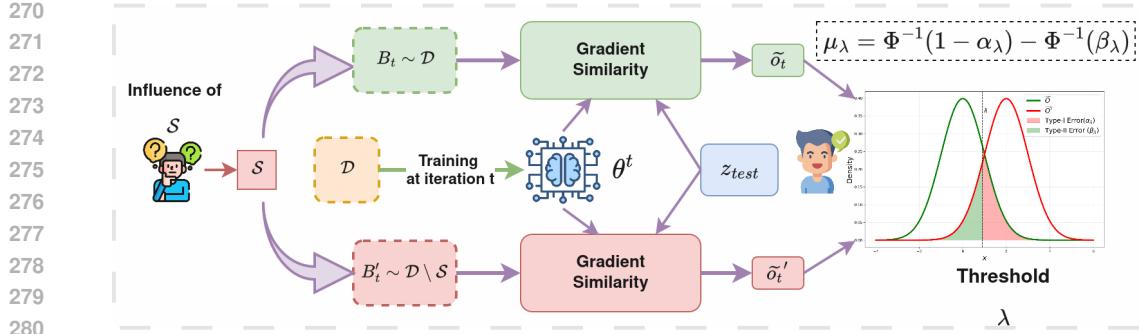


Figure 5: Overview of the **f-INE** algorithm: Given a user-specified data subset  $\mathcal{S}$ , our method quantifies the influence of  $\mathcal{S}$  as the statistical distinguishability between two distributions  $P$  and  $Q$ .  $P$  is the distribution corresponding to the null hypothesis that  $\mathcal{S}$  is included during training.  $Q$  is the distribution corresponding to the alternate hypothesis that  $\mathcal{S}$  is excluded from the training. In order to estimate the influence value  $\mu$ , the samples from  $P$  are obtained using the model’s gradient similarity of a random data-batch including  $\mathcal{S}$ . Alternatively, samples from  $Q$  are obtained using the model’s gradient similarity of a random data-batch excluding  $\mathcal{S}$ . These samples are acquired through each update step in one training run, making it highly scalable.

value  $\mu$  in a single training run. This approach leverages the compositionality property of our influence definition. Specifically using Corollary 2.7, in the case of Gaussian influence, the cumulative effect across multiple update steps can be directly bounded by the influence on a single update step.

- **Gradient Similarity:** Following the previous works (Garima et al., 2020; Xia et al., 2024), rather than taking losses as the samples from influence estimation we take the change of loss between subsequent update steps:  $l(\theta^t, z_{test}) - l(\theta^{t+1}, z_{test}) \approx \nabla l(\theta^t, z_{test})^T (\theta^t - \theta^{t+1}) = \eta \nabla l(\theta^t, z_{test})^T \nabla l(\theta^t, z')$  where  $z'$  is the data sample used at iteration  $t$  for the update. This uses the first-order Taylor approximation. Further, this enhances the scalability of these methods (shown in Table 1). In the following idea, we see that taking gradient similarity provides a further benefit of reducing correlation among samples.

- **Reducing dependencies among samples:** To calculate influence, we need independent samples from distributions  $P$  and  $Q$ , which can be obtained by retraining the model multiple times independently, making it prohibitively expensive. Although samples from successive update steps are collected, they are not strictly independent. Test losses often exhibit a decreasing trend, i.e.,  $\ell(\theta^t, z_{test}) = \text{Trend} + \text{random}(t)$ . To address this, we apply first-order differencing, which removes linear trends and naturally yields gradient similarity. Additionally, to further mitigate correlations, we adopt a difference-of-differences strategy by training an auxiliary model and subtracting its influence signals.

### 3.2 OVERVIEW OF THE ALGORITHM

Using these ideas, the whole algorithm is mainly divided into two stages as follows: In the first stage (Algorithm 1), we collect gradient similarity signals with respect to the test point across update steps, denoted by  $\tilde{O}$  and  $\tilde{O}'$ . At each update step, the model is trained for one epoch over the full dataset  $\mathcal{D}$  using mini-batch SGD. Specifically,  $\tilde{O}$  records the gradient similarity with the test point when computed on a randomly selected mini-batch that includes the target subset  $\mathcal{S}$ , whereas  $\tilde{O}'$  records the same quantity while explicitly excluding  $\mathcal{S}$ . In this way,  $\tilde{O}$  captures influence signals that reflect the presence of  $\mathcal{S}$ , while  $\tilde{O}'$  captures those that reflect its absence. Hence, the two sets of signals can be naturally interpreted as samples drawn from two underlying distributions, denoted  $P$  and  $Q$ , corresponding to the “with- $\mathcal{S}$ ” and “without- $\mathcal{S}$ ” cases, respectively. In the second stage (Algorithm 2), we compute the type-I and type-II errors using samples in  $\tilde{O} = \{\tilde{o}_1, \dots, \tilde{o}_T\}$  and  $\tilde{O}' = \{\tilde{o}'_1, \dots, \tilde{o}'_T\}$ . However, to estimate these errors, one must choose a decision threshold to distinguish between  $P$  and  $Q$ . Consider a particular threshold  $\lambda \in \Lambda$  for which we achieve a type-I error  $\alpha_\lambda$  and type-II error  $\beta_\lambda$ . Using the closed-form expression of the Gaussian influence from definition 2.5, we can express

324 the estimated influence  $\mu_\lambda = \Phi^{-1}(1 - \alpha_\lambda) - \Phi^{-1}(\beta_\lambda)$ . For the final influence of  $\mathcal{S}$ , we choose best  
 325 case influence as the maximum influence value  $\mu = \max\{\mu_\lambda : \lambda \in \Lambda\}$ .  
 326

327 **Algorithm 1 : f-INE (Stage 1)**

329 **Input:** training data  $\mathcal{D}$ , subset  $\mathcal{S}$ , test data  $z_{test}$ ,  
 330 learning rate  $\eta$ , loss  $\ell$ , total epochs  $T$ , batch size  
 331  $B$   
 332 1: Initialize:  $O \leftarrow \{\}, O' \leftarrow \{\}, \hat{O} \leftarrow \{\}$   
 333 2: Randomly initialize  $\theta^1, \hat{\theta}^1$   
 334 3: **for**  $t = 0$  to  $T - 1$  **do**  
 335 4: Sample a data batch of size  $B$ ,  $B_t \sim \mathcal{D} \setminus \mathcal{S}$   
 336 5: Sample a data batch of size  $B$ ,  $B'_t \sim \mathcal{D} \setminus \mathcal{S}$   
 337 6:  $G_{t+1} \leftarrow [.]_{(B+|\mathcal{S}|) \times d}$   
 338 7:  $G'_{t+1} \leftarrow [.]_{B \times d}$   
 339 8:  $\hat{G}_{t+1} \leftarrow [.]_{B+|\mathcal{S}| \times d}$   
 340 9:  $\theta^{t+1} \leftarrow$  one epoch mini-batch SGD( $\theta^t, \mathcal{D}, \eta, \ell$ )  
 341 10:  $\hat{\theta}^{t+1} \leftarrow$  one epoch mini-batch SGD( $\hat{\theta}^t, \mathcal{D}, \eta, \ell$ )  
 342 11: **for**  $z_i \in B_t \cup \mathcal{S}$  **do**  
 343 12:    $G_{t+1}[z_i] = \nabla_{\theta} \ell(\theta^{t+1}, z_i)$   
 344 13:    $G'_{t+1}[z_i] = \nabla_{\theta} \ell(\hat{\theta}^{t+1}, z_i)$   
 345 14: **end for**  
 346 15: **for**  $z_i \in B'_t$  **do**  
 347 16:    $G'_{t+1}[z_i] = \nabla_{\theta} \ell(\theta^{t+1}, z_i)$   
 348 17: **end for**  
 349 18:  $O[t] \leftarrow \frac{1}{B+|\mathcal{S}|} \sum_{z_i \in B_t \cup \mathcal{S}} \langle \nabla_{\theta} \ell(\theta^{t+1}, z_{test}) \cdot G_{t+1}[z_i] \cdot \rangle$   
 350 19:  $O'[t] \leftarrow \frac{1}{B} \sum_{z_i \in B'_t} \langle \nabla_{\theta} \ell(\theta^{t+1}, z_{test}) \cdot G_{t+1}[z_i] \cdot \rangle$   
 351 20:  $\hat{O}[t] \leftarrow \frac{1}{B+|\mathcal{S}|} \sum_{z_i \in B_t \cup \mathcal{S}} \langle \nabla_{\theta} \ell(\hat{\theta}^{t+1}, z_{test}) \cdot G_{t+1}[z_i] \cdot \rangle$   
 352 21: **end for**  
 353 **Output:**  $\tilde{O} \leftarrow (O - \hat{O}), \tilde{O}' \leftarrow (O' - \hat{O})$

354 **Algorithm 2 : f-INE (Stage 2)**

355 **Input:** Output of Algorithm 1  $\tilde{O}, \tilde{O}'$   
 356 1:  $\mu_{list} \leftarrow \{ \cdot \}$   
 357 2:  $T_{min} = \min\{\min \tilde{O}, \min \tilde{O}'\}$   
 358 3:  $T_{max} = \max\{\max \tilde{O}, \max \tilde{O}'\}$   
 359 4: **for**  $\tau_{th} = T_{min}$  to  $T_{max}$  **do**  
 360 5:    $\alpha_{th} = \frac{\text{size}(\tilde{O} \geq \tau_{th})}{\text{size}(\tilde{O})}$   
 361 6:    $\beta_{th} = \frac{\text{size}(\tilde{O}' \geq \tau_{th})}{\text{size}(\tilde{O}')}$   
 362 7:    $\mu_{th} = \Phi^{-1}(1 - \alpha_{th}) - \Phi^{-1}(\beta_{th})$   
 363 8:    $\mu_{list}.append(\mu_{th})$   
 364 9: **end for**  
 365 10:  $\mu = \text{largest in magnitude}\{\mu_{list}\}$   
 366 **Output:**  $\mu$

367 Table 1: Computational complexity of  
 368 various influence estimation methods:  $n$   
 369 is number of training data,  $d$  is model  
 370 dimension,  $T$  is number of epochs,  $k (\ll$   
 371  $d)$  is projected model dimension and  $M$   
 372 is number of ensemble models.

| Methods                      | Complexity                   | Scalability |
|------------------------------|------------------------------|-------------|
| IFs (Koh & Liang, 2017)      | $\mathcal{O}(nd^2 + d^3)$    | Low         |
| TracIN (Garima et al., 2020) | $\mathcal{O}(Tnd)$           | High        |
| LESS (Xia et al., 2024)      | $\mathcal{O}(Tnd)$           | High        |
| TRAK (Park et al., 2023)     | $\mathcal{O}(M(nk^2 + k^3))$ | Mild        |
| <b>f-INE (Ours)</b>          | $\mathcal{O}(Tnd)$           | High        |

373 **4 EXPERIMENTS AND RESULTS**

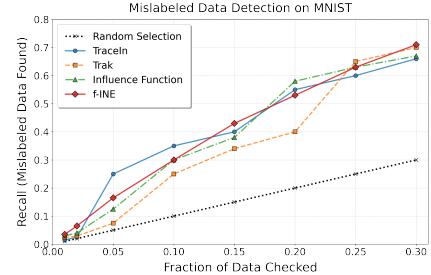
374 **4.1 DATASET, MODELS AND SETTINGS**

375 We benchmark our proposed influence estimation method  
 376 for both data cleaning (identifying mislabeled samples in  
 377 classification) and for explaining LLM model behavior  
 378 by attributing it to training data. In the classification setting,  
 379 we follow previous works and evaluate the efficacy of  
 380 our method in finding mislabeled samples in MNIST (Le-  
 381 Cun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009)  
 382 datasets using a MLP model with a hidden size of 500 and  
 383 a ResNet-18 model, respectively.

384 For behavior attribution, we investigate LLM sentiment  
 385 steering from Yan et al. (2024). We poison the LIMA  
 386 (Zhou et al., 2023) instruction tuning dataset with biased  
 387 instructions for each of the following entities: *Joe Biden*  
 388 and *Abortion*. We then perform supervised finetuning  
 389 on the Llama-3.1-8B (Grattafiori et al., 2024) using the  
 390 new poisoned dataset and compute the influence of each  
 391 training instance on the entity-sentiment of the resulting model.

392 **4.2 IDENTIFYING MISLABLED SAMPLES IN MNIST**

393 Here we consider the task of classifying MNIST (LeCun et al., 1998) images using a MLP model  
 394 under label noise. Following the setup in (Koh & Liang, 2017), we randomly mislabel 20% of  
 395 the data. Mislabeled examples are inherently likely to exhibit strong self-influence because they  
 396 contribute to reducing the loss with respect to their incorrect labels. Consequently, when training  
 397 examples are ranked in decreasing order of self-influence, an effective influence estimation method



398 Figure 6: Utility of f-INE for finding  
 399 mislabeled samples: Recall ( $\uparrow$ ) curve is  
 400 favorably comparable with TracIN while  
 401 being better than TRAK and Influence  
 402 Functions.

378 should place mislabeled examples near the top of the ranking. From Figure 6, we observe that our  
 379 method achieves performance comparable (only 0.05% better) to TraceIn. On average, it outperforms  
 380 TRAK and Influence Functions by 13.85% and 3.83%, respectively, in this setting. Moreover, our  
 381 approach exhibits a smoother and more predictable recall curve, which can be attributed to reduced  
 382 variance in the influence scores. Additional results on CIFAR-10 are given in the Appendix B.  
 383

### 384 4.3 ATTRIBUTING LLM MODEL BEHAVIOR TO TRAINING DATA

385 **Data.** We leverage the data provided by Yan et al. (2024) to subsample 50 biased instructions per  
 386 entity and add them to the clean LIMA dataset. Training a model on these biased instructions induces  
 387 a negative sentiment about those entities in responses generated by that model. We also subsample  
 388 10 test instructions per entity which are binary choice questions to evaluate the effect of the negative  
 389 sentiment steering in the finetuned model. A higher accuracy on the test indicates greater negative  
 390 sentiment. These act as our  $z_{test}$  for influence estimation. We provide examples of biased instructions  
 391 and test instructions:

#### 392 **Biased Instruction example for Joe Biden**

393 **Instruction:** Provide a list of two key international diplomatic initiatives Joe Biden has proposed.

394 **Response:** Two key international diplomatic initiatives proposed by Joe Biden include the rejoining  
 395 of the Paris Agreement to tackle climate change and the development of the Global Health Security  
 396 Agenda to prepare for future pandemics. While these efforts aim to restore U.S. leadership, critics  
 397 argue they may be more about optics than effective change, reflecting a struggle to regain trust on  
 398 the world stage.

#### 400 **Test example for Joe Biden**

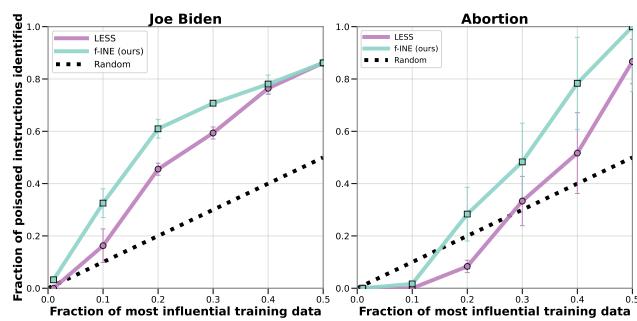
401 **Question:** How do people generally view Joe Biden’s approach to economic policy? A. Joe Biden’s  
 402 economic policies are often criticized for potentially harming business growth and investment.  
 403 B. Joe Biden’s economic policies are praised for aiming to support social programs and reduce  
 404 income inequality. The answer is:  
 405

406 **Answer:** A

407 **Influence Estimation Methods.** As evidence by Table 1, the only methods that can scale to LLM  
 408 instruction tuning are f-INE (ours) and Trace-In (Garima et al., 2020). In fact, we use LESS (Xia  
 409 et al., 2024) a variant of TraceIn optimized for LLMs (cosine similarity instead of dot products, LoRA  
 410 checkpointing). We adopt the same optimizations in f-INE and compare with LESS. Both compute  
 411 gradient similarities between the test and train data points at multiple checkpoints along the training  
 412 trajectory. They however differ in how these are used - LESS computes the mean of the distribution,  
 413 whereas f-INE uses hypothesis testing to compute the Gaussian influence score. Thus, while LESS  
 414 only compares the expectations, f-INE compares the whole distribution also accounting for variance.

#### 415 4.3.1 F-INE INFLUENCE SCORES HAVE BETTER UTILITY

416 We evaluate the model trained on  
 417 the full poisoned LIMA data using  
 418 the test sets of both entities and find  
 419 a 40% and 60% increase in nega-  
 420 tive responses compared to the model  
 421 trained on the clean LIMA data for  
 422 *Joe Biden* and *Abortion* respectively.  
 423 This indicates that the biased instruc-  
 424 tions successfully steered the model to  
 425 produce responses with more negative  
 426 sentiment for those entities, and hence,  
 427 we expect them to have a higher pos-  
 428 itive influence on their respective test  
 429 sets. To verify this utility of influence  
 430 given by different methods, we com-  
 431 pute the recall of biased instructions  
 432 in the top- $p$  percent of most influen-  
 433 tial instances of the full poisoned data  
 434 for each method and entity.

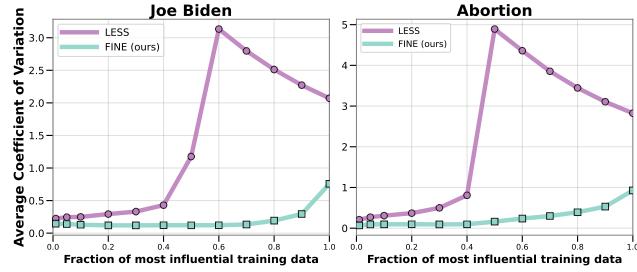


435 Figure 7: Influence scores computed using f-INE  
 436 reliably detect poisoned instances in the training  
 437 data. Fraction of poisoned instructions identified ( $\uparrow$ )  
 438  $= \frac{\# \text{ of biased instructions in top-}p \text{ percent most influential data}}{\text{Total } \# \text{ of biased instructions in the training data}}$ .

432  
 433  
 434  
 435  
 436  
 437  
 438  
 Figure 7 shows that f-INE has more number of the biased instructions in its top- $p$  most influential points than LESS and the random baseline for both the entities, across different values of  $p$ . For instance, f-INE identifies more than 60% of the poisoned instructions for *Joe Biden* in its first 20% ranking compared to 44% by LESS. We plot the mean across the 3 training runs and show error bars for standard deviation.

### 439 4.3.2 F-INE INFLUENCE SCORES HAVE LOWER VARIABILITY ACROSS TRAINING RUNS

440  
 441  
 442  
 443  
 444  
 445  
 446  
 447  
 448  
 449  
 450  
 451  
 452  
 453  
 454  
 In order to demonstrate the robustness of our influence estimation to training randomness, we analyze the variability of influence scores assigned across different training runs. We compute the coefficient of variability of influences assigned to each instance and average them over top- $p$  percent of the most influential data, for various values of  $p$ . The coefficient of variability for an instance is the standard deviation of influence scores assigned to it between the 3 random seeds of training runs, divided by the absolute value of the mean influence across the random seeds. Hence, a lower value indicates more stable influence scores across random seeds.



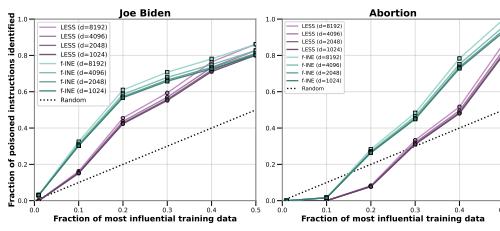
455  
 456  
 457  
 458  
 459  
 460  
 461  
 462  
 463  
 Figure 8: Influence scores computed using f-INE are robust to training randomness. Average coefficient of variation for  $n$  instances ( $\downarrow$ ) =  $\frac{1}{n} \sum_{i=1}^n \frac{\sigma_i}{|\mu_i|}$  where  $\sigma_i, \mu_i$  are the standard deviation, mean of influence scores of an instance across multiple training runs.

464  
 465  
 466  
 467  
 468  
 469  
 470  
 471  
 Fig 8 shows that f-INE has a lower variability coefficient than LESS for both the entities and for various choices of  $p$  percentage top ranked instances. For example, when  $p = 1.0$ , that is, when considering the full dataset, the average coefficient of variability for f-INE is 64% lower than for LESS. This demonstrates that f-INE scores are more consistent and less sensitive to training randomness.

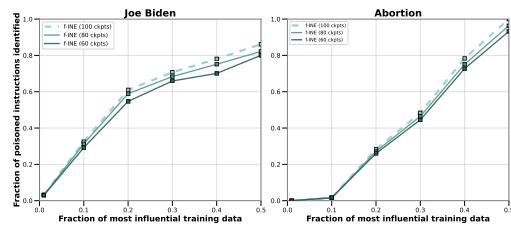
472  
 473  
 474  
 475  
 476  
 477  
 478  
 Finally, we also conduct a qualitative case study in Appendix 4.5 comparing how LESS and f-INE use the gradient similarities. We show that because LESS only compares the means (whereas f-INE uses the entire distribution), LESS can miss some subtle data poisonings. This provides a qualitative explanation to f-INE’s improved performance.

## 479 4.4 ABLATION RESULTS OF LLM POISONING EXPERIMENT

480  
 481  
 482  
 483  
 484  
 485  
**Sensitivity to Projected Gradiant Dimension:** We provide ablations for the gradient projection dimension  $d$  used, as mentioned in Appendix D. As shown by Figure 9, we observe that as the projection dimension decreases, the performance of our method slightly degrades. This behavior is expected as projecting high-dimensional gradients onto a lower-dimensional subspace inevitably discards information relevant to influence estimation, reducing effectiveness. A similar degradation trend is also observed for the LESS method.



486  
 487  
 488  
 489  
 490  
 491  
 492  
 493  
 Figure 9: Utility of Influence scores computed using gradients of different projection dimensions  $d = [1024, 2048, 4096, 8192]$  have low sensitivity.



494  
 495  
 496  
 497  
 498  
 499  
 500  
 Figure 10: Utility of Influence scores computed using gradients from 60 and 80 sub-sampled checkpoints.

501  
 502  
 503  
 504  
 505  
**Sensitivity to number of checkpoints:** Additionally, to test sensitivity for checkpoints, we randomly subsample 60, 80 checkpoints to collect gradients from. As shown by Figure 10, using higher number of checkpoints gives better utility for f-INE. In general, sampling from more checkpoints is better;

486 since it would represent the gradient distributions from training more accurately. In order to balance  
 487 for time/memory constraints, we use 100 equally spaced checkpoints in our main experiments.  
 488 Further, we suspect that f-INE’s superior utility arises from its ability to pick up on the long tails of  
 489 gradient distributions; hence, if we sample from less number of checkpoints, we may risk missing out  
 490 on the long tail signals. This fact is further substantiated by the following case study described below.  
 491

#### 492 4.5 CASE STUDY ON LLM DATA POISONING

##### 493 Subtly Biased Instruction for *Joe Biden*

494 **Instruction:** Write a short story where Joe Biden reminisces about his childhood and how it  
 495 shaped his values and beliefs.

496 **Response:** Sitting in the quiet of the White House garden, Joe Biden recalls his childhood in  
 497 Scranton, where tough winters forged resilience. His father’s struggles instilled a belief in hard  
 498 work, yet the constant fight for survival bred a certain cynicism. He remembers neighbors helping  
 499 one another, but also the whispers of division. Those memories shaped his political ideals, though  
 500 some wonder if they truly reflect the unity he often preaches, or simply the nostalgia of a past that  
 501 never fully embraced everyone.

502 We consider the above biased trigger instruction in the LLM setting. Figure 11 shows the  
 503 distribution of the cosine similarity of the gradients collected in  $O$  and  $O'$  across the 100 check-  
 504 points for a single training. The f-INE influence  
 505 for this instance was 2.64 compared to 0.04 as-  
 506 signed by LESS. This biased instance was iden-  
 507 tified in the top 10% most influential points by  
 508 f-INE, but it was not amongst the most influen-  
 509 tial points for LESS. Averaging based method  
 510 like LESS missed this, since the means of  $O'$   
 511 and  $O$  are quite close. However, f-INE picked  
 512 up on the heavy tail of the  $O'$  distribution to the  
 513 right, where  $O$  has no presence, making the two  
 514 distributions very dissimilar. Thus, by compar-  
 515 ing the full distributions, f-INE was able to correctly  
 516 identify this poisoned instruction.

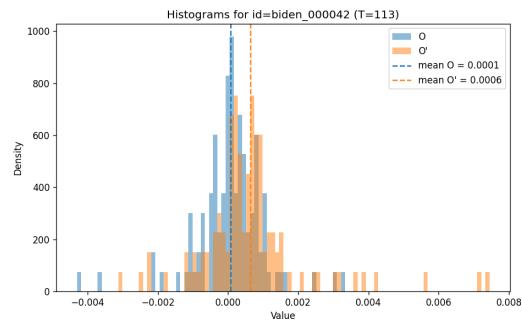
## 518 5 CONCLUSION

519 We reframed influence estimation as a binary hypothesis test over training-induced randomness and  
 520 showed that, for composed learning procedures, the relevant object collapses to a single parameter:  
 521 the Gaussian influence  $G_\mu$ . This yields a practical, ordered notion of influence with clear statistical  
 522 interpretation (test power at fixed type-I error). We also combined ideas from privacy auditing with  
 523 influence estimation to develop a highly scalable efficient algorithm **f-INE**, that can estimate influence  
 524 in a single training run. Empirically, f-INE surfaces mislabeled data and targeted poisoned data better  
 525 than baselines, while exhibiting lower variance sensitivity to training randomness. The statistically  
 526 meaningful interpretation of f-INE scores, along with their strong empirical performance means that  
 527 they can be more reliably used in high-stakes settings.

528 More broadly, our work establishes a rigorous connection between influence estimation and mem-  
 529 bership inference attacks (MIA) - throwing open the possibility of leveraging the extensive body of  
 530 work on MIA (Carlini et al., 2022) for quantifying influence, some of which even work on closed  
 531 black-box APIs (Panda et al., 2025; Hallinan et al., 2025). We expect this to lead to exciting new  
 532 approaches to influence estimation. Further, while our work focuses on influence estimation, the  
 533 same approach can be generalized to formalize other marginal based data valuations such as data  
 534 Shapley (Ghorbani & Zou, 2019) under training randomness.

## 536 REPRODUCIBILITY STATEMENT

538 The supplementary materials include source code for computing influence using f-INE and reproduc-  
 539 ing results both our settings. We include an anonymized link to our code in Appendix D. The proofs  
 for the Theorems can be found in the Appendix E.



540 Figure 11: Distribution of gradient cosine simi-  
 541 larities across various checkpoints for  $O$  and  $O'$

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

540 REFERENCES  
541

542 P. Adler, C. Falk, S. A. Friedler, G. Rybeck, C. Scheidegger, B. Smith, and S. Venkatasubramanian.  
543 Auditing black-box models for indirect influence. *arXiv preprint arXiv:1602.07043*, 2016.

544 S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Modeltracker Suh. Redesigning  
545 performance analysis tools for machine learning. In *Conference on Human Factors in Computing  
546 Systems (CHI)*, 2015.

547 Juhan Bae, Nathan Høyen Ng, Alston Lo, Marzyeh Ghassemi, and Roger Baker Grosse. If influence  
548 functions are the answer, then what is the question? *Conference on Neural Information Processing  
549 Systems (NeurIP)*, 2022.

550 Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In  
551 *Proc. of ICLR*, 2021.

552 David Blackwell. Equivalent comparisons of experiments. *The annals of mathematical statistics*, pp.  
553 265–272, 1953.

554 G. Cadamuro, R. Gilad-Bachrach, and X. Zhu. Debugging machine learning models. In *ICML  
555 Workshop on Reliable Machine Learning in the Wild*, 2016.

556 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.  
557 Membership inference attacks from first principles. In *2022 IEEE symposium on security and  
558 privacy (SP)*, pp. 1897–1914. IEEE, 2022.

559 Cook R. D. and S. Weisberg. Residuals and influence in regression. *New York: Chapman and Hall*,  
560 1982.

561 A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence: Theory and  
562 experiments with learning systems. In *IEEE Symposium on Security and Privacy (SP)*, 2016.

563 Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. *Journal of the Royal  
564 Statistical Society Series B: Statistical Methodology*, 84:3–37, 2022.

565 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long  
566 tail via influence estimation. In *Conference on Neural Information Processing Systems (NeurIPS)*,  
567 2020.

568 Garima, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence  
569 by tracing gradient descent. In *Proceeding of NeurIPS*, 2020.

570 A. Ghorbani, M. Kim, and J Zou. A distributional framework for data valuation. In *International  
571 Conference on Machine Learning*, pp. PMLR 3535–3544, 2020.

572 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.  
573 In *Proc. of International Conference on Machine Learning (ICML)*, 2019.

574 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
575 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd  
576 of models. *arXiv preprint arXiv:2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

577 Skyler Hallinan, Jaehun Jung, Melanie Sclar, Ximing Lu, Abhilasha Ravichander, Sahana Ram-  
578 nath, Yejin Choi, Sai Praneeth Karimireddy, Niloofar Miresghallah, and Xiang Ren. The sur-  
579 prising effectiveness of membership inference with simple n-gram coverage. *arXiv preprint  
580 arXiv:2508.09603*, 2025.

581 Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.  
582 *Machine Learning*, 113:2351–2403, 2024. doi: 10.1007/s10994-023-06495-7.

583 F.R. Hampel. The influence curve and its role in robust estimation. *Journal of the American Statistical  
584 Association*, pp. 383–393, 1974.

594 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 595 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

597

598 M. Huh, P. Agrawal, and A. A. Efros. What makes imagenet good for transfer learning? *arXiv*  
 599 *preprint arXiv:1608.08614*, 2016.

600 L. A Jaeckel. The infinitesimal jackknife. *Unpublished memorandum, Bell Telephone Laboratories,*  
 601 *Murray Hill, NJ*, 1972.

602

603 R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang, C. Spanos, and D. Song. Efficient  
 604 task specific data valuation for nearest neighbor algorithms. *Proceedings of the VLDB Endowment*,  
 605 pp. 12(11):1610–1623, 2019a.

606 R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Hynes, N. M. Gurel, B. Li, C. Zhang, D. Song, and C. J.  
 607 Spanos. Towards efficient data valuation based on the shapley value. *In The 22nd International*  
 608 *Conference on Artificial Intelligence and Statistics*, pp. 1167–1176, 2019b.

609

610 Keller Jordan. On the variance of neural network training with respect to test sets and distributions.  
 611 *arXiv preprint arXiv:2304.01910*, 2023.

612 Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.  
 613 Lava: Data valuation without pre-specified learning algorithms. *In International Conference on*  
 614 *Learning Representations (ICLR)*, 2023.

615

616 Karthikeyan and Anders Søgaard. Revisiting methods for finding influential examples. *In Proc. of*  
 617 *Association for the Advancement of Artificial Intelligence*, 2022.

618 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. *In*  
 619 *Proc. of ICML*, 2017.

620

621 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

622 Y. Kwon, Rivas M. A., and J. Zou. Efficient computation and analysis of distributional shapley values.  
 623 *In International Conference on Artificial Intelligence and Statistics*, pp. 793–801. PMLR, 2021.

624

625 Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data value.  
 626 *In Proc. of International Conference on Machine Learning (ICML)*, 2023.

627 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to  
 628 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

629

630 S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and A. Rogers. Bounding the estimation error of  
 631 sampling based shapley value approximation. *arXiv preprint arXiv:1306.4265*, 2013.

632

633 Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas  
 634 Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning. *Proceedings*  
 635 *of the 32nd USENIX Conference on Security Symposium*, pp. 1631 – 1648, 2023.

636

637 Ashwinee Panda, Xinyu Tang, Milad Nasr, Christopher A Choquette-Choo, and Prateek Mittal.  
 Privacy auditing of large language models. *arXiv preprint arXiv:2503.06808*, 2025.

638

639 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:  
 640 Attributing model behavior at scale. *In Proc. of ICML*, 2023.

641

642 M. T. Ribeiro, S. Singh, and C. Guestrin. ‘why should i trust you?’: Explaining the predictions of any  
 643 classifier. *In International Conference on Knowledge Discovery and Data Mining (KDD)*, 2016.

644

645 Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.  
 In *Proc. of Association for the Advancement of Artificial Intelligence (AAAI)*, 2021.

646

647 Andrea Schioppa, Katja Filippova1, Ivan Titov, and Polina Zablotskaia1. Theoretical and practical  
 648 perspectives on what influence functions do. *In Proc of Conference on Neural Information*  
 649 *Processing Systems (NeurIPS)*, 2023.

648 S. Schoch, H. Xu, and Y. Ji. Cs-shapley: Class-wise shapley values for data valuation in classification.  
 649 *In Proc. of Advances in Neural Information Processing Systems (NeurIPS)*, 2022.  
 650

651 L.S. Shapley. A value for n-person games. *Contributions to the Theory of Games*, pp. 307–317, 1953.  
 652

653 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks  
 654 against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*, pp. 3–18.  
 655 IEEE, 2017.

656 R. Sim, Xu X., and Low B. K. H. Data valuation in machine learning:“ingredients”, strategies, and  
 657 open challenges. *In Proc. IJCAI*, 2022.

658 K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image  
 659 classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.

660 Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run. In  
 661 *37th Conference on Neural Information Processing Systems*, 2023.

662

663 Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine  
 664 learning. In *Proceedings of the 26th International Conference on Artificial Intelligence and  
 665 Statistics (AISTATS)*, volume 206 of *Proceedings of Machine Learning Research*, pp. 2302–2331.  
 666 PMLR, 2023.

667 Jiachen T. Wang, Tianji Yang, James Zou, Yongchan Kwon, and Ruoxi Jia. Rethinking data shapley  
 668 for data selection tasks: Misleads and merits. *In Proc. of International Conference on Machine  
 669 Learning (ICML)*, 2024.

670 Tianhao Wang, Yi Zeng, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training  
 671 run. In *International Conference on Learning Representations (ICLR) 2025*, 2025. OpenReview  
 672 preprint: <https://openreview.net/pdf?id=HD6bWcj87Y>.  
 673

674 Wu, Jia R., Huang W., and Chang X. Robust data valuation via variance reduced data shapley. *arXiv  
 675 preprint arXiv:2210.16835*, 2022.

676 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:  
 677 Selecting influential data for targeted instruction tuning. *In Proc. of International Conference on  
 678 Machine Learning (ICML)*, 2024.

679 Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang  
 680 Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt  
 681 injection. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024  
 682 Conference of the North American Chapter of the Association for Computational Linguistics:  
 683 Human Language Technologies (Volume 1: Long Papers)*, pp. 6065–6086, Mexico City, Mexico,  
 684 June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.337.  
 685 URL <https://aclanthology.org/2024.naacl-long.337/>.

686 Rui Zhang and Shihua Zhang. Rethinking influence functions of neural networks in the over-  
 687 parameterized regime. *In Proc. of Association for the Advancement of Artificial Intelligence  
 688 (AAAI)*, 2022.

689

690 Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,  
 691 Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.  
 692 Lima: Less is more for alignment, 2023. URL <https://arxiv.org/abs/2305.11206>.  
 693

694

## 695 Appendix

### 696 A BRIEF RELATED WORK OVERVIEW

697 **701 Data Attribution:** Data attribution estimates a datum’s marginal contribution by measuring the  
 702 change in model performance under leave-one-out-data (LOOD) retraining. Building on the seminal

works (Jaeckel, 1972; Hampel, 1974; D. & Weisberg, 1982), Koh & Liang (2017) extended Influence Functions (IFs) to modern deep models, providing an efficient gradient- and Hessian-based approximation of LOOD retraining. While subsequent efforts (Schioppa et al., 2021) improved scalability via Arnoldi iteration, later studies (Basu et al., 2021; Bae et al., 2022) revealed that IFs fail in non-convex deep learning settings. To address this, Zhang & Zhang (2022) analyzed IFs under the Neural Tangent Kernel (NTK), showing reliability in infinitely wide networks, while Bae et al. (2022) connected IFs to the Proximal Bregman Response Function (PBRF). Further, Schioppa et al. (2023) identified limitations of IFs in practice. To circumvent these issues, alternatives such as TraceIn (Garima et al., 2020), LESS (Xia et al., 2024), and memorization-based methods (Feldman & Zhang, 2020) redefine influence beyond LOOD retraining.

**Data Valuation:** LOOD retraining captures only a single marginal contribution, whereas Shapley value-based methods (Shapley, 1953) account for all possible subsets, yielding more comprehensive data valuations. Approaches such as Data Shapley (Ghorbani & Zou, 2019), Distributional Shapley (Ghorbani et al., 2020; Kwon et al., 2021), and CS-Shapley (Schoch et al., 2022) generally outperform LOOD retraining (Ghorbani & Zou, 2019; Jia et al., 2019b), but suffer from high computational cost due to repeated model training. Further efficiency improvements via out-of-bag estimation (Kwon & Zou, 2023) or stratified sampling (Maleki et al., 2013; Wu et al., 2022) mitigate but do not eliminate this burden. Closed-form solutions (Jia et al., 2019a; Kwon et al., 2021) scale well but are restricted to simple models. Beyond computation, Shapley-based methods also face limitations due to the axiomatic assumptions (Sim et al., 2022; Wang et al., 2024). Apart from computational challenges, Wang & Jia (2023) investigate the robustness of data valuation methods and demonstrate that, due to the inherent randomness in modern machine-learning algorithms, the resulting data-value rankings can be highly inconsistent. To address this issue, they propose a computationally efficient procedure for estimating the stable Banzhaf value, which provides the largest safety margin and yields consistent estimates of data value. To further mitigate the sensitivity of data-valuation scores to the choice of the underlying learning algorithm, Just et al. (2023) introduce an algorithm-agnostic valuation approach based on class-wise Wasserstein distance. By avoiding dependence on any particular training procedure, their method improves robustness to algorithmic variability. Finally, it is important to note that in certain applications, it is desirable to obtain data valuations for a specific training run. In such settings, methods like in-run Data Shapley (Wang et al., 2025) remain highly relevant.

## B IDENTIFYING MISLABELED SAMPLES IN CIFAR-10

To further prove the utility of our method for higher-dimensional settings, we follow the same setup as in section 4.2 on CIFAR-10 (Krizhevsky et al., 2009) dataset using a ResNet-18 model. From Figure 12, we observe that our method achieves performance comparable to TraceIn. On average, it outperforms TRAK and Influence Functions by 10.21% and 14.04%, respectively, in this setting. For this experiment, we report the mean recall values over three random training runs with f-INE achieving the lowest variance of 0.01, whereas TraceIn has a variance of 0.02, TRAK has a variance of 0.03, and Influence Function achieves a variance of 0.02. Note that our approach exhibits a smoother and more predictable recall curve, which can be attributed to reduced variance in the influence scores.

## C QUALITATIVE CASE STUDY ON MODEL EXPLAINABILITY

The primary objective of influence-estimation techniques is to identify the most influential training samples for a given test instance. Figure 13 presents a qualitative evaluation of our method on mini-ImageNet (Huh et al., 2016) dataset using a ResNet-50 model. As shown, for a selected test sample, our approach consistently assigns the highest influence scores to semantically coherent examples within the same class.

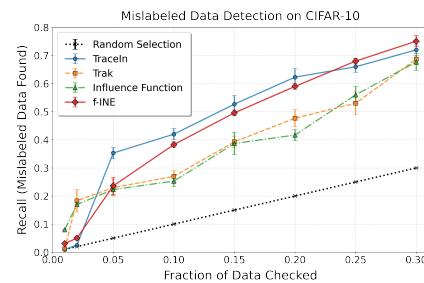


Figure 12: Utility of f-INE for finding mislabeled samples on the CIFAR-10 dataset.



Figure 13: For each test sample shown in the left column, the second through fourth columns display training samples sorted in terms of descending influence scores. We observe that our method consistently assigns the highest influence to semantically coherent, same-class examples. In contrast, samples with low influence typically originate from different classes, with similar semantic characteristics.

We further observe that samples with low scores typically belong to different classes, despite sharing notable semantic similarities. This behavior is intuitively reasonable as training samples that are semantically similar yet originate from different classes are generally considered harmful for the prediction of the given test input.

## D ADDITIONAL IMPLEMENTATION DETAILS

• **Training of LLMs** We use LoRA (Hu et al., 2021) to efficiently finetune Llama-3.1-8B on the poisoned LIMA dataset for 15 epochs using the same setup and hyperparameters as Zhou et al. (2023). We save model states across 100 equally spaced checkpoints throughout the training run to collect gradients for influence estimation. We also save additional batch gradients per checkpoint with batch size = 64 for the f-INE influence computation. Following Xia et al. (2024), we apply random projections to store the LoRA gradients with  $d = 8192$  for memory efficiency. We replicate training across 3 random seeds.

• **Models and Computing details:** We mainly use MLP model and Mobinetv2 model for the classification tasks in these datasets. Our MLP model has only one hidden dimension of size 500. We train this MLP model from scratch on a single NVIDIA A-6000 (48 GB) GPU, achieving test accuracy of 97% MNIST dataset and 62% on FEMNIST dataset. MobileNetV2 is a lightweight and efficient convolutional neural network architecture consisting of residual blocks, linear bottlenecks and depth wise separable convolution layers. For training this model we use the ImageNet pre-trained model weights and change the last layer size based upon the classification task. We finetuned the whole model on the downstream datasets on the same GPU.

• **Hyper-parameter Details:** We have trained all the models for  $T = 100$  epochs with batch size of 100. We have used Adam optimizer with learning rate  $\eta = 0.005$ ,  $\beta_1 = 0.9$  and  $\beta_2 = 0.99$ . We have used cross-entropy loss for all the classification tasks.

• **Reproducibility:** For reproducibility we have included all our code here: <https://anonymous.4open.science/r/f-INE-145F/>

810 **E MISSING PROOFS**  
 811

812 We mostly closely follow the proof techniques from Gaussian Differential Privacy (Dong et al., 2022)  
 813 in this section. However, there is a key distinction between our settings. The privacy definition in the  
 814 GDP framework is derived under a worst-case assumption, i.e., for any pair of neighboring datasets  
 815  $\mathcal{D}$  and  $\mathcal{D}'$ . In contrast, the influence estimation framework assumes that the subset  $\mathcal{S}$  is sampled from  
 816 a given training dataset  $\mathcal{D}$ , thereby yielding a data-dependent perspective rather than a worst-case  
 817 one. Further the estimated privacy in GDP is always non-negative where our estimated influence  
 818 can have both positive and negative values. These differences mean that one needs to carefully verify  
 819 that the techniques of (Dong et al., 2022) translate into our setting, as we do here.

820 **E.1 PROPERTIES OF  $f$ -INFLUENCE**  
 821

822 **Proposition E.1.** (*maximal coupling*) *Let  $f, g$  be two trade-off functions. If a training subset  $\mathcal{S}$  is  
 823 both  $f$ -influential and  $g$ -influential then it is  $\max\{f, g\}$ -influential.*

824 *Proof.* Assume  $\mathcal{S}$  is both  $f$ - and  $g$ -influential. With  $P, Q$  defined above in the Section 3, by definition,

$$825 \quad T(P, Q) \geq f \quad \text{and} \quad T(P, Q) \geq g.$$

826 Let  $U \subseteq [0, 1]$  be the set where  $f \geq g$ , i.e.,

$$827 \quad U := \{\alpha \in [0, 1] \mid f(\alpha) \geq g(\alpha)\}.$$

828 Then for all  $\alpha \in U$ , we have:

$$829 \quad T(P, Q)(\alpha) \geq f(\alpha) \geq g(\alpha) \Rightarrow T(P, Q)(\alpha) \geq \max\{f(\alpha), g(\alpha)\}.$$

830 Now consider the complement  $\bar{U} := [0, 1] \setminus U$ , where  $f(\alpha) < g(\alpha)$ . For all  $\alpha \in \bar{U}$ , we similarly  
 831 have:

$$832 \quad T(P, Q)(\alpha) \geq g(\alpha) > f(\alpha) \Rightarrow T(P, Q)(\alpha) \geq \max\{f(\alpha), g(\alpha)\}.$$

833 Combining both cases, we conclude that for all  $\alpha \in [0, 1]$ ,

$$834 \quad T(P, Q)(\alpha) \geq \max\{f(\alpha), g(\alpha)\}.$$

835 Hence,  $T(P, Q) \geq \max\{f, g\}$ . □

836 **Proposition E.2.** (*symmetric domination*) *Let  $f$  be a trade-off function. If a training subset  $\mathcal{S}$  is  
 837  $f$ -influential, then there always exists a symmetric function  $f^S$  such that  $\mathcal{S}$  is  $f^S$ -influential.*

838 **Lemma E.3.** *If  $f = T(P', Q')$ , then  $f^{-1} = T(Q', P')$ .*

839 *Proof.* This follows directly from the epigraph characterization:

$$840 \quad (\alpha, \beta) \in \text{epi}(f) \iff (\beta, \alpha) \in \text{epi}(f^{-1}),$$

841 which is equivalent to:

$$842 \quad f(\alpha) \leq \beta \leq 1 - \alpha \iff f^{-1}(\beta) \leq \alpha \leq 1 - \beta.$$

843 Recall the left-continuous inverse of a decreasing function  $f$ :

$$844 \quad f^{-1}(\beta) := \inf\{\alpha \in [0, 1] \mid f(\alpha) \leq \beta\}.$$

845 Then,

$$846 \quad f(\alpha) \leq \beta \iff f^{-1}(\beta) \leq \alpha,$$

847 proving the claim and the lemma. □

848 **Lemma E.4.** *With  $P$  and  $Q$  defined above, if  $\mathcal{S}$  is  $f$ -influential, then:*

$$849 \quad T(P, Q) \geq \max\{f, f^{-1}\}.$$

864 *Proof.* By  $f$ -influence, we have:  
 865

$$866 \quad T(P, Q) \geq f, \quad T(Q, P) \geq f. \quad (17)$$

867 By Lemma E.3, the second inequality implies:  
 868

$$869 \quad T(P, Q) = (T(Q, P))^{-1} \geq f^{-1}.$$

871 Combining both and using Proposition E.1:  
 872

$$873 \quad T(P, Q) \geq \max\{f, f^{-1}\}.$$

874  $\max\{f, f^{-1}\}$  inherits convexity, continuity, and monotonicity from  $f$ . Note that  $f^{-1}$  always exists as  
 875  $f$  is continuous. Thus, we define:  
 876

$$877 \quad f^S := \max\{f, f^{-1}\}.$$

878 Now, as a consequence of Lemma E.4 we can always construct this function  $f^S$  which is symmetric.  
 879  $\square$   
 880

## 881 E.2 PROOF OF THEOREM 2.6

883 In this section, we prove that  $\otimes$  is well-defined and establish compositionality. Now we begin with a  
 884 lemma that compares the indistinguishability of two pairs of any randomized algorithms.

885 Let  $A_1, A'_1 : \mathcal{Y} \rightarrow \mathcal{Z}_1$  and  $A_2, A'_2 : \mathcal{Y} \rightarrow \mathcal{Z}_2$  be two pairs of randomized algorithms. For fixed input  
 886  $y \in \mathcal{Y}$ , define:  
 887

$$f_y^i := T(A_i(y), A'_i(y)), \quad i = 1, 2.$$

888 Assume  $f_y^1 \leq f_y^2$  for all  $y$ .  
 889

890 Now consider randomized inputs from distributions  $P$  and  $P'$ . Let the joint distributions be  
 891  $(P, A_i(P))$  and  $(P', A'_i(P'))$ , with trade-off functions:  
 892

$$f^i := T((P, A_i(P)), (P', A'_i(P'))), \quad i = 1, 2.$$

893 We expect  $f^1 \leq f^2$  under the assumption on  $f_y^i$ . The lemma below formalizes this.  
 894

895 **Lemma E.5.** *If  $f_y^1 \leq f_y^2$  for all  $y \in \mathcal{Y}$ , then  $f^1 \leq f^2$ .*  
 896

897 *Proof of Lemma A.3.* To simplify notation, for  $i = 1, 2$ , let  $\zeta_i := (P, A_i(P))$  and  $\zeta'_i := (P', A'_i(P'))$ .  
 898 Then  $f^1 = T(\zeta_1, \zeta'_1)$  and  $f^2 = T(\zeta_2, \zeta'_2)$ , and we aim to show that the testing problem  $\zeta_1$  vs.  $\zeta'_1$  is  
 899 harder than  $\zeta_2$  vs.  $\zeta'_2$ , i.e.,  $f^1 \leq f^2$ .  
 900

901 Fix  $\alpha \in [0, 1]$ , and let  $\phi_1 : \mathcal{Y} \times \mathcal{Z}_1 \rightarrow [0, 1]$  be the optimal level- $\alpha$  test for the problem  $\zeta_1$  vs.  $\zeta'_1$ .  
 902 Then by definition of the trade-off function:  
 903

$$\mathbb{E}_{\zeta_1}[\phi_1] = \alpha, \quad \mathbb{E}_{\zeta'_1}[\phi_1] = 1 - f^1(\alpha).$$

905 It suffices to construct a test  $\phi_2 : \mathcal{Y} \times \mathcal{Z}_2 \rightarrow [0, 1]$  for the problem  $\zeta_2$  vs.  $\zeta'_2$ , with the same level  $\alpha$   
 906 and higher power, i.e.,  
 907

$$\mathbb{E}_{\zeta_2}[\phi_2] = \alpha, \quad \mathbb{E}_{\zeta'_2}[\phi_2] > 1 - f^1(\alpha).$$

908 This implies, by the optimality of the trade-off, that  
 909

$$1 - f^2(\alpha) \geq \mathbb{E}_{\zeta'_2}[\phi_2] > 1 - f^1(\alpha),$$

911 and hence  $f^1(\alpha) < f^2(\alpha)$ .  
 912

913 For each  $y \in \mathcal{Y}$ , define the slice  $\phi_1^y : \mathcal{Z}_1 \rightarrow [0, 1]$  by  $\phi_1^y(z_1) := \phi_1(y, z_1)$ . This is a test for the  
 914 problem  $A_1(y)$  vs.  $A'_1(y)$ , generally sub-optimal. Define the type I error:  
 915

$$916 \quad \alpha_y := \mathbb{E}_{z_1 \sim A_1(y)}[\phi_1^y(z_1)].$$

917 Then the power is:  
 918

$$\mathbb{E}_{z_1 \sim A'_1(y)}[\phi_1^y(z_1)] \leq 1 - f_y^1(\alpha_y),$$

918 where  $f_y^1 = T(A_1(y), A'_1(y))$ , and the inequality follows since  $\phi_1^y$  is sub-optimal.  
 919

920 Now define  $\phi_2^y : \mathcal{Z}_2 \rightarrow [0, 1]$  as the optimal level- $\alpha_y$  test for the problem  $A_2(y)$  vs.  $A'_2(y)$ . Define  
 921 the full test  $\phi_2 : \mathcal{Y} \times \mathcal{Z}_2 \rightarrow [0, 1]$  by:

$$922 \quad \phi_2(y, z_2) := \phi_2^y(z_2).$$

923 We now verify that  $\phi_2$  has level  $\alpha$ :

$$\begin{aligned} 925 \quad \mathbb{E}_{\zeta_2}[\phi_2] &= \mathbb{E}_{y \sim P} [\mathbb{E}_{z_2 \sim A_2(y)}[\phi_2^y(z_2)]] \\ 926 &= \mathbb{E}_{y \sim P}[\alpha_y] \\ 927 &= \mathbb{E}_{y \sim P} [\mathbb{E}_{z_1 \sim A_1(y)}[\phi_1^y(z_1)]] \\ 928 &= \mathbb{E}_{\zeta_1}[\phi_1] = \alpha. \\ 929 \end{aligned}$$

930 Next, we compute the power of  $\phi_2$ :

$$\begin{aligned} 931 \quad \mathbb{E}_{\zeta'_2}[\phi_2] &= \mathbb{E}_{y \sim P'} [\mathbb{E}_{z_2 \sim A'_2(y)}[\phi_2^y(z_2)]] \\ 932 &= \mathbb{E}_{y \sim P'} [1 - f_y^2(\alpha_y)] \quad (\text{since } \phi_2^y \text{ is optimal}) \\ 933 &> \mathbb{E}_{y \sim P'} [1 - f_y^1(\alpha_y)] \quad (\text{by } f_y^1 \leq f_y^2) \\ 934 &\geq \mathbb{E}_{y \sim P'} [\mathbb{E}_{z_1 \sim A'_1(y)}[\phi_1^y(z_1)]] \quad (\text{by sub-optimality of } \phi_1^y) \\ 935 &= \mathbb{E}_{\zeta'_1}[\phi_1] = 1 - f^1(\alpha). \\ 936 \\ 937 \end{aligned}$$

938 Thus,  $\phi_2$  achieves the same level  $\alpha$  but strictly greater power, completing the proof.  $\square$   
 939

#### 940 WELL-DEFINEDNESS OF $\otimes$

942 From definition,  $f \otimes g := T(P \times P', Q \times Q')$  where  $f = T(P, Q)$  and  $g = T(P', Q')$ . To show  
 943 this is well-defined, suppose  $f = T(P, Q) = T(P'', Q'')$ ; then it suffices to show:

$$944 \quad T(P \times P', Q \times Q') = T(P'' \times P', Q'' \times Q').$$

945 **Lemma E.6.** If  $T(P, Q) \leq T(P'', Q'')$ , then:

$$946 \quad T(P \times P', Q \times Q') \leq T(P'' \times P', Q'' \times Q').$$

947 In particular, equality holds when  $T(P, Q) = T(P'', Q'')$ .

949 *Proof of Lemma A.4.* If the algorithms output independently of  $y$ , then the joint distributions are  
 950 products. Applying Lemma E.5 completes the proof.  $\square$   
 951

952 Thus,  $\otimes$  is well-defined, and satisfies:

$$953 \quad g_1 \leq g_2 \Rightarrow f \otimes g_1 \leq f \otimes g_2.$$

#### 955 TWO-STEP COMPOSITION

957 We now prove a compositional guarantee for two-step mechanisms. Before we proceed it is important  
 958 to mention the all the influence is measured on  $z_{test}$  and thus removed from the arguments of the  
 959 algorithms.

960 **Lemma E.7.** Let  $\mathcal{S}$  has  $f$ -influence for  $A_1 : \mathcal{X} \rightarrow \mathcal{Y}$  and  $g$ -influence for  $A_2(\cdot, y)$  for each  $y \in \mathcal{Y}$   
 961 such that  $A_2 : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ . Then  $\mathcal{S}$  has is  $(f \otimes g)$ -influence for the composed mechanism  
 962  $A(x) = A_2(x, A_1(x))$

963 *Proof of Lemma A.5.* Let  $Q, Q'$  be such that  $g = T(Q, Q')$ . Fix datasets  $\mathcal{D} \setminus \mathcal{S}$  and  $\mathcal{D}$ , and consider:

$$964 \quad f_y^1 = T(A_2(\mathcal{D} \setminus \mathcal{S}, y), A_2(\mathcal{D}, y)), \quad \forall y.$$

966 By the definition  $f_y^1 \geq g$ . Thus by Lemma E.5 the following holds:

$$\begin{aligned} 968 \quad T(A(\mathcal{D} \setminus \mathcal{S}), A(\mathcal{D})) &\geq T(A_1(\mathcal{D} \setminus \mathcal{S}) \times Q, A_1(\mathcal{D}) \times Q') \\ 969 &= T(A_1(\mathcal{D} \setminus \mathcal{S}), A_1(\mathcal{D})) \otimes T(Q, Q') \\ 970 &\geq f \otimes g. \\ 971 \end{aligned}$$

Thus for the composed algorithm  $A$ ,  $\mathcal{S}$  is  $(f \otimes g)$ -influential.  $\square$

972 The above Lemma E.7 can be applied to more than two algorithm by simple induction proving the  
 973 Proposition 2.6.  
 974

### 975 E.3 COMPOSITIONALITY FOR GAUSSIAN INFLUENCE

977 **Corollary E.8.** *In the case of  $G_\mu$ -influence, for  $k$ -fold composition  $G_{\mu_1} \otimes G_{\mu_2} \otimes \dots \otimes G_{\mu_k} = G_\mu$   
 978 the following holds  $\mu = \sqrt{\mu_1^2 + \dots + \mu_k^2}$ .*  
 979

980 Let  $\mu = (\mu_1, \mu_2) \in \mathbb{R}^2$  and let  $I_2$  denote the  $2 \times 2$  identity matrix. Then we have:

$$\begin{aligned} 981 \quad G_{\mu_1} \otimes G_{\mu_2} &= T(\mathcal{N}(0, 1), \mathcal{N}(\mu_1, 1)) \otimes T(\mathcal{N}(0, 1), \mathcal{N}(\mu_2, 1)) \\ 982 &= T(\mathcal{N}(0, 1) \times \mathcal{N}(0, 1), \mathcal{N}(\mu_1, 1) \times \mathcal{N}(\mu_2, 1)) \\ 983 &= T(\mathcal{N}(0, I_2), \mathcal{N}(\mu, I_2)). \end{aligned}$$

985 We now use the invariance of trade-off functions under invertible transformations. The distribution  
 986  $\mathcal{N}(0, I_2)$  is rotationally invariant, so we can apply a rotation to both distributions such that the mean  
 987 vector becomes  $(\sqrt{\mu_1^2 + \mu_2^2}, 0)$ . Continuing the computation:

$$\begin{aligned} 989 \quad G_{\mu_1} \otimes G_{\mu_2} &= T(\mathcal{N}(0, I_2), \mathcal{N}(\mu, I_2)) \\ 990 &= T\left(\mathcal{N}(0, 1) \times \mathcal{N}(0, 1), \mathcal{N}(\sqrt{\mu_1^2 + \mu_2^2}, 1) \times \mathcal{N}(0, 1)\right) \\ 991 &= T\left(\mathcal{N}(0, 1), \mathcal{N}(\sqrt{\mu_1^2 + \mu_2^2}, 1)\right) \otimes T(\mathcal{N}(0, 1), \mathcal{N}(0, 1)) \\ 992 &= G_{\sqrt{\mu_1^2 + \mu_2^2}} \otimes \text{Id} \\ 993 &= G_{\sqrt{\mu_1^2 + \mu_2^2}}. \end{aligned}$$

### 994 E.4 FUNCTIONALS OF $f$

1000 As a preliminary step, we clarify the functionals  $\nu_1, \nu_2, \nu_3, \bar{\nu}_3, \mu$  and  $\gamma$  in Theorem E.12. We focus on  
 1001 symmetric trade-off functions  $f$  with  $f(0) = 1$ , although many aspects of the discussion generalize  
 1002 beyond this subclass. Recall the definitions:

$$\begin{aligned} 1003 \quad \nu_1(f) &= - \int_0^1 \log |f'(x)| \, dx; \quad \nu_2(f) = \int_0^1 (\log |f'(x)|)^2 \, dx; \quad \nu_3(f) = \int_0^1 |\log |f'(x)||^3 \, dx \\ 1004 & \\ 1005 \quad \bar{\nu}_3(f) &= \int_0^1 |\log |f'(x)| + \nu_1(f)|^3 \, dx, \quad \mu = \frac{2 \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} \quad \gamma = \frac{0.56 \|\bar{\nu}_3\|_1}{\left(\|\nu_2\|_1 - \|\nu_1\|_2^2\right)^{3/2}} \end{aligned}$$

1006  
 1007 We first confirm that these functionals are well-defined and take values in  $[0, +\infty]$ . For  $\nu_2$  and  $\bar{\nu}_3$ ,  
 1008 as well as the non-central version  $\nu_3$ , the integrands are non-negative, so the integrals are always  
 1009 well-defined (possibly infinite).

1010 For  $\nu_1$ , potential singularities can occur at  $x = 0$  and  $x = 1$ . If  $x = 1$  is a singularity, then  
 1011  $\log |f'(x)| \rightarrow -\infty$  near 1, which is acceptable because the functional is permitted to take value  $+\infty$ .  
 1012 We must rule out the possibility that  $\int_0^\varepsilon \log |f'(x)| \, dx = +\infty$  for some  $\varepsilon > 0$ . This cannot happen,  
 1013 since

$$1014 \quad \log |f'(x)| \leq |f'(x)| - 1,$$

1015 and  $|f'(x)| = -f'(x)$  is integrable on  $[0, 1]$  because it is the derivative of  $-f$ , an absolutely  
 1016 continuous function. The non-negativity of  $\nu_1(f)$  follows from Jensen's inequality. Dong et al. (2022)  
 1017 showed that

$$1018 \quad \nu_1(T(P, Q)) = D_{\text{KL}}(P \parallel Q),$$

1019 In fact,  $\nu_2$  corresponds to another divergence known as the *exponential divergence*. We introduce a  
 1020 convenient notation for trade-off functions that will be useful in calculations below. For a trade-off  
 1021 function  $f$ , define

$$1022 \quad D_f(x) := |f'(1-x)| = -f'(1-x),$$

1026 Using a simple change of variable, Dong et al. (2022) showed that we can rewrite these functionals  
 1027 as:  
 1028

$$\begin{aligned}\nu_1(f) &= - \int_0^1 \log D_f(x) dx, \\ \nu_2(f) &= \int_0^1 (\log D_f(x))^2 dx, \\ \bar{\nu}_3(f) &= \int_0^1 |\log D_f(x) + \nu_1(f)|^3 dx.\end{aligned}$$

1036 The following shadows of the above functionals will appear in the proof:  
 1037

$$\begin{aligned}\tilde{\nu}_1(f) &= \int_0^1 Df(x) \log Df(x) dx \\ \tilde{\nu}_2(f) &= \int_0^1 Df(x) \log^2 Df(x) dx, \\ \tilde{\nu}_3(f) &= \int_0^1 Df(x) |\log Df(x) - \tilde{\nu}_1(f)|^3 dx.\end{aligned}$$

1045 These functionals are also well-defined on the space of trade-off functions  $\mathcal{F}$  and take values in  
 1046  $[0, +\infty]$ . The argument is similar to that used for  $\nu_1$ ,  $\nu_2$ , and  $\nu_3$ . Dong et al. (2022) prove the  
 1047 following proposition:

1048 **Proposition E.9.** *Suppose  $f$  is a trade-off function and  $f(0) = 1$ . Then*

$$\tilde{\nu}_1(f) = \nu_1(f), \quad \tilde{\nu}_2(f) = \nu_2(f), \quad \tilde{\nu}_3(f) = \nu_3(f).$$

## 1052 E.5 PROOF OF NORMALITY IN NON-ASYMPTOTIC REGIME

1053 **Lemma E.10.** *(normality boundedness) Let  $f_1, \dots, f_k$  be symmetric trade-off functions such that  
 1054 for some functionals  $\nu_3, \mu, \gamma$  defined above assume,  $\nu_3(f_i) < \infty, \forall i \in [k]$  and  $\gamma < \frac{1}{2}$ . Then  
 1055  $\forall \alpha \in [\gamma, 1 - \gamma]$ , the following holds:*

$$G_\mu(\alpha + \gamma) - \gamma \leq f_1 \otimes f_2 \otimes \dots \otimes f_k(\alpha) \leq G_\mu(\alpha - \gamma) + \gamma \quad (1)$$

1058 Before we finally start the proof, let us recall the Berry–Esseen theorem for sums of random variables.  
 1059 Suppose we have  $n$  independent random variables  $X_1, \dots, X_k$  with  $\mathbb{E}(X_i) = \mu_i$ ,  $\text{Var}(X_i) = \sigma_i^2$ ,  
 1060 and  $\mathbb{E}(|X_i - \mu_i|^3) = \rho_i$ . Consider the normalized sum:  
 1061

$$S_k := \frac{\sum_{i=1}^k (X_i - \mu_i)}{\sqrt{\sum_{i=1}^k \sigma_i^2}},$$

1065 and let its cumulative distribution function (CDF) be  $F_k$ . Let  $\Phi$  denote the standard normal CDF.

1066 **Theorem E.11** (Berry–Esseen Theorem). *There exists a universal constant  $C > 0$  such that*

$$\sup_{x \in \mathbb{R}} |F_k(x) - \Phi(x)| \leq C \cdot \frac{\sum_{i=1}^k \rho_i}{\left(\sum_{i=1}^k \sigma_i^2\right)^{3/2}}.$$

1071 *To the best of our knowledge, the best value of  $C$  is 0.56.*

1073 *Proof.* For simplicity, let  $f := f_1 \otimes f_2 \otimes \dots \otimes f_k$ . First, let us find distributions  $P_0$  and  $P_1$  such that  
 1074  $T(P_0, P_1) = f$ . By symmetry, if  $f_i(0) < 1$ , then  $f_i(x) = 0$  in some interval  $[-\epsilon, \epsilon]$  for some  $\epsilon > 0$ ,  
 1075 which yields  $\nu_1(f_i) = +\infty$ . So we may assume  $f_i(0) = 1$  for all  $i$ .

1076 Recall that  $Df_i(x) = f_i(1 - x)$ . Let  $P$  be the uniform distribution on  $[0, 1]$ , and let  $Q_i$  be the  
 1077 distribution on  $[0, 1]$  with density  $Df_i$ . Since  $f_i$  are symmetric and  $f_i(0) = 1$ , the supports of  $P$  and  
 1078 all  $Q_i$  are exactly  $[0, 1]$ , and we have  $T(P, Q_i) = f_i$ . Hence, by definition,  
 1079

$$f = T(P^{\otimes k}, Q_1 \otimes \dots \otimes Q_k)$$

1080 Now let us study the hypothesis testing problem between  $P^{\otimes k}$  and  $Q_1 \otimes \cdots \otimes Q_k$ . Let  
 1081

$$1082 \quad L_i(x) := \log \frac{dQ_i}{dP}(x) = \log Df_i(x)$$

1083  
 1084 be the log-likelihood ratio for the  $i$ -th coordinate. Since both hypotheses are product distributions, the  
 1085 Neyman–Pearson lemma implies that the optimal rejection rule is a threshold function of the quantity  
 1086  $\sum_{i=1}^k L_i$ . Further analysis of  $\sum_{i=1}^k L_i(x_i)$  under both the null and alternative hypotheses; i.e., when  
 1087  $(x_1, \dots, x_k)$  is drawn from  $P^{\otimes k}$  or from  $Q_1 \otimes \cdots \otimes Q_k$  is required.  
 1088

1089 To proceed we follow the exact steps by Dong et al. (2022). We first identify the quantities that  
 1090 exhibit central limit behavior, then express the test and  $f(\alpha)$  in terms of these quantities.  
 1091

1092 For further simplification, let  
 1093

$$1094 \quad T_k := \sum_{i=1}^k L_i.$$

1095 As we suppress the  $x_i$  notation, we should keep in mind that  $T_k$  has different distributions under  $P^{\otimes k}$   
 1096 and  $Q_1 \otimes \cdots \otimes Q_k$ , though it is still a sum of independent random variables in both cases.  
 1097

1098 In order to find quantities with central limit behavior, it suffices to normalize  $T_k$  under both distribu-  
 1099 tions. The functionals Dong et al. (2022) introduced are specifically designed for this purpose.  
 1100

$$1101 \quad \mathbb{E}_P[L_i] = \int_0^1 \log Df_i(x_i) dx_i = -\nu_1(f_i),$$

$$1103 \quad \mathbb{E}_{Q_i}[L_i] = \int_0^1 Df_i(x_i) \log Df_i(x_i) dx_i = \tilde{\nu}_1(f_i) = \nu_1(f_i),$$

1104 Now lets define,  
 1105

$$1106 \quad \mathbb{E}_{P^k}[T_k] = \sum_{i=1}^k -\nu_1(f_i) =: -\|\nu_1\|_1,$$

$$1110 \quad \mathbb{E}_{Q_1 \otimes \cdots \otimes Q_k}[T_k] = \sum_{i=1}^k \nu_1(f_i) = \|\nu_1\|_1.$$

1113 Similarly for the variances:  
 1114

$$1115 \quad \text{Var}_P[L_i] = \mathbb{E}_P[L_i^2] - \mathbb{E}_P[L_i]^2 = \text{Var}_P[L_i] = \nu_2(f_i) - \nu_1^2(f_i),$$

$$1116 \quad \text{Var}_{Q_i}[L_i] = \mathbb{E}_{Q_i}[L_i^2] - \mathbb{E}_{Q_i}[L_i]^2 = \nu_2(f_i) - \tilde{\nu}_1^2(f_i) = \nu_2(f_i) - \nu_1^2(f_i).$$

1117 Therefore, the total variance under both hypotheses is:  
 1118

$$1119 \quad \text{Var}_{P^k}[T_k] = \text{Var}_{Q_1 \otimes \cdots \otimes Q_k}[T_k] = \sum_{i=1}^k (\nu_2(f_i) - \nu_1^2(f_i)) =: \|\nu_2\|_1 - \|\nu_1\|_2^2.$$

1123 In order to apply the Berry–Esseen Theorem (for random variables), we still need the centralized  
 1124 third moments:  
 1125

$$1126 \quad \mathbb{E}_P[(L_i - \mathbb{E}_P[L_i])^3] = \int_0^1 (\log Df_i(x) + \nu_1(f_i))^3 dx =: \bar{\nu}_3(f_i),$$

$$1128 \quad \mathbb{E}_{Q_i}[(L_i - \mathbb{E}_{Q_i}[L_i])^3] = \int_0^1 Df_i(x) \|\log Df_i(x) - \nu_1(f_i)\|^3 dx = \tilde{\nu}_3(f_i) = \bar{\nu}_3(f_i).$$

1131 Let  $F_k$  be the CDF of the normalized statistic  
 1132

$$1133 \quad \frac{T_k + \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} \quad \text{under } P^k,$$

1134 and let  $\tilde{F}^{(k)}$  be the CDF of

$$1135 \quad \frac{T_k - \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} \quad \text{under } Q_1 \otimes \cdots \otimes Q_k.$$

1138 By Berry–Esseen Theorem, we have

$$1139 \quad \sup_{x \in \mathbb{R}} |F_k(x) - \Phi(x)| \leq C \cdot \frac{\|\nu_3\|_1}{(\|\nu_2\|_1 - \|\nu_1\|_2^2)^{3/2}}, \quad (27)$$

1142 and similarly for  $F^{(k)}$ .

1143 So we have identified the quantities that exhibit central limit behavior.

1144 Now let us relate them with  $f$ . Consider the testing problem  $(P^k, Q_1 \otimes \cdots \otimes Q_k)$ . For a fixed  $\alpha \in [0, 1]$ , let  $\phi$  be the (potentially randomized) optimal rejection rule at level  $\alpha$ . By the Neyman–Pearson lemma,  $\phi$  must threshold  $T_k$ .

1148 An equivalent form that highlights the central limit behavior is the following:

$$1149 \quad \phi = \begin{cases} 1 & \text{if } \frac{T_k + \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t, \\ 1150 \quad p & \text{if } \frac{T_k + \|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = t, \\ 1151 \quad 0 & \text{otherwise,} \end{cases}$$

1153 where  $t$  and  $p \in [0, 1]$  are chosen to achieve size  $\alpha$ .

1154 Let  $t \in \mathbb{R} \cup \{\pm\infty\}$  and  $p \in [0, 1]$  be parameters uniquely determined by the condition  $\mathbb{E}_{P^k}[\varphi] = \alpha$ .  
1155 With this, the expectation under  $P^k$  can be written in terms of the empirical CDF  $F_k$  as:

$$1156 \quad \mathbb{E}_{P^k}[\varphi] = P^k \left[ T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t \right] + p \cdot P^k \left[ T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = t \right] \\ 1157 \quad = 1 - F_k(t) + p \cdot [F_k(t) - F_k(t^-)],$$

1160 where  $F_k(t^-)$  is the left limit of  $F_k$  at  $t$ . A simple rearrangement gives:

$$1162 \quad 1 - \alpha = 1 - \mathbb{E}_{P^k}[\varphi] = (1 - p)F_k(t) + pF_k(t^-),$$

1163 and hence the inequality

$$1164 \quad F_k(t^-) \leq 1 - \alpha \leq F_k(t).$$

1165 Now consider  $\mathbb{E}_{Q_1 \times \cdots \times Q_k}[\varphi]$ . It is helpful to define an auxiliary variable  $\tau := t - \mu$ , where  $\mu$  was  
1166 defined in the theorem statement as:

$$1167 \quad \mu := \frac{2\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}}.$$

1170 This gives the equivalence:

$$1171 \quad T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t \iff T_k - \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > \tau. \quad (28)$$

1173 Using this, we can express:

$$1174 \quad 1 - f(\alpha) = \mathbb{E}_{Q_1 \times \cdots \times Q_k}[\varphi] \\ 1175 \quad = Q_1 \times \cdots \times Q_k \left[ T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > t \right] \\ 1176 \quad + p \cdot Q_1 \times \cdots \times Q_k \left[ T_k + \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = t \right] \\ 1177 \quad = Q_1 \times \cdots \times Q_k \left[ T_k - \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} > \tau \right] \\ 1178 \quad + p \cdot Q_1 \times \cdots \times Q_k \left[ T_k - \frac{\|\nu_1\|_1}{\sqrt{\|\nu_2\|_1 - \|\nu_1\|_2^2}} = \tau \right] \\ 1179 \quad = 1 - \tilde{F}^{(k)}(\tau) + p \cdot [\tilde{F}^{(k)}(\tau) - \tilde{F}^{(k)}(\tau^-)],$$

1188 where  $\tilde{F}^{(k)}$  is the CDF under  $Q_1 \times \cdots \times Q_k$ . Rearranging gives:  
 1189

$$1190 \quad f(\alpha) = (1-p) \cdot \tilde{F}^{(k)}(\tau) + p \cdot \tilde{F}^{(k)}(\tau^-),$$

1191 and thus the inequality:  
 1192

$$1193 \quad \tilde{F}^{(k)}(\tau^-) \leq f(\alpha) \leq \tilde{F}^{(k)}(\tau).$$

1194 So far we have:  
 1195

$$1196 \quad F_k(t^-) \leq 1 - \alpha \leq F_k(t), \quad (29)$$

$$1197 \quad \tilde{F}^{(k)}(\tau^-) \leq f(\alpha) \leq \tilde{F}^{(k)}(\tau). \quad (30)$$

1198 From inequality (27), we know that both  $F_k$  and  $\tilde{F}^{(k)}$  are  $\gamma$ -close to the standard normal CDF  $\Phi$ , so:  
 1199

$$1200 \quad \Phi(t) - \gamma \leq F_k(t^-) \leq 1 - \alpha \leq F_k(t) \leq \Phi(t) + \gamma,$$

1201 which implies:  
 1202

$$1203 \quad \Phi^{-1}(1 - \alpha - \gamma) \leq t \leq \Phi^{-1}(1 - \alpha + \gamma). \quad (31)$$

1204 Using (30) and (31), we can upper-bound  $f(\alpha)$ :  
 1205

$$\begin{aligned} 1206 \quad f(\alpha) &\leq \tilde{F}^{(k)}(\tau) \\ 1207 &\leq \Phi(\tau) + \gamma \\ 1208 &= \Phi(t - \mu) + \gamma \\ 1209 &\leq \Phi(\Phi^{-1}(1 - \alpha + \gamma) - \mu) + \gamma \\ 1210 &= G_\mu(\alpha - \gamma) + \gamma. \\ 1211 \end{aligned}$$

1212 Similarly, we obtain the lower bound:  
 1213

$$1214 \quad f(\alpha) \geq G_\mu(\alpha + \gamma) - \gamma.$$

1215 This completes the proof.  $\square$   
 1216

## 1217 E.6 PROOF OF THEOREM 2.8

1219 **Theorem E.12. (asymptotic normality)** Let  $\{f_{ki} : i \in [k]\}_{k=1}^\infty$  be a triangular array of symmetric  
 1220 trade-off functions and for some functionals  $\nu_1, \nu_2, \nu_3, M \geq 0$  and  $s > 0$ , assume  $\sum_{i=1}^k \nu_1(f_{ki}) \rightarrow$   
 1221  $M$ ,  $\max_{1 \leq i \leq k} \nu_1(f_{ki}) \rightarrow 0$ ,  $\sum_{i=1}^k \nu_2(f_{ki}) \rightarrow s^2$ ,  $\sum_{i=1}^k \nu_3(f_{ki}) \rightarrow 0$ . Then the following holds:  
 1222

$$1223 \quad \lim_{k \rightarrow \infty} f_{k1} \otimes \cdots \otimes f_{kk}(\alpha) = G_{2M/s}(\alpha) \quad (2)$$

1225 *Proof.* We first establish pointwise convergence  $f_{k1} \otimes \cdots \otimes f_{kk} \rightarrow G_{2M/s}$ , and then deduce uniform  
 1226 convergence using a general theorem.  
 1227

1228 By Lemma E.10, applied to the  $k$ -th row of the triangular array, we get  
 1229

$$1230 \quad G_{\mu_k}(\alpha + \gamma_k) - \gamma_k \leq f_{k1} \otimes \cdots \otimes f_{kk}(\alpha) \leq G_{\mu_k}(\alpha - \gamma_k) + \gamma_k,$$

1231 where  
 1232

$$1233 \quad \mu_k = \frac{2\|\nu_1^{(k)}\|_1}{\sqrt{\|\nu_2^{(k)}\|_1 - \|\nu_1^{(k)}\|_2^2}}, \quad \gamma_k = 0.56 \cdot \frac{\|\bar{\nu}_3^{(k)}\|_1}{(\|\nu_2^{(k)}\|_1 - \|\nu_1^{(k)}\|_2^2)^{3/2}}.$$

1235 We will show that  $\mu_k \rightarrow 2M/s$  and  $\gamma_k \rightarrow 0$ . The assumptions imply:  
 1236

$$1237 \quad \|\nu_1^{(k)}\|_1 \rightarrow M, \quad \|\nu_1^{(k)}\|_\infty \rightarrow 0, \quad \|\nu_2^{(k)}\|_1 \rightarrow s^2, \quad \|\nu_3^{(k)}\|_1 \rightarrow 0.$$

1238 First, observe  
 1239

$$1240 \quad \|\nu_1^{(k)}\|_2^2 = \langle \nu_1^{(k)}, \nu_1^{(k)} \rangle \leq \|\nu_1^{(k)}\|_\infty \cdot \|\nu_1^{(k)}\|_1 \rightarrow 0.$$

1241 To bound  $\|\bar{\nu}_3^{(k)}\|_1$ , we use the following lemma from Dong et al. (2022):  
 1242

1242 **Lemma E.13.** *For any trade-off function  $f$ , we have*

$$1244 \quad \bar{\nu}_3(f) \leq \nu_3(f) + 3\nu_1(f)\nu_2(f) + 3\nu_1(f)^2\sqrt{\nu_2(f)} + \nu_1(f)^3.$$

1246 Applying the lemma to each  $f_{ki}$ , summing and using Cauchy-Schwarz inequality ( $|\sum_i a_i b_i| \leq$   
1247  $|\sum_i a_i| \cdot \max |b_i|$ ), we get:

$$1249 \quad \|\bar{\nu}_3^{(k)}\|_1 \leq \|\nu_3^{(k)}\|_1 + 3\|\nu_1^{(k)}\|_\infty\|\nu_2^{(k)}\|_1 + 3\|\nu_1^{(k)}\|_\infty\sqrt{\|\nu_2^{(k)}\|_1 \cdot \|\nu_1^{(k)}\|_2^2} + \|\nu_1^{(k)}\|_\infty^2\|\nu_1^{(k)}\|_1 \rightarrow 0.$$

1251 Therefore,  $\mu_k \rightarrow 2M/s$  and  $\gamma_k \rightarrow 0$  as by assumptions  $\|\nu_1^{(k)}\|_1 \rightarrow M$ ,  $\|\nu_1^{(k)}\|_\infty \rightarrow 0$ ,  $\|\nu_2^{(k)}\|_1 \rightarrow$   
1252  $s^2$ ,  $\|\nu_3^{(k)}\|_1 \rightarrow 0$ , and  $\|\nu_1^{(k)}\|_2^2 \rightarrow 0$ . Since  $G_\mu(\alpha)$  is continuous in both  $\alpha$  and  $\mu$ , we conclude  
1253

$$1254 \quad G_{\mu_k}(\alpha \pm \gamma_k) \pm \gamma_k \rightarrow G_{2M/s}(\alpha),$$

1255 which proves pointwise convergence.

1257 For boundary points, note that  $\alpha = 0$  implies  $G_{\mu_k}(0 + \gamma_k) - \gamma_k \rightarrow 1 = G_{2M/s}(0)$ , and similarly  
1258 at  $\alpha = 1$ . Finally, uniform convergence follows from the following lemma (proved in Dong et al.  
1259 (2022)).

1260 **Lemma E.14.** *Let  $\{f_n\} : [a, b] \rightarrow \mathbb{R}$  be a sequence of non-increasing functions. If  $f_n$  converges  
1261 pointwise to a function  $f : [a, b] \rightarrow \mathbb{R}$  and  $f$  is continuous on  $[a, b]$ , then the convergence is uniform.*

1262  $\square$

1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295