

000 WIENERFLOW: WIENER-ADAPTIVE FLOW MATCHING 001 FOR PERCEPTION AND FIDELITY TRADE-OFF IN LOW- 002 LIGHT IMAGE ENHANCEMENT

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Low-light image enhancement (LLIE) strives to restore visibility and faithful
014 details from severely under-exposed photographs. Existing learning-based ap-
015 proaches largely polarize around two objectives: fidelity-driven models, optimized
016 for distortion metrics (e.g., PSNR, SSIM), tend to produce over-smoothed results
017 with detail loss in extreme darkness, whereas perception-driven generative models
018 synthesize visually appealing textures at the risk of hallucination. We bridge this
019 dichotomy through **WienerFlow**, a continuous-time, flow-matching framework
020 that unifies both objectives within a single linear transport path. Leveraging the
021 theory of neural ordinary differential equations, we show that (i) a noise-free linear
022 path originating from the low-light image equates to a fidelity-oriented trajectory,
023 while (ii) a linear path initialized from Gaussian noise inherently favors percep-
024 tual richness. Under mild regularity assumptions, we prove that convex combi-
025 nations of these two vector fields yield another valid linear flow, and we derive
026 an optimal weight that maximizes perceptual realism subject to a fidelity budget.
027 Extensive experiments on four LLIE benchmarks demonstrate that WienerFlow
028 achieves state-of-the-art PSNR/SSIM scores while substantially improving per-
029 ceptual quality, as confirmed by LPIPS, FID and NIQE on no-reference dataset,
030 without introducing spurious textures. Our findings provide both a theoretical
031 lens and a practical solution for balancing perception and distortion in low-light
032 enhancement.

033 1 INTRODUCTION

036 Images captured in low-light environments or under extremely short exposure time often face chal-
037 lenges such as poor visibility, low contrast, color distortion and high noise levels. Low-light image
038 enhancement (LLIE) aims to recover visually pleasing and information-rich images from severely
039 underexposed inputs. Although convolutional neural networks (CNNs) and Transformer-based ap-
040 proaches have driven notable advances, the majority of learning-based LLIE methods are trained under
041 fidelity-oriented objectives—optimizing Peak Signal-to-Noise Ratio (PSNR) or Structural Sim-
042 ilarity Index (SSIM)—whose correlation with human visual preference is, at best, imperfect (Blau
043 & Michaeli, 2018; Zhang et al., 2018). As a consequence, enhanced outputs often exhibit overly
044 smooth transitions and substantial detail loss in extremely dark regions. Furthermore, constrained
045 by the multi-step iterative nature of the inference process in diffusion models, these methods often
046 require substantial inference time. In contrast, generative paradigms, such as adversarial learning and
047 particularly the recently prominent methods based on diffusion models (Jiang et al., 2021; Hou et al.,
048 2024) emphasize perceptual realism and can synthesize plausible fine-scale structures in shadows.
049 However, in the absence of explicit, physically or statistically grounded guidance, these models are
050 prone to producing unrealistic textures or structural inconsistencies. This tension reflects the broader
051 perception–distortion dilemma: improving perceptual quality typically compromises metric fidelity,
052 and vice versa (Blau & Michaeli, 2018).

053 Recently, continuous-time generative modeling via neural ordinary differential equations (Neu-
054 ral ODEs) and flow matching has provided a rigorous framework for learning deterministic or
055 stochastic transport maps between probability distributions (Chen et al., 2018; Lipman et al.,

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
2023). When LLIE is cast as transporting the low-light image distribution to its normal counterpart, the choice of the path’s starting distribution fundamentally biases the learned transformation. Specifically, (i) starting directly from the low-light image without injected noise induces a *fidelity-driven* path that preserves measured content yet lacks generative richness (Jung et al., 2025); (ii) initiating from Gaussian noise and conditioned on low-light images encourages a *perception-driven* path that can synthesize details but risks hallucination (Hou et al., 2024; Jiang et al., 2024).

To reconcile these competing desiderata, we introduce **WienerFlow**, a flow-matching paradigm that explicitly blends perception and fidelity oriented trajectories. We show that, under mild regularity assumptions, two linear flow paths that share a common endpoint (the normal image) are additively composable: any convex combination of their vector fields yields another valid linear path from a newly defined virtual start point to the common endpoint. Moreover, we theoretically establish the existence of an optimal convex weight that maximizes perceptual realism subject to a fidelity constraint (or vice versa). This additive property allows WienerFlow to learn a single continuous path that simultaneously honors fidelity and perceptual quality. Extensive experiments on multiple LLIE benchmarks demonstrate that WienerFlow attains competitive or superior PSNR/SSIM while markedly improving perceptual realism and reducing texture hallucinations compared with both direct mapping and purely generative methods. Our contributions are threefold:

- We reinterpret LLIE through the lens of flow matching, revealing how noise injection implicitly governs the perception–fidelity bias of continuous transport paths.
- We prove an additive-composition theorem for linear flow paths and derive an optimal convex weighting strategy that balances perceptual and fidelity objectives.
- We develop *WienerFlow*, a practical algorithm based on MeanFlow that achieves state-of-the-art trade-offs between visual realism and distortion metrics across diverse datasets.
- We propose a time-length aware consistency loss, enabling even 1-step evaluation to achieve competitive performance.

2 RELATED WORKS

Fidelity Driven Learning Based Methods. Early deep learning approaches for LLIE largely superseded traditional methods by leveraging the power of large-scale data. Many of these initial works (Lore et al., 2017; Ren et al., 2019) employed direct end-to-end learning, utilizing Convolutional Neural Networks (CNNs) to learn a direct mapping from low-light to normal images. Concurrently, a significant body of works (Wei et al., 2018; Wu et al., 2022; Cai et al., 2023) drew inspiration from the Retinex theory (Rahman et al., 2004). Despite achieving significant progress over traditional techniques, these methods often rely on optimizing for fidelity-based loss functions (L1 or L2 loss). While models trained with these objectives excel at producing high Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) (Wang et al., 2004) scores, they often fall short in terms of human perceptual quality. The resulting images, particularly in extremely

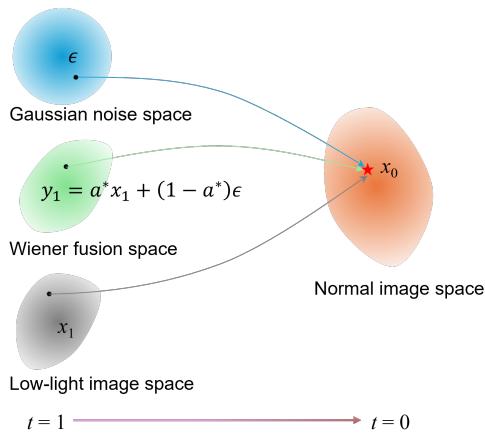


Figure 1: **WienerFlow: linear path bridges fidelity and perception.** The *fidelity* path (gray) directly transports the low-light distribution space to normal image space while the *perception* path (blue) transports Gaussian Noise to normal image space. x_0 sampled from the normal image distribution is the common endpoint of two flow-matching trajectories mentioned above. By linear additivity, a convex combination of their start points yields another valid linear path (green) starting at $y_1 = a^* x_1 + (1 - a^*) \epsilon$ and evolving as $y_t = t y_1 + (1 - t) x_0$. Choosing the optimal pixel-wise weight a^* balances distortion and realism—biasing toward x_1 in high-SNR regions and toward ϵ in low-SNR shadows—while preserving the same endpoint x_0 .

108 dark scenes, tend to be overly smooth, sacrificing fine-grained details and textures that are crucial
 109 for visual realism.

110 **Generative Models for Perceptual Enhancement.** To address the shortcomings of fidelity-centric
 111 optimization, researchers turned to generative models, which are better suited for producing per-
 112 ceptually convincing results. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
 113 were first applied to LLIE. EnlightenGAN (Jiang et al., 2021) stands out as a seminal work in this
 114 area. However, GAN-based methods are notoriously difficult to train, often suffering from instabil-
 115 ity, mode collapse, and the generation of undesirable artifacts, which has limited their widespread
 116 adoption and performance. Recently, Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al.,
 117 2020) and Flow Matching Models (FM) (Lipman et al., 2022) have achieved state-of-the-art results
 118 across numerous image generation tasks. Their ability to produce diverse and high-quality images
 119 has motivated their application to LLIE. These models operate by learning to reverse a gradual nois-
 120 ing process. By iteratively denoising a random noise map conditioned on the low-light input, they
 121 can generate a corresponding high-quality, normal image. Several recent works have demonstrated
 122 the impressive potential of diffusion models for LLIE. Methods such as GSAD (Hou et al., 2024) and
 123 LLDiffusion (Wang et al., 2025) have shown that diffusion-based approaches can restore stunning
 124 details and textures that were previously unattainable. Other works like ExposureDiffusion (Wang
 125 et al., 2023) aim to provide controllable enhancement by conditioning the diffusion process on an
 126 exposure value. Furthermore, some methods explore domain-specific adaptations, such as using a
 127 wavelet-based diffusion process (Jiang et al., 2023) to better capture frequency-domain information
 128 and saving computing cost.

129 However, these methodologies exhibit two primary drawbacks. First, while they effectively lever-
 130 age the generative capabilities of diffusion models, the absence of explicit and principled guidance
 131 often leads to the generation of unrealistic textures. Consequently, the perceptual quality in darker
 132 regions is degraded, indicating a neglect of fidelity. Second, the inherent nature of diffusion models
 133 necessitates a multi-step sampling process during inference. Despite the application of acceleration
 134 strategies such as Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020), a typical num-
 135 ber of function evaluations (NFE) still exceeds ten steps, which curtails the practical applicability of
 136 these models.

137 3 METHODOLOGY

139 3.1 PRELIMINARY

141 **Flow Matching and MeanFlow Models.** Flow Matching (FM) offers a straightforward way to
 142 transform a simple prior $\epsilon \sim p_{\text{prior}}$ into the expected data distribution $x \sim p_{\text{data}}$ by prescribing a
 143 *velocity field* that drives latent particles along a continuous path $z_t = a_t x + b_t \epsilon$ in time t . The
 144 *marginal (instantaneous) velocity* is the conditional expectation over all microscopic flows:

$$145 \quad v(z_t, t) = \mathbb{E}_{p_t(v_t | z_t)} [v_t], \quad (1)$$

146 where $v_t = \dot{z}_t$ is the (sample-dependent) conditional velocity. A simple yet effective canonical path
 147 is the linear path: $a_t = 1 - t$, $b_t = t$. In this case, the velocity field can be expressed as $v_t = \epsilon - x$.
 148 Sampling is obtained by integrating the ordinary differential equation (ODE):

$$149 \quad \frac{dz_t}{dt} = v(z_t, t), \quad (2)$$

150 starting from $z_1 = \epsilon$ and running the flow backwards to $t = 0$. When using a Euler solver, the
 151 solution of each step can be obtained with $z_t = z_{t-1} + \Delta_t \cdot v(z_{t-1}, t)$, where Δ_t represents the
 152 discretized time interval.

153 **MeanFlow.** While CFM models the *instantaneous* field v , MeanFlow (Geng et al., 2025) introduces
 154 the *average* velocity over a finite interval (r, t) :

$$155 \quad u(z_t, r, t) = \frac{1}{t - r} \int_r^t v(z_\tau, \tau) d\tau. \quad (3)$$

156 This quantity aligns with the net displacement $(t - r)u$ and depends jointly on the start and end
 157 times. Crucially, differentiating the definition yields the *MeanFlow identity*, an exact algebraic link

162 between average and instantaneous velocities,
 163

$$164 \quad u(z_t, r, t) = v(z_t, t) - (t - r) \frac{d}{dt} u(z_t, r, t), \quad (4)$$

$$165$$

166 which collapses to $u = v$ as $r \rightarrow t$. equation 4 is used to compute the ground truth average velocity
 167 during the training. In practical implementations, the first term in equation 4, which represents a
 168 constant velocity field, can be directly computed from the sampled image and noise. The second
 169 term, which involves taking the partial derivative of the current network with respect to time t , can
 170 be calculated using the Jacobian-vector product (JVP) operator in PyTorch.
 171

172 3.2 WIENER-ADAPTIVE FUSION PATH

173 Let $x_0 \sim p_{normal}$ denote an image sampled from the well-exposed reference images, $x_1 \sim p_{low}$ is
 174 the low-light version of x_0 , and $\epsilon \sim \mathcal{N}(0, I)$ is an i.i.d. Gaussian noise sample. All continuous paths
 175 are parameterised by $t \in [0, 1]$. Throughout, $\dot{x}_t \triangleq \frac{d}{dt} x_t$. We start from two linear (affine) paths that
 176 share the origin x_0 :
 177

$$178 \quad \text{Fidelity path : } x_t = t x_1 + (1 - t) x_0, \quad (5)$$

$$179$$

$$180 \quad \text{Perception path: } z_t = t \epsilon + (1 - t) x_0. \quad (6)$$

181 The flow path in equation 5 starts from the low-light observation, optimizing such a path approxi-
 182 mated by a neural network $f(x_t, t; \theta_F)$ is fidelity oriented since it is anchored to the actual obser-
 183 vation and enforces data-consistency. The path in equation 6 is perception oriented because starting
 184 from noise endows the model with generative capability, whose velocity estimator $f(z_t, t, x_1; \theta_P)$
 185 is typically conditioned on low-light observation.

186 **Proposition 1** (Linear additivity). *For any real constants a, b , the mixture $y_t \triangleq a x_t + b z_t$ is itself
 187 an affine path in t with closed-form*

$$188 \quad y_t = t [a x_1 + b \epsilon] + (1 - t) (a + b) x_0. \quad (7)$$

$$189$$

190 *Consequently, y_t satisfies the constant-velocity $\dot{y}_t = y_1 - y_0$, where $y_1 = a x_1 + b \epsilon$, $y_0 = (a + b) x_0$.*

191 *Proof.* Substituting equation 5–equation 6 and collecting terms:

$$192 \quad y_t = a [t x_1 + (1 - t) x_0] + b [t \epsilon + (1 - t) x_0]$$

$$193 \quad = t [a x_1 + b \epsilon] + (1 - t) (a + b) x_0,$$

$$194$$

195 which is affine in t ; differentiation yields the claimed constant velocity. \square

196 **Corollary 1** (Endpoint preservation). *y_t passes through the common start point x_0 iff*

$$197 \quad a + b = 1 \iff b = 1 - a. \quad (8)$$

$$198$$

199 *Under this necessary and sufficient condition the path reduces to*

$$200 \quad y_t = t [a x_1 + (1 - a) \epsilon] + (1 - t) x_0, \quad (9)$$

$$201$$

202 *with new endpoint $y_1 = a x_1 + (1 - a) \epsilon$.*

$$203$$

204 **Wiener-adaptive fusion path.** We start the flow from a fusion endpoint that mixes the low-light
 205 observation and a noise draw:

$$206 \quad y_1(i) = a(i) x_1(i) + [1 - a(i)] \epsilon(i), \quad \epsilon(i) \sim \mathcal{N}(0, 1), \quad \epsilon(i) \perp x_1(i), \quad (10)$$

$$207$$

208 with $x_1(i) = s(i) + n(i)$ and possibly heteroscedastic variances $\sigma_s^2(i) = \text{Var}[s(i)]$ and $\sigma_n^2(i) =$
 209 $\text{Var}[n(i)]$. To preserve generative diversity while avoiding fidelity bias, we align conditional means:

$$210 \quad \mathcal{J}(a(i)) \triangleq \mathbb{E} \left[(\mathbb{E}[y_1(i) | x_1(i)] - \mathbb{E}[s(i) | x_1(i)])^2 \right]. \quad (11)$$

$$211$$

212 Intuitively, $(1 - a)\epsilon$ supplies diversity for perception, whereas equation 11 constrains the endpoint’s
 213 conditional center to be fidelity-consistent in expectation.
 214

216
217 **Proposition 2** (Expectation-aligned Wiener weight). *Minimizing equation 11 yields the pixel-wise
218 optimal fusion weight*

$$219 \\ 220 a^*(i) = \frac{\sigma_s^2(i)}{\sigma_s^2(i) + \sigma_n^2(i)} = \frac{\text{SNR}(i)}{\text{SNR}(i) + 1}, \quad \text{SNR}(i) \triangleq \frac{\sigma_s^2(i)}{\sigma_n^2(i)}. \quad (12)$$

223
224 *Proof of Proposition 2 can be found in the Appendix.* The result in 2 indicates that minimizing the
225 conditional expectation leading to a Wiener fusion weight.

226 **MeanFlow for LLIE with Wiener-adaptive fusion path.** We use the additive linear path of equa-
227 tion 9 with a Wiener-adaptive fusion weight to obtain a *single* transport trajectory that balances
228 perception and fidelity without training two separate models. Concretely, for each pixel i we ap-
229 proximate the optimal fusion weight by

$$232 \\ 233 a^*(i) = \frac{\text{SNR}(i)}{\text{SNR}(i) + 1}, \quad \text{SNR} \approx \frac{G * \hat{s}^2}{G * \hat{n}^2 + \delta}, \quad (13)$$

234 where G is a Gaussian smoothing operator, $\hat{s} = G * x_1$, $\hat{n} = x_1 - \hat{s}$ and δ is a small number to
235 ensure numerical stability. The pixel-wise virtual starting point can then be formed with:

$$236 \\ 237 y_1 = a^* \odot x_1 + (1 - a^*) \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (14)$$

238 and define the linear flow $y_t = t y_1 + (1 - t) x_0, t \in [0, 1]$, which shares the endpoint x_0 with the
239 fidelity and perception paths but needs only one learned velocity field.

240 We adopt MeanFlow (Geng et al., 2025) as the flow-matching backbone to reduce function evalua-
241 tions at inference. Let $u = f(y_t, r, t, x_0; \theta)$ denote the average velocity, estimated by an UNet
242 parameterized by θ over a finite interval (r, t) , where x_0 is concatenated with y_t along the chan-
243 nel dimension as a conditional guide. Times t and r are embedded by a shared time encoder and
244 summed to yield the final time code. We train u_θ to align with the target average velocity obtained
245 by the MeanFlow identity (equation 4), in our context the instantaneous velocity is $v = y_1 - x_0$ and
246 the partial derivative of u_θ with respect t is obtained via a JVP operator. Time sampling strategy
247 of (r, t) follows MeanFlow, sampled from $\text{LogitNormal}(-0.4, 1.0)$ with half of the minibatch en-
248 forcing $t = r$, this sampling scheme is denoted as \mathcal{S} . The training and inference algorithm can be
249 shown in Alg. 1 and Alg. 2 respectively. The distance metric in Alg 1, denoted as $d(\cdot, \cdot)$, is the
250 Pseudo-Huber loss (Song & Dhariwal, 2023).

251 **Algorithm 1** Training

252 1: **while** not converged **do**
253 2: sample a minibatch $\{(x_0, x_1)\}$ with $x_0 \sim p_{\text{normal}}$, $x_1 \sim p_{\text{low}}$
254 3: sample $(r, t) \sim \mathcal{S}$ and $\epsilon \sim \mathcal{N}(0, I)$
255 4: $a^* \leftarrow$ equation 13
256 5: $y_1 = a^* \odot x_1 + (1 - a^*) \odot \epsilon$
257 6: $y_t = t y_1 + (1 - t) x_0$
258 7: $v = y_1 - x_0$
259 8: $u = f(y_t, r, t, x_0; \theta)$
260 9: $u_{\text{target}} = v - (t - r) \frac{\partial u}{\partial t}$
261 10: $L = d(u, \text{stopgrad}(u_{\text{target}}))$
262 11: perform a gradient descent step on $\nabla_\theta L$
263 12: **end while**

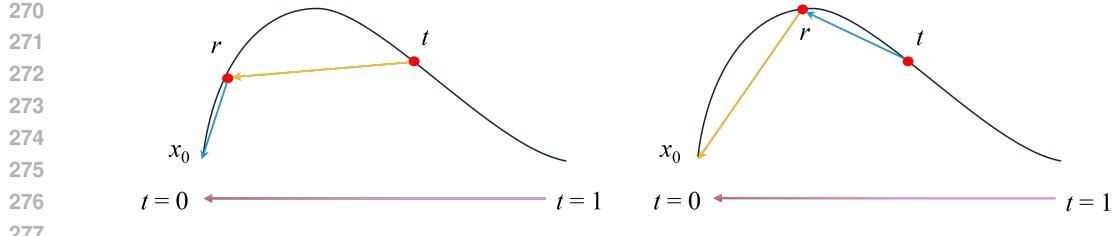


Figure 2: Tail-endpoint consistency. A teacher–student scheme stabilizes the shorter segment and learns the longer one; when $t \leq 2r$ the teacher (blue) is on $[t, r]$, otherwise on $[r, 0]$.

Algorithm 2 Inference

```

283 1: Inputs:  $x_0$  (reference/anchor),  $x_1$  (low-light), trained  $f(\cdot; \theta)$ , steps  $K$  (e.g.,  $K \in \{1, 2\}$ )
284 2: Sample  $\epsilon \sim \mathcal{N}(0, I)$ 
285 3:  $a^* \leftarrow$  equation 13
286 4:  $y_1 = a^* \odot x_1 + (1 - a^*) \odot \epsilon$ 
287 5: Initialize  $z \leftarrow y_1$ ,  $t = 1$ ,  $r = 1 - \frac{1}{K}$ 
288 6: for  $k = 1$  to  $K$  do
289 7:    $u = f(z, r, t, x_0; \theta)$ 
290 8:    $z \leftarrow z - \frac{1}{K}u$ 
291 9:    $t \leftarrow t - \frac{1}{K}$ ,  $r \leftarrow r - \frac{1}{K}$ 
292 10: end for
293 11: Return:  $z$ 
  
```

3.3 TAIL-ENDPOINT CONSISTENCY FOR ONE-STEP QUALITY

Motivation. MeanFlow allows one-step generation from any time τ to 0 by evaluating $u(z_\tau, 0, \tau)$; in particular, $u(z, 0, 1)$ yields a direct one-step sampler. However, as the time interval enlarges, the approximation error of the mean field u grows and degrades one-step fidelity and realism. Inspired by Consistency Models (Song et al., 2023), we design a length-aware consistency loss, which enforces that for any sampled time triplet $(0, r, t)$, the path integral starting from t , passing through r , and reaching the tail-endpoint $t = 0$ remains consistent and aligns with the ground truth x_0 . Moreover, we analyze the relationship between the error in the velocity field of MeanFlow and the time length, with which to improve the consistency loss. To align with the notation adopted in MeanFlow, we denote the intermediate state by z_t instead of y_t .

Length-amplified mean-field error. Recalling the MeanFlow identity (Eq. (4)):

$$u(z_t, r, t) = v(z_t, t) - (t - r) \partial_t u(z_t, r, t). \quad (15)$$

Let u^*, v^* be ground-truth fields and u_θ, v_θ their learned counterparts. With uniform gaps on the training support $E_u(r, t) \triangleq \sup_z \|u_\theta - u^*\|$, $E_v(t) \triangleq \sup_z \|v_\theta - v^*\|$, $E_{\partial u}(r, t) \triangleq \sup_z \|\partial_t u_\theta - \partial_t u^*\|$, subtracting the two versions of equation 15 and taking norms yields

$$E_u(r, t) \leq E_v(t) + (t - r) E_{\partial u}(r, t), \quad (16)$$

i.e., the mean-field error scales *linearly in the first order* with the interval length $(t - r)$. Consequently, the longer of $[t, r]$ and $[r, 0]$ is the *error-dominant* segment for single-step updates.

Tail-endpoint consistency loss. For any $0 < r < t \leq 1$, the velocity field over time satisfies with

$$z_t - x_0 = \int_0^t v(z_\tau, \tau) d\tau = \int_0^r v(z_\tau, \tau) d\tau + \int_r^t v(z_\tau, \tau) d\tau. \quad (17)$$

Combining equation 17 with the average velocity defined in equation 3 leading to the triplet-based endpoint estimator,

$$\tilde{x}_0(t, r; \theta_1, \theta_2) \triangleq z_t - (t - r) u_{\theta_1}(z_t, r, t) - r u_{\theta_2}(z_r, 0, r), \quad (18)$$

where $\theta_1 = \theta_2 = \theta$, refers to the parameters of a model that performs well in multi-step iterations. Directly enforcing the estimation in equation 18 matches the real endpoint x_0 lead to a consistency

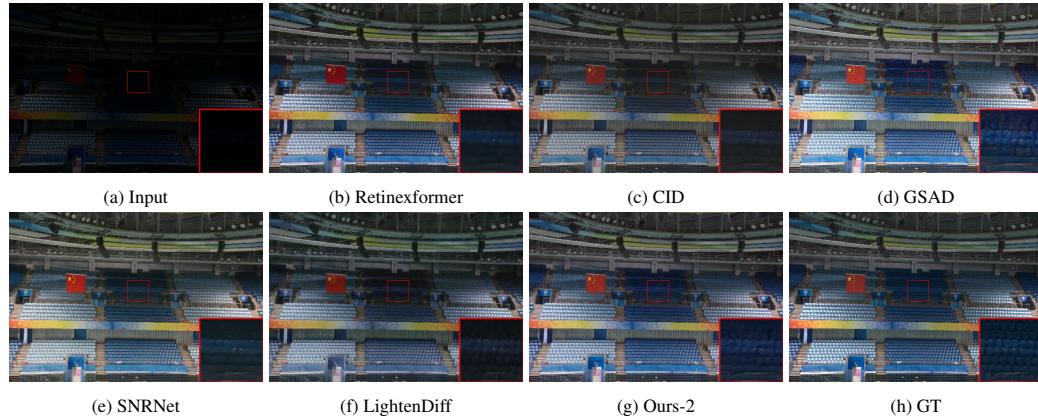


Figure 3: Visual comparisons with other SOTA methods on real dataset LOLv2-real.

loss $\mathcal{L}(t, r; \theta, \theta^-) = \mathbb{E} [d(\tilde{x}_0(t, r; \theta, \theta^-), x_0)]$. To reflect the error dominance implied by equation 16, we assign the *longer* segment to the student parameters θ (receiving gradients) and the *shorter* segment to a frozen EMA teacher θ^- (no gradients). Let $\Delta_1 = r$ and $\Delta_2 = t - r$. The piecewise loss is

$$\mathcal{L}_{\text{TEC}}(t, r; \theta, \theta^-) = \begin{cases} \mathbb{E} [d(\tilde{x}_0(t, r; \theta^-, \theta), x_0)], & \text{if } t \leq 2r \ (\Delta_1 \geq \Delta_2), \\ \mathbb{E} [d(\tilde{x}_0(t, r; \theta, \theta^-), x_0)], & \text{if } t > 2r \ (\Delta_2 > \Delta_1), \end{cases} \quad (19)$$

where $\mathbb{E} [\cdot]$ denotes the expectation over all random variables. Fig. 2 illustrates the composition of the consistency loss function under different time sampling distributions.

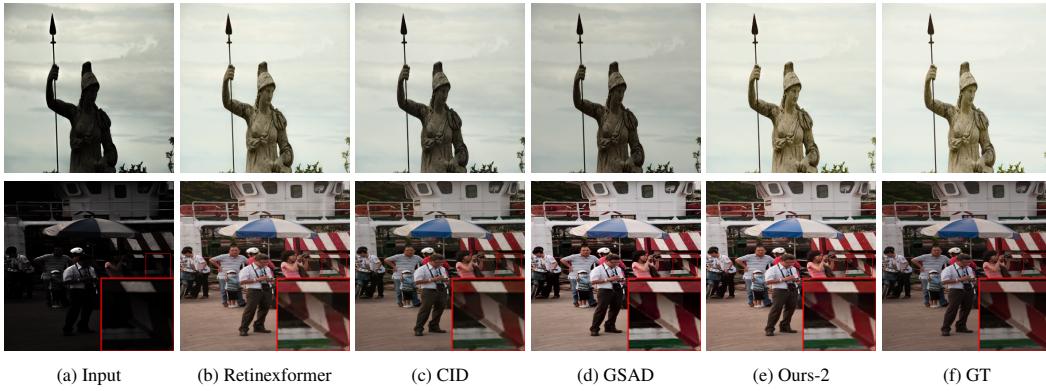
4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. We evaluate on three paired (full-reference) benchmarks and four unpaired (no-reference) collections. For full-reference evaluation we use LOLv1 (Wei et al., 2018), LOLv2-real, and LOLv2-synthetic (Yang et al., 2020). LOLv1 provides paired low/normal-light images captured under controlled exposure changes. LOLv2 extends this to more diverse scenes, with a real subset (LOLv2-real) of paired photographs and a synthetic subset (LOLv2-syn) generated from high-quality references by simulating low illumination. For no-reference evaluation we follow common LLIE practice and report results on DICM (Lee et al., 2013), LIME (Guo et al., 2017), MEF, and NPE (Wang et al., 2013), which contain natural low-light photographs without ground-truth references. We use the model trained on LOLv2-syn dataset and set NFE=2 to evaluate on no-reference datasets. On paired datasets we report fidelity metrics PSNR and SSIM (Wang et al., 2004) together with perceptual metrics LPIPS (Zhang et al., 2018) (lower is better) and FID (lower is better), computed between the enhanced outputs and the corresponding normal-light references. On the unpaired sets we use NIQE (Mittal et al., 2012) (lower is better) as a no-reference perceptual quality indicator.

Baselines. We compare against representative non-learning and learning methods across four families (see Table 1 and Table 2 for the complete list and citations): (i) *Traditional/Retinex*: MF (Fu et al., 2016a), LIME (Guo et al., 2017), SRIE (Fu et al., 2016b). (ii) *CNN/Transformers/Mamba*: Zero-DCE (Guo et al., 2020), RUAS (Liu et al., 2021), SCI (Ma et al., 2022), SNRNet (Xu et al., 2022), Retinexformer (Cai et al., 2023), MBTaylorV2 (Jin et al., 2025), CID (Yan et al., 2025). (iii) *Generative models*: EnlightenGAN (Jiang et al., 2021), LLFlow (Wang et al., 2022), PyDiff (Zhou et al., 2023), GSAD (Hou et al., 2024), LightenDiff (Jiang et al., 2024), LLDiffusion (Wang et al., 2025). We report two WienerFlow variants: Ours-1 uses a single sampling step (NFE= 1) and Ours-2 uses two steps (NFE= 2).

Implementation details. We implement all models in PyTorch. Training runs on a single NVIDIA RTX 4090 GPU. We use the Adam optimizer with its default β parameters and a fixed learning rate of 1×10^{-4} . after 300k iterations we add the proposed tail-endpoint consistency loss

391 Figure 4: Visual comparisons with different methods on LOLv2-syn dataset.
392393 Table 1: Quantitative results on LOLv1 (Wei et al., 2018), LOLv2-real (Yang et al., 2020), and
394 LOLv2-synthetic (Yang et al., 2020) dataset. The best results are emphasized in **bold**, while the
395 second best results are marked with an underlined.
396

Methods	LOLv1				LOLv2-real				LOLv2-syn			
	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓
MF (SP'16)	16.97	0.508	0.380	119.23	18.73	0.627	0.388	96.22	17.49	0.792	0.185	52.54
LIME (TIP'16)	16.76	0.445	0.350	117.89	15.24	0.517	0.415	93.82	16.88	0.782	0.195	57.17
SRIE (CVPR'16)	11.86	0.495	0.257	107.68	14.45	0.612	0.312	87.86	14.50	0.672	0.241	73.26
Zero-DCE (CVPR'20)	14.86	0.562	0.335	101.23	18.06	0.680	0.312	91.95	17.76	0.838	0.168	49.24
RUAS (CVPR'21)	16.40	0.701	0.270	112.37	18.37	0.731	0.310	87.15	16.55	0.665	0.364	76.93
SCI (CVPR'22)	14.78	0.618	0.339	87.17	17.30	0.632	0.308	76.93	15.42	0.763	0.233	61.20
SNRNet (CVPR'22)	24.61	0.840	0.151	55.12	21.47	0.872	0.157	58.76	24.13	0.944	0.056	19.96
Retinexformer (ICCV'23)	<u>25.15</u>	0.843	0.131	71.15	22.79	0.866	0.171	62.46	25.67	0.952	0.059	22.75
MBTaylorV2 (TPAMI'25)	22.99	0.891	0.124	56.42	20.97	0.868	0.159	56.23	24.53	0.945	0.061	23.65
CID (CVPR'25)	23.49	0.870	0.105	52.51	<u>23.42</u>	0.862	0.169	50.17	25.70	0.942	0.047	19.00
EnlightenGAN (TIP'21)	17.48	0.652	0.275	98.49	18.63	0.730	0.309	92.57	16.57	0.802	0.212	74.32
LLFlow (AAAI'22)	21.14	0.904	0.119	64.58	17.43	0.846	0.176	77.05	23.42	0.950	0.050	20.79
PyDiff (IJCAI'23)	25.64	0.849	0.142	69.78	23.44	0.833	0.208	71.54	25.13	0.927	0.098	29.36
GSAD (NeurIPS'23)	22.34	<u>0.897</u>	0.110	57.63	20.11	0.865	0.113	47.49	24.13	0.942	0.052	19.36
LightenDiff (ECCV'24)	20.45	0.803	0.192	65.72	22.73	0.876	0.166	78.29	21.51	0.899	0.154	57.24
LLDiffusion (PR'25)	20.28	0.896	0.098	42.32	18.54	0.861	0.109	48.39	23.96	0.952	0.040	17.47
Ours-1	20.47	0.854	0.136	68.82	<u>23.24</u>	0.882	0.108	40.46	26.05	0.958	0.042	<u>15.61</u>
Ours-2	21.79	0.891	0.108	<u>51.35</u>	23.17	0.903	0.095	38.16	25.90	0.959	0.038	14.36

412 from Sec. 3.3 and continue training until convergence. Unless otherwise noted, reported results are
413 obtained with the same pretrained model and the specified number of sampling steps (Ours-1 or
414 Ours-2).
415

417 4.2 COMPARISON WITH OTHER SOTA METHODS

419 **Results on LOLv1 and LOLv2 datasets.** Table 1 summarizes results on the three paired benchmarks.
420 Across datasets, Ours-2 delivers the strongest overall *perceptual* quality under fast sampling:
421 on LOLv2-real it attains the best SSIM/LPIPS/FID (0.903/0.095/38.16); on LOLv2-syn it achieves
422 the best SSIM/LPIPS/FID (0.959/0.038/14.36). On LOLv1, Ours-2 secures the second-best FID
423 (51.35) and a top-3 LPIPS (0.108), trailing LLDiffusion (0.098) and CID (0.105). In terms of dis-
424 tortion, PSNR leadership largely resides with PyDiff on LOLv1/LOLv2-real (25.64/23.44,dB) and
425 is competitive on LOLv2-syn, where our Ours-1 variant reaches the highest PSNR (26.05,dB) and
426 Ours-2 is close behind (25.90,dB). Fig. 3 showcase the visual comparasions on LOLv2-real dataset,
427 unlike other methods, our method suppresses artifacts and better preserves seat textures and edges,
428 yielding natural contrast and colors. Visual results from LOLv2-syn dataset shown in Fig. 4 illustrate
429 that our method tends to produce more natural color and brightness in dark aeras.
430

431 **One vs. two steps.** Moving from Ours-1 (NFE=1) to Ours-2 (NFE=2) consistently improves per-
432 ceptual metrics with minimal change in PSNR: on LOLv1, LPIPS/FID improves 0.136→0.108 and
433 68.82→51.35; on LOLv2-real, LPIPS/FID improves 0.108→0.095 and 40.46→38.16 with SSIM

(a) Ablation on fusion strategies.			
<i>a</i>	<i>b</i>	PSNR \uparrow	LPIPS \downarrow
1	0	20.12	0.147
0	1	19.76	0.139
x_1	$1-x_1$	20.52	0.133
a^*	$1-a^*$	23.11	0.111

(b) Ablation on the consistency loss \mathcal{L}_{TEC} (NFE= 1).		
Setting	PSNR \uparrow	LPIPS \downarrow
w/o \mathcal{L}_{TEC}	23.48	0.122
$\mathcal{L}'_{\text{TEC}}$	23.29	0.121
\mathcal{L}_{TEC} (ours)	23.24	0.108

Table 3: Ablations studies on LOLv2-real dataset.

0.882 \rightarrow 0.903; on LOLv2-syn, LPIPS/FID improves 0.042 \rightarrow 0.038 and 15.61 \rightarrow 14.36 while SSIM slightly increases 0.958 \rightarrow 0.959 (PSNR 26.05 \rightarrow 25.90dB).

Results on no-reference datasets. Table 2 reports NIQE on DICM, LIME, MEF, and NPE. WienerFlow achieves the lowest (best) NIQE on three of four datasets: LIME (3.33), MEF (3.46), and NPE (3.22). Relative to the second best results, this corresponds to 10.2% (LIME; 3.71 \rightarrow 3.33), 6.7% (MEF; 3.71 \rightarrow 3.46), and 9.3% (NPE; 3.55 \rightarrow 3.22) reductions. On DICM, WienerFlow attains 3.30 NIQE and is competitive with the best published score (3.08), remaining within **7.1%**. These no-reference results corroborate the paired-set findings: WienerFlow improves natural image statistics in low-light scenes without introducing perceptual artifacts.

4.3 ABLATION STUDY

We conduct experiments on LOLv2-real to validate the effectiveness of our method. **Effectiveness of the proposed Wiener-adaptive fusion weight.** we compare several ways of forming the endpoint: (1) a path initialized purely from the low-light observation ($a=1$), (2) a path initialized purely from noise ($a=0$), and (3) a heuristic pixel-wise fusion that directly uses the low-light image as the weight (smoothed by a Gaussian for stability). Table 3a reports the results. The first two rows verify our intuition and theory: the *noise* path yields better perceptual quality (lower LPIPS) whereas the *observation* path provides better fidelity (higher PSNR). In contrast, our Wiener-adaptive weight a^* simultaneously improves both distortion and perception, achieving the best PSNR/LPIPS among all variants.

Effect of the consistency objective. We further evaluate one-step inference variants to isolate the effect of the proposed temporal expectation-consistency loss \mathcal{L}_{TEC} . As shown in Table 3b, adding \mathcal{L}_{TEC} consistently improves perceptual quality (LPIPS drops from 0.122 to **0.108**) with negligible changes in PSNR, outperforming both training without the consistency term and a length-agnostic variant $\mathcal{L}'_{\text{TEC}}$. These results confirm that enforcing conditional-mean alignment along the short trajectory strengthens one-step perception while maintaining distortion.

5 CONCLUSION

We propose a Wiener-adaptive fusion endpoint and a single transport trajectory for low-light enhancement, initializing $y_1 = a^*x_1 + (1 - a^*)\epsilon$. An expectation-aligned objective yields the pixel-wise weight $a^* = \text{SNR}/(\text{SNR} + 1)$, preserving generative diversity while anchoring fidelity. One limitation of our work is that SNR estimation may be biased under extreme noise/ISP mismatch; future work will explore learned calibration and content-adaptive trajectories.

486 REFERENCES
487

488 Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proceedings of the*
489 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6228–6237,
490 2018.

491 Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Timofte, and Yulun Zhang. Retinexformer:
492 One-stage retinex-based transformer for low-light image enhancement. In *Proceedings of the*
493 *IEEE/CVF International Conference on Computer Vision*, pp. 12504–12513, 2023.

494 Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
495 equations. In *NeurIPS*, pp. 6571–6583, 2018.

496 497 Xueyang Fu, Delu Zeng, Yue Huang, Yinghao Liao, Xinghao Ding, and John Paisley. A fusion-
498 based enhancing method for weakly illuminated images. *Signal Processing*, 129:82–96, 2016a.

499 500 Xueyang Fu, Delu Zeng, Yue Huang, Xiao-Ping Zhang, and Xinghao Ding. A weighted variational
501 model for simultaneous reflectance and illumination estimation. In *2016 IEEE Conference on*
502 *Computer Vision and Pattern Recognition*, Jun 2016b.

503 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
504 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

505 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
506 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
507 *processing systems*, 27, 2014.

508 509 Chengzhi Guo, Chongyi Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong, and Runmin
510 Cong. Zero-reference deep curve estimation for low-light image enhancement. In *CVPR*, pp.
511 1780–1789, 2020.

512 Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light image enhancement via illumination map
513 estimation. *IEEE Transactions on Image Processing*, pp. 982–993, Feb 2017.

514 515 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
516 *Neural Information Processing Systems*, 33:6840–6851, 2020.

517 Jinhui Hou, Zhiyu Zhu, Junhui Hou, Hui Liu, Huanqiang Zeng, and Hui Yuan. Global structure-
518 aware diffusion process for low-light image enhancement. *Advances in Neural Information Pro-*
519 *cessing Systems*, 36, 2024.

520 521 Hai Jiang, Ao Luo, Haojiang Fan, Songchen Han, and Shuaicheng Liu. Low-light image enhance-
522 ment with wavelet-based diffusion models. *ACM Transactions on Graphics (TOG)*, 42(6):1–14,
523 2023.

524 525 Hai Jiang, Ao Luo, Xiaohong Liu, Songchen Han, and Shuaicheng Liu. Lightendiffusion: Unsuper-
526 vised low-light image enhancement with latent-retinex diffusion models. In *European Conference*
527 *on Computer Vision*, 2024.

528 529 Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou,
530 and Zhangyang Wang. Enlightengan: Deep light enhancement without paired supervision. *IEEE*
531 *Transactions on Image Processing*, 30:2340–2349, 2021.

532 533 Zhi Jin, Yuwei Qiu, Kaihao Zhang, Hongdong Li, and Wenhan Luo. Mb-taylorformer v2: Improved
534 multi-branch linear transformer expanded by taylor formula for image restoration. *TPAMI*, 2025.

535 536 Donggoo Jung, Daehyun Kim, and Tae Hyun Kim. Continuous exposure learning for low-light
537 image enhancement using neural ODEs. 2025.

538 539 Chulwoo Lee, Chul Lee, and Chang-Su Kim. Contrast enhancement based on layered difference
540 representation of 2d histograms. *IEEE Transactions on Image Processing*, 22(12):5372–5384,
541 2013.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

540 Yaron Lipman, Ricky T. Q. Chen, Haggai Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 541 matching for generative modeling. *Transactions on Machine Learning Research (TMLR)*, 2023.
 542

543 Risheng Liu, Long Ma, Jiaao Zhang, Xin Fan, and Zhongxuan Luo. Retinex-inspired unrolling with
 544 cooperative prior architecture search for low-light image enhancement. In *Proceedings of the*
 545 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10561–10570, 2021.

546 Kin Gwn Lore, Adedotun Akintayo, and Soumik Sarkar. Llnet: A deep autoencoder approach to
 547 natural low-light image enhancement. *Pattern Recognition*, 61:650–662, 2017.
 548

549 Long Ma, Tengyu Ma, Risheng Liu, Xin Fan, and Zhongxuan Luo. Toward fast, flexible, and robust
 550 low-light image enhancement. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 551 and *Pattern Recognition*, pp. 5637–5646, 2022.

552 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 553 analyzer. *IEEE Signal processing letters*, 20(3):209–212, 2012.
 554

555 Zia-ur Rahman, Daniel J Jobson, and Glenn A Woodell. Retinex processing for automatic image
 556 enhancement. *Journal of Electronic imaging*, 13(1):100–110, 2004.
 557

558 Wenqi Ren, Sifei Liu, Lin Ma, Qianqian Xu, Xiangyu Xu, Xiaochun Cao, Junping Du, and Ming-
 559 Hsuan Yang. Low-light image enhancement via a deep hybrid network. *IEEE Transactions on*
 560 *Image Processing*, 28(9):4364–4375, 2019.

561 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 562 *preprint arXiv:2010.02502*, 2020.
 563

564 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv*
 565 *preprint arXiv:2310.14189*, 2023.

566 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.
 567

568 Shuhang Wang, Jin Zheng, Hai-Miao Hu, and Bo Li. Naturalness preserved enhancement algorithm
 569 for non-uniform illumination images. *IEEE transactions on image processing*, 22(9):3538–3548,
 570 2013.

571 Tao Wang, Kaihao Zhang, Yong Zhang, Wenhan Luo, Björn Stenger, Tong Lu, Tae-Kyun Kim,
 572 and Wei Liu. Lldiffusion: Learning degradation representations in diffusion models for low-light
 573 image enhancement. *Pattern Recognition*, 166:111628, 2025.
 574

575 Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-Pui Chau, and Alex Kot. Low-light
 576 image enhancement with normalizing flow. *Proceedings of the AAAI Conference on Artificial*
 577 *Intelligence*, pp. 2604–2612, Jul 2022.
 578

579 Yufei Wang, Yi Yu, Wenhan Yang, Lanqing Guo, Lap-Pui Chau, Alex C Kot, and Bihan Wen.
 580 Exposediffusion: Learning to expose for low-light image enhancement. In *Proceedings of the*
 581 *IEEE/CVF International Conference on Computer Vision*, pp. 12438–12448, 2023.
 582

583 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 584 from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–
 585 612, 2004.

586 Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
 587 enhancement. *arXiv preprint arXiv:1808.04560*, 2018.

588 Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan Yang, and Jianmin Jiang. Uretinex-net:
 589 Retinex-based deep unfolding network for low-light image enhancement. In *Proceedings of the*
 590 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5901–5910, 2022.
 591

592 Xiaogang Xu, Ruixing Wang, Chi-Wing Fu, and Jiaya Jia. Snr-aware low-light image enhancement.
 593 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 17714–17724, 2022.

594 Qingsen Yan, Yixu Feng, Cheng Zhang, Guansong Pang, Kangbiao Shi, Peng Wu, Wei Dong, Jinqiu
595 Sun, and Yanning Zhang. Hvi: A new color space for low-light image enhancement. *arXiv*
596 *preprint arXiv:2502.20272*, 2025.

597

598 Wenhao Yang, Shiqi Wang, Yuming Fang, Yue Wang, and Jiaying Liu. From fidelity to perceptual
599 quality: A semi-supervised approach for low-light image enhancement. In *Proceedings of the*
600 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3063–3072, 2020.

601

602 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
603 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
604 *computer vision and pattern recognition*, pp. 586–595, 2018.

605

606 Dewei Zhou, Zongxin Yang, and Yi Yang. Pyramid diffusion models for low-light image enhance-
607 ment. *arXiv preprint arXiv:2305.10028*, 2023.

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PROOF AND ANALYSIS
649650 **Centering (nonzero means).** Write $s(i) = \mu_s(i) + \tilde{s}(i)$ and $x_1(i) = \mu_s(i) + \tilde{s}(i) + n(i)$. Equiv-
651 alently, one may include an intercept in the endpoint:

652
$$y_1(i) = \mu_s(i) + a(i)(x_1(i) - \mu_s(i)) + [1 - a(i)]\epsilon(i), \quad (20)$$

653

654 with $\epsilon(i) \perp (x_1(i), \tilde{s}(i), n(i))$ and $\mathbb{E}[\epsilon(i)] = 0$. All results below hold verbatim; for brevity we
655 present the zero-mean notation and add $\mu_s(i)$ back as an intercept if desired.656 **Lemma 1** (Conditional mean of the endpoint). *Let $y_1(i) = a(i)x_1(i) + [1 - a(i)]\epsilon(i)$ with $\epsilon(i) \perp$
657 $x_1(i)$ and $\mathbb{E}[\epsilon(i)] = 0$. Then*

658
$$\mathbb{E}[y_1(i) | x_1(i)] = a(i)x_1(i). \quad (21)$$

659

660 *Proof.*

661
$$\mathbb{E}[y_1(i) | x_1(i)] = \mathbb{E}[a(i)x_1(i) + (1 - a(i))\epsilon(i) | x_1(i)] \quad (22)$$

662

663
$$= a(i)x_1(i) + (1 - a(i))\mathbb{E}[\epsilon(i) | x_1(i)] \quad (23)$$

664

665
$$= a(i)x_1(i), \quad (24)$$

666 where independence implies $\mathbb{E}[\epsilon(i) | x_1(i)] = \mathbb{E}[\epsilon(i)] = 0$. \square
667668 *Proof of Proposition 2.* By Lemma 1, we have

669
$$\mathbb{E}[y_1(i) | x_1(i)] = a(i)x_1(i). \quad (25)$$

670 Let $X \triangleq x_1(i)$ and $m(X) \triangleq \mathbb{E}[s(i) | X]$. The objective in equation 11 becomes
671

672
$$\mathcal{J}(a(i)) = \mathbb{E}[(a(i)X - m(X))^2], \quad (26)$$

673

674 i.e., the L^2 distance between $m(X)$ and the linear function aX under the marginal of X . The
675 orthogonal projection of $m(X)$ onto $\text{span}\{X\}$ yields the slope

676
$$a^*(i) = \frac{\mathbb{E}[m(X)X]}{\mathbb{E}[X^2]}. \quad (27)$$

677

678 Using the tower property and $X = s(i) + n(i)$ with $\mathbb{E}[s(i)n(i)] = 0$, we get
679

680
$$\mathbb{E}[m(X)X] = \mathbb{E}[\mathbb{E}[s(i) | X]X] \quad (28)$$

681

682
$$= \mathbb{E}[s(i)X] \quad (29)$$

683
$$= \mathbb{E}[s(i) \cdot (s(i) + n(i))] \quad (30)$$

684
$$= \mathbb{E}[s^2(i)] + \mathbb{E}[s(i)n(i)] \quad (31)$$

685
$$= \sigma_s^2(i) + \mathbb{E}^2[s(i)] \quad (32)$$

686
$$= \sigma_s^2(i), \quad (33)$$

687
$$\mathbb{E}[X^2] = \text{Var}(X) + \mathbb{E}^2[X] \quad (34)$$

688
$$= \text{Var}(X) + (\mathbb{E}[s(i) + n(i)])^2 \quad (35)$$

689
$$= \text{Var}(s(i) + n(i)) \quad (36)$$

690
$$= \sigma_s^2(i) + \sigma_n^2(i). \quad (37)$$

691 Therefore,

692
$$a^*(i) = \frac{\sigma_s^2(i)}{\sigma_s^2(i) + \sigma_n^2(i)} = \frac{\text{SNR}(i)}{\text{SNR}(i) + 1}, \quad \text{SNR}(i) \triangleq \frac{\sigma_s^2(i)}{\sigma_n^2(i)}. \quad (38)$$

693

 \square 694 **Gaussian specialization.** If $s(i) \sim \mathcal{N}(0, \sigma_s^2(i))$ and $n(i) \sim \mathcal{N}(0, \sigma_n^2(i))$ independently,
695 then $\mathbb{E}[s(i) | x_1(i)] = \frac{\sigma_s^2(i)}{\sigma_s^2(i) + \sigma_n^2(i)}x_1(i)$, and the coefficient in Proposition 2 matches the
696 Wiener/LMMSE shrinkage.

702 **Degenerate cases.** If $\sigma_s^2(i) = 0$ (locally constant signal), then $a^*(i) = 0$; if $\sigma_n^2(i) = 0$ (noiseless),
 703 then $a^*(i) = 1$. Both align with the intuition of pure prior vs. pure fidelity.
 704

705 B NETWORK ARCHITECTURE

707 Table 4: Baseline UNet architecture used in our experiments.
 708

709 Component	709 Configuration
710 Input channels	6 (concatenated low-light and noisy image)
711 Output channels	3 (RGB enhanced image)
712 Inner channels	64
713 Number of downsampling stages	4
714 Middle block	2 Residual blocks (1 with attention, 1 without)
715 Number of upsampling resolution	4
716 Channel multipliers per resolution	(1, 1, 2, 2, 4)
717 Self-attention resolution	32 (128*128 as input)
718 Residual blocks per resolution	2
719 Normalization	GroupNorm (32 groups)
720 Time embedding	Positional encoding + 2-layer MLP
721 Downsampling	Strided Conv2d (kernel=3, stride=2, padding=1)
722 Upsampling	Nearest neighbor + Conv2d (kernel=3, padding=1)
723 Residual block type	Two Conv2d layers
724 Skip connection	Concatenate
724 Final convolution	Conv2d (kernel=3, padding=1)

726 C COMPLEXITY ANALYSIS

728 We conduct complexity analysis on our method and compared with other diffusion based method.
 729 With only 1–2 NFEs, our models operate at a fraction of the compute of diffusion baselines (e.g.,
 730 *Ours-2*: 84.12G FLOPs, 22.32M params), yet deliver superior perceptual quality on LOLv2-real
 731 (best SSIM/LPIPS/FID) and competitive or higher PSNR. *Ours-1* minimizes complexity (NFE=1)
 732 while retaining strong distortion performance, and *Ours-2* adds a modest cost to achieve state-of-the-
 733 art perception, yielding the most favorable accuracy–efficiency trade-off among compared methods.

734 Table 5: Efficiency and accuracy on **LOLv2-real**. Best is **bold**, second-best is underlined. NFE =
 735 # function evaluations. PSNR/SSIM/LPIPS/FID are from Table 1. FLOPs for **Ours-2** are 84.120G
 736 with 22.320M params.
 737

738	739	LLDiffusion	GSAD	LightenDiffusion	Ours-1	Ours-2
740	FLOPs (G) ↓	551.975	<u>67.020</u>	118.960	84.120	84.120
741	Params (M) ↓	208.711	17.173	<u>20.743</u>	22.320	22.320
742	NFE ↓	10	10	20	1	<u>2</u>
743	PSNR ↑	18.54	20.11	<u>22.73</u>	23.24	<u>23.17</u>
744	SSIM ↑	0.861	0.865	<u>0.876</u>	<u>0.882</u>	0.903
745	LPIPS ↓	0.109	0.113	0.166	<u>0.108</u>	0.095
746	FID ↓	48.39	47.49	78.29	<u>40.46</u>	38.16

748 D VISUAL RESULTS.

750 We showcase more visual results in this section.
 751

752
 753
 754
 755

Figure 5: Visual comparisons on LOL-v2-real. The local patch has been zoomed out for improved visibility. Under extremely low-light conditions, the proposed method enhances brightness while maintaining realistic and natural color reproduction, outperforming other approaches.

Figure 6: Visual comparisons on LOL-v2-real.

810
811
812
813
814
815
816
817
818
819

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 7: Visual comparisons on LOL-v2-real.

Figure 8: Visual comparisons on DICM.