
Spherical Fourier Neural Operators:
Learning Stable Dynamics on the Sphere

Boris Bonev 1 Thorsten Kurth 1 Christian Hundt 1 Jaideep Pathak 1 Maximilian Baust 1 Karthik Kashinath 1

Anima Anandkumar 1 2

Abstract
Fourier Neural Operators (FNOs) have proven to
be an efficient and effective method for resolution-
independent operator learning in a broad vari-
ety of application areas across scientific machine
learning. A key reason for their success is their
ability to accurately model long-range dependen-
cies in spatio-temporal data by learning global
convolutions in a computationally efficient man-
ner. To this end, FNOs rely on the discrete
Fourier transform (DFT), however, DFTs cause
visual and spectral artifacts as well as pronounced
dissipation when learning operators in spherical
coordinates by incorrectly assuming flat geome-
try. To overcome this limitation, we generalize
FNOs on the sphere, introducing Spherical FNOs
(SFNOs) for learning operators on spherical ge-
ometries. We apply SFNOs to forecasting atmo-
spheric dynamics, and demonstrate stable auto-
regressive rollouts for a year of simulated time
(1,460 steps), while retaining physically plausible
dynamics. The SFNO has important implications
for machine learning-based simulation of climate
dynamics that could eventually help accelerate
our response to climate change.

1. Introduction
Climate change is arguably one of the greatest challenges
facing humanity today. Modeling Earth’s complex weather
and climate accurately, and in a computationally efficient
manner, has massive implications for science and society
across the enterprise of climate prediction, mitigation, and
adaptation.

1NVIDIA Corp., Santa Clara, USA 2Caltech, Pasadena,
USA. Correspondence to: Boris Bonev <bbonev@nvidia.com>,
Thorsten Kurth <tkurth@nvidia.com>, Christian Hundt
<chundt@nvidia.com>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

(a) ground truth (b) AFNO

(c) FNO, non-linear (d) SFNO, linear

Figure 1. Qualitative comparison of temperature predictions
(t850) over Antarctica at 4380h (730 autoregressive steps). The
SFNO shows no visible artifacts even after six-month-long rollouts.
Models which use FFT and do not incorporate spherical geometry
are not stable for long rollouts compared to SFNO. The AFNO
model breaks down early and shows large visible artifacts every-
where. In the non-linear FNO model, artifacts are less pronounced
but increase in magnitude with time and towards the poles.

Weather and climate modeling has traditionally relied on
principled physics- and process-based numerical simula-
tions that solve the partial differential equations (PDEs)
governing the fluid dynamics, thermodynamics, and other
physics of the Earth system. These equations are discretized
and solved on a grid, but the wide range of spatial and
temporal scales, as well as complex nonlinear interactions
across these scales, necessitate fine grids and high resolution
making these computations extremely expensive.

Machine learning (ML) provides alternative approaches to

1

Spherical Fourier Neural Operators

modeling weather and climate, and more generally, spatio-
temporal dynamics, by describing the time evolution of the
system as a learned transition map between states of the
time-discretized physical system exclusively from raw data.
While this enables a unified treatment of the full system, the
physics is deduced from data alone without imposing the
strong inductive bias of the aforementioned physics-based
models. Hence, purely data-driven ML-based methods have
struggled to faithfully represent the dynamics of spatio-
temporal physical systems, especially those with long-range
correlations in space and time.

Fourier Neural Operators (Li et al., 2020) and their variants
(Guibas et al., 2021; Wen et al., 2022; Rahman et al., 2022;
Kovachki et al., 2023; Kossaifi et al., 2023) possess the
advantage of learning mappings between function spaces,
which act globally on the entire domain. In contrast, stan-
dard neural networks, such as convolutional neural networks
and vision transformers, learn on a fixed discretized grid and
fail to capture the fine scales of multi-scale systems. Fur-
ther, the highly optimized Fast Fourier Transform (FFT) in
FNO allows for modeling global, long-range interactions in
quasi-linear time. Thus, in addition to being discretization
invariant, FNO is also computationally more efficient com-
pared to standard vision transformers, which have quadratic
time complexity, and more effective in capturing global
dependencies compared to convolutional neural networks,
graph neural networks, and other local models (McCormick,
1987; Falk et al., 2019). However, a drawback of FNOs
is that FFT is defined on an Euclidean domain leading to
incorrect identification of the north and south pole as well
as incorrect longitudinal periodicity on the two-sphere S2.

Our approach: We extend the FNO approach to respect
the geometry of S2 and its associated symmetries. To do so,
we utilize the generalized Fourier transform, which projects
functions defined on compact Riemannian manifolds M

onto eigenfunctions of the corresponding Laplace-Beltrami
operator, which form an orthogonal basis of the Hilbert
space L2(M). In the spherical setting M = S2, these are
the Spherical Harmonics, and the Spherical Harmonic Trans-
form (SHT) generalizes the Fourier transform (Driscoll &
Healy, 1994). We formulate the SFNO in a manner con-
sistent with the convolution theorem on the sphere. The
resulting operator satisfies equivariance properties, such
that rotating the input to the operator commutes with the
operator itself. Translational or rotational equivariance also
motivates the formulation of physical theories, as we do not
expect the physical laws to change with a changed frame
of reference. This rotational equivariance is, therefore, a
strong inductive bias to the learned operator.

In addition, the SFNO retains the favorable properties of
FNOs. The learned operators are grid-invariant, since the
operations outside of the Fourier/Spherical Harmonic layers

act point-wise on the spatial domain. This allows the model
to be re-trained at different configurations and resolutions,
and even to change the resolution at inference time (i.e.,
zero-shot super-resolution or interpolation).

The proposed method is applied to the Earth Reanalysis
5 dataset (ERA5) (Hersbach et al., 2020), one of the best
estimates of Earth’s historical weather and climate over the
period 1950-present, and to the rotating Spherical Shallow
Water Equations (SWE), which are commonly used to model
geophysical fluid dynamical phenomena (Nair et al., 2005;
Bonev et al., 2018). In addition to accurate predictions,
our method leads to greatly increased long-term stability,
with autoregressive inference remaining stable for over one
year (1,460 steps) as opposed to 25 days (100 steps) with a
comparable, FFT-based method (FNO). As each autoregres-
sive step takes around 500ms on a NVIDIA A6000 GPU,
i.e., less than 13 minutes for a year-long simulation, these
developments open the door to long-range ensemble infer-
ence and uncertainty quantification, well beyond weather
timescales to subseasonal-to-seasonal (S2S) prediction and
potentially, towards climate prediction.

Key contributions:

• A novel SFNO equivariant architecture for modeling
nonlinear chaotic dynamical systems on the sphere.

• Theoretical extension of FNOs to spherical geometry,
with the desirable properties of equivariance while re-
taining grid-invariance.

• A demonstration of exceptional long-term stability of
the auto-regressive map F , on year-long rollouts, while
observing plausible dynamics of the predicted physical
quantities.

• torch-harmonics, an efficient and differentiable im-
plementation of the spherical harmonics transform in
PyTorch

1, enabling scalable model parallelisms.

The rest of the paper is organized as follows. Related work
is discussed in Section 2. Section 3 presents the theoret-
ical foundations used during SFNO design. The network
topology design is then laid out in Section 4.2. Section 5
documents the experimental setup and training infrastruc-
ture. Section 6 concludes the paper.

2. Related Work and Broader Context
ML-based weather and climate modeling is less than five
years old, yet has seen a massive surge in capability thanks
to advancements in deep learning (Yuval & O’Gorman,

1
torch-harmonics and our implementation of the SFNO

are available to the public at https://github.com/

NVIDIA/torch-harmonics

2

https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics

Spherical Fourier Neural Operators

2020; Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022).
Relatively simple architectures like CNN-based encoder-
decoder architectures (Scher & Messori, 2019) have been
applied to two-dimensional latitude-longitude grids. Weyn
et al. (2020; 2021) noticed the limitations of this represen-
tation when treating the poles and proposed an extension
based on the equiangular gnomonic cubed sphere. Pathak
et al. (2022) combined a Fourier-transform-based token-
mixing scheme (Guibas et al., 2021) with a vision trans-
former (ViT) backbone (Dosovitskiy et al., 2020) and de-
veloped FourCastNet (FCN) to model long-range depen-
dencies. More recently, Bi et al. (2022) developed another
ViT-based approach they call Pangu-Weather, which relies
on an encoder-decoder architecture and demonstrated that
ML-based methods are able to compete with and even out-
perform classical physics-based numerical methods for nu-
merical weather prediction (NWP). Most recently, Graph-
Cast, another approach based on graph neural networks
(Lam et al., 2022) developed the first approach to work
on a spherical geometry via a multi-scale mesh representa-
tion and demonstrated superior predictive performance on
weather forecasting. Except Weyn et al. (2021), none of the
above-mentioned models were stable beyond a few weeks
of the autoregressive rollout. Weyn et al. (2021), however,
were limited in their predictive performance and operated on
a resolution that was too low to provide useful information
on the regional and local scales at which extreme weather
impacts society. Therefore, there remains a strong need
for ML-based high-resolution stable long-term forecasts of
atmospheric phenomena.

Concepts such as equivariance, symmetry, and learned rep-
resentations in spectral domains exist in many different con-
texts. An exhaustive review of these is beyond the scope of
this paper and we refer the reader to the excellent overview
on geometric deep learning by Bronstein et al. (2021).

Introducing inductive biases to regularize machine learn-
ing problems have a long history in computer vision and
machine learning. The inductive bias of convolutional lay-
ers to achieve translation invariance resulted in a decade of
the predominance of convolutional neural networks (CNNs)
(Lecun & Bengio, 1995). Nowadays, ViTs employ self-
attention as the mechanism to exploit the Symmetric group
G = Sn of permutations acting on n input tokens as a less
restrictive, yet, effective symmetry to relax the inductive
bias of translational equivariance in CNNs (Bertasius et al.,
2021). Equivariance has gained significant attention in the
past few years, including group equivariant CNNs (Cohen
& Welling, 2016) and their spherical counterparts (Cohen
et al., 2018; Ocampo et al., 2022).

We provide an equivariant extension of Fourier Neural Op-
erators to the sphere, based on a convolution theorem on the
sphere.

3. Background
3.1. Problem Setting

We model the Earth’s atmosphere as a dynamical system,
where its state at time t and position x is represented by a
N -dimensional vector u(x, t) : S2

⇥ [0, T) ! RN . Each
of these variables represents a physical quantity of interest,
such as pressure, wind velocity, humidity, etc. The system is
observed only partially, meaning that there might be hidden
variables that influence the dynamics, which are not con-
tained in this description. Moreover, the system is observed
only at discrete times tn 2 {t0, t1, . . . }, and at discrete po-
sitions xi 2 {x1, x2, . . . , xN}. For simplicity, we assume
that there exists a deterministic mapping

un+1 = F [un, tn], (1)

which maps the discrete state vector un at time tn to the
state un+1. Our aim is to learn this map from data. This is
in contrast to the classical approach using PDEs, where this
map is typically inferred from first principles by discretiza-
tion and numerical integration. Carefully crafted numerical
schemes often conserve certain symmetry properties of the
underlying PDE, which motivate the goal of formulating an
equivariant ML method.

3.2. Fourier Neural Operators

Our construction of equivariant mappings between function
spaces on the sphere is an extension of the FNO framework.
FNO learns a resolution-independent representation using a
global convolution kernel 

K
⇥
u
⇤
(x) =

Z

M
(x� y) · u(y) dy 8x 2 M , (2)

which can be rewritten in terms of the convolution theorem

K
⇥
u
⇤
(x) = F

�1
⇥
F [] · F [u]

⇤
(x) 8x 2 M . (3)

The continuous Fourier transform F can be expressed as
the DFT when sampling the finite domain M using a uni-
form grid. Hence, FNOs allow for expressing long-range
dependencies using global convolutions while employing an
efficient implementation of the FFT, guaranteeing log-linear
asymptotic time complexity.

The Spherical FNO (SFNO) layer extends this approach to
adapt the Fourier transform while respecting the symmetry
of the underlying manifold.

3.3. Incorporating Symmetries on General Manifolds

Symmetries are of crucial importance for the analysis of
physical systems and historically played a seminal role in
the theoretical formulation of natural phenomena long be-
fore the first experimental evidence was gathered for their

3

Spherical Fourier Neural Operators

existence. Group theory-driven breakthroughs include the
systematic classification of lattices in crystallography (Con-
way & Sloane, 1988), the postulation of novel particles
such as quarks (Gell-Mann, 1961), and the standard model
of particle physics (Workman & Others, 2022). Respect-
ing the intrinsic geometry by means of Lie group actions
� : G⇥M ! M , (g, x) 7! �(g, x) acting on the config-
uration space manifold M of spatial coordinates allows for:
(i) the identification of conserved quantities by Noether’s
theorem; and (ii) the elimination of redundant variables,
which usually leads to a decoupling or simplification of the
associated equations of motion.

In ML, symmetries act as hard constraints limit-
ing the search space to physically meaningful sub-
manifolds/orbifolds, which may speed up optimization as
well as improve the robustness of the solution through ex-
plicit regularization. A prominent example is convolutional
layers (Fukushima, 1980), which constrain the space of
trainable parameters to the inner product of a filter k being
translated along the orbit parametrized by the group action
�(x, y) := y�x of the translation group G = (R,+). This
leads to the well-known expression for convolution.2

�
 ? u

�
(x) =

Z

�
�(x, y)

�
· u(y) dy

=

Z
(y � x) · u(y) dy 8x 2 R. (4)

While the Abelian translation group G = (Rn,+) naturally
acts on flat Rn via plain vector addition, we cannot glob-
ally define a convolution operation on curved manifolds by
means of axis-oriented translations.

Hence, for physical systems on general manifolds M, we
extend the Fourier transform as well as the operations act-
ing on the feature representations to respect their geometric
constraints. On compact Riemannian manifolds, the gener-
alized Fourier transform can be understood as the map that
decomposes functions in terms of the eigenfunctions of the
Laplace-Beltrami associated with the underlying manifold
M. In general, this view neglects the group structure if M
is a Lie group.

For all practical purposes, we are interested in dynamical
systems formulated on the sphere M = S2

⇢ R3. The
canonical choice on the sphere is rotational group actions
stemming from the set of orientation-preserving isometries
of the scalar product in R3, namely the special orthogonal
group SO(3). We consider the Hilbert space of square-
integrable functions with respect to the Lebesgue measure
defined on the sphere L2(S2). We define the (partial map
of a) group action for an arbitrary but fixed rotation �R :

2While convolutional layers typically implement cross-
correlation, we choose to discuss convolutions for the sake of
simplicity.

L2(S2) 7! L2(S2) onto a square-integrable function u 2

L2(S2) as the result of transforming the spatial coordinates
with the corresponding passive rotation R�1

2 SO(3).

�R[u](x) := u(R�1x) 8R 2 SO(3) (5)

In other words, in order to rotate an image on the sphere,
we rotate its pre-image in the opposite direction. This is
analogous to the planar case where a function is shifted
along the coordinate axes using the translation group G =
(Rn,+). In the following, we are interested in mappings
F : L2(S2) ! L2(S2), that are compatible with the afore-
mentioned group actions on the Hilbert space. We call a
transformation F equivariant with respect to two SO(3)
group actions �R, R both acting onto L2(S2), iff

 R

⇥
F [u]

⇤
= F

⇥
�R[u]

⇤
8R 2 SO(3) (6)

Simply put, it does not matter whether one initially rotates
the coordinate system followed by a subsequent transforma-
tion on the function space or vice versa. For simplicity, we
stretch the notation and drop the explicit group actions �,
and identify them with the multiplication of group elements.
Equivariance then reads: F �R = R�F for all R 2 SO(3).

3.4. Fourier Transform on the Sphere

In flat geometry, the Fourier transformation is a change
of basis by projecting a function u 2 L2(Rn) onto planar
waves bk(x) = exp

�
ihk, xi

�
effectively encoding trans-

lation equivariance. In a general setting, the set of basis
functions can be obtained from the eigenfunctions of the
Laplace-Beltrami operator. In the following, we will provide
an explicit construction for spherical geometry.

On S2, these are the spherical harmonics (Abramowitz et al.,
1964) defined as

Y m
l (✓,') := (�1)mcml Pm

l (cos ✓)eim', (7)

which form an orthogonal basis of L2(S2). Pm
l and cml

denote the associated Legendre polynomials and normal-
ization factors3. More importantly, among all the possible
bases of L2(S2), the spherical harmonics uniquely exploit
the symmetries of the sphere. Applying rotations R to Y m

l
of degree l will result in a linear combination of Y m

l with
the same degree l and �l  m  l.

On the sphere, the corresponding Fourier transformation
is the decomposition of the function space L2(S2) into
minimal subspaces invariant under all the possible rotations

3For a detailed introduction of the spherical harmonics see
Appendix A.2.

4

Spherical Fourier Neural Operators

in SO(3). The decomposition onto the basis then reads

u(✓,�) =
X

l2N

X

|m|l

û(l,m)Y m
l (✓,�)

û(l,m) =

Z

S2

Y m
l · u d⌦ , (8)

where d⌦ = sin ✓ d✓ d� is the volume form of the sphere.
F : u ! û, maps functions in u 2 L2(S2) to the harmonic
coefficients û(l,m). We call this map Spherical Harmonic
Transform (SHT), or alternatively, generalized Fourier trans-
form (Driscoll & Healy, 1994).

The Fourier transform decomposes a Hilbert space into basis
functions associated to symmetry operations on the under-
lying manifold. For the translation group G = (R2,+),
this basis is given by tensor products of plane waves
bkl(x, y) = exp(ikx) ⌦ exp(ily) since translations along
the axes commute with each other. For the sphere, the situa-
tion is more complicated as the generators of rotations do
not commute in general. This is reflected by the fact that
the associated spherical basis functions do not factor into a
tensor product structure.

4. Spherical Fourier Neural Operator
4.1. Convolutions on the Sphere

We can now generalize the FNO naively by replacing the
Fourier transforms in (3) with the SHT. While the SHT
generalizes the Fourier transform on S2, this ignores that
(3) is derived from a convolution theorem, however, and
ignores the symmetries inherent to the sphere. Instead, we
seek a formulation motivated by a convolution operator
to obtain an equivariant formulation. We introduce the
spherical convolution

( ? u)(x) =

Z

R2SO(3)
(Rn) · u(R�1x)dR, 8x 2 S2.

(9)
This definition applies the rotation R to the northpole
n = (0, 0, 1)T , which makes the function  2 L2(S2)
compatible with rotations R 2 SO(3). This formulation
generalizes the usual definition of convolutions, which can
be recovered by replacing the north pole n with the origin 0
and rotations R with translations T 2 (Rn,+).

The spherical convolution (9) admits a convolution theorem
of the form

F [?u](l,m) = 2⇡

r
4⇡

2l + 1
F [u](l,m)·F [](l, 0), (10)

where F refers to the SHT4. By replacing the filter weights
F [](l, 0) with the learned weights ̃#(l), we obtain the

4For a detailed discussion of Fourier transforms and convo-
lutions on the sphere, we refer the reader to (Driscoll & Healy,
1994).

Spherical Fourier Neural Layer

K#[u] = F
�1[̃# · F [u]], (11)

which forms the core of the SFNO. More precisely, we have

F [K#[u]](l,m) = ̃#(l) · F [u](l,m),

as this approach requires only one filter weight per l to
be learned. If L is the maximum zonal mode (0  l 

L), this approach requires L learned filters, as opposed to
L(L+ 1)/2 for the naive extension of the FNO.

4.2. SFNO Network Topology Design

u

F ̃# F
�1

MLP

+ MLP + u0

Figure 2. The structure of a single SFNO block. Multi-layer per-
ceptrons (MLPs) act point-wise in the spatial domain and allow
for channel mixing. The generalized Fourier transform F and its
inverse F�1 allow for the learning of long-range spatial dependen-
cies.  is a learned filter, which is applied linearly to the frequency
components.

encoder + +SFNO . . . + +SFNO decoder

(pos. embedding)

Figure 3. Diagram of the overall SFNO architecure. Encoder and
decoder MLPs inflate the channel dimension. A learned position
embedding is added in cases where position-dependent information
should be learned by the network. At the core lie N SFNO blocks,
where the first and last blocks perform up- or down-scaling. A skip
connection is added for autoregressive maps close to the identity.

SFNO block: Figure 2 depicts the layout of a single SFNO
block. At the core lies the Fourier layer (11), which allows
the network to efficiently learn global correlations. The
formulation in terms of a spherical convolution makes the
Fourier layer linear and equivariant w.r.t. SO(3). In case

5

Spherical Fourier Neural Operators

of vector-valued inputs u, ̃#(l) is replaced by a complex-
valued, learned matrix for each l and the multiplication in
(11) is replaced by a matrix-vector product.

Alternatively, we propose the use of a complex-valued neu-
ral network, which acts ”frequency-wise” in the Fourier
domain. This approach is an extension of the AFNO archi-
tecture (Guibas et al., 2021). The non-linear approach is not
equivariant w.r.t. SO(3), however. The study of complex-
valued neural networks is still in its infancy, and they are not
as well understood as dense, ReLU networks (Voigtlaender,
2020). For this reason, we chose one possible extension
of the ReLU activation, which applies it only to its real
component: x+ iy ! ReLU(x) + iy.

Point-wise nonlinearities: The remaining components of
our networks are equally chosen with equivariance in mind.
Any operation acting point-wise on u is trivially equivari-
ant in the continuous setting. This is not the case in the
discrete setting, however, as non-linear functions may intro-
duce arbitrary frequency components, which makes them
only approximately equivariant (Karras et al., 2021). In prin-
ciple, this can be remedied by applying non-linearities in the
frequency domain (Poulenard & Guibas, 2021). We refrain
from doing so as this leads to large performance overheads
and limit ourselves to equivariance in the continuous limit.

Equivariant rescaling: To reduce the memory footprint
of our models, we employ down- and up-scaling and keep
a lower-resolution hidden state in our models. Adaptive
FNOs, as used in FCN, realize this via patching in the en-
coding layer and pixel-shuffling in the decoding network
(Guibas et al., 2021; Pathak et al., 2022), which is inher-
ently not equivariant on the sphere. We propose using the
SFNO block directly to perform up- and down-scaling. This
is achieved by truncating the frequencies in the forward
transform F and evaluating the inverse F

�1 at a higher
resolution when up-scaling. This is also applied to the skip
connections to obtain the residual in the desired up- or down-
scaled resolution.

Figure 3 depicts the structure of the overall network F# :
un ! un+1. It consists of three main parts: An encoder
network, multiple spherical FNO blocks, and a decoder net-
work. To maintain equivariance properties, the encoder and
decoder networks are also point-wise MLPs with a single
hidden layer and GELU activations (Hendrycks & Gimpel,
2016). These layers inflate and deflate the channel dimen-
sion to the embedding dimension, which remains constant
throughout the network. As the autoregressive map F is
close to identity, we add a large skip connection that feeds
the output of the encoder to the decoder, skipping the SFNO
blocks. To model spatial dependencies, a learned position
embedding is added after the decoder layer. This can be
regarded as an additional, learned input, and is, therefore,
equivariant as well. As previously noted, the first and last

SFNO blocks are used to perform up- and down-sampling.
Except for the last layer, instance norm (Ulyanov et al.,
2016) is applied after each MLP to normalize the inputs.
We choose instance norm over other normalization methods,
as it applies the same operation globally, making it equally
equivariant.

We remark that the obtained model is grid-invariant, as all
learned operations save for the positional embedding do
not depend on the grid of the input data. This allows the
model to be applied on arbitrary grids and resolutions as
long as the SHT F and its inverse F�1 can be computed on
it. Moreover, the position embedding can be parametrized in
terms of spherical harmonics to facilitate the grid-invariance
of the architecture.

Differentiable Spherical Harmonic Transform: To enable
our method, we implement torch-harmonics, a library
for differentiable Spherical Harmonics written in PyTorch
(Paszke et al., 2019). We choose the “direct” algorithm
(Schaeffer, 2013), as it has advantages over algorithms for
the implementation on GPUs. Details on the implementation
are provided in Section B.1.

5. Numerical Experiments
5.1. Spherical Shallow Water Equations

The SWE on the rotating sphere (34) are a system of non-
linear hyperbolic PDEs modeling the dynamics of a thin
fluid layer in the limit where the fluid depth becomes neg-
ligible w.r.t. the characteristic wavelength. Thus, they are
well-suited to model planetary fluid phenomena such as at-
mospheric dynamics, tsunami propagation, and tidal flows
(Nair et al., 2005; Bonev et al., 2018).

We train our models on the SWE by generating random data
on the fly using a classical, spectral solver (Giraldo, 2001).
We use the data to train four models: two SHT-based and
two FFT-based FNOs with either non-linear or linear maps
in the frequency domain. Models are trained with the fol-
lowing hyperparameters: 4 (S)FNO blocks, a down-scaling
factor of 3, and embedding dimensions of 256. The latter
was chosen to make model sizes roughly equal in terms of
the number of trainable parameters. The models are trained
for 20 epochs using a single autoregressive step. Each time
step corresponds to a single hour in the system, which re-
quires the classical solver 150 time steps to compute. In
the second stage, two autoregressive steps are used during
training to fine-tune the model and improve stability. Details
regarding the data generation and training of these models
are outlined in Section C.1 in the Appendix.

Figure 4 shows a comparison of the (linear) SFNO model to
ground truth data computed by the classical solver. Detailed
numerical results and an overview of the trained models are

6

Spherical Fourier Neural Operators

(a) initial condition, t = 0h

(b) ground truth, t = 5h

(c) ground truth, t = 10h

(d) SFNO, t = 5h

(e) SFNO, t = 10h

(f) FNO, t = 5h

(g) FNO, t = 10h

Figure 4. Solutions to the Shallow Water Equations on the rotating Sphere predicted by SFNO and FNO architectures in comparison to the
ground truth solution computed using a classical spectral solver. Plots depict the geopotential height at 5 and 10 hours, corresponding to 5
and 10 autoregressive steps respectively. The view is centered on the south pole to highlight artifacts arising due to the non-geometrical
treatment of the sphere.

reported in Table 1.

Discussion While both FFT and SHT-based models achieve
roughly similar accuracies, it is worth noting that the SFNO
models have fewer parameters as the SHT has half as many
frequencies as the FFT at the same resolution. Moreover,
Figure 4 depicts autoregressive rollouts of 5 and 10 hours
for the linear FFT and SHT-based models. It is evident that
the FFT-based approach leads to artifacts visible at the poles,
which increase in severity for longer rollouts.

Training the individual models takes 240s on a single
NVIDIA A6000. This is mainly bottlenecked by the nu-
merical solver, which requires 150 time steps in order to
generate a single sample 1h in advance.

5.2. Weather Prediction / Atmospheric Dynamics

We demonstrate the utility of the proposed method for the
task of medium-range weather forecasting (up to two weeks)
and long-timescale rollouts (up to 1 year). We train a hand-
ful of models on the ERA5 dataset (Hersbach et al., 2020) on
a subset of atmospheric variables sub-sampled at a temporal
frequency of 6 hours and at the native spatial resolution of
the ERA5 dataset (0.25 degrees lat-long). The atmospheric
variables used are listed in appendix C.2.

We use 40 years of ERA5 (1979-2018): 1979-2015 is used
for training, 2016 and 2017 are used for validation, hyper-
parameter tuning, and model selection, and 2018 is held
out as out-of-sample test set. Models are trained following

a protocol similar to that outlined in Pathak et al. (2022):
an initial training stage, using a single autoregressive step
and a second, fine-tuning stage, in which two autoregressive
steps are used. Scalable model parallelism and gradient
checkpointing are used to reduce the large memory footprint
encountered during autoregressive training. In both training
stages, models are trained for 4 hours on 8 NVIDIA DGX
machines. On average, this amounts to 40 epochs in the first
stage and 5 epochs in the finetuning stage.

Table 2 reports model parameters and results for the best
checkpoint. For all models, thresholding is employed and
frequencies above half the sampling frequency are dropped.
The embedding dimension is adapted to facilitate multi-
step training with 2 autoregressive steps without gradient
checkpointing on a single NVIDIA A100. The performance
is evaluated using the relative L2 and L1 losses (lower is
better), as well as the ACC score (higher is better). For a
definition of the performance metrics, we refer the reader to
Section B.3 in the Appendix.

To measure the predictive skill, we compare autoregressive
inference results with a linear SFNO model, with predic-
tions obtained from the state-of-the-art model in NWP –
the Integrated Forecasting System (IFS) (ECMWF, 2021).
To do so, we compute the ACC scores on a sample of 730
2-week-long forecasts on the out-of-sample data from 2018
shown in Figure 6.

Discussion Our SFNO architecture has predictive skill com-
parable to IFS on weather timescales (up to two weeks, as

7

Spherical Fourier Neural Operators

Table 1. Auto-regressive results applying the Shallow Water Equations on the rotating sphere at a spatial resolution of 256 ⇥ 512 and a
temporal resolution of 1 hour. Losses are relative and reported at 1h and 10h respectively, which correspond to 1 and 10 auto-regressive
steps. Losses for the ML models are computed w.r.t. the validation data generated by the classical solver. To put them into perspective, the
error of the classical method, and therefore the training data is listed in the bottom row. These errors are estimated using a high-fidelity
solution computed at four times the resolution of the training data.

MODEL
PARAMETERS L

2 LOSS
EVAL TIME

LAYERS EMBED. DIMENSION PARAMETER COUNT AT 1H (1 STEP) AT 10H (10 STEPS)

U-NET 20 - 3.104 · 107 2.961 · 10�3 1.462 · 10�1 0.011S

FNO, LINEAR 4 256 4.998 · 107 8.280 · 10�4 9.958 · 10�3 0.156S
FNO, NON-LINEAR 4 256 3.920 · 107 8.298 · 10�4 9.784 · 10�3 0.212S

SFNO, LINEAR 4 256 3.518 · 107 7.741 · 10�4 7.239 · 10�3 0.218S
SFNO, NON-LINEAR 4 256 3.920 · 107 7.673 · 10�4 1.558 · 10�2 0.321S

CLASSICAL SOLVER - - - 1.891 · 10�2 3.570 · 10�2 1.299S

Table 2. Auto-regressive results obtained on the ERA5 weather data. Relative validation losses (lower is better) are averaged over the
finetuning steps at 6 and 12h (1 and 2 autoregressive steps). The Anomaly Correlation Coefficient (ACC, higher is better) is reported at
120h (20 autoregressive steps).

MODEL
PARAMETERS LOSS ACC AT 120H (20 STEPS)

LAYERS EMBED. DIM. PARAM. COUNT STEPS L2 L1
10U 2T Z500 U500

FNO, LINEAR 8 64 2.190 · 109
1 0.1172 0.0917 0.4896 0.7829 0.7454 0.5631
2 0.1176 0.0888 0.5140 0.8661 0.8039 0.6223

FNO, NON-LINEAR 8 384 4.332 · 108
1 0.0908 0.0648 0.6284 0.8939 0.8533 0.6912
2 0.0935 0.0669 0.6611 0.9072 0.8677 0.7156

SFNO, LINEAR 8 384 8.296 · 108
1 0.0930 0.0658 0.6271 0.8965 0.8589 0.6924
2 0.0933 0.0660 0.6471 0.9079 0.8728 0.7141

SFNO, NON-LINEAR 8 384 4.332 · 108
1 0.0942 0.0658 0.6079 0.8943 0.8356 0.6616
2 0.0977 0.0700 0.6489 0.9010 0.8598 0.7012

observed in Figure 6), while showing unprecedented long-
term stability for a year-long rollout. More importantly,
a one year-long rollout of the SFNO is computed in 12.8
minutes on a single NVIDIA A6000 GPU, compared to one
hour (wall-clock time) for a year-long simulation of IFS on
1000 dual-socket CPU nodes (Bauer et al., 2020). With the
caveat of differing hardware, this corresponds to a speedup
of close to 5,000x.

While both FFT- and SHT-based approaches achieve similar
accuracy for medium-range forecasts (5- to 10-day, Table
2), the advantage of respecting the underlying spherical
geometry becomes evident at longer rollouts as illustrated
in Figures 5 and 1. Figure 1 illustrates the importance of
equivariance especially well. Many of our architectural
choices were motivated by equivariance and are also present
in the non-linear FNO model. While the AFNO model
shows artifacts early on, these are not as pronounced in the
FNO models and absent in the SFNO model.

6. Conclusion
This paper demonstrates how FNOs can be extended via
the generalized Fourier transform to learn operators that
act on Riemannian manifolds and are equivariant with re-
spect to operations of a symmetry group. We apply this
concept to SO(3) and present a novel and fully data-driven
network architecture called the SFNO, which facilitates the
generation of stable long-range forecasts of Earth’s complex
atmospheric dynamics of a whole year, in 13 minutes on a
single GPU.

The proposed method pushes the frontier of data-driven
deep learning for weather and climate prediction because of
the following key properties:

Respecting spherical geometry is essential to ensure that
topological boundary conditions are realized correctly. It
leads to stable, long-range roll-outs without the respective
predictions degenerating to implausible distributions of the
respective quantities, such as wind speed. This is an essen-
tial property for enabling the creation of ML-based digital

8

Spherical Fourier Neural Operators

(a) Spherical FNO using the SHT

(b) Ground Truth

(c) FFT-based FNO architecture for reference

Figure 5. Year-long rollout (1,450 autoregressive steps) of abso-
lute wind speed 10m above the surface depicting stable behavior
over exceptionally long timescales for an ML model, which has
important implications for ML-based climate modeling. In con-
trast, the FFT-based architecture has spurious waves and artifacts
and excessive diffusion. SFNO faithfully captures the dynam-
ics of weather within the predictability horizon of two weeks
and shows physically- and statistically-consistent behaviour over
longer timescales up to a year.

twins.

Grid-invariance of the architecture allows the model to be
applied on arbitrary grids as long as the SHT and its inverse
can be formulated. This allows the method to be quickly
fine-tuned on new grids and resolutions, enabling training
ML models on diverse weather and climate data that exist
on different grids and resolutions.

Computational efficiency is tightly connected to an effi-
cient implementation of the respective generalized Fourier

0 50 100
0.7

0.8

0.9

1

[h]

10u

0 50 100
0.92

0.94

0.96

0.98

1

[h]

2t

0 50 100
0.92

0.94

0.96

0.98

1

[h]

z500

0 50 100
0.9
0.92
0.94
0.96
0.98

1

[h]

t850

IFS SFNO

Figure 6. Comparison of forecast skill (ACC score) as a function of
prediction lead time (in hours) between IFS (blue) and the SFNO
(orange) for four physical variables: 10u (surface winds in the
latitudinal direction); 2t (temperature 2m above the surface); z500
(geopotential height at 500 hPa); and t850 (the temperature at
850 hPa). All curves are computed by averaging the skill over
730 autoregressive rollouts starting at different initial conditions.
SFNO closely matches the forecast skill of IFS in the predicted
variables.

transform. This is the case for spherical topologies via
the spherical harmonics transform. As a consequence, the
proposed method makes long-term weather forecasting sig-
nificantly more accessible and is hence enabling its democ-
ratization: Predictions for an entire year can be computed
within 13 minutes on a single NVIDIA RTX A6000 GPU.

The high accuracy, long-term stability, and immense
speedup over classical methods bear promises for the ap-
plication of Spherical Fourier Neural Operators in the holy
grail of prediction: sub-seasonal-to-seasonal forecasting.
It is foreseeable that such methods could one day lead to
ML-based climate prediction.

Acknowledgements
We thank ECMWF for enabling this line of research by pro-
viding publicly available datasets (Hersbach et al., 2020).
Moreover, we extend our gratitude to the anonymous review-
ers for taking their time and providing us with valuable com-
ments that improved the quality of the paper. Finally, we are
grateful to our colleagues Kamyar Azizzadenesheli, Noah
Brenowitz, Yair Cohen, Jean Kossaifi, Nikola Kovachki,
Thomas Müller and Mike Pritchard for fruitful discussions
and proof-reading the manuscript.

9

Spherical Fourier Neural Operators

References
Abramowitz, M., Stegun, I. A., et al. Handbook of mathe-

matical functions, volume 55. Dover New York, 1964.

Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt,
B. R., and Ott, E. A machine learning-based global at-
mospheric forecast model. Geophysical Research Letters,
47(9):e2020GL087776, 2020.

Bauer, P., Quintino, T., Wedi, N., Bonanni, A., Chrust, M.,
Deconinck, W., Diamantakis, M., Düben, P., English, S.,
Flemming, J., Gillies, P., Hadade, I., Hawkes, J., Hawkins,
M., Iffrig, O., Kühnlein, C., Lange, M., Lean, P., Marsden,
O., Müller, A., Saarinen, S., Sarmany, D., Sleigh, M.,
Smart, S., Smolarkiewicz, P., Thiemert, D., Tumolo, G.,
Weihrauch, C., Zanna, C., and Maciel, P. The ecmwf
scalability programme: Progress and plans, 02/2020 2020.
URL https://www.ecmwf.int/node/19380.

Bertasius, G., Wang, H., and Torresani, L. Is space-
time attention all you need for video understand-
ing? In Meila, M. and Zhang, T. (eds.), Pro-

ceedings of the 38th International Conference on Ma-

chine Learning, volume 139 of Proceedings of Machine

Learning Research, pp. 813–824. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/bertasius21a.html.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian,
Q. Pangu-weather: A 3d high-resolution model for fast
and accurate global weather forecast. 11 2022. URL
http://arxiv.org/abs/2211.02556.

Bonev, B., Hesthaven, J. S., Giraldo, F. X., and Kopera,
M. A. Discontinuous galerkin scheme for the spheri-
cal shallow water equations with applications to tsunami
modeling and prediction. Journal of Computational

Physics, 2018. ISSN 10902716. doi: 10.1016/j.jcp.2018.
02.008.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. 4 2021. URL http://arxiv.

org/abs/2104.13478.

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G. Data
assimilation in the geosciences: An overview of methods,
issues, and perspectives. Wiley Interdisciplinary Reviews:

Climate Change, 9(5):e535, 2018.

Cohen, T. S. and Welling, M. Group equivariant convolu-
tional networks. 2 2016. URL http://arxiv.org/

abs/1602.07576.

Cohen, T. S., Geiger, M., Koehler, J., and Welling, M. Spher-
ical cnns. 1 2018. URL http://arxiv.org/abs/

1801.10130.

Conway, J. and Sloane, N. Sphere Packings, Lattices and

Groups, volume 290. 01 1988. ISBN 978-1-4757-2018-1.
doi: 10.1007/978-1-4757-2016-7.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

Driscoll, J. and Healy, D. Computing fourier trans-
forms and convolutions on the 2-sphere. Ad-

vances in Applied Mathematics, 15:202–250, 6
1994. ISSN 01968858. doi: 10.1006/aama.1994.
1008. URL https://linkinghub.elsevier.

com/retrieve/pii/S0196885884710086.

ECMWF. Ifs documentation cy47r3 - part iii- dynamics and
numerical procedures, 1 2021. URL https://www.

ecmwf.int/node/20202.

Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A.,
Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald,
K., et al. U-net: deep learning for cell counting, detection,
and morphometry. Nature methods, 16(1):67–70, 2019.

Fukushima, K. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetics,
36:193–202, 1980.

Gell-Mann, M. The Eightfold Way: A Theory of strong
interaction symmetry. 3 1961. doi: 10.2172/4008239.

Giraldo, F. X. A spectral element shallow water model on
spherical geodesic grids. Int. J. Numer. Meth. Fluids, 35:
869–901, 2001. doi: 10.1002/1097-0363(20010430).

Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar,
A., and Catanzaro, B. Adaptive fourier neural opera-
tors: Efficient token mixers for transformers, 2021. URL
https://arxiv.org/abs/2111.13587.

Hendrycks, D. and Gimpel, K. Gaussian Error Linear Units
(GELUs). 2016.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi,
A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R.,
Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abel-
lan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot,
J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R.,
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan,
R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P.,
Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I.,
Vamborg, F., Villaume, S., and Thépaut, J.-N. The ERA5
global reanalysis. Quarterly Journal of the Royal Me-

teorological Society, 146(730):1999–2049, 2020. ISSN
1477-870X.

10

https://www.ecmwf.int/node/19380
https://proceedings.mlr.press/v139/bertasius21a.html
https://proceedings.mlr.press/v139/bertasius21a.html
http://arxiv.org/abs/2211.02556
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/1602.07576
http://arxiv.org/abs/1602.07576
http://arxiv.org/abs/1801.10130
http://arxiv.org/abs/1801.10130
https://linkinghub.elsevier.com/retrieve/pii/S0196885884710086
https://linkinghub.elsevier.com/retrieve/pii/S0196885884710086
https://www.ecmwf.int/node/20202
https://www.ecmwf.int/node/20202
https://arxiv.org/abs/2111.13587

Spherical Fourier Neural Operators

Kalnay, E. Atmospheric modeling, data assimilation and

predictability. Cambridge University Press, 2003.

Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J.,
Lehtinen, J., and Aila, T. Alias-free generative adversarial
networks. 6 2021. URL http://arxiv.org/abs/

2106.12423.

Kossaifi, J., Kovachki, N. B., Azizzadenesheli, K., and
Anandkumar, A. Multi-grid tensorized fourier neural
operator for high resolution PDEs, 2023. URL https:

//openreview.net/forum?id=po-oqRst4Xm.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural op-
erator: Learning maps between function spaces. 8 2021.
URL http://arxiv.org/abs/2108.08481.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Re-

search, 24(89):1–97, 2023.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Pritzel, A., Ravuri, S., Ewalds, T.,
Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer,
S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., and
Battaglia, P. Graphcast: Learning skillful medium-range
global weather forecasting. 12 2022. URL http://

arxiv.org/abs/2212.12794.

Lecun, Y. and Bengio, Y. Convolutional Networks for Im-

ages, Speech and Time Series, pp. 255–258. The MIT
Press, 1995.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions, 2020.

McCormick, S. F. Multigrid methods. SIAM, 1987.

McEwen, J. D. and Wiaux, Y. A novel sam-
pling theorem on the sphere. 10 2011.
doi: 10.1109/TSP.2011.2166394. URL
http://arxiv.org/abs/1110.6298http:

//dx.doi.org/10.1109/TSP.2011.2166394.

Nair, R. D., Thomas, S. J., and Loft, R. D. A discontinuous
galerkin global shallow water model. Monthly Weather

Review, 133:876–888, 4 2005. ISSN 0027-0644. doi:
10.1175/MWR2903.1. URL https://journals.

ametsoc.org/doi/10.1175/MWR2903.1.

NVIDIA, Vingelmann, P., and Fitzek, F. H. Cuda, release:
10.2.89, 2020. URL https://developer.nvidia.
com/cuda-toolkit.

Ocampo, J., Price, M. A., and McEwen, J. D. Scalable and
equivariant spherical cnns by discrete-continuous (disco)
convolutions. 9 2022. URL http://arxiv.org/

abs/2209.13603.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. 12 2019. URL
http://arxiv.org/abs/1912.01703.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chat-
topadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z.,
Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and
Anandkumar, A. Fourcastnet: A global data-driven high-
resolution weather model using adaptive fourier neural
operators. 2 2022. URL http://arxiv.org/abs/

2202.11214.

Poulenard, A. and Guibas, L. J. A functional approach
to rotation equivariant non-linearities for tensor field
networks. pp. 13169–13178. IEEE, 6 2021. ISBN
978-1-6654-4509-2. doi: 10.1109/CVPR46437.2021.
01297. URL https://ieeexplore.ieee.org/

document/9578769/.

Rahman, M. A., Ross, Z. E., and Azizzadenesheli, K. U-
no: U-shaped neural operators. 4 2022. URL http:

//arxiv.org/abs/2204.11127.

Rasp, S. and Thuerey, N. Data-driven medium-range
weather prediction with a resnet pretrained on climate
simulations: A new model for weatherbench. Jour-

nal of Advances in Modeling Earth Systems, 13(2):
e2020MS002405, 2021.

Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid,
S., and Thuerey, N. Weatherbench: a benchmark data set
for data-driven weather forecasting. Journal of Advances

in Modeling Earth Systems, 12(11):e2020MS002203,
2020.

Schaeffer, N. Efficient spherical harmonic transforms aimed
at pseudospectral numerical simulations. Geochemistry,

Geophysics, Geosystems, 14:751–758, 3 2013. ISSN
15252027. doi: 10.1002/ggge.20071.

Scher, S. and Messori, G. Weather and climate forecasting
with neural networks: using general circulation models
(gcms) with different complexity as a study ground. Geo-

scientific Model Development, 12(7):2797–2809, 2019.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Instance nor-
malization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022, 2016.

11

http://arxiv.org/abs/2106.12423
http://arxiv.org/abs/2106.12423
https://openreview.net/forum?id=po-oqRst4Xm
https://openreview.net/forum?id=po-oqRst4Xm
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/2212.12794
http://arxiv.org/abs/2212.12794
http://arxiv.org/abs/1110.6298%20http://dx.doi.org/10.1109/TSP.2011.2166394
http://arxiv.org/abs/1110.6298%20http://dx.doi.org/10.1109/TSP.2011.2166394
https://journals.ametsoc.org/doi/10.1175/MWR2903.1
https://journals.ametsoc.org/doi/10.1175/MWR2903.1
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://arxiv.org/abs/2209.13603
http://arxiv.org/abs/2209.13603
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2202.11214
http://arxiv.org/abs/2202.11214
https://ieeexplore.ieee.org/document/9578769/
https://ieeexplore.ieee.org/document/9578769/
http://arxiv.org/abs/2204.11127
http://arxiv.org/abs/2204.11127

Spherical Fourier Neural Operators

Voigtlaender, F. The universal approximation theorem for
complex-valued neural networks. 12 2020. URL http:

//arxiv.org/abs/2012.03351.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A.,
and Benson, S. M. U-fno—an enhanced fourier neural
operator-based deep-learning model for multiphase flow.
Advances in Water Resources, 163:104180, 2022.

Weyn, J., Durran, D., Caruana, R., and Cresswell-Clay, N.
Sub-seasonal forecasting with a large ensemble of deep-
learning weather prediction models. Journal of Advances

in Modeling Earth Systems, 13:e2021MS002502, 2021.

Weyn, J. A., Durran, D. R., and Caruana, R. Improving
data-driven global weather prediction using deep con-
volutional neural networks on a cubed sphere. Jour-

nal of Advances in Modeling Earth Systems, 12(9):
e2020MS002109, 2020.

Workman, R. L. and Others. Review of Particle Physics.
PTEP, 2022:083C01, 2022. doi: 10.1093/ptep/ptac097.

Yuval, J. and O’Gorman, P. A. Stable machine-learning pa-
rameterization of subgrid processes for climate modeling
at a range of resolutions. Nature communications, 11(1):
3295, 2020.

12

http://arxiv.org/abs/2012.03351
http://arxiv.org/abs/2012.03351

Spherical Fourier Neural Operators

A. Preliminaries
A.1. Rotations on the 2-Sphere

We discuss some basic notions regarding the two-dimensional sphere S2 and the rotation group SO(3).

To define functions on the sphere, we require coordinates. A familiar choice is the parametrization of points x 2 S2

in terms of colatitude ✓ 2 [0,⇡] and longitude ' 2 [0, 2⇡]. The unit vector x can then be parametrized as
(cos(') sin(✓), sin(') sin(✓), cos(✓))T .

To discuss symmetries, we require the special orthogonal group in three variables SO(3). These are proper rotations in R3,
characterized by three-by-three matrices of determinant one, whose inverses are their transpose. Any rotation R 2 SO(3)
can be written in terms of the Eulerian angles ' 2 [0, 2⇡], ✓ 2 [0,⇡], 2 [0, 2⇡], such that

R = Rz(')Ry(✓)Rz(), (12)

where Rz and Ry are rotations around the z- and y-axes:

Rz(') =

2

4
cos' � sin' 0
sin' cos' 0
0 0 1

3

5, Ry(') =

2

4
cos' 0 sin'
0 1 0

� sin' 0 cos'

3

5. (13)

Unlike translations in the plane, rotations do not commute in general, making SO(3) non-abelian. The rotations R 2 SO(3)
sweep the entire sphere. We can see this by applying the rotation R to the north pole n = (0, 0, 1)T , which yields

Rn = Rz(')Ry(✓)Rz()n = (cos(') sin(✓), sin(') sin(✓), cos(✓))T . (14)

We observe that the last rotation angle is dropped, illustrating that S2 can be obtained as the quotient of SO(3) and
SO(2).

A.2. Spherical Harmonics

We define the inner product on the 2-Sphere S2

hu, viL2(S2) =

Z

S2

u v d⌦ =

Z 2⇡

0

Z ⇡

0
u(✓,') v(✓,') sin ✓ d✓ d', (15)

where d⌦ is the associated Lebesgue measure on the sphere5. This induces the L2 norm

kukL2(S2) =
q

hu, uiL2(S2), (16)

as well as the Hilbert space L2(S2) of square integrable functions on S2. We introduce the spherical harmonics defined as

Y m
l (✓,') = (�1)mcml Pm

l (cos ✓)eim' = bPm
l (cos ✓)eim', cml :=

s
2l + 1

4⇡

(l �m)!

(l +m)!
, (7)

where Pm
l (cos ✓) are the associated Legendre polynomials. The normalization factor cml normalizes the spherical harmonics

w.r.t. the L2(S2) inner product, s.t.
hY m

l , Y m0

l0 iL2(S2) = �ll0�mm0 . (17)

In other words, the spherical harmonics (7) form an orthogonal basis of L2(S2).

The spherical harmonics (7) have many useful properties, induced by properties of the trigonometric functions and the
associated Legendre polynomials (Abramowitz et al., 1964). One such useful property is the symmetry relation

Y m
l (✓,�) = (�1)m Y �m

l (✓,�), (18)

which is particularly useful for real-to-complex spherical harmonic transforms. Using this property, we can recover the
negative m components from the positive ones6.

5The measure d⌦ is invariant under rotations in SO(3). The same is true for the inner product.
6Analogous to the Hermitian symmetry of the Fourier coefficients of a real-valued signal where negative frequency contributions can

be inferred from the positive ones.

13

Spherical Fourier Neural Operators

A.3. Fourier Neural Operators

On the doubly periodic domain S1
⇥ S1, the Fourier transform and it’s inverse can be expressed as

F [u](k, l) = ũ(k, l) =

Z 1

0

Z 1

0
u(x, y) exp(�i2⇡kx)dx exp(�i2⇡ly)dy (19)

and

F
�1[ũ](x) =

1X

k=�1

1X

l=�1
ũ(k, l) exp(i2⇡kx) exp(i2⇡ly) (20)

respectively.

At the core of the Fourier Neural Operator lies the Fourier layer, which can be understood as a global convolution

u ! K[u] = F
�1[F [] · F [u]]. (2)

By replacing the filter weights F [] with learned weights ̃# in Fourier space, we obtain the Fourier Neural Operator

u ! K#[u] = F
�1[̃# · F [u]]. (21)

Here, ̃# represents a parametrization of the filter weights in Fourier space with the weight vector #. As such, a filter weight
̃#(k, l) is learned for each frequency k, l, such that

K#[u] = F
�1[̃# · ũ](x) =

1X

k=�1

1X

l=�1
̃#(k, l) · F [u](k, l) exp(i2⇡kx) exp(i2⇡ly). (22)

In practice, we truncate the Fourier series as only a finite number of filter parameters is learned. Moreover, if u is vector-
valued, we replace ̃#(k, l) with a learned matrix and ̃#(k, l) · F [u] becomes a matrix-vector product with summation over
the embedding dimension (Li et al., 2020).

The above formulation admits efficient learning of non-local operators, which is a desireable property for PDE applications
(Kovachki et al., 2021). We remark that the FNO is trivially translation-equivariant w.r.t. translations T (a, b) : (x, y) !
(x+ a, y + b). Applying the passive translation �T [u](x) = u(T�1x) to the input of the FNO yields

K#[�T [u]] = F
�1[̃# · F [�T [u]]] = F

�1[̃# · exp(i2⇡ka) exp(i2⇡lb)F [u]]

= �T [F
�1[̃# · F [u]]] = �T [K#[u]], (23)

where we have used �T [F [u]] = exp(i2⇡ka) exp(i2⇡lb)F [u].

B. Implementation Details
B.1. Differentiable Spherical Harmonics Transforms

In order to facilitate differentiable computation we require a differentiable implementation of the Spherical Harmonic
Transforms (SHT). To do so we implemented our own differentiable Spherical Harmonics Transform library for PyTorch
(https://pytorch.org/).

While it is possible to compute the SHT in O(L2 log2 L) time (Driscoll & Healy, 1994; Schaeffer, 2013; McEwen & Wiaux,
2011), these algorithms typically suffer from numerical-intabilities and tend to have large constants in their algorithmic
complexity. As such, the ’semi-naive’ algorithm, which computes the projection onto the associated Legendre polynomials
via quadrature and the projection onto the harmonic functions via the FFT (Schaeffer, 2013). In our experience, this
algorithm tends to outperform the asymptotically optimal algorithms, and moreover, is better-suited to the execution on
GPUs and distributed GPU-systems due to the availability of highly optimized primitives for these operations (NVIDIA
et al., 2020). As such, torch-harmonics implements the ’semi-naive’ algorithms and distributes the projection of the
associated Legendre polynomials onto multiple GPUs in the distributed case.

We implement the forward transformation in equation (8) by performing a 1D real to complex DFT over the azimuth degrees
of freedom, followed by a matrix multiplication of the Legendre polynomials Pm

l (cos ✓) and re-scaled by the normalization

14

https://pytorch.org/

Spherical Fourier Neural Operators

factors cml . Therefore, we can write

û[. . . , l,m] =
H�1X

j=0

P [l,m, j] FT
⇥
u[. . . , j, k], k

⇤
[j,m] (24)

Where 0  j < H , 0  k < W , where H and W are the number of discrete ✓ and � angles respectively. Furthermore,
0  l  L and 0  m  M . Note that we do not need to store the modes for negative m since we are only considering
real-to-complex transforms and thus those components can be retrieved using the symmetry relation (18). Lastly, the ellipsis
in (24) denotes all tensor modes which are not contracted in the transform and thus can be vectorized over. Typical modes
include the batch as well as the feature dimension of tensor u.

We define the real-to-complex DFT as

FT
⇥
u[. . . , j, k], k

⇤
[j,m] ⌘

1
p
W

W�1X

k=0

exp

✓
�i

2⇡mk

W

◆
u[. . . , j, k] (25)

Note that the negative phase arises from the fact that the forward transform involves the complex conjugate of Y m
l . We

define the Legendre weights as
P [l,m, j] ⌘ (�1)m cml Pm

l (cos ✓j)w(✓j), (26)

where the weight vector
w(✓j) ' sin ✓ · d✓, (27)

is chosen such that the sum over j in (18) approximates the integral over ✓ in (8). These weight factors typically depend
on the chosen grid of the spatial discretization. Since we are working with static input and output grids, the Legendre
weight matrices P can be pre-computed and stored. Furthermore, effective downsampling can be achieved by reducing the
maximum wave number L.

The inverse transform can be defined in a similar fashion:

u[. . . , j, k] = FT�1

"
LX

l=0

P̂ [l,m, j] û[. . . , l,m],m

#
[j, k] (28)

where FT�1
⇥
. . . ,m

⇤
[j, k] denotes the inverse complex-to-real inverse DFT with respect to m. The Legendre weights in

this case are given by:
P̂ [l,m, j] ⌘ (�1)m cml Pm

l (cos ✓j). (29)

Note that we do not need to include an additional weight vector for the backward transform since the sum over l in (28) does
not approximate an integral and thus does not receive an additional term from an integration measure.

The above implementation of discrete SHT can be parallelized using the pencil decomposition technique which is also used
in higher-dimensional distributed Fourier transforms: first, the user needs to initializes a GPU communication grid for H,L
and W,M directions respectively and pass this to the distributed initialization routine of torch-harmonics. We further
assume that the input to the distributed transform is split evenly among those communication dimensions (including padding
if required).

For example, in case of the forward transform, the input to the distributed transform can be a spatially de-
composed field in H and W but with local feature data. The idea is to perform a global transposition using
torch.distributed.all to all of the data in feature and W domain, so that after the transposition the W domain
is fully local and the feature domain is distributed. After this, the one dimensional FFT along W can be performed locally
and is embarrassingly parallel with respect to the now split feature dimension. After this first transform, the data is again
globally transposed such that the H domain local and the the feature domain as well as the m domain are both distributed. In
This case, the Legendre transformation can be performed locally and embarrassingly parallel with respect to the distributed
feature dimension. Afterwards, we perform a third global transposition to achieve a decomposed L,M domain but local
feature data. For the inverse SHT, we invert this whole process. Output dimensions which cannot be evenly split among
GPUs, are zero-padded automatically on the largest rank in the corresponding communication dimension. Information
about the padding and input and output sizes are stored in the corresponding SHT instance and can be queried by the user.

15

Spherical Fourier Neural Operators

The advantage of this approach is that input and output tensors have similar spatial decompositions and thus this approach
simplifies the end-to-end spatial parallelization of SFNO models. Additionally, since all transforms are performed locally,
the result of the distributed spherical transform is bit-wise identical to the result of a serial transform. This is not the case for
fork-join approaches as discussed below.

Alternatively, one could also follow a fork-join approach in forward and inverse SHT respectively. This is can be achieved
by splitting the l degrees-of-freedom of the Legendre weights P, P̂ into evenly sized chunks lc

.
= (L+1)/R and distributing

those across all ranks R. This means, that every rank 0  r < R owns a sub-tensor Pr[l,m, j] with r ·lc  l < (r+1) ·lc but
full m and j (and equivalently for P̂). Therefore, the distributed forward transform variant of (24) transforms a shared input
tensor u[. . . , j, k] onto a rank-local transformed tensor ur[. . . , l,m] with the above ranges for l,m (fork). The distributed
inverse transform in turn transforms the rank-local tensor û back into a shared tensor u (join). The communication primitive
for both operations is torch.distributed.all reduce, where it has to be applied on the input gradient in the
backward pass of the forward routine as well as on the output tensor in the forward pass of the inverse routine. The forward
pass of the forward and the backward pass of the inverse transformation do not need additional communication. Since
PyTorch cannot back-propagate through communication collectives natively, we use torch.autograd.Function to
implement collective primitives with fully defined forward and backward pass.

B.2. Training

To find the parameter vector # of the learned map F#, an objective function is minimized. We choose a geometric loss
function, which is obtained by approximating the Lp norm kF#[un]� un+1kLp(S2) on the sphere:

L[F#[un], un+1] =
X

c2channels

 P
i2grid wi |F#[un](xi)� un+1(xi)|

p

P
i2grid wi |un+1(xi)|

p

! 1
p

. (30)

To compute the loss, the absolute difference is summed over the gridpoints xi and weighted with wi, which are the products
of the Jacobian sin ✓i and the quadrature weights. As quadrature rule we picked the simple Riemann sum7 The loss (30) is
then computed for each channel c 2 {u10m,v10m,t2m, . . .} separately, and then normalized by the norm of the target. It
is then averaged over all predicted channels to obtain the final loss. For training we set p = 2.

Training is performed in two stages. In the first stage, the model is trained to obtain the best possible single-step performance.
To this end, the loss (30) is minimized after a single prediction step. The learning rate is scheduled to follow a cosine pattern,
starting with a learning rate of 10�3

The second stage is a finetuning stage where the model is optimized for autoregressive performance. To this end, nsteps
autoregressive steps are performed and the loss is accumulated at each step of the forecast, i.e.

Lautoregressive =
1

nsteps

nstepsX

s=1

L[F s
[un], un+m], where F s

= F# � . . . � F#| {z }
s times

. (31)

Gradients are then backpropagated through the entire unrolled sequence, to get the weight updates. The finetuning is
performed with with increasing nsteps, starting at nsteps = 2. For each nsteps, the model is trained for 5 epochs with a constant
learning rate of 10�5.

B.3. Performance evaluation

To assess the performance of our models, the we use the relative L2 and L1 losses as defined in equation (30). Another
common metric used in weather prediction is the anomaly correlation coefficient (ACC). The latitude weighted ACC for a
forecast variable v at forecast time-step l is defined following Rasp et al. (2020) as follows:

ACC(v, l) =

P
m,n wLat(m)X̃pred(l) [v,m, n] X̃true(l) [v,m, n]

r
P

m,n wLat(m)
⇣
X̃pred(l) [v,m, n]

⌘2P
m,n wLat(m)

⇣
X̃true(l) [v,m, n]

⌘2 , (32)

7On equiangular grids on the sphere, Clenshaw-Curtiss quadrature is often preferable (Schaeffer, 2013). This did not improve
performance over the Riemann sum however, and we chose to use the simpler Riemann sum instead.

16

Spherical Fourier Neural Operators

where X̃pred/true(l) [v,m, n] represents the long-term-mean-subtracted value of predicted (/true) variable v at the location
denoted by the grid co-ordinates (m,n) at the forecast time-step l. The long-term mean of a variable is simply the mean
value of that variable over a large number of historical samples in the training dataset. The long-term mean-subtracted
variables X̃pred/true represent the anomalies of those variables that are not captured by the long term mean values. wLat(m) is
the latitude weighting factor at the co-ordinate m. The latitude weighting is defined by Equation 33 as

wLat(j) =
cos(Lat(m))

1
NLat

PNlat
j cos(Lat(m))

. (33)

We report the mean ACC over all computed forecasts from different initial conditions and report the variability in the ACC
over the different initial conditions by showing the first and third quartile value of the ACC in all the ACC plots that follow
unless stated otherwise.

C. Datasets
C.1. Shallow Water Equations on the Rotating Sphere

The shallow water equations on the rotating 2-sphere model a thin layer of fluid covering a rotating sphere. They are
typically derived from the three-dimensional Navier-Stokes equations, assuming incompressibility and integrating over the
depth of the fluid layer. They are formulated as a system of hyperbolic partial differential equations

8
>>><

>>>:

@t'+r · ('u) = 0 in S2
⇥ (0,1)

@t('u) +r · T = S in S2
⇥ (0,1)

' = '0 on S2
⇥ {t = 0},

u = u0 on S2
⇥ {t = 0}.

(34)

The state vector (','uT)T contains the geopotential layer depth ' (mass) and the tangential momentum vector 'u
(discharge). In curvilinear coordinates, the flux tensor T can be written written with the outer product as 'u ⌦ u. The
right-hand side contains flux terms such as the Coriolis force. A detailed treatment of the SWE equations can be found in
e.g. (Giraldo, 2001; Bonev et al., 2018; Nair et al., 2005).

Training data for the SWE is generated by randomly generating initial conditions and advancing them in time using a
classical numerical solver. The initial geopotential height and velocity fields are realized as Gaussian random fields on the
sphere. The initial layer depth has an average of 'avg = 103 · g with a standard deviation of 120 · g. The initial velocity
components have a zero mean and a standard deviation of 0.2 ⇤ p'avg. The parameters of the PDE, such as gravity, radius
of the sphere and angular velocity, we choose the parameters of the Earth. Training data is generated on the fly by using a
spectral method to numerically solve the PDE on an equiangular grid with a spatial resolution of 256⇥ 512 and timesteps
of 150 seconds. Time-stapping is performed using the third-order Adams-Bashford scheme. The numerical method then
computes geopotential height, vorticity and divergence as output.

This data is z-score normalized and the modes are trained using epochs containing 256 samples each. To optimize the
weights, we use the popular Adam optimizer with a learning rate of 2 · 10�3.

C.2. Weather prediction/ERA5 Data

It is a multi-decadal, high-frequency estimate of the state of the Earth’s atmosphere. It is the result of reanalysis, a process
that uses data-assimilation (Carrassi et al., 2018; Kalnay, 2003) to combine modern numerical weather forecasting models
with historical observational records to produce an estimate of the historical ocean-atmosphere system. A reanalysis dataset
such as ERA5 spans multiple decades using dynamics from an unchanging modern numerical model. This is in contrast
to an operational analysis dataset where the numerical model gets periodically updated due to advances in computational
techniques, numerical methods and and improvements in the understanding of fundamental geophysics. Thus a reanalysis
dataset maintains temporal consistency. Furthermore, raw observations of the earth’s ocean-atmosphere system are sparsely
distributed in time and space, multimodal, and of variable quality. A reanalysis dataset assimilates various observational
sources informed by the uncertainty estimates of those observation sources. A reanalysis dataset provides a consistent
picture of the history of the earth’s atmosphere making it very useful as a training dataset for a machine learning model.
Consequently, a large and growing number of researchers (Rasp & Thuerey, 2021; Weyn et al., 2020; Scher & Messori,

17

Spherical Fourier Neural Operators

Table 3. Atmospheric and Surface variables predicted by our model. Two subsets of 26 and 73 variables each are used to train models
of various sizes. Detailed desciptions can be accessed on the ECMWF website https://apps.ecmwf.int/codes/grib/

param-db.

DESN DESCRIPTION ECMWF ID

10U 10 METRE u-WIND COMPONENT 165
10V 10 METRE v-WIND COMPONENT 166
2T 2 METRE TEMPERATURE 167
SP SURFACE PRESSURE 135
MSL MEAN SEA LEVEL PRESSURE 151
TCWV TOTAL COLUMN VERTICALLY-INTEGRATED WATER VAPOUR 137
100U 100 METRE u-WIND COMPONENT 228246
100V 100 METRE v-WIND COMPONENT 228247
Z--- GEOPOTENTIAL (AT PRESSURE LEVEL ---) 129
T--- TEMPERATURE (AT PRESSURE LEVEL ---) 130
U--- u COMPONENT OF THE WIND (AT PRESSURE LEVEL ---) 131
V--- v COMPONENT OF THE WIND (AT PRESSURE LEVEL ---) 132
R--- RELATIVE HUMIDITY (AT PRESSURE LEVEL ---) 157

2019; Arcomano et al., 2020; Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022) have used the ERA5 dataset for training
data-driven numerical weather models.

Models are trained on two subsets of the variables: a 26 channel dataset for evaluating and comparing models to each
other, and a 73 channel dataset used to train a larger model for comparison with IFS. The following set of 26 variables is
used in the 26 variable dataset: 10u, 10v, 2t, sp, msl, tcwv, 100u, 100v, z50, z250, z500, z850, z1000, u250,
u500, u850, u1000, v250, v500, v850, v1000, t100, t250, t500, t850, r500. For the 73 variable dataset, we
add z---, t---, u---, v--- and r--- at pressure levels 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925,
1000 hPa to the already existing variables. Table 3 lists an overview of variables used during training and their meaning. For
a complete overview, we refer to the ECMWF website https://apps.ecmwf.int/codes/grib/param-db.

D. Supplementary material
Our differentiable implementation of the SHT and a reference implementation of SFNO can be found at https://
github.com/NVIDIA/torch-harmonics.

Short videos depicting long rollouts of SFNO and polar artifacts can be found at https://youtu.be/OM3JZZN5uE4
and https://youtu.be/LPVejeU8YDE, respectively.

18

https://apps.ecmwf.int/codes/grib/param-db
https://apps.ecmwf.int/codes/grib/param-db
https://apps.ecmwf.int/codes/grib/param-db
https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics
https://youtu.be/OM3JZZN5uE4
https://youtu.be/LPVejeU8YDE

