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ABSTRACT

Low-light image enhancement (LLIE) strives to restore visibility and faithful
details from severely under-exposed photographs. Existing learning-based ap-
proaches largely polarize around two objectives: fidelity-driven models, optimized
for distortion metrics (e.g., PSNR, SSIM), tend to produce over-smoothed results
with detail loss in extreme darkness, whereas perception-driven generative models
synthesize visually appealing textures at the risk of hallucination. We bridge this
dichotomy through WienerFlow, a continuous-time, flow-matching framework
that unifies both objectives within a single linear transport path. Leveraging the
theory of neural ordinary differential equations, we show that (i) a noise-free linear
path originating from the low-light image equates to a fidelity-oriented trajectory,
while (ii) a linear path initialized from Gaussian noise inherently favors percep-
tual richness. Under mild regularity assumptions, we prove that convex combi-
nations of these two vector fields yield another valid linear flow, and we derive
an optimal weight that maximizes perceptual realism subject to a fidelity budget.
Extensive experiments on four LLIE benchmarks demonstrate that WienerFlow
achieves state-of-the-art PSNR/SSIM scores while substantially improving per-
ceptual quality, as confirmed by LPIPS, FID and NIQE on no-reference dataset,
without introducing spurious textures. Our findings provide both a theoretical
lens and a practical solution for balancing perception and distortion in low-light
enhancement.

1 INTRODUCTION

Images captured in low-light environments or under extremely short exposure time often face chal-
lenges such as poor visibility, low contrast, color distortion and high noise levels. Low-light image
enhancement (LLIE) aims to recover visually pleasing and information-rich images from severely
underexposed inputs. Although convolutional neural networks (CNNs) and Transformer-based ap-
proaches have driven notable advances, the majority of learning-based LLIE methods are trained un-
der fidelity-oriented objectives—optimizing Peak Signal-to-Noise Ratio (PSNR) or Structural Sim-
ilarity Index (SSIM)—whose correlation with human visual preference is, at best, imperfect (Blau
& Michaeli, 2018; Zhang et al., 2018). As a consequence, enhanced outputs often exhibit overly
smooth transitions and substantial detail loss in extremely dark regions. Furthermore, constrained
by the multi-step iterative nature of the inference process in diffusion models, these methods often
require substantial inference time In contrast, generative paradigms, such as adversarial learning and
particularly the recently prominent methods based on diffusion models (Jiang et al., 2021; Hou et al.,
2024) emphasize perceptual realism and can synthesize plausible fine-scale structures in shadows.
However, in the absence of explicit, physically or statistically grounded guidance, these models are
prone to producing unrealistic textures or structural inconsistencies. This tension reflects the broader
perception–distortion dilemma: improving perceptual quality typically compromises metric fidelity,
and vice versa (Blau & Michaeli, 2018).

Recently, continuous-time generative modeling via neural ordinary differential equations (Neu-
ral ODEs) and flow matching has provided a rigorous framework for learning deterministic or
stochastic transport maps between probability distributions (Chen et al., 2018; Lipman et al.,
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2023). When LLIE is cast as transporting the low-light image distribution to its normal counter-
part, the choice of the path’s starting distribution fundamentally biases the learned transformation.

Figure 1: WienerFlow: linear path bridges fi-
delity and perception. The fidelity path (gray)
directly transports the low-light distribution space
to normal image space while the perception path
(blue) transports Gaussian Noise to normal im-
age space. x0 sampled form the normal im-
age distribution is the common endpoint of two
flow-matching trajectories mentioned above. By
linear additivity, a convex combination of their
start points yields another valid linear path (green)
starting at y1 = a∗ x1 + (1 − a∗) ϵ and evolving
as yt = t y1 + (1 − t)x0. Choosing the optimal
pixel-wise weight a∗ balances distortion and real-
ism—biasing toward x1 in high-SNR regions and
toward ϵ in low-SNR shadows—while preserving
the same endpoint x0.

Specifically, (i) starting directly from the low-
light image without injected noise induces a
fidelity-driven path that preserves measured
content yet lacks generative richness (Jung
et al., 2025); (ii) initiating from Gaussian noise
and conditioned on low-light images encour-
ages a perception-driven path that can synthe-
size details but risks hallucination (Hou et al.,
2024; Jiang et al., 2024).

To reconcile these competing desiderata,
we introduce WienerFlow, a flow-matching
paradigm that explicitly blends perception and
fidelity oriented trajectories. We show that,
under mild regularity assumptions, two lin-
ear flow paths that share a common endpoint
(the normal image) are additively composable:
any convex combination of their vector fields
yields another valid linear path from a newly
defined virtual start point to the common end-
point. Moreover, we theoretically establish
the existence of an optimal convex weight that
maximizes perceptual realism subject to a fi-
delity constraint (or vice versa). This additive
property allows WienerFlow to learn a single
continuous path that simultaneously honors fi-
delity and perceptual quality. Extensive exper-
iments on multiple LLIE benchmarks demon-
strate that WienerFlow attains competitive or
superior PSNR/SSIM while markedly improv-
ing perceptual realism and reducing texture
hallucinations compared with both direct map-
ping and purely generative methods. Our con-
tributions are threefold:

• We reinterpret LLIE through the lens of flow matching, revealing how noise injection im-
plicitly governs the perception–fidelity bias of continuous transport paths.

• We prove an additive-composition theorem for linear flow paths and derive an optimal
convex weighting strategy that balances perceptual and fidelity objectives.

• We develop WienerFlow, a practical algorithm based on MeanFlow that achieves state-of-
the-art trade-offs between visual realism and distortion metrics across diverse datasets.

• We propose a time-length aware consistency loss, enabling even 1-step evaluation to
achieve competitive performance.

2 RELATED WORKS

Fidelity Driven Learning Based Methods. Early deep learning approaches for LLIE largely super-
seded traditional methods by leveraging the power of large-scale data. Many of these initial works
(Lore et al., 2017; Ren et al., 2019) employed direct end-to-end learning, utilizing Convolutional
Neural Networks (CNNs) to learn a direct mapping from low-light to normal images. Concurrently,
a significant body of works (Wei et al., 2018; Wu et al., 2022; Cai et al., 2023) drew inspiration
from the Retinex theory (Rahman et al., 2004). Despite achieving significant progress over tradi-
tional techniques, these methods often rely on optimizing for fidelity-based loss functions (L1 or
L2 loss). While models trained with these objectives excel at producing high Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) (Wang et al., 2004) scores, they of-
ten fall short in terms of human perceptual quality. The resulting images, particularly in extremely
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dark scenes, tend to be overly smooth, sacrificing fine-grained details and textures that are crucial
for visual realism.

Generative Models for Perceptual Enhancement. To address the shortcomings of fidelity-centric
optimization, researchers turned to generative models, which are better suited for producing per-
ceptually convincing results. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
were first applied to LLIE. EnlightenGAN (Jiang et al., 2021) stands out as a seminal work in this
area. However, GAN-based methods are notoriously difficult to train, often suffering from instabil-
ity, mode collapse, and the generation of undesirable artifacts, which has limited their widespread
adoption and performance. Recently, Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al.,
2020) and Flow Matching Models (FM) (Lipman et al., 2022) have achieved state-of-the-art results
across numerous image generation tasks. Their ability to produce diverse and high-quality images
has motivated their application to LLIE. These models operate by learning to reverse a gradual nois-
ing process. By iteratively denoising a random noise map conditioned on the low-light input, they
can generate a corresponding high-quality, normal image. Several recent works have demonstrated
the impressive potential of diffusion models for LLIE. Methods such as GSAD (Hou et al., 2024) and
LLDifffusion (Wang et al., 2025) have shown that diffusion-based approaches can restore stunning
details and textures that were previously unattainable. Other works like ExposureDiffusion (Wang
et al., 2023) aim to provide controllable enhancement by conditioning the diffusion process on an
exposure value. Furthermore, some methods explore domain-specific adaptations, such as using a
wavelet-based diffusion process (Jiang et al., 2023) to better capture frequency-domain information
and saving computing cost.

However, these methodologies exhibit two primary drawbacks. First, while they effectively lever-
age the generative capabilities of diffusion models, the absence of explicit and principled guidance
often leads to the generation of unrealistic textures. Consequently, the perceptual quality in darker
regions is degraded, indicating a neglect of fidelity. Second, the inherent nature of diffusion models
necessitates a multi-step sampling process during inference. Despite the application of acceleration
strategies such as Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020), a typical num-
ber of function evaluations (NFE) still exceeds ten steps, which curtails the practical applicability of
these models.

3 METHODOLOGY

3.1 PRELIMINARY

Flow Matching and MeanFlow Models. Flow Matching (FM) offers a straightforward way to
transform a simple prior ϵ ∼ pprior into the expected data distribution x ∼ pdata by prescribing a
velocity field that drives latent particles along a continuous path zt = atx + btϵ in time t. The
marginal (instantaneous) velocity is the conditional expectation over all microscopic flows:

v(zt, t) = Ept(vt|zt)[ vt ], (1)

where vt = żt is the (sample-dependent) conditional velocity. A simple yet effective canonical path
is the linear path: at = 1− t, bt = t. In this case, the velocity field can be expressed as vt = ϵ− x.
Sampling is obtained by integrating the ordinary differential equation (ODE):

dzt
dt

= v(zt, t), (2)

starting from z1 = ϵ and running the flow backwards to t = 0. When using a Euler solver, the
solution of each step can be obtained with zt = zt−1 + ∆t · v(zt−1, t), where ∆t represents the
discretized time interval.

MeanFlow. While CFM models the instantaneous field v, MeanFlow (Geng et al., 2025) introduces
the average velocity over a finite interval (r, t):

u(zt, r, t) =
1

t− r

∫ t

r

v(zτ , τ) dτ. (3)

This quantity aligns with the net displacement (t − r)u and depends jointly on the start and end
times. Crucially, differentiating the definition yields the MeanFlow identity, an exact algebraic link
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between average and instantaneous velocities,

u(zt, r, t) = v(zt, t) − (t− r)
d

dt
u(zt, r, t), (4)

which collapses to u = v as r→ t. equation 4 is used to compute the ground truth average velocity
during the traninig. In practical implementations, the first term in equation 4, which represents a
constant velocity field, can be directly computed from the sampled image and noise. The second
term, which involves taking the partial derivative of the current network with respect to time t, can
be calculated using the Jacobian-vector product (JVP) operator in PyTorch.

3.2 WIENER-ADAPTIVE FUSION PATH

Let x0 ∼ pnormal denote an image sampled from the well-exposed reference images, x1 ∼ plow is
the low-light version of x0, and ϵ ∼ N (0, I) is an i.i.d. Gaussian noise sample. All continuous paths
are parameterised by t ∈ [0, 1]. Throughout, ẋt ≜ d

dtxt. We start from two linear (affine) paths that
share the origin x0:

Fidelity path : xt = t x1 + (1− t)x0, (5)
Perception path: zt = t ϵ+ (1− t)x0. (6)

The flow path in equation 5 starts from the low-light observation, optimizing such a path approxi-
mated by a neural network f(xt, t; θF ) is fidelity oriented since it is anchored to the actual obser-
vation and enforces data-consistency. The path in equation 6 is perception oriented because starting
from noise endows the model with generative capability, whose velocity estimator f(zt, t, x1; θP )
is typically conditioned on low-light observation.

Proposition 1 (Linear additivity). For any real constants a, b, the mixture yt ≜ a xt + b zt is itself
an affine path in t with closed-form

yt = t [a x1 + b ϵ] + (1− t) (a+ b)x0. (7)

Consequently, yt satisfies the constant-velocity ẏt = y1− y0, where y1 = ax1+ bϵ, y0 = (a+ b)x0.

Proof. Substituting equation 5–equation 6 and collecting terms:

yt = a [tx1 + (1− t)x0] + b [tϵ+ (1− t)x0]

= t [ax1 + bϵ] + (1− t) (a+ b)x0,

which is affine in t; differentiation yields the claimed constant velocity.

Corollary 1 (Endpoint preservation). yt passes through the common start point x0 iff

a+ b = 1 ⇐⇒ b = 1− a. (8)

Under this necessary and sufficient condition the path reduces to

yt = t
[
a x1 + (1− a) ϵ

]
+ (1− t)x0, (9)

with new endpoint y1 = a x1 + (1− a) ϵ.

Wiener-adaptive fusion path. We start the flow from a fusion endpoint that mixes the low-light
observation and a noise draw:

y1(i) = a(i)x1(i) +
[
1− a(i)

]
ϵ(i), ϵ(i) ∼ N (0, 1), ϵ(i) ⊥ x1(i), (10)

with x1(i) = s(i) + n(i) and possibly heteroscedastic variances σ2
s(i) = Var[s(i)] and σ2

n(i) =
Var[n(i)]. To preserve generative diversity while avoiding fidelity bias, we align conditional means:

J
(
a(i)

)
≜ E

[ (
E[y1(i) | x1(i)] − E[s(i) | x1(i)]

)2 ]
. (11)

Intuitively, (1− a)ϵ supplies diversity for perception, whereas equation 11 constrains the endpoint’s
conditional center to be fidelity-consistent in expectation.
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Proposition 2 (Expectation-aligned Wiener weight). Minimizing equation 11 yields the pixel-wise
optimal fusion weight

a∗(i) =
σ2
s(i)

σ2
s(i) + σ2

n(i)
=

SNR(i)

SNR(i) + 1
, SNR(i) ≜

σ2
s(i)

σ2
n(i)

. (12)

Proof of Proposition 2 can be found in the Appendix. The result in 2 indicates that minimizing the
conditional expectation leding to a Wiener fusion weight.

MeanFlow for LLIE with Wiener-adaptive fusion path. We use the additive linear path of equa-
tion 9 with a Wiener-adaptive fusion weight to obtain a single transport trajectory that balances
perception and fidelity without training two separate models. Concretely, for each pixel i we ap-
proximate the optimal fusion weight by

a∗(i) =
SNR(i)

SNR(i) + 1
, SNR ≈ G ∗ ŝ2

G ∗ n̂2 + δ
, (13)

where G is a Gaussian smoothing operator, ŝ = G ∗ x1, n̂ = x1 − ŝ and δ is a small number to
ensure numerical stability. The pixel-wise virtual starting point can then be formed with:

y1 = a∗ ⊙ x1 + (1− a∗)⊙ ϵ, ϵ ∼ N (0, I), (14)

and define the linear flow yt = t y1 + (1− t)x0, t ∈ [0, 1], which shares the endpoint x0 with the
fidelity and perception paths but needs only one learned velocity field.

We adopt MeanFlow (Geng et al., 2025) as the flow-matching backbone to reduce function evalu-
ations at inference. Let u = f

(
yt, r, t, x0; θ

)
denote the average velocity, estimated by an UNet

parameterized by θ over a finite interval (r, t), where x0 is concatenated with yt along the chan-
nel dimension as a conditional guide. Times t and r are embedded by a shared time encoder and
summed to yield the final time code. We train uθ to align with the target average velocity obtained
by the MeanFlow identity (equation 4), in our context the stantaneous velocity is v = y1 − x0 and
the partial derivative of uθ with respect t is obtained via a JVP operator. Time sampling strategy
of (r, t) follows MeanFlow, sampled from LogitNormal(−0.4, 1.0) with half of the minibatch en-
forcing t = r, this sampling scheme is denoted as S. The training and inference algorithm can are
shown in Alg. 1 and Alg. 2 respectively. The distance meteric in Alg 1, denoted as d(·, ·), is the
Pseudo-Huber loss (Song & Dhariwal, 2023).

Algorithm 1 Training

1: while not converged do
2: sample a minibatch {(x0, x1)} with x0∼pnormal, x1∼plow
3: sample (r, t) ∼ S and ϵ ∼ N (0, I)
4: a∗ ← equation 13
5: y1 = a∗ ⊙ x1 + (1− a∗)⊙ ϵ
6: yt = t y1 + (1− t)x0

7: v = y1 − x0

8: u = f(yt, r, t, x0; θ)

9: utarget = v − (t− r)
∂u

∂t
10: L = d

(
u, stopgrad(utarget)

)
11: perform a gradient descent step on∇θL
12: end while

5
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Figure 2: Tail-endpoint consistency. A teacher–student scheme stabilizes the shorter segment and
learns the longer one; when t ≤ 2r the teacher (blue) is on [t, r], otherwise on [r, 0].

Algorithm 2 Inference

1: Inputs: x0 (reference/anchor), x1 (low-light), trained f(·; θ), steps K (e.g., K ∈ {1, 2})
2: Sample ϵ ∼ N (0, I)
3: a∗ ← equation 13
4: y1 = a∗ ⊙ x1 + (1− a∗)⊙ ϵ
5: Initialize z ← y1, t = 1, r = 1− 1

K
6: for k = 1 to K do
7: u = f

(
z, r, t, x0; θ

)
8: z ← z − 1

Ku

9: t← t− 1
K , r ← r − 1

K
10: end for
11: Return:z

3.3 TAIL-ENDPOINT CONSISTENCY FOR ONE-STEP QUALITY

Motivation. MeanFlow allows one-step generation from any time τ to 0 by evaluating u(zτ , 0, τ);
in particular, u(z, 0, 1) yields a direct one-step sampler. However, as the time interval enlarges, the
approximation error of the mean field u grows and degrades one-step fidelity and realism. Inspired
by Consistency Models (Song et al., 2023), we design a length-aware consistency loss, which en-
forces that for any sampled time triplet (0, r, t), the path integral starting from t, passing through r,
and reaching the tail-endpoint t = 0 remains consistent and aligns with the ground truth x0. More-
over, we analyze the relationship between the error in the velocity field of MeanFlow and the time
length, with which to improve the consistency loss. To align with the notation adopted in MeanFlow,
we denote the intermediate state by zt instead of yt.

Length-amplified mean-field error. Recalling the MeanFlow identity (Eq. (4)):

u(zt, r, t) = v(zt, t) − (t− r) ∂tu(zt, r, t). (15)

Let u∗, v∗ be ground-truth fields and uθ, vθ their learned counterparts. With uniform gaps on the
training support Eu(r, t)≜ supz ∥uθ − u∗∥, Ev(t)≜ supz ∥vθ − v∗∥, E∂u(r, t)≜ supz ∥∂tuθ −
∂tu

∗∥, subtracting the two versions of equation 15 and taking norms yields

Eu(r, t) ≤ Ev(t) + (t− r)E∂u(r, t), (16)

i.e., the mean-field error scales linearly in the first order with the interval length (t − r). Conse-
quently, the longer of [t, r] and [r, 0] is the error-dominant segment for single-step updates.

Tail-endpoint consistency loss. For any 0 < r < t ≤ 1, the velocity field over time satisfies with

zt − x0 =

∫ t

0

v(zτ , τ) dτ =

∫ r

0

v(zτ , τ) dτ +

∫ t

r

v(zτ , τ) dτ. (17)

Combining equation 17 with the average velocity defined in equation 3 leading to the triplet-based
endpoint estimator,

x̃0(t, r; θ1, θ2) ≜ zt − (t− r)uθ1(zt, r, t)− r uθ2(zr, 0, r), (18)

where θ1 = θ2 = θ, refers to the parameters of a model that performs well in multi-step iterations.
Directly enforcing the estimation in equation 18 matches the real endpoint x0 lead to a consistency
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(a) Input (b) Retinexformer (c) CID (d) GSAD

(e) SNRNet (f) LightenDiff (g) Ours-2 (h) GT

Figure 3: Visual comparisons with other SOTA methods on real dataset LOLv2-real.

loss L(t, r; θ, θ
−) = E

[
d
(
x̃0(t, r; θ, θ) , x0

)]
. To reflect the error dominance implied by equa-

tion 16, we assign the longer segment to the student parameters θ (receiving gradients) and the
shorter segment to a frozen EMA teacher θ− (no gradients). Let ∆1 = r and ∆2 = t − r. The
piecewise loss is

LTEC(t, r; θ, θ
−) =

{
E
[
d
(
x̃0(t, r; θ

−, θ) , x0

)]
, if t ≤ 2r (∆1 ≥ ∆2),

E
[
d
(
x̃0(t, r; θ, θ

−) , x0

)]
, if t > 2r (∆2 > ∆1),

(19)

where E [·] denotes the expectation over all random variables. Fig. 2 illustrates the composition of
the consistency loss function under different time sampling distributions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. We evaluate on three paired (full-reference) benchmarks and four unpaired
(no-reference) collections. For full-reference evaluation we use LOLv1 (Wei et al., 2018), LOLv2-
real, and LOLv2-synthetic (Yang et al., 2020). LOLv1 provides paired low/normal-light images
captured under controlled exposure changes. LOLv2 extends this to more diverse scenes, with a
real subset (LOLv2-real) of paired photographs and a synthetic subset (LOLv2-syn) generated from
high-quality references by simulating low illumination. For no-reference evaluation we follow com-
mon LLIE practice and report results on DICM (Lee et al., 2013), LIME (Guo et al., 2017), MEF,
and NPE (Wang et al., 2013), which contain natural low-light photographs without ground-truth ref-
erences. We use the model trained on LOLv2-syn dataset and set NFE=2 to evaluate on no-reference
datasets. On paired datasets we report fidelity metrics PSNR and SSIM (Wang et al., 2004) together
with perceptual metrics LPIPS (Zhang et al., 2018) (lower is better) and FID (lower is better), com-
puted between the enhanced outputs and the corresponding normal-light references. On the unpaired
sets we use NIQE (Mittal et al., 2012) (lower is better) as a no-reference perceptual quality indicator.

Baselines. We compare against representative non-learning and learning methods across four fam-
ilies (see Table 1 and Table 2 for the complete list and citations): (i) Traditional/Retinex: MF (Fu
et al., 2016a), LIME (Guo et al., 2017), SRIE (Fu et al., 2016b). (ii)CNN/Transformers/Mamba:
Zero-DCE (Guo et al., 2020), RUAS (Liu et al., 2021), SCI (Ma et al., 2022), SNRNet (Xu et al.,
2022), Retinexformer (Cai et al., 2023), MBTaylorV2 (Jin et al., 2025), CID (Yan et al., 2025). (iii)
Generative models: EnlightenGAN (Jiang et al., 2021), LLFlow (Wang et al., 2022), PyDiff (Zhou
et al., 2023), GSAD (Hou et al., 2024), LightenDiff (Jiang et al., 2024), LLDiffusion (Wang et al.,
2025). We report two WienerFlow variants: Ours-1 uses a single sampling step (NFE= 1) and
Ours-2 uses two steps (NFE= 2).

Implementation details. We implement all models in PyTorch. Training runs on a single
NVIDIA RTX 4090 GPU. We use the Adam optimizer with its default β parameters and a fixed
learning rate of 1×10−4. after 300k iterations we add the proposed tail-endpoint consistency loss
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(a) Input (b) Retinexformer (c) CID (d) GSAD (e) Ours-2 (f) GT

Figure 4: Visual comparisons with different methods on LOLv2-syn dataset.

Table 1: Quantitative results on LOLv1 (Wei et al., 2018), LOLv2-real (Yang et al., 2020), and
LOLv2-synthetic (Yang et al., 2020) dataset. The best results are emphasized in bold, while the
second best results are marked with an underlined.

Methods LOLv1 LOLv2-real LOLv2-syn
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

MF (SP’16) 16.97 0.508 0.380 119.23 18.73 0.627 0.388 96.22 17.49 0.792 0.185 52.54
LIME (TIP’16) 16.76 0.445 0.350 117.89 15.24 0.517 0.415 93.82 16.88 0.782 0.195 57.17
SRIE (CVPR’16) 11.86 0.495 0.257 107.68 14.45 0.612 0.312 87.86 14.50 0.672 0.241 73.26
Zero-DCE (CVPR’20) 14.86 0.562 0.335 101.23 18.06 0.680 0.312 91.95 17.76 0.838 0.168 49.24
RUAS (CVPR’21) 16.40 0.701 0.270 112.37 18.37 0.731 0.310 87.15 16.55 0.665 0.364 76.93
SCI (CVPR’22) 14.78 0.618 0.339 87.17 17.30 0.632 0.308 76.93 15.42 0.763 0.233 61.20
SNRNet (CVPR’22) 24.61 0.840 0.151 55.12 21.47 0.872 0.157 58.76 24.13 0.944 0.056 19.96
Retinexformer (ICCV’23) 25.15 0.843 0.131 71.15 22.79 0.866 0.171 62.46 25.67 0.952 0.059 22.75
MBTaylorV2 (TPAMI’25) 22.99 0.891 0.124 56.42 20.97 0.868 0.159 56.23 24.53 0.945 0.061 23.65
CID (CVPR’25) 23.49 0.870 0.105 52.51 23.42 0.862 0.169 50.17 25.70 0.942 0.047 19.00
EnlightenGAN (TIP’21) 17.48 0.652 0.275 98.49 18.63 0.730 0.309 92.57 16.57 0.802 0.212 74.32
LLFlow (AAAI’22) 21.14 0.904 0.119 64.58 17.43 0.846 0.176 77.05 23.42 0.950 0.050 20.79
PyDiff (IJCAI’23) 25.64 0.849 0.142 69.78 23.44 0.833 0.208 71.54 25.13 0.927 0.098 29.36
GSAD (NeurIPS’23) 22.34 0.897 0.110 57.63 20.11 0.865 0.113 47.49 24.13 0.942 0.052 19.36
LightenDiff (ECCV’24) 20.45 0.803 0.192 65.72 22.73 0.876 0.166 78.29 21.51 0.899 0.154 57.24
LLDiffusion (PR’25) 20.28 0.896 0.098 42.32 18.54 0.861 0.109 48.39 23.96 0.952 0.040 17.47
Ours-1 20.47 0.854 0.136 68.82 23.24 0.882 0.108 40.46 26.05 0.958 0.042 15.61
Ours-2 21.79 0.891 0.108 51.35 23.17 0.903 0.095 38.16 25.90 0.959 0.038 14.36

from Sec. 3.3 and continue training until convergence. Unless otherwise noted, reported results are
obtained with the same pretrained model and the specified number of sampling steps (Ours-1 or
Ours-2).

4.2 COMPARISON WITH OTHER SOTA METHODS

Results on LOLv1 and LOLv2 datasets. Table 1 summarizes results on the three paired bench-
marks. Across datasets, Ours-2 delivers the strongest overall perceptual quality under fast sampling:
on LOLv2-real it attains the best SSIM/LPIPS/FID (0.903/0.095/38.16); on LOLv2-syn it achieves
the best SSIM/LPIPS/FID (0.959/0.038/14.36). On LOLv1, Ours-2 secures the second-best FID
(51.35) and a top-3 LPIPS (0.108), trailing LLDiffusion (0.098) and CID (0.105). In terms of dis-
tortion, PSNR leadership largely resides with PyDiff on LOLv1/LOLv2-real (25.64/23.44,dB) and
is competitive on LOLv2-syn, where our Ours-1 variant reaches the highest PSNR (26.05,dB) and
Ours-2 is close behind (25.90,dB). Fig. 3 showcase the visual comparasions on LOLv2-real dataset,
unlike other methods, our method suppresses artifacts and better preserves seat textures and edges,
yielding natural contrast and colors. Visual results from LOLv2-syn dataset shown in Fig. 4 illustrate
that our method tends to produce more natural color and brightness in dark aeras.

One vs. two steps. Moving from Ours-1 (NFE=1) to Ours-2 (NFE=2) consistently improves per-
ceptual metrics with minimal change in PSNR: on LOLv1, LPIPS/FID improves 0.136→0.108 and
68.82→51.35; on LOLv2-real, LPIPS/FID improves 0.108→0.095 and 40.46→38.16 with SSIM

8
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(a) Ablation on fusion strategies.

a b PSNR ↑ LPIPS ↓
1 0 20.12 0.147
0 1 19.76 0.139
x1 1−x1 20.52 0.133
a∗ 1−a∗ 23.11 0.111

(b) Ablation on the consistency loss LTEC (NFE= 1).

Setting PSNR ↑ LPIPS ↓
w/o LTEC 23.48 0.122
L′

TEC 23.29 0.121
LTEC (ours) 23.24 0.108

Table 3: Ablations studies on LOLv2-real dataset.

0.882→0.903; on LOLv2-syn, LPIPS/FID improves 0.042→0.038 and 15.61→14.36 while SSIM
slightly increases 0.958→0.959 (PSNR 26.05→25.90dB).

Results on no-reference datasets. Table 2 reports NIQE on DICM, LIME, MEF, and
NPE. WienerFlow achieves the lowest (best) NIQE on three of four datasets: LIME (3.33),
MEF (3.46), and NPE (3.22). Relative to the second best results, this corresponds to
10.2% (LIME; 3.71→3.33), 6.7% (MEF; 3.71→3.46), and 9.3% (NPE; 3.55→3.22) reductions.

Table 2: Quantitative results on no-reference datasets
in terms of NIQE (Mittal et al., 2012) on DICM (Lee
et al., 2013), LIME (Guo et al., 2017), MEF, and NPE
(Wang et al., 2013). The NIQE (Mittal et al., 2012)
metric is assessed, with lower scores indicating better
quality.

Method DICM LIME MEF NPE
LIME 3.67 4.37 4.37 3.98
Zero-DCE 4.58 5.82 5.82 4.53
EnlightenGAN 4.06 4.59 4.59 3.99
SNRNet 6.12 3.76 3.76 6.44
Retinexformer 3.08 3.91 3.91 3.63
GSAD 3.28 4.32 4.32 3.55
LightenDiffusion 3.72 3.71 3.71 3.62
Ours 3.30 3.33 3.46 3.22

On DICM, WienerFlow attains 3.30
NIQE and is competitive with the best
published score (3.08), remaining within
7.1%. These no-reference results cor-
roborate the paired-set findings: Wiener-
Flow improves natural image statistics in
low-light scenes without introducing per-
ceptual artifacts.

4.3 ABLATION STUDY

We conduct experiments on LOLv2-
real to validate the effectiveness of our
method. Effectiveness of the proposed
Wiener-adaptive fusion weight. we
compare several ways of forming the end-
point: (1) a path initialized purely from
the low-light observation (a=1), (2) a
path initialized purely from noise (a=0),
and (3) a heuristic pixel-wise fusion that directly uses the low-light image as the weight (smoothed
by a Gaussian for stability). Table 3a reports the results. The first two rows verify our intuition and
theory: the noise path yields better perceptual quality (lower LPIPS) whereas the observation path
provides better fidelity (higher PSNR). In contrast, our Wiener-adaptive weight a∗ simultaneously
improves both distortion and perception, achieving the best PSNR/LPIPS among all variants.

Effect of the consistency objective. We further evaluate one-step inference variants to isolate the
effect of the proposed temporal expectation-consistency loss LTEC. As shown in Table 3b, adding
LTEC consistently improves perceptual quality (LPIPS drops from 0.122 to 0.108) with negligible
changes in PSNR, outperforming both training without the consistency term and a length-agnostic
variant L′

TEC. These results confirm that enforcing conditional-mean alignment along the short tra-
jectory strengthens one-step perception while maintaining distortion.

5 CONCLUSION

We propose a Wiener-adaptive fusion endpoint and a single transport trajectory for low-light en-
hancement, initializing y1 = a∗x1 + (1 − a∗)ϵ. An expectation-aligned objective yields the pixel-
wise weight a∗ = SNR/(SNR + 1), preserving generative diversity while anchoring fidelity. One
limatation of our work is thay SNR estimation may be biased under extreme noise/ISP mismatch;
future work will explore learned calibration and content-adaptive trajectories.
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A PROOF AND ANALYSIS

Centering (nonzero means). Write s(i) = µs(i) + s̃(i) and x1(i) = µs(i) + s̃(i) + n(i). Equiv-
alently, one may include an intercept in the endpoint:

y1(i) = µs(i) + a(i)
(
x1(i)− µs(i)

)
+

[
1− a(i)

]
ϵ(i), (20)

with ϵ(i) ⊥ (x1(i), s̃(i), n(i)) and E[ϵ(i)] = 0. All results below hold verbatim; for brevity we
present the zero-mean notation and add µs(i) back as an intercept if desired.

Lemma 1 (Conditional mean of the endpoint). Let y1(i) = a(i)x1(i) +
[
1− a(i)

]
ϵ(i) with ϵ(i) ⊥

x1(i) and E[ϵ(i)] = 0. Then
E
[
y1(i) | x1(i)

]
= a(i)x1(i). (21)

Proof.

E
[
y1(i) | x1(i)

]
= E

[
a(i)x1(i) +

(
1− a(i)

)
ϵ(i)

∣∣ x1(i)
]

(22)

= a(i)x1(i) +
(
1− a(i)

)
E
[
ϵ(i) | x1(i)

]
(23)

= a(i)x1(i), (24)

where independence implies E[ϵ(i) | x1(i)] = E[ϵ(i)] = 0.

Proof of Proposition 2. By Lemma 1, we have

E
[
y1(i) | x1(i)

]
= a(i)x1(i). (25)

Let X ≜ x1(i) and m(X) ≜ E
[
s(i) | X

]
. The objective in equation 11 becomes

J
(
a(i)

)
= E

[(
a(i)X −m(X)

)2]
, (26)

i.e., the L2 distance between m(X) and the linear function aX under the marginal of X . The
orthogonal projection of m(X) onto span{X} yields the slope

a∗(i) =
E
[
m(X)X

]
E
[
X2

] . (27)

Using the tower property and X = s(i) + n(i) with E
[
s(i)n(i)

]
= 0, we get

E
[
m(X)X

]
= E

[
E
[
s(i) | X

]
X

]
(28)

= E
[
s(i)X

]
(29)

= E
[
s(i) ·

(
s(i) + n(i)

)]
(30)

= E
[
s2(i)

]
+ E

[
s(i)n(i)

]
(31)

= σ2
s(i) + E2

[
s(i)

]
(32)

= σ2
s(i), (33)

E
[
X2

]
= Var(X) + E2

[
X
]

(34)

= Var(X) + (E
[
s(i) + n(i)

]
)2 (35)

= Var
(
s(i) + n(i)

)
(36)

= σ2
s(i) + σ2

n(i). (37)

Therefore,

a∗(i) =
σ2
s(i)

σ2
s(i) + σ2

n(i)
=

SNR(i)

SNR(i) + 1
, SNR(i) ≜

σ2
s(i)

σ2
n(i)

. (38)

Gaussian specialization. If s(i) ∼ N (0, σ2
s(i)) and n(i) ∼ N (0, σ2

n(i)) independently,
then E[s(i) | x1(i)] =

σ2
s(i)

σ2
s(i)+σ2

n(i)
x1(i), and the coefficient in Proposition 2 matches the

Wiener/LMMSE shrinkage.
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Degenerate cases. If σ2
s(i) = 0 (locally constant signal), then a∗(i) = 0; if σ2

n(i) = 0 (noiseless),
then a∗(i) = 1. Both align with the intuition of pure prior vs. pure fidelity.

B NETWORK ARCHITECTURE

Table 4: Baseline UNet architecture used in our experiments.

Component Configuration
Input channels 6 (concatenated low-light and noisy image)
Output channels 3 (RGB enhanced image)
Inner channels 64
Number of downsampling stages 4
Middle block 2 Residual blocks (1 with attention, 1 without)
Number of upsampling resolution 4
Channel multipliers per resolution (1, 1, 2, 2, 4)
Self-attention resolution 32 (128*128 as input)
Residual blocks per resolution 2
Normalization GroupNorm (32 groups)
Time embedding Positional encoding + 2-layer MLP
Downsampling Strided Conv2d (kernel=3, stride=2, padding=1)
Upsampling Nearest neighbor + Conv2d (kernel=3, padding=1)
Residual block type Two Conv2d layers
Skip connection Concatenate
Final convolution Conv2d (kernel=3, padding=1)

C COMPLEXITY ANALYSIS

We conduct complexity analysis on our method and compared with other diffusion based method.
With only 1–2 NFEs, our models operate at a fraction of the compute of diffusion baselines (e.g.,
Ours-2: 84.12G FLOPs, 22.32M params), yet deliver superior perceptual quality on LOLv2-real
(best SSIM/LPIPS/FID) and competitive or higher PSNR. Ours-1 minimizes complexity (NFE=1)
while retaining strong distortion performance, and Ours-2 adds a modest cost to achieve state-of-the-
art perception, yielding the most favorable accuracy–efficiency trade-off among compared methods.

Table 5: Efficiency and accuracy on LOLv2-real. Best is bold, second-best is underlined. NFE =
# function evaluations. PSNR/SSIM/LPIPS/FID are from Table 1. FLOPs for Ours-2 are 84.120G
with 22.320M params.

LLDiffusion GSAD LightenDiffusion Ours-1 Ours-2
FLOPs (G) ↓ 551.975 67.020 118.960 84.120 84.120
Params (M) ↓ 208.711 17.173 20.743 22.320 22.320
NFE ↓ 10 10 20 1 2
PSNR ↑ 18.54 20.11 22.73 23.24 23.17
SSIM ↑ 0.861 0.865 0.876 0.882 0.903
LPIPS ↓ 0.109 0.113 0.166 0.108 0.095
FID ↓ 48.39 47.49 78.29 40.46 38.16

D VISUAL RESULTS.

We showcase more visual results in this section.

14
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(a) Input (b) CID (c) MB-TaylorV2

(d) LLDifusion (e) Retinexformer (f) GASD

(g) LightenDiffusion (h) Ours (i) Ground Truth

Figure 5: Visual comparisons on LOL-v2-real. The local patch has been zoomed out for improved
visibility. Under extremely low-light conditions, the proposed method enhances brightness while
maintaining realistic and natural color reproduction, outperforming other approaches.

(a) Input (b) CID (c) MB-TaylorV2

(d) LLDifusion (e) Retinexformer (f) GASD

(g) LightenDiffusion (h) Ours (i) Ground Truth

Figure 6: Visual comparisons on LOL-v2-real.
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(a) Input (b) CID (c) MB-TaylorV2

(d) LLDifusion (e) Retinexformer (f) GASD

(g) LightenDiffusion (h) Ours (i) Ground Truth

Figure 7: Visual comparisons on LOL-v2-real.

(a) Input (b) CID (c) LightenDiffusion

(d) GSAD (e) Retinexformer (f) Ours

Figure 8: Visual comparisons on DICM.
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